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Abstract
Together with the development of information systems research, there has

also been increased interest in non-linear relationships between focal

constructs. This article presents six Partial Least Squares-based approaches for
estimating formative constructs’ quadratic effects. In addition, these approaches’

performance is tested by means of a complex Monte Carlo experiment. The

experiment reveals significant and substantial differences between the ap-

proaches. In general, the performance of the hybrid approach as suggested by
Wold (1982) is most convincing in terms of point estimate accuracy, statistical

power, and prediction accuracy. The two-stage approach suggested by Chin

et al (1996) showed almost the same performance; differences between it and
the hybrid approach – although statistically significant – were unsubstantial.

Based on these results, the article provides guidelines for the analysis of non-

linear effects by means of variance-based structural equation modelling.
European Journal of Information Systems advance online publication,

6 September 2011; doi:10.1057/ejis.2011.36
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Introduction
Structural equation modelling (SEM) has become a quasi-standard for
survey-based studies in information systems (IS) research. As Gefen &
Straub (1997, p. 6) point out, ‘SEM has become de rigueur in validating
instruments and testing linkages between constructs’. They distinguish
between two families of SEM techniques: covariance-based techniques
(represented by LISREL) and variance-based techniques (represented by
Partial Least Squares Path Modelling, PLS). PLS path modelling has
specifically become a key multivariate analysis method in top-tier IS
journals such as the European Journal of Information Systems (EJIS),
Information Systems Research (ISR) and the Management Information
Systems Quarterly (MISQ). From January 1990 until February 2009, a total
of 105 PLS path modelling applications were published in EJIS (18 articles),
ISR (21 articles), and MISQ (66 articles), respectively. A reason for the
advent of PLS could be its use in estimating formative constructs’
measurement models, which has been very strongly recommended
(cf. Chin, 1998; Petter et al, 2007).

Currently, SEM faces an increased demand for methodological advances,
as the complexity of hypothesised relationships has steadily increased
with scientific disciplines’ development (cf. Cortina, 1993). In many
instances, linear effects have already been identified between focal
constructs, and researchers’ interest has shifted toward non-linear effects
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like quadratic effects and interaction effects. However,
testing suspected non-linear effects by means of SEM is
regarded difficult and ‘problematic’ (Gefen & Straub,
1997, p. 42), which is also due to a lack of clear guidelines
on how to undertake a non-linear effect analysis. A well-
established practice is to transfer guidelines originally
meant for interaction effects to quadratic and other non-
linear effects (cf. Moulder & Algina, 2002; Marsh et al,
2004, 2006; Little et al, 2006). While with respect to
reflective constructs, there are some papers on quadratic
relationships (for a good overview see Schumacker &
Marcoulides, 1998), there is hardly any literature on
modelling the quadratic effects of formative constructs
since Chin et al (1996) introduced both the product
indicator and two-step procedures. This may coincide
with a general ‘lack of attention to formative constructs
in the literature’ (Petter et al, 2007, p. 640). Formative
measurement is particularly relevant in the study of
organisational constructs when the unit of analysis is
companies instead of individuals (Diamantopoulos &
Winklhofer, 2001), making it a valuable tool for empirical
business success factor research (Albers, 2010).

In the light of the increasing popularity of formative
measurement models in the IS disciplines (cf. Petter et al,
2007), strategy (cf. Podsakoff et al, 2006), marketing
(cf. Jarvis et al, 2003) and beyond (cf. Diamantopoulos &
Siguaw, 2006), there is a strong need for SEM approaches
that can analyse formative constructs’ non-linear effects.
In addition to the Chin et al papers (1996, 2003), only
two papers, Wold (1982) and Dijkstra & Henseler (forth-
coming), devote attention to the analysis of formative
constructs’ non-linear effects. Both of these papers use
variance-based SEM. However, none of the previous
research examines the suggested approaches’ performance
systematically by means of simulation. Consequently,
hardly anything is known about their approaches’
relative and absolute performance regarding modelling
formative constructs’ non-linear effects. The limited
knowledge of how to model quadratic effects is even
more striking when taking into account Carte & Russell’s
(2003) recommendation that models with interaction
terms should always also include the quadratic terms of
the respective variables.

The present study aims to fill this gap in knowledge
within the PLS literature by answering the research
question: How should researchers analyse formative con-
structs’ quadratic effects by means of variance-based structural
equation modelling? We gather all extant and a few new
PLS-based approaches for estimating formative constructs’
quadratic effects and compare their performance by means
of a Monte Carlo study. We subsequently derive guidelines
on when to use which approach for researchers. Four
questions will thereby be answered: (1) Which PLS-based
approaches are available for estimating formative con-
structs’ quadratic effects? (2) Which approach is most
convincing in terms of its statistical power to detect
formative constructs’ non-linear effects? (3) Which ap-
proach delivers the closest estimate of a quadratic effect?

(4) Which approach is preferable when the prediction of
the endogenous latent variable’s true scores is of interest?

After a brief revision of formative measurement, we
derive PLS-based approaches for estimating formative
constructs’ quadratic effects as suggested in the context
of interaction effects: the so-called product indicator
approach (Chin et al, 1996, 2003) and a two-stage
approach (Chin et al, 2003; Henseler & Fassott, 2010).
We thereafter describe an approach for analysing non-
linear effects as initially proposed by Herman Wold
(1982). Finally, we include an orthogonalising approach
as suggested by Little et al (2006). Since nothing is known
about how these approaches perform with regard to
formative measurement, we compare them in terms of
their behaviour, that is we analyse their point estimate
accuracy, statistical power, and predictive capability. In
order to illustrate the differences in estimation outcomes,
we conduct an extensive computational experiment. We
then compare and contrast the results, draw conclusions,
and make recommendations regarding how formative
constructs’ quadratic effects can be optimally modelled
by means of PLS path modelling.

