Magnetothermoelectric properties of Bi$_2$Se$_3$

Benoît Fauqué,1,4 Nicholas P. Butch,2,1 Paul Syers,2 Johnpierre Paglione,2 Steffen Wiedmann,3 Aurélie Collaudin,1 Benjamin Grena,1,4 Uli Zeitler,3 and Kamran Behnia1

1LPEM (UPMC-CNRS), Ecole Superieure de Physique et de Chimie Industrielles, F-75005 Paris, France
2Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
3High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, NL-6525 ED Nijmegen, The Netherlands
4Department of Physics, Ecole Polytechnique, Palaiseau 91120, France

(Received 7 September 2012; revised manuscript received 12 December 2012; published 25 January 2013)

We present a study of entropy transport in Bi$_2$Se$_3$ at low temperatures and high magnetic fields. In the zero-temperature limit, the magnitude of the Seebeck coefficient quantitatively tracks the Fermi temperature of the three-dimensional Fermi surface at the Γ point as the carrier concentration changes by two orders of magnitude (10^{17} to 10^{19} cm$^{-3}$). In high magnetic fields, the Nernst response displays giant quantum oscillations indicating that this feature is not exclusive to compensated semimetals. A comprehensive analysis of the Landau level spectrum firmly establishes a large g factor in this material and a substantial decrease of the Fermi energy with increasing magnetic field across the quantum limit. Thus, the presence of bulk carriers significantly affects the spectrum of the intensively debated surface states in Bi$_2$Se$_3$ and related materials.

DOI: 10.1103/PhysRevB.87.035133

I. INTRODUCTION

The Bi$_2$X$_3$ family (X = Se, Te) is attracting tremendous attention as a topological insulator (TI). Recently, the existence of this class of bulk insulators was predicted and confirmed. In a TI, the bulk energy gap is traversed by spin polarized surface states. Therefore, the electrical conduction is expected to occur only at the surface. In practice, however, these materials are often low-density bulk metals. Interestingly, many of the TI of the first and the second generation are well-known thermoelectric materials and present a sizableSeebeck and Nernst effect in Bi$_2$Te$_3$ (ZT$_{\text{Bi$_2Te_3$}} = 0.8$ at 300 K3). In high magnetic fields, the Nernst response displays giant quantum oscillations with increasing magnetic field across the quantum limit. Thus, the presence of bulk carriers significantly affects the spectrum of the intensively debated surface states in Bi$_2$Se$_3$ and related materials.

$S = \frac{E_{\text{N}}}{\Delta x T}$ and the transverse $(N = \frac{E_{\text{N}}}{\Delta x T})$ thermoelectric response were performed on a standard one-heater-two-thermometers setup. For all samples, the electric current and the thermal gradient were applied in the plane of the quintuple layers and the magnetic field was oriented along the trigonal direction (perpendicular to the layers). The samples used in this study are similar to those previously studied by longitudinal and transverse magnetoresistance experiments and described there.

In Fig. 1, we compare the electrical transport and the entropy transport in two samples A$_1$ and B$_1$ with typical bulk concentrations of 10^{19} cm$^{-3}$ to 10^{17} cm$^{-3}$. For both samples, ρ_{xx} and ρ_{yx} display quantum oscillations on top of a nearly linear monotonic base as previously reported and discussed. In the presence of a field of about 10 T, we find for the two concentrations that $\rho_{xx} \approx \rho_{yx}$ whereas $S \gg N$ (the typical ratios are 100 for A$_1$ and 10 for B$_1$). As in the case of the electrical transport, S and N display quantum oscillations with a phase shift of π. The oscillations are particularly pronounced in N in the case of A$_1$; they dominate the signal. The surprising sensitivity of the Nernst effect to quantum oscillations in Bi$_2$Se$_3$ is indeed reminiscent of those reported in bismuth and graphite. The origin of these giant quantum oscillations is the subject of ongoing theoretical research. These two elemental semimetals are, however, compensated systems, whereas the (bulk) Fermi surface of Bi$_2$Se$_3$, as we will see below, is a single band at the Γ point. Therefore, the observation...
A. Effective mass and Dingle temperature

Next, we focus our attention on the temperature dependence of the quantum oscillations in the thermoelectric properties, which have been so far poorly studied. In Fig. 2, \(\frac{\tau}{\gamma} = \frac{N}{\tau_T} \) is plotted as a function of \(B^{-1} \) for various temperature. In both cases, the signal is periodic in \(B^{-1} \). The difference of the period between the two samples simply reflects the difference in the carrier concentrations. In both cases, the oscillations disappear at a typical temperature of 20 K suggesting rather similar low effective mass for both concentrations. Following the standard Lifshitz-Kosevich theory,\(^{18}\) we fit the temperature dependence of the oscillating part of \(\frac{\tau}{\gamma} \) to: \(RT = \frac{X}{\sinh(X)} \) where \(X = \frac{14.69m^*T}{B} \). The data and the fit are shown in Fig. 2(c). We found, respectively, \(m^*(A_1)/m_0 = 0.20 \pm 0.03 \) and \(m^*(B_2)/m_0 = 0.18 \pm 0.03 \) in good agreement with the cyclotron mass deduced by Shubnikov-de Haas oscillations.\(^{5-8}\)

By studying the field dependence, we can also extract additional information such as a Dingle temperature. In Fig. 3, we report the so-called “Dingle plot” for four temperatures: \(T = 2.8 \) K, 8.3 K, 12.5 K, and 15.8 K for the sample A1. In the context of the Lifshitz-Kosevich formalism,\(^{18}\) we expect that

\[
\ln \left(\frac{A}{R_T} \right) = -\alpha T_D m^* \times \frac{1}{B}.
\]

B. Magnitude of the Seebeck and Nernst effect

The magnitude of the thermoelectric response is dramatically affected by the change in the carrier concentration. Figures 4(a) and 4(b) present \(S_T \) and \(\nu_T \) as a function of temperature for the four samples studied. As the doping passes...
from 10^{19} cm$^{-3}$ to 10^{17} cm$^{-3}$, S/T increases by one order of magnitude and ν/m^* increases by two orders of magnitude. In the Fermi liquid picture for a one-band system, the diffusive Seebeck is expected to be T linear in the zero-temperature limit with a magnitude proportional to $1/\nu/m^*$. This corresponds to a ratio of the Zeeman energy (μB) to the cyclotron energy ($\hbar \omega_c$) labeled $M = \mu B/\hbar \omega_c$ slightly larger than 2.21,22 As a consequence, the chemical potential starts to move significantly with increasing magnetic field, dramatically affecting the Landau level spectrum.22

In the case of Bi$_2$Se$_3$, the data of sample B$_2$ down to $T = 0.38$ mK and up to $B = 17$ T does not reveal any Zeeman splitting of the peaks like the one found in bismuth.9,21 This suggests that the Zeeman energy and the cyclotron energy are commensurate (i.e., that M is closed to an integer in the limit of the peak width) as originally suggested by Kolher et al.6 In order to differentiate between $M = 0,1,2,3,\ldots$, we used a model similar to the one used by Kolher et al.6 that determines the Landau level spectrum and the field dependence of the Fermi energy. The calculation of E_F is performed with the assumption that the carrier concentration (noted n) is independent of the magnetic field (see Appendix A for a justification): $n = \int_{E_F}^{\infty} D(e) \, d\epsilon$, which can be simplified and rewritten as

$$\frac{\nu}{T} \approx 283 \frac{\alpha}{T_F} \frac{[\mu e V K^{-2} T^{-1}]}{e F}.$$

Empirically, these simple equations give a rough account of the magnitude of transport coefficients across several orders of magnitude.19,20