Formative constructs in management and
IS research
Formative constructs are complex variables measured
indirectly by means of formative (Fornell, 1982) or causal
(Bollen & Lennox, 1991) indicators. The indicators play
the role of causal antecedents in the formative construct.
Collectively, they determine the formative construct’s
conceptual and empirical contents (Jarvis et al, 2003).
Formative constructs are usually defined as linear combi-
nations of their respective indicators. One of the few
exceptions is the construct ‘ambidexterity’, which is
construed as the product of two indicators (Gibson &
Birkinshaw, 2004). In the standard linear case, formative
constructs are characterised by the following equation:

F ¼ w1 � x1 þ w2 � x2 þ � � � þ wJ � xJ þ z: ð1Þ

In Eq. (1), xj ( j¼1yJ) are the formative indicators, wj

denote the weight coefficients, and z represents the
formative construct’s measurement error. This measure-
ment error resides at the construct level, and according to
Diamantopoulos (2006), it represents omitted causes. In
practice, most formative constructs are operationalised
without the measurement error, because it is subject to
indeterminacy. The measurement error’s magnitude can
be quantified by means of at least two additional
reflective indicators or endogenous variables that depend
on the formative construct (Jarvis et al, 2003).

A growing number of constructs are conceptualised
and operationalised as formative. Additionally, a large
number of presumably reflective constructs can be
regarded as misspecified, and should rather be specified
as formative (Jarvis et al, 2003; Petter et al, 2007). Many
formative constructs in the IS discipline, such as
perceived user resources (Mathieson et al, 2001), team
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skills (Wixom & Watson, 2001), and declarative knowl-
edge (Yi & Davis, 2003), can be regarded as modern forms
of production factors. As such, they are highly likely to be
subject to the well-known law of diminishing marginal
returns. Other constructs, which are or could be specified
as formative, such as perceived usefulness (Petter et al,
2007), might be subject to the law of marginal utility. In
both cases, economic theory strongly suggests that these
formative constructs have non-linear effects.

Compilation of possible PLS-based approaches to
analyse quadratic effects of formative constructs
In 1966, Herman Wold published the first paper on non-
linear iterative least squares, which is the underlying idea
of PLS path modelling as well as its sister technique, PLS
regression. Regardless of what the original name suggests,
and contrary to the scientific progress of PLS regression’s
non-linear extensions (cf. Wold et al, 1989), non-linear
relationships between latent variables have not been a
focal objective of PLS path modelling. As far as we know,
other than the two Chin et al papers (1996, 2003),
estimating non-linear effects by means of PLS path
modelling has not received any attention during the last
two decades. However, this does not mean that PLS path
modelling is not suitable for detecting non-linear effects.
Herman Wold himself regarded PLS path modelling as
readily equipped to estimate the non-linear effects
between latent variables (Wold, 1982).

In the remainder of this section, we will first describe
Wold’s original approach (which we will call the hybrid
approach in accordance with Henseler & Chin (2010)),
and secondly present several other approaches that have
been proposed for analysing interaction effects.

The hybrid approach
In 1982, Herman Wold presented a first approach for the
estimation of PLS path models with non-linearities in the
structural model. Although he only considered a model
with a quadratic term in depth, the approach is genera-
lisable to other non-linear relations between latent
variables. The main idea of this approach is to incorpo-
rate an internal proxy for each non-linear term during
the iterative PLS algorithm’s runtime.

In order to illustrate the working principle of the
hybrid approach, we draw on Tenenhaus et al’s (2005)
description of the PLS algorithm, and extend it where
necessary (in italics). The PLS algorithm delivers esti-
mates for the latent variable scores by means of an
iterative process that basically consists of four steps:

(1) Calculating outer proxies of latent variable scores: Outer
proxies of the latent variables, x̂ j

o, are calculated as
linear combinations of their respective indicators.
The weights of the linear combinations result from
step 4 of the previous iteration or are manually
initialised. For each non-linear term, a new proxy is
created as the element-wise transformation of the respec-
tive outer estimates. For instance, in order to incorporate

a quadratic effect of the latent variable xj, a quadratic
term proxy is calculated as the element-wise product
of x̂ j

o with x̂ j
o.

(2) Estimating inner weights: For each outer proxy, inner
weights are calculated to reflect how strongly the
proxies of the other latent variables are connected to
it. Several inner weighting schemes are available.
Wold (1982) originally proposed that the sign
should be used of the correlations between a latent
variable and its adjacent latent variables (which is
the so-called centroid scheme). Alternatives are the
factor weighting scheme and the path weighting
scheme (see Lohmöller, 1989). Regardless of the
weighting scheme, a weight of zero is assigned to all
non-adjacent latent variables. Inner weights are also
determined for each proxy of a non-linear term.

(3) Calculating inner proxies of latent variable scores: Inner
proxies of the latent variables, x̂ j

i, are calculated as
linear combinations of their respective adjacent
latent variables’ outer proxies, using the previously
determined inner weights. The proxies of non-linear
terms are also used to estimate endogenous latent
variables’ inner proxies.

(4) Estimating outer weights: The outer weights are either
calculated as the covariances between each latent
variable and its indicators’ inner proxy (in Mode A) or
as the regression weights resulting from the ordinary
least squares regression of each latent variable’s inner
proxy on its indicators (in Mode B). In this step, no
changes are required to the original algorithm, because the
non-linear terms do not have any indicators assigned.