Bi$_2$Se$_3$ provides a particularly compelling opportunity to check the robustness of Eqs. (2) and (3) in a wide window of carrier concentration with a barely changing Fermi surface topology. The mobility and the Fermi energy can both be extracted from the data on quantum oscillations. Table I lists the values of S/T and ν/m^* obtained at the lowest temperature measured (2K for A$_1$ and B$_2$ and 150 mK in the case of A$_2$ and B$_1$), respectively. Values for the Fermi temperature and the mobility extracted from experiment were plugged in Eqs. (2) and (3). The expected values for the four samples are reported in the two last lines of Table I. The overall agreement between the measurement and the expected values is remarkable. This is particularly the case for the two samples studied at the lowest temperature (A_2 and B_1).

III. INVESTIGATION OF THE QUANTUM LIMIT OF THE BULK STATES OF Bi$_2$Se$_3$

When the carrier concentration becomes as low as 10^{17} cm$^{-3}$, the so-called quantum limit can be attained by a magnetic field of 15 T. In this limit all carriers are confined to their lowest Landau level. One essential parameter in this regime is the magnitude of the g factor. In the case of bismuth, for example, when the field is oriented along the trigonal direction, the g factor of the hole pocket is as large as 62. This corresponds to a ratio of the Zeeman energy (E_Z) to the cyclotron energy ($\hbar \omega_c$) labeled $M = E_Z/\hbar \omega_c$ slightly larger than 2.21,22 As a consequence, the chemical potential starts to move significantly with increasing magnetic field, dramatically affecting the Landau level spectrum.22

In the case of Bi$_2$Se$_3$, the data of sample B$_2$ down to $T = 0.38$ mK and up to $B = 17$ T does not reveal any Zeeman splitting of the peaks like the one found in bismuth.9,21 This suggests that the Zeeman energy and the cyclotron energy are commensurate (i.e., that M is closed to an integer in the limit of the peak width) as originally suggested by Kolher et al.6 In order to differentiate between $M = 0,1,2,3,\ldots$, we used a model similar to the one used by Kolher et al.6 that determines the Landau level spectrum and the field dependence of the Fermi energy. The calculation of E_F is performed with the assumption that the carrier concentration (noted n) is independent of the magnetic field (see Appendix A for a justification): $n = \int_{E_F}^{\infty} D(e) \, d\epsilon$, which can be simplified and rewritten as

$$\frac{\nu}{T} \approx 283 \frac{\alpha}{T_F} \frac{[\mu e V K^{-2} T^{-1}]}{e F}.$$

Empirically, these simple equations give a rough account of the magnitude of transport coefficients across several orders of magnitude.19,20

Bi$_2$Se$_3$ provides a particularly compelling opportunity to check the robustness of Eqs. (2) and (3) in a wide window of carrier concentration with a barely changing Fermi surface topology. The mobility and the Fermi energy can both be extracted from the data on quantum oscillations. Table I lists the values of S/T and ν/m^* obtained at the lowest temperature measured (2K for A$_1$ and B$_2$ and 150 mK in the case of A$_2$ and B$_1$), respectively. Values for the Fermi temperature and the mobility extracted from experiment were plugged in Eqs. (2) and (3). The expected values for the four samples are reported in the two last lines of Table I. The overall agreement between the measurement and the expected values is remarkable. This is particularly the case for the two samples studied at the lowest temperature (A_2 and B_1).
conductivity α_{xy}, another one is based on a semiclassical description of the Nernst effect (N). In the case of bismuth and graphite, these two descriptions are equivalent because $\rho_{xx} \gg \rho_{xy}$ and $S \ll N$. However, in the case of Bi$_2$Se$_3$, ρ_{xx} and ρ_{xy} become comparable in amplitude and therefore $\alpha_{xy} \times B$ and N do not peak exactly at the same magnetic field. We report in Fig. 5(a) the field dependence of the four quantities: $\alpha_{xy} \times B$, N, $\Delta \rho_{xx}$, and $\Delta \sigma_{xx} = \sigma_{xx}(0.25 \text{~K}) - \sigma_{xx}(4.2 \text{~K})$ (where $\sigma_{xx} = \frac{\rho_{xx}}{\rho_{xx} + \rho_{xy}^2}$) as a function of the magnetic field. Several conclusions can be drawn from this plot.