These four steps are iterated until the change in outer
weights between two iterations falls below a predefined
limit. The algorithm terminates after the first step,
producing estimates of the latent variable scores of all
latent variables, including the non-linear terms. The path
coefficients result from the regressions of the endogenous
variables’ scores on the explaining variables’ scores
(including the non-linear terms).

The product indicator approach
Busemeyer & Jones (1983) and Kenny & Judd (1984)
introduced the initial approaches for the use of SEM
methodology to examine quadratic effects among latent
variables. These authors suggested building quadratic
terms, using the squared indicator values of the relevant
latent independent variable as indicators. Chin et al
(1996, 2003) were the first to transfer this approach to
PLS path modelling. Although these authors limited the
application to the analysis of interaction effects, they
stated that their approach for creating non-linear product
indicators ‘can be extended to the other powers (e.g., X2,
X3, or X2 �Z) as long as the indicators for the predictor
and moderator constructs are viewed as reflective mea-
sures’ (1996, p. 35). They called this approach the
product indicator approach. Technically, a new latent
variable is added for each quadratic effect. This latent
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variable is measured by means of the so-called product
indicators. The product indicators are compiled as all
possible indicator products of the respective order
(quadratic, cubic, etc.). For instance, the product indica-
tors xij of a latent variable representing the quadratic term
of a latent variable x with indicators xi would be
construed by the following formula:

xij ¼ xi�xj 8i; j: ð2Þ

Here, the asterisk denotes the element-wise product.
Polynomial terms of a higher order are built in analogy.

Note that Chin et al (2003) recommend using the
centred original indicators to produce the product
indicators. Although such a procedure does not necessa-
rily diminish the multicollinearity resulting from build-
ing the quadratic term (see Echambadi & Hess, 2007,
contrary to Cohen, 1978, and Cronbach, 1987), it does
facilitate the interpretation of the model results.

The simplified product indicator approach
The high number of product indicators if the original
latent variable has many indicators can be a caveat of the
product indicator approach. In order to obtain a latent
variable representing a quadratic term of an original
latent variable with k manifest variables, k2 product
indicators have to be calculated as the original manifest
variables’ element-wise product.

As studies on non-linear effects in SEM show, not only
is it feasible to use fewer product indicators (Jöreskog &
Yang, 1996), but this may also result in a higher statistical
power (Jonsson, 1998). We therefore propose a simplified
product indicator approach, which only performs the
quadratic transformation on each indicator without
calculating cross-products. Thus, in the simplified pro-
duct indicator approach, the non-linear term in the
structural model has k product indicators pii¼ pi

2,
i¼1,y, k.

The two-stage approach
The idea of the two-stage approach was initially suggested
by Chin et al (1996, 2003) and elaborated by Henseler &
Fassott (2010). These authors recognised that if the
exogenous variable or the moderator variable are for-
mative, the pair-wise multiplication of indicators might
be questionable. ‘Since formative indicators are not
assumed to reflect the same underlying construct (i.e.
can be independent of one another and measure different
factors), the product indicators between two sets of
formative indicators will not necessarily tap into the
same underlying interaction effect’ (Chin et al, 2003,
Appendix D). Henseler & Fassott (2010) supported and
advocated Chin’s recommendation to use the two-stage
approach instead of the product indicator approach for
estimating moderating effects, particularly when forma-
tive constructs are involved. The two-stage approach
makes use of PLS path modelling’s characteristic of
explicitly estimating latent variable scores (cf. Henseler,

2010). In order to analyse quadratic effects in the
structural model, the two stages are built up as follows:

(1) In the first stage, the main effect PLS path model is
run in order to obtain estimates for the latent variable
scores. The latent variable scores are calculated and
saved for further analysis.

(2) In the second stage, a quadratic term can be
construed as the element-wise product of the latent
variable scores of the exogenous variable xj. The
latent variable scores of xj and the quadratic term xj

2

are used as independent variables in a multiple linear
regression explaining the latent variable scores of the
endogenous variable xk.

The second stage can be realised by multiple linear
regression or be implemented within PLS path modelling
by means of single indicator measurement models. Note
that although the latent variable scores of xj are standar-
dised, the quadratic term is not – and should not be.

While Chin et al (2003) as well as Henseler & Fassott
(2010) limit the usage of the two-stage approach to cases
when the independent variable is formative, this limita-
tion is not mandatory. Technically, it can also be applied
to the estimatation of quadratic effects of reflective
constructs (Wilson 2010). However, a clear disadvantage
of the two-stage approach is that the quadratic effect is
not taken into account when estimating the latent
variable scores.

The orthogonalising approach
Little et al (2006) have recently suggested an orthogona-
lising approach for modelling moderating and quadratic
effects among latent variables in structural equation
models. The main objective of their approach is to
overcome the problems of multicollinearity that often
occur when non-linear terms and linear terms simulta-
neously enter in multiple regression as independent
variables. Henseler & Chin (2010) applied this approach
using the PLS algorithm for reflective indicators.

Basically, the orthogonalising approach is an extension
of residual centring’s use for moderated multiple regres-
sions, as described by Lance (1988). Residual centring
is essentially a two-stage OLS procedure in which a non-
linear term is regressed on its respective linear term. The
resulting residuals are then used as in the product
indicator approach.

This new orthogonalised non-linear term’s unique
variance fully represents the non-linear effect, indepen-
dent of the linear effect. Owing to the non-linear term’s
orthogonality, the parameter estimates of the linear
effects in a model with non-linear terms are identical to
those in a model without the non-linear terms. Further-
more, residual centring yields a regression coefficient
for the non-linear term that can directly be interpreted
as the non-linear term’s effect on the dependent variable
(cf. Lance, 1988); consequently, this replaces the assess-
ment of the increase in the coefficient of determination
due to the non-linear term’s inclusion. Since PLS
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calculates the latent variable scores as linear combina-
tions of the respective indicators, it can be derived that a
non-linear term created in this manner is orthogonal to
its constituting latent variable.

The orthogonalising approach requires as many in-
dicators as the product indicator approach. Analogously
to the simplified product indicator approach, it could be
worthwhile applying a simplified orthogonalising ap-
proach, which should result in a substantial reduction of
indicators.

Software implementation
As the previous section illustrated, there are six possible
PLS-based approaches to model formative constructs’
quadratic effects: (1) the product indicator approach, (2)
the simplified product indicator approach, (3) the
orthogonalising approach, (4) the simplified orthogona-
lising approach, (5) the two-stage approach, and (6) the
hybrid approach. In order to apply the six approaches
and to compare them in terms of their performance, it is
crucial to use adequate PLS software. Although five of the
six approaches, that is both the product indicator
approaches, the two-stage approach, and the two ortho-
gonalising approaches, could be executed by means of
available software, one approach, the hybrid approach,
requires an enhancement of the standard PLS algorithm.
Since none of the available PLS software packages allow
modifying the PLS algorithm itself, we created our own
implementation of the PLS algorithm by applying the
algorithm in vector form and following the detailed
description by Tenenhaus et al (2005). As an extension to
the PLS algorithm, the hybrid approach was implemen-
ted as described in the previous section. We used R2.10.1

(R Development Core Team, 2007) as the programming
language. Besides its thorough compliance with the
algebraic terms as formulated by Tenenhaus et al (2005),
the PLS code’s correctness was also verified by comparing
the results of two data analyses conducted with our
implementation with the results of the PLS path model-
ling implementations PLS-Graph 3.0 (Soft Modeling, Inc.,
1992–2002) and SmartPLS 2.0 M3 (Ringle et al, 2007).
Besides obvious rounding inaccuracies, the results were
identical.

A Monte Carlo experiment
In order to find generalisable patterns and to investigate
the appropriateness of the six presented approaches, we
conduct a Monte Carlo simulation. The goal of this
computational experiment is to elucidate the different
approaches’ performance for an analysis of formative
constructs’ quadratic effects by means of PLS path
modelling. We compare the point estimate accuracy,
the power, and the prediction accuracy of the six
considered approaches at different quadratic effect sizes,
different numbers of observations, and different forma-
tive weights. The steps of the Monte Carlo experiment are
as follows: Firstly, we define an underlying true model
and determine the experimental factors and their levels.

Secondly, we generate random data, which emerge from
the model parameters. Thirdly, given the random data,
we let each PLS approach estimate the model. Fourthly,
we evaluate the outcomes that each approach produces
with respect to the population coefficients and in relation
with the other approaches.

The choice of the underlying model is crucial for the
simulation outcomes. We define an underlying true
model that is as simple as possible, consisting of an
exogenous formative construct with eight indicators, one
endogenous reflective construct with eight indicators,
and a quadratic effect. The simulation model is depicted
in Figure 1.

All of the standardised loadings of the endogenous
reflective construct have a value of 0.8. We specify two
sets of weights for the exogenous formative construct.
The first set of weights consists of relatively homogenous
standardised weights of 0.3 and 0.4. The second set of
weights is more heterogenous, with standardised weights
ranging from 0.8 to 0.1. As true path coefficients, a value
of 0.5 is chosen for the main effect (b1), while values of
0.00, 0.15, 0.35, and 0.50 are chosen for the quadratic
effect (b2), representing a non-existent/weak/moderate/
strong effect. With regard to the number of observations,
we test two conditions that roughly cover typical sample
sizes in social science and management: 100 and 500
observations.

We opt for a repeated measures design, in which the
six different approaches form a within-subject factor,
while the quadratic effect’s size, the number of observa-
tions, and the formative weights’ homogeneity serve as
between-subject factors. Table 1 provides a summary of
the selected factors and their respective levels. We choose
for a full-factorial design in order to have the possibility
to capture eventual interaction effects between the
factors. Hence, 16 conditions (four levels of quadratic
effects� two levels of observations� two levels of
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Figure 1 Population model of the Monte Carlo experiment.
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formative weights) emerge. A total of 2000 Monte Carlo
runs are conducted under each of the 16 conditions,
resulting in a total of 32,000 Monte Carlo runs.

For each run, independent standard-normal formative
indicators are created for the exogenous construct x. The
latent variable scores of x are calculated as weighted sum
of these indicators and divided by the resulting standard
deviation.

Moreover, a standard-normal disturbance term z is
created. The scores of the endogenous latent variable are
determined as follows:

Z ¼ b1 � xþ b2 � x2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

1 � b2
2 � 2 � b1 � b2 � cov x; x2

� �q
� z
: ð3Þ

The covariance between x and x2 is accounted for in
order to obtain standardised latent variable scores for
the endogenous construct. The indicator values yi of
the ith reflective indicator of the endogenous latent
variable Z are created as a linear combination of the latent
variable scores and a standard normal distributed random
variable:

xi :¼ l � xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
� N ð0; 1Þ 8i: ð4Þ

Furthermore, all indicators xi is standardised with a
mean of zero and a standard deviation of one. As
additional input for the product indicator approach, the
product indicators are calculated following Eq. (2). For
the orthogonalising approach, regressions are applied
and their residuals saved as indicators of the quadratic
term.