First, $\alpha_{xy} \times B$ and the Nernst effect do not peak exactly at the same magnetic field. Figure 5(b) shows the B^{-1} position of the Landau levels vs the index number. As seen in Fig. 5(a), the difference between the peak positions in $\alpha_{xy} \times B$ and in N is very small compared to the periodicity of the signals. Thus, our conclusions are not affected by the choice of $\alpha_{xy} \times B$ or the Nernst effect. Further theoretical investigations are needed to clarify this issue.

Second, the maxima of $\Delta \sigma_{xx}$ are concomitant with the peak positions in α_{xy} and the Nernst effect, whereas the maxima in $\Delta \rho_{xx}$ are not. The origin of this difference is again related to the similar amplitudes of ρ_{xx} and ρ_{xy} above a few Tesla. Thus it appears that the enhancement of the conductivity generated by the crossing of an LL (Landau level) and the Fermi energy leads to a maximum in the Nernst response in the case of Bi$_2$Se$_3$, as it is the case for graphite and bismuth.

In Fig. 5(b) (Landau level fan), the intercepts of $\alpha_{xy} \times B$ and the Nernst effect are very close to 0, which is reminiscent of the nontrivial Berry phase as observed in LaRhIn$_5$. In the case of Bi$_2$Se$_3$, which is characterized by a parabolic dispersion, the large spin orbit interaction generates this peculiar behavior. The occurrence of a vanishing intercept points out to an odd factor of the bulk states of Bi$_2$Se$_3$.

The last peak resolved in the Nernst effect in sample B$_1$ occurs at 10.4 T. We have adjusted the carrier concentration in order to find the best agreement between the position of this peak and the crossing points between a Landau level and the Fermi energy for different possible values of M. Figures 6(a)–6(d) show the Nernst effect (red lines) as a function of B^{-1}, superimposed with calculated Landau levels and Fermi energy E_F (black points) with various parameters: $M = 0, 1, 2, and 3$.

a. $M = 0$. In Fig. 6(a), we adjust the carrier concentration to match the periodicity of the Nernst response ($n = 1.08 \times 10^{17} \text{~cm}^{-3}$). In this case, the crossings of the LL and the Fermi energy correspond to minima and not maxima. We cannot reproduce the lowest minimum of the Nernst effect.

b. $M = 1$. Figure 6(b) shows the Landau level spectrum for a bulk carrier concentration of $n = 1.28 \times 10^{17} \text{~cm}^{-3}$. In this case, there is not a complete agreement for the two last peaks, but it is rather good for the other peaks. In the case of $M = 1$, the LL $n + 1^-$ and n^+ are degenerate except for the last ones: 0^- [in orange on Fig. 6(b)]. The last observed peak at 10.4 T is attributed to the Landau levels $0^+/1^-$. Above this field all the electrons are in the lowest Landau level 0^-.

c. $M = 2$. Figure 6(c) shows the Landau level spectrum for a bulk carrier concentration of $n = 1.08 \times 10^{17} \text{~cm}^{-3}$. We find a rather good agreement for all the peaks. Note that the agreement is slightly better for $M = 2$ than for $M = 1$. In the case of $M = 2$, the LL $n + 2^-$ and n^+ are degenerate except for the last ones: 1^- [in green on Fig. 6(c)] and 0^- [in orange on Fig. 6(c)]. The last observed peak at 10.4 T
FIG. 6. (Color online) Nernst effect (red line) of the sample B1 at $T = 3$ K on top of calculated Landau level energies and Fermi energy E_F (black open circle) with different parameters: $M = 0, 1, 2,$ and 3 which, respectively, correspond to (a), (b), (c), and (d). The calculation was performed with a carrier concentration of $n = 1.08 \times 10^{17}$ cm$^{-3}$ for (a), (b), and (d) and $n = 1.25 \times 10^{17}$ cm$^{-3}$ for (b), a Dingle temperature of $T_D = 8$ K and $m_1 = m_2 = 0.14 m_0$ and $m_3 = 0.24 m_0$.