For each run under each condition, all six approaches
for analysing the interaction effects between latent
variables by means of PLS path modelling are used to

estimate the model. Product indicators and orthogonali-
sation residuals are used as formative indicators of the
interaction term. We select the path weighting scheme
as the inner weighting scheme, because it is the only
scheme that takes the constructs’ causal order into
account (Lohmöller, 1989). The endogenous construct
is estimated with Mode A, which usually represents
reflective measurement models (cf. Chin, 1998), whereas
Mode B (formative) is applied to the exogenous con-
struct. Each estimation is accompanied by 200 bootstrap
calculations in order to assess the estimates’ significance.
We ensure that all approaches make use of the same
bootstrap samples. The following PLS estimation out-
comes are measured for each run:

� path coefficient estimates for the single and non-linear
effects;

� bootstrap t-values for all effects; and
� the squared correlation between the endogenous

variable’s predicted latent variable scores and its true
scores.

In the following sub-sections, we will report on and
discuss the simulation outcomes of the parameter
accuracy, statistical power, and prediction accuracy.

Parameter accuracy
In order to compare the different parameters, we examine
the extent to which the parameter estimates deviate from
the true values. First, we assess the mean relative bias
(MRB). The MRB is the mean over the deviations from the
true value, and is algebraically defined as (Reinartz et al,
2002, p. 237):

MRB ¼ 1

t

Xt

i¼1

bXi � Xi

Xi
: ð5Þ

Table 1 Design of the computational experiment

Factor type Factor Factor levels

Within-subject factor Approach (1) Product indicator approach

(2) Simplified product indicator approach

(3) orthogonalising approach

(4) Simplified orthogonalising approach

(5) Two-stage approach

(6) Hybrid approach

Between-subject factors Number of observations (1) 100

(2) 500

Non-linear effect (1) 0.00

(2) 0.15

(3) 0.35

(4) 0.50

Formative weights (1) 0.3, 0.4, 0.3, 0.4, 0.3, 0.4, 0.3, 0.4 (homogenous)

(2) 0.8, 0.4, 0.3, 0.2, 0.2, 0.1, 0.1, 0.1 (heterogenous)
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Positive MRBs indicate an over-estimation of the true
parameter, while negative MRBs are an under-estimation.
Tables 2 and 3 provide an overview of the MRBs of each
approach under all conditions for the two path coeffi-
cients. Table 2 shows a relatively clear pattern: The
product indicator approach substantially underestimates
the main effect of x on Z, whereas all other approaches
have smaller MRBs. In order to identify reasons for the
differences in b̂1, we examine the generated construct
scores’ validity as the shared variance of the approxi-
mated construct score x̂ and the true construct score x.
Interestingly, all approaches yield the same validity. This
means that the differences in b̂1 can solely be attributed
to the way the quadratic term is construed.

As far as the quadratic effect’s relative bias is concerned,
we find that the estimates of the product indicator
approach, the orthogonalising approach, and the respec-
tive simplified approaches exhibit substantial bias – at
least for some combinations of the number of indicators

and the quadratic effect’s size. Only the two-stage
approach and the hybrid approach consistently provide
estimates with a relatively small downward bias. In order
to identify possible explanations for these differences in
the approaches, we examine the validity of the quadratic
terms measurement (see the last column of Table 3). This
time, there are large differences in the approaches. Both
the two-stage approach and the hybrid approach yield
acceptable validity levels. However, for all other ap-
proaches, the quadratic term’s scores have an unaccep-
tably low validity. Since the approximated scores share
less than half of their variance with the true scores,
the validity clearly falls below generally accepted levels
(cf. Fornell & Larcker, 1981). Since all four approaches
rely on product indicators, it is likely that they capitalise
on chance – an idea already previously expressed by
Goodhue et al (2007) with regard to the analysis of
interaction effects. Chin et al had stated that the product
indicator approach works ‘as long as the indicators for

Table 2 MRBs of the linear path (b1) and validity of the exogenous formative construct n̂

Approach Non-linear effect Validity cor2( x̂, x)

0.000 0.150 0.350 0.500

100 observations Product indicator �0.278 �0.281 �0.301 �0.325 0.823

Simplif. prod. ind. 0.001 �0.002 �0.009 �0.016 0.823

Orthogonalising 0.066 0.066 0.067 0.069 0.823

Simplif. orthog. 0.068 0.067 0.068 0.071 0.823

Two-stage 0.072 0.061 0.017 �0.043 0.823

Hybrid 0.071 0.061 0.015 �0.046 0.823

500 observations Product indicator �0.075 �0.080 �0.092 �0.099 0.960

Simplif. prod. ind. �0.026 �0.027 �0.029 �0.031 0.960

Orthogonalising �0.013 �0.013 �0.013 �0.011 0.960

Simplif. orthog. �0.013 �0.013 �0.012 �0.011 0.960

Two-stage �0.013 �0.016 �0.030 �0.047 0.960

Hybrid �0.013 �0.016 �0.030 �0.048 0.960

Table 3 MRBs of the non-linear (quadratic) path (b2) and validity of the quadratic term n̂2

Approach Non-linear effect Validity cor2(x̂2, x2)

0.150 0.350 0.500

100 observations Product indicator 1.379 0.505 0.194 0.187

Simplif. prod. ind. �0.459 �0.448 �0.453 0.120

Orthogonalising 2.121 0.658 0.271 0.204

Simplif. orthog. �0.272 �0.312 �0.362 0.115

Two-stage �0.265 �0.261 �0.263 0.670

Hybrid �0.253 �0.251 �0.256 0.670

500 observations Product indicator 0.536 0.042 0.037 0.381

Simplif. prod. ind. �0.417 �0.453 �0.480 0.160

Orthogonalising 0.796 0.138 0.033 0.456

Simplif. orthog. �0.266 �0.420 �0.462 0.166

Two-stage �0.086 �0.085 �0.087 0.919

Hybrid �0.083 �0.083 �0.085 0.919
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the predictor and moderator constructs are viewed as
reflective measures’ (1996, p. 35). Our Monte Carlo
simulation corroborates this statement in that this
procedure performs poorly for formative indicators.

As further investigation, we conduct two repeated
measure ANOVAs, one for the relative bias of the direct
effect estimate b̂1, and one for the relative bias of the
quadratic effect estimate b̂2. Table 4 contains the multi-
variate tests for the two ANOVAs. Owing to the large
number of cases, all effects are significant, that is all the
design factors have an influence on the estimates’ relative
bias. Another question, however, is whether all these
influences are substantial. Assessing the partial Z2 as a
measure of effect size, we find that only the approach, the
number of observations, and the size of the quadratic
effect play a role, whereas the formative weights’
homogeneity was irrelevant. Finally, by means of pair-
wise comparison, we find support for the hybrid
approach having a significantly (Po0.001) lower relative
bias than the two-stage approach.

Statistical power
A researcher intending to make a conclusion about the
existence of a quadratic effect would like to avoid two
errors:

(1) concluding that there is a quadratic effect although in
reality there is none (Type I error), and

(2) concluding that there is no quadratic effect although
there is one in reality (Type II error).

In order to avoid Type I errors, one uses a predefined
significance criterion (for example, a¼0.05) when reject-
ing the null hypothesis; in order to avoid Type II errors,
one has to apply a statistical test with satisfactory
statistical power. ‘The power of a statistical test of a null
hypothesis is the probability that it will lead to the
rejection of the null hypothesis, i.e., the probability that
it will result in the conclusion that the phenomenon
exists’ (Cohen, 1988, p. 4). Often, a power of one minus
four times the significance level is advocated, thus
80% for a significance criterion of 0.05, implying that

a Type I error is regarded as four times as serious as a
Type II error.

The power of a statistical test depends on several
factors, namely the statistical significance criterion used
in the test, the effect size in the population, the sample
size, and the measurement reliability. In the Monte Carlo
experiment, we keep the measurement reliability con-
stant. Moreover, we use a constant significance criterion
of 0.05 throughout the experiment. We evaluate the
bootstrap t-values, and estimate the power of each
approach per experimental condition as the proportion
of the Monte Carlo runs that yielded a significant
quadratic effect.

Table 5 provides the mean statistical power of finding a
significant quadratic effect (b240) at a significance level
of a¼ 0.05. In general, the two-stage approach and the
hybrid approach dominate in terms of statistical power.
There is one exception: if there are fewer observations
and homogenous indicator weights, the product indica-
tor approach even achieves a somewhat higher statistical
power.

To further corroborate these findings, an ANOVA,
similar to the one for parameter accuracy, is conducted.
The results of the tests of between-subjects effects are
presented in Table 6. As anticipated, the number of
observations and the strength of the quadratic effect
play an important role. Nevertheless, with regard to the
partial Z2, the approach is what matters most.

Prediction accuracy
A researcher who wants to include non-linear effects
in a model for prediction purposes would be interested
in the different approaches’ ability to predict an en-
dogenous latent variable. In order to examine the
prediction accuracy, we looked at the proportion of
the true endogenous variable’s variance that can be
explained by each approach.

Again, we consider the 16 predefined conditions.
Table 7 exhibits the average (over 2000 Monte Carlo
samples) squared correlations (cor2(Ŷ, Y)) between the
predicted and the endogenous latent variable’s true
values. For this criterion, the orthogonalising approach
yields the highest values, followed by the product
indicator approach. Also, most of the squared correla-
tions are higher if there are fewer observations, indicating
possible overfitting tendencies. Both these findings are a
result of the number of free parameters used. In order
to control for the number of free parameters, we calculate
the adjusted squared correlations coradj

2 (Ŷ, Y). Eq. (6) takes
the number of observations n and the number of free
parameters k into account.

cor2
adjðŶ;YÞ

¼ cor2ðŶ;YÞ � k � ð1� cor2ðŶ;YÞÞ
n� k� 1

: ð6Þ

The number of free parameters k is 74 for the
orthogonalising and the product indicator approach

Table 4 Multivariate tests (Wilks Lambda) over the
relative bias of the linear effect (b1) and the quadratic

effect (b2)

Effect Main effect b1 Quadratic effect b2

Sig. Partial Z2 Sig. Partial Z2

approach o0.001 0.895 o0.001 0.759

approach� effect o0.001 0.095 o0.001 0.233

approach�obs o0.001 0.801 o0.001 0.480

approach�weights o0.001 0.011 o0.001 0.035

approach� effect�obs o0.001 0.045 o0.001 0.057

approach� effect�weights o0.001 0.003 o0.001 0.013

approach�obs�weights o0.001 0.004 o0.001 0.013

4-way interaction o0.001 0.001 o0.001 0.011
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(72 indicator weights plus 2 path coefficients), 18 for the
simplified forms of the orthogonalising and the product
indicator approach (16 indicator weights plus 2 path
coefficients), and 10 for the two-stage and the hybrid
approach (8 indicator weights plus 2 path coefficients).
With regard to the adjusted squared correlations, the
ranking of approaches changes: the two-stage approach
and the hybrid approach now dominate.