is then attributed to the Landau level 1^- and the Landau levels n^- are degenerate with $n-2^-$. This result is compatible with the conclusion of the early Shubnikov-de Haas analysis.6

d. $M = 3$ (and above). We also investigated higher values for M. On Fig. 6(d) ($M = 3$), we report the Landau level spectrum for a carrier concentration of $n = 1.08 \times 10^{17}$ cm$^{-3}$. The lowest observed peaks match well the 1^- LL. This result

FIG. 7. (Color online) N (in red lines) of the sample B1 at $T = 3$ K on top of a calculated Landau level energies and Fermi energy E_F (black open circle) with $M = 0$ for (a) and $M = 3$ for (b). In a case of (a) the carrier concentration has been chosen in order that the last resolved peak corresponds to the LL 1^+ ($n = 1.8 \times 10^{17}$ cm$^{-3}$). For (b), the carrier concentration has been chosen in order that the last resolved peak matches the LL 2^- ($n = 2.9 \times 10^{17}$ cm$^{-3}$). The calculation was performed with a Dingle temperature $T_D = 8$ K and $m_1 = m_2 = 0.14 m_0$ and $m_3 = 0.24 m_0$.

FIG. 8. (Color online) In red line is the Nernst effect, N, as a function of B^{-1} at $T = 5$ K for the sample B3 (same as B1 few months after the (a) experiment) on (a) and (b). The evolution of the Fermi energy (E_F) is plotted in black points. Each time that the chemical potential is crossing a Landau level (colors lines), there is a kink due to the carrier variation. The best parameter to describe the peak position as measured in N is found to be for $M = 1$ (with a bulk carrier concentration $n = 1.8 \times 10^{17}$ cm$^{-3}$) on (a) and $M = 2$ (with a bulk carrier concentration $n = 1.5 \times 10^{17}$ cm$^{-3}$) on (b).
is rather surprising as we would have naively expected that
the field scale associated with the 1^- LL would continuously
increase with the value of M. In fact, even if the two lowest
LL 1^-, 0^- and the chemical potential are decreasing faster
for $M = 3$ than for $M = 2$, the crossing point between the LL
1^- and the chemical potential occurs at the same field for
$M = 2$ and $M = 3$. This conclusion is true for all the values
$M > 2$. The situation is, however, different for the other LL,
where the crossing points differ for $M = 2$ and $M = 3$. In
other words, for $M = 3$ we can find a carrier concentration
where the 10.4T peak matches the LL 1^-, however, the peak
positions at lower field cannot be explained. In Fig. 7(b), we
investigate the possibility that the lowest observable peak is
not associated with the 1^- LL but with the 2^- LL. We found
a carrier concentration of $n = 3 \times 10^{17}$ cm$^{-3}$. However, the
peak positions at lower fields cannot be explained.

In conclusion, the $M = 1$ and $M = 2$ hypothesis yields the
best agreement between the peak positions in the Nernst effect
and the crossing of Landau levels and the Fermi energy.
Remarkably, in both cases above 10.4 T, all bulk carriers are
spin polarized. For $M = 1$ and $M = 2$ and with a cyclotronic
mass of 0.14m_0, we find, respectively, that $g = 14.3$ and $g = 28.6$.