In order to test the influence of the experimental
design factors on prediction accuracy, we again conduct

an ANOVA with repeated measures – this time to explain
the adjusted squared correlations between the endogen-
ous latent variable’s predicted and true scores. As
previously, we use the approach as a within-subject
factor, and the number of observations, the strength of
the quadratic effect, and the homogeneity as between-
subject factors.

The analysis of variance (see Table 8) clearly identifies
two dominant effects, namely the interaction of the
approach and the number of observations and the direct
effect of the approach. Both have partial Z2-values of
more than 0.9. The interaction signifies that the
differences between the approaches’ prediction accuracy
vary with respect to different sample sizes. However, the
ranking of the approaches does not change, which means
that also the direct effect is interpretable. Pair-wise
comparisons reveal that all the approaches differ sig-
nificantly. Even the difference between the two-stage
approach and the hybrid approach is significant
(Po0.001), although its magnitude is clearly negligible.

Recommendations
This article asks the question of how to optimally analyse
formative constructs’ quadratic effects by means of
variance-based SEM. We have provided an overview of

Table 5 Mean statistical power of finding a significant (a¼0.05) quadratic effect (b2)

Quadratic effect Approach 100 observations 500 observations

Homogenous weights Heterogenous weights Homogenous weights Heterogenous weights

b2¼0.00 Product indicator 0.011 0.037 0.011 0.031

Simplif. prod. ind. 0.051 0.056 0.046 0.047

Orthogonalising 0.000 0.014 0.000 0.006

Simplif. orthog. 0.042 0.052 0.036 0.033

Two-stage 0.002 0.004 0.000 0.000

Hybrid 0.002 0.004 0.000 0.000

b2¼0.15 Product indicator 0.124 0.108 0.785 0.459

Simplif. prod. ind. 0.086 0.090 0.188 0.229

Orthogonalising 0.086 0.089 0.953 0.453

Simplif. orthog. 0.090 0.095 0.196 0.228

Two-stage 0.114 0.127 0.998 0.995

Hybrid 0.113 0.126 0.998 0.995

b2¼0.35 Product indicator 0.872 0.489 1.000 0.996

Simplif. prod. ind. 0.209 0.252 0.759 0.824

Orthogonalising 0.903 0.504 1.000 1.000

Simplif. orthog. 0.226 0.258 0.812 0.852

Two-stage 0.798 0.789 1.000 1.000

Hybrid 0.798 0.788 1.000 1.000

b2¼0.50 Product indicator 0.999 0.828 1.000 1.000

Simplif. prod. ind. 0.373 0.473 0.963 0.985

Orthogonalising 0.992 0.815 1.000 1.000

Simplif. orthog. 0.417 0.468 0.981 0.992

Two-stage 0.924 0.903 1.000 1.000

Hybrid 0.925 0.904 1.000 1.000

Table 6 Multivariate tests (Wilks Lambda) over the
statistical power to detect the quadratic effect

Effect Sig. Partial Z2

approach o0.001 0.325

approach� effect o0.001 0.083

approach�obs o0.001 0.015

approach�weights o0.001 0.064

approach� effect�obs o0.001 0.121

approach� effect�weights o0.001 0.013

approach�obs�weights o0.001 0.003

4-way interaction o0.001 0.028
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the available PLS-based approaches and empirically
compared them on the basis of a Monte Carlo simulation
study. The consistent results obtained from this compu-
tational experiment permit us to provide clear-cut
recommendations for researchers who want to analyse
formative constructs’ quadratic effects by means of PLS
path modelling.

One approach – the hybrid approach – can be said to
be ranked first in the three criteria of parameter accuracy,

statistical power, and prediction accuracy. The two-stage
approach almost showed the same performance; differ-
ences between it and the hybrid approach – although
statistically significant – were unsubstantial. These find-
ings differ from those related to reflective constructs’
non-linear effects, in which the product indicator
approach (Chin et al, 2003) and the orthogonalising
approach (Henseler & Chin, 2010) excel. On the basis of
our findings, it is possible to make recommendations
for the analysis of quadratic effects by means of variance-
based SEM.

If researchers want to analyse quadratic effects, they
first should assess whether the hypothesised quadratic
effect emerges from a formative or a reflective construct.
If a reflective construct has a quadratic effect, researchers
should follow the recommendations made by Henseler &
Chin (2010). On the other hand, if a formative construct
has a quadratic effect, researchers should check whether
a software implementation of the hybrid approach is
available. If it is available, researchers should use it to
estimate and bootstrap the quadratic effect, otherwise
they should apply the two-stage approach for estimation
and bootstrapping. If the quadratic effect is found to be

Table 7 Squared correlations and adjusted squared correlations between predicted and true values of the
endogenous variable

Quadratic effect Approach cor2(Ŷ, Y) Free parameters coradj
2 (Ŷ, Y)

Observations Observations

100 500 100 500

b2¼0.00 Product indicator 0.475 0.294 74 �1.078 0.171

Simplif. prod. ind. 0.338 0.268 18 0.191 0.240

Orthogonalising 0.548 0.308 74 �0.792 0.187

Simplif. orthog. 0.356 0.271 18 0.213 0.243

Two-stage 0.305 0.260 10 0.227 0.245

Hybrid 0.305 0.260 10 0.227 0.245

b2¼0.15 Product indicator 0.486 0.311 74 �1.035 0.191

Simplif. prod. ind. 0.344 0.273 18 0.198 0.246

Orthogonalising 0.560 0.329 74 �0.741 0.212

Simplif. orthog. 0.363 0.277 18 0.221 0.250

Two-stage 0.318 0.280 10 0.242 0.266

Hybrid 0.318 0.280 10 0.242 0.266

b2¼0.35 Product indicator 0.538 0.392 74 �0.831 0.287

Simplif. prod. ind. 0.367 0.302 18 0.226 0.276

Orthogonalising 0.617 0.421 74 �0.516 0.320

Simplif. orthog. 0.389 0.306 18 0.253 0.280

Two-stage 0.379 0.371 10 0.309 0.358

Hybrid 0.379 0.371 10 0.309 0.358

b2¼0.50 Product indicator 0.605 0.498 74 �0.564 0.411

Simplif. prod. ind. 0.400 0.338 18 0.266 0.314

Orthogonalising 0.689 0.538 74 �0.230 0.458

Simplif. orthog. 0.424 0.344 18 0.296 0.319

Two-stage 0.456 0.485 10 0.395 0.475

Hybrid 0.456 0.485 10 0.395 0.475

Table 8 F-Tests over the factors influencing the adjusted
prediction accuracy (coradj

2 (Ŷ, Y)) of the PLS path model

Effect Sig. partial Z2

approach o0.001 0.982

approach� effect o0.001 0.160

approach�obs o0.001 0.969

approach�weights o0.001 0.063

approach� effect�obs o0.001 0.119

approach� effect�weights o0.001 0.025

approach�obs�weights o0.001 0.027

4-way interaction o0.001 0.011
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significant, one can start interpreting it. If it is not
significant, it might be worthwhile also trying the
product indicator approach, because it has a somewhat
higher statistical power than the hybrid approach if
there are small sample sizes.

For the interpretation of the non-linear effect, it should
be noted that whereas the non-linear effect’s path
coefficient may serve as a first entry to interpretation,
the quadratic terms’ regression coefficient should not be
the basis for assessing the quadratic effect’s strength
(cf. Carte & Russell, 2003). Instead, Cohen’s (1988) f 2

effect size measure for hierarchical multiple regression
can be applied. It is defined as:

f 2 ¼ R2
included � R2

excluded

1� R2
included

; ð7Þ

where Rexcluded
2 is the variance accounted for by the

independent variable as such, and Rincluded
2 is the com-

bined variance accounted for by the independent latent
variable’s linear and non-linear effects. By convention,
f 2 effect sizes of 0.02, 0.15, and 0.35 are regarded as small,
medium, and large, respectively (Cohen, 1988). Effect
sizes smaller than 0.02 indicate a lack of substantiality.
Since unsubstantial effects imply negligible influence on
the explanandum, they should receive minimal atten-
tion. It is quite unlikely that these effects would yield
important theoretical or managerial implications. How-
ever, substantial effects should be extensively discussed,
and their theoretical and managerial implications high-
lighted.

Figure 2 is a flow chart, which sums up the recom-
mendations.

In order to facilitate sample size decisions for studies
incorporating formative constructs’ non-linear effects, we
estimated the hybrid approach’s statistical power for
sample sizes ranging from 50 to 500 by means of further
Monte Carlo runs. The outcome is displayed in Figure 3,
showing the hybrid approach’s statistical power for
small, medium, and strong effects and for various sample
sizes.

Limitations and further research
It was our aim to compare the suitability of several
PLS-based approaches for the analysis of formative
constructs’ quadratic effects. Through this study, we have
enabled researchers to easily examine formative con-
structs’ quadratic effects in a variance-based SEM frame-
work. Our paper is thus an invitation to search for curvi-
linear and other non-linear effects – not only in IS
research, but also in other management disciplines and
beyond.

As shown, the hybrid approach requires a modification
of the PLS algorithm. Unfortunately, none of the leading
PLS software distributions – LVPLS (Lohmöller, 1987),
PLS-Graph (Chin/Soft Modeling, Inc., 1992–2002),
SmartPLS (Ringle et al, 2007), SPAD-PLS (Test & Go,
2006), XLSTAT-PLS (Addinsoft, 2007) – has implemented
it, so that this approach is not as yet available for

researchers. Given the hybrid approach’s favourable
characteristics regarding the estimation of formative
constructs’ non-linear effects, a software implementation
in the not-too-distant future is highly desirable. We

Analysing quadratic effects in
PLS path models

Is the focal
independent variable
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no

Is the hybrid
approach available?
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no
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Use the hybrid approach plus
bootstrapping

Use the two-stage approach
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Figure 2 Framework for determining quadratic effects in PLS

path models.
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therefore encourage PLS software providers to take this
further step. Another promising option is the plspm

package (Sánchez & Trinchera, 2010), which is part of the
open source project R (R Development Core Team, 2007),
because it permits the PLS algorithm to be modified.
However, analysts can always make use of the two-stage
approach, which demonstrated a performance almost
equal to that of the hybrid approach.

Since we limited our study to PLS-based approaches,
other SEM techniques like LISREL and regressions of
summated scales were not considered. For direct effects, a
comparison of the biases in PLS estimates with the biases
in the estimates of covariance structure-based SEM has
already been carried out elsewhere (cf. Cassel et al, 1999;
Reinartz et al, 2009). However, it may be fruitful to extend
such research to incorporate both PLS and LISREL

approaches to model formative constructs’ quadratic
effects.

The hybrid approach and the two-stage approach
clearly demonstrated the best parameter accuracy of all
approaches. However, in absolute terms, these two
approaches are also imperfect. Both tend to under-
estimate the quadratic effect. A potential solution might
be a correction for attenuation, as suggested by Henseler
et al (2009) in the context of formative measurement or
by Dijkstra (2010) for use with PLS in general.

Finally, our empirical findings regarding non-linear
effects were limited to quadratic terms. Future research
could strive for the replication of our recommendations
with other polynomial terms or other commonly used
non-linear functions such as exponential or logarithmic
functions.
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