C. Nernst effect at high field

Sample B$_3$ was studied up to 32 T. In this case, the last
resolved peak in the Nernst effect occurs at 11.4 T because of
a slightly higher carrier concentration. Interestingly, between
17 and 32 T, an unexpected increase of the Nernst effect was
observed. At first glance, one could explain this increase by
the presence of additional Landau levels which are expected in
the case of $M > 2$. For instance, for $M = 3$, the last observed
peak could be attributed to the LL 2^+. However, this scenario
does not reproduce the low field peak positions. Moreover, it
would yield a chemical potential crossing for the 1^- LL at
19 T, in contrast with our experimental data.

The increase in the Nernst effect observed at high field calls
for an alternative scenario. As reported in Fig. 8(b), once the
1^- LL crosses the chemical potential, the enhanced shift in
chemical potential pushes it closer towards the 0^- LL. In the
low field regime the Nernst response increases as the distance
between the highest filled Landau level and the chemical
potential becomes shorter and attains a maximum when the
two levels coincide. Here if the chemical potential approaches
the 0^- LL without crossing it in order to keep charge neutrality,
one expects it to peak without attaining a peak. This scenario
can qualitatively explain the experimentally observed increase
in the Nernst effect.

IV. CONCLUSION

In conclusion, the overall thermoelectric and thermomag-
netic response in B$_2$Se$_3$ can be quantitatively understood in
the context of a single three-dimensional band in the presence
of large Zeeman splitting. Our investigation reveals a large
variation of thermoelectric and thermomagnetic coefficients
with the bulk carrier concentration which can be quantitatively
understood as a result of a change in the mobility and the bulk
Fermi energy. We resolved large quantum oscillations in the
Nernst coefficient suggesting that such an effect is a common
feature to both compensated and uncompensated low carrier
systems. For the lowest carrier concentrations investigated,
we found that the Zeeman energy is either equal to one or two
times the cyclotron energy. In both cases, a strong variation
of the chemical potential above the quantum limit is expected,
which can naturally explain the observed increase in the Nernst
response. Finally we would like to point out that our results
could impact the physics of the surface states. In the presence
of a metallic bulk coupled with surface states, we can expect
that the field-induced shift of the chemical potential of the
bulk state could also generate a variation of the Fermi energy
of the surface states. Such a situation will affect, for example,
the Landau level indexing and the determination of the Berry
phase of the surface state.

ACKNOWLEDGMENTS

This work is supported by the Agence Nationale de
Recherche as a part of the QUANTHERM project, by
EuroMagNET II under European Union Contract No. 228043.
Work at Maryland was partially supported by the Lawrence
Livermore National Laboratory LDRD program (Tracking
Code 11-LW-003), operated under Department of Energy–
National Nuclear Security Administration Contract No. DE-
AC52-07NA27344.

APPENDIX A: HALL EFFECT AND CARRIER
CONCENTRATION

Figure 9 shows the field dependence of the Hall resistivity
for five samples. Up to 32 T and down to the lowest carrier
concentration investigated, the Hall effect was found to be
linear in magnetic field suggesting that the carrier concen-
tration remains constant and does not vary with the field.
From the slope, we can determine the carrier concentration,
labeled n^H. These values can be directly compared with the
carrier concentration deduced from the period of the quantum
oscillations labeled n^F. The conduction-band structure in
this range of carrier densities is approximately parabolic.
The Fermi energy is then determined by the period of the
oscillation through the Onsager relation. Assuming a mass
anisotropy independent of the doping ($m_1 = m_2 = 0.14m_0$
and $m_3 = 1.7 m_1$) one can determine the carrier concentration
of the samples. For all samples, within a few percent, we found
a good agreement between n^F and n^H.

FIG. 9. (Color online) (a) Field dependence ρ_{xy} for B$_1$ ($T = 1.5$ K
up to 12 T), B$_2$ ($T = 0.35$ K up to 17 T), and B$_3$ ($T = 1.6$ K up to 30 T).
(b) Field dependence ρ_{xy} for A$_1$ and A$_2$ at $T = 1.6$ K up to 12 T.

035133-6
TABLE II. Comparison of the electronic mean free path and the distance between vacancy sites.

<table>
<thead>
<tr>
<th>Sample</th>
<th>n (cm⁻³)</th>
<th>lₑ (nm)</th>
<th>dₑ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>3 × 10¹⁰</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>B₁</td>
<td>2.5 × 10¹⁷</td>
<td>550</td>
<td>10</td>
</tr>
</tbody>
</table>

APPENDIX B: ELECTRONIC MEAN FREE PATH
AND IMPURITY SCATTERING

In the case of Bi₂Se₃ it is believed that Se vacancies are the charge dopants responsible for the n-type nature of the system. Here we propose to make a simple discussion to know if the vacancies are the main source of scattering of the electrons at low temperature. In other words we propose to compare the electronic mean free path and the distance between vacancies (dₑ). For the two extreme concentrations that we studied, we can determine the electronic mean free path lₑ using the knowledge of the mobility and the Fermi velocity: lₑ = vⱽF = \(\frac{\hbar k_B T}{e n} \).

Each Se atom can contribute for two electrons. For a given bulk carrier concentration n, the number of lacuna per unit cell, Nᵣ is given by Nᵣ = \(\frac{n}{V} \) where V is the unit volume. If we assume a homogeneous distribution of the lacuna, the typical distance between vacancies sites can be estimated: \(\frac{4}{3} \pi d_{ₑ}^³ = \frac{Nᵣ}{V} = \frac{n}{V} \). Table II yields values of dₑ for the two carrier concentrations. For both samples, the mean free path is longer than the typical distance between impurity sites, suggesting that the scattering probability between a traveling electron and a point defect is much smaller than unity.

APPENDIX C: FIELD DEPENDENCE
OF THE FERMI ENERGY

In the presence of a large g factor (M ≫ 1) for one single band, the Landau spectrum is modified in two ways:

(i) The quantum limit is reached at a higher magnetic field. For example, when M = 2, the quantum limit is approximately one period above the quantum limit attained than in the case of M = 0.

(ii) The lowest LL 0⁻ is going down with increasing magnetic field. This pulls down the chemical potential near the quantum limit regime. In order to quantify these effects in the case of Bi₂Se₃, we compute the field dependence of the Fermi energy for various values of M. As discussed in Appendix A, we assumed that the carrier concentration is independent of the magnetic field and is given by n = \(\int_{-\infty}^{E_F} D(\epsilon) d\epsilon \) where D(\(\epsilon \)) is the density of state. In the presence of a magnetic field and in the absence of a spin splitting, the density of state D₀(\(\epsilon \)) can be written as

\[
D₀(\epsilon) = \frac{\sqrt{\pi m_0}}{2\pi^2 \hbar^2} eB \sum_{n=0}^{\epsilon_{max}} \left[\frac{\epsilon - \epsilon_n + \sqrt{(\epsilon - \epsilon_n)^2 + \Gamma^2}}{(\epsilon - \epsilon_n)^2 + \Gamma^2} \right]^{1/2} \times \begin{cases} 1 & \text{if } \epsilon > \hbar \omega_c/2 \\ 0 & \text{if } \epsilon < \hbar \omega_c/2, \end{cases}
\]

where \(\epsilon_n = (n + \frac{1}{2}) \hbar \omega_c, n_{max} \) is the highest value of n yielding a positive value for \(\epsilon - \epsilon_n \) and \(\Gamma \) is the broadening of the Landau levels (\(\Gamma = \pi \frac{h \omega_c}{eB} \)). In the presence of a spin splitting \(\epsilon_n = (n + \frac{1}{2} \pm \frac{M}{2} \hbar \omega_c) \) where \(M = \frac{2m_e}{\hbar^2} \). In this case, the density of state is given by D(\(\epsilon \)) = \(\frac{1}{2} (D₀(\epsilon - \frac{M}{2} \hbar \omega_c) + D₀(\epsilon + \frac{M}{2} \hbar \omega_c)) \).

References:

1. benoit.fauque@espci.fr
2. Present address: Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA.