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Generation of pure bulk valley current in graphene
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The generation of valley current is a fundamental goal in graphene valleytronics but no practical
ways of its realization are known yet. We propose a workable scheme for the generation of bulk valley
current in a graphene mechanical resonator through adiabatic cyclic deformations of the strains and
chemical potential in the suspended region. The accompanied strain gauge fields can break the
spatial mirror symmetry of the problem within each of the two inequivalent valleys, leading to
a finite valley current due to quantum pumping. An all-electrical measurement configuration is
designed to detect the novel state with pure bulk valley currents.

PACS numbers: 72.80.Vp,85.85.+j,73.63.-b

Apart from pseudospin (chirality), charge carriers in
graphene are also characterized by the valley index
(sometimes called isospin) originated from the existence
of two conical (Dirac) points per Brillouin zone[1]. A val-
ley polarized state requires the absence of time reversal
symmetry, as the two valleys are related by this symme-
try.

Motivated by the growing field of spintronics[2, 3],
it was proposed that the manipulation with the val-
ley index may open a new way to transmit information
through graphene, and different manipulation schemes
were proposed[4–12]. After initial enthusiastic attitude,
interest in “valleytronics” declined somehow, as it was
soon realized that a valley polarized current will be de-
graded by intervalley scattering induced by atomic scale
disorder[1], making it difficult the maintenance of val-
ley polarized states. In addition, a number of proposals
were based on the spatial separation of valley currents at
zigzag edges[4], which requires well-defined edge orienta-
tion and at the same time free of short-range scattering.

We present a new scheme to induce valley polarized
currents in graphene which avoids some of the pitfalls of
previous proposals. The breaking of time reversal sym-
metry is achieved by means of time dependent fields, in-
stead of a magnetic field. The induction of valley polar-
ization by a.c. fields has been proven in MoS2[13] as well
as in (111)-oriented silicon metal-oxide-semiconductor
field-effect transistors[14] where optical radiation was
used in order to excite valley polarized charge carri-
ers. As in these experiment, the scheme discussed below
generates valley currents throughout the entire system.
However, the a.c. driving force in our proposal is due
to mechanical vibrations of a nanoelectrical-mechanical
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FIG. 1: Illustration and definitions of the (a) graphene based
NEM device and (b) crystallographic coordinate systems used
in the paper.

system (NEMS[15–18]), as illustrated in Fig.1a.
We employ a continuum-medium description of

graphene with the Dirac Hamiltonian,

H±(~k, ~A) = ~vf [±(kx∓Ax)σx+(ky∓Ay)σy]+µ1l2, (1)

where +(−) denotes K(K ′) valley index, vf is the Fermi

velocity and µ is the chemical potential. ~A(~r) is an ef-
fective gauge field describing the modifications to the
hopping amplitudes induced by the strain fields uij(~r)
[19, 20], and has opposite signs at the two valleys as re-
quired by time-reversal symmetry. We described the de-
formation of the suspended region, i.e. −L2 < y < L

2 ,
with a simple uniaxial strain given by uyy = u and
uxx = uxy = 0. It will be shown below that for arbi-

trary crystallographic orientation θ (see Fig.1b), ~A(~r) in
the suspended region is given by the expression

~A(~r) =
βκu

a
(-cos3θ, sin3θ), (2)

where β ≈ 2 is the electron Gruneisen parameter and
κ ≈ 1

3 is a parameter related to graphene’s elastic prop-
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erty as described in [19]. a ≈ 1.4Å is the interatomic
distance. Adiabatic cyclic variations of the internal pa-
rameters, such as deformations in the strains (u) and
chemical potential (µ) in the suspended region, over a
work cycle can constitute a scheme for adiabatic quan-
tum pumping[21, 22] (for the general theory of quantum
pumping, see Ref. [23, 24]). For the charge pumping one
needs to break the spatial mirror symmetry, e.g., mak-
ing the right and left leads different (e.g., by different
doping)[24]. Here we will demonstrate that for the case
of symmetric leads the valley current through the system
is, in general, nonzero. In this case, the pumping cur-
rent through each channel will be shown to follow the
general relation (with periodic boundary condition along
the transversal x direction),

Ipump,KL/R (kx, θ) = −Ipump,K
′

L/R (−kx, θ) 6= 0 if θ 6= n
π

3
(3)

where the subscript L/R refer to left/right leads (IL/R
is defined postive when the current flows out of the de-
vice). Eq.(3) represents the central result of our paper,
and embodies the intrinsic symmety of valley pumping in
graphene NEMs, as we will show later. Below, we present
detail derivations leading to Eq.(3) and discuss the phys-
ical consequences that follows, such as the generation of
pure bulk valley current and its possible experimental
detection.a

We start by considering the case θ = 0, where the
trench is directed along the zigzag direction (see the

(x0, y0) coordinate system shown in Fig.1b). In this case,
the Hamiltonian has the form of Eq.(1) and the pseudo-
magnetic vector potential reads:

Ax =
βκ

a
(uxx − uyy),

Ay = −2βκ

a
uxy. (4)

For arbitrary orientation i.e. θ 6= 0, Eq.(1) and Eq.(4)
have to be recasted in the new coordinate frame (x, y).
The two coordinate system are related by(

x
y

)
= R

(
x0
y0

)
, R =

(
cos θ sin θ
− sin θ cos θ

)
. (5)

The wave vector ~k transforms in the same way as ~r such
that ~k · ~r is a rotational invariant quantity. The strain
field is defined as, uij = 1

2 (
∂uj

∂xi
+ ∂ui

∂xj
), which is a sym-

metric tensor of rank two. Hereafter we use the sub-
script/superscript “0” to denote physical quantities in

the original frame (x0, y0). Thus, we have ~k0 = R−1~k
and

u0xx − u0yy = cos 2θ(uxx − uyy)− 2 sin 2θuxy,

u0xy =
1

2
sin 2θ(uxx − uyy) + cos 2θuxy. (6)

By using the new coordinates in the Dirac Hamiltonian,
we can transform it to the rotated frame:

H±(~k, ~A) = ~vf
(

µ/~vf e∓iθ[(±kx − iky)∓ (±Ax − iAy)]
e±iθ[(±kx + iky)∓ (±Ax + iAy)]) µ/~vf

)
, (7)

where we have defined the pseudo-magnetic field ~A in the
rotated frame as[25]:(

Ax
Ay

)
= R(3θ)

(
βκ
a (uxx − uyy)
−2βκ
a uxy

)
. (8)

Eqs.(7) and (8) constitute the continuum-medium de-
scription of stained-graphene in an arbitrarily rotated
frame. Here follows two comments about this general
form. First, if we perform the gauge transformation of
the wave function on B sublattice ψ±KB −→ ψ±KB e±iθ,
the Dirac Hamiltonian can be made explicitly invariant
(i.e. Eq.(1)) under rotation. Thus, we can simply drop
the factor e±iθ in Eq.(7) in subsequent discussion. Sec-
ond, from the definition for pseudo-magnetic field, it is
obvious that the form is of 2π/3 periodic in θ, which
reflects the trigonal symmetry of the underlying honey-
comb lattice.

Next, we describe the quantum pumping problem

based on graphene NEMs[22, 26]. As discussed above,
the derived Hamiltonian given by Eq.(7) is physically
equivalent to Eq.(1). Suppose that between −L2 <

y < L
2 , the system has uniaxial strain uyy = u and

uxx = uxy = 0, hence, Eq.(8) is reduced to

(Ax,Ay)(~r) =

{
0, |y| > L

2

(βκua )(− cos 3θ, sin 3θ), |y| ≤ L
2

(9)

with the expression given in Eq.(2) for the suspended re-
gion. In the following, assuming a particular geometry
(the width W�L), the x direction is treated as trans-
lationally invariant. From Eq.(7) and Eq.(9), one can
easily see that

H+(kx, ky, ~A, θ) = H−(−kx, ky, ~A,−θ). (10)

We can call such combined symmetry as the crystalline-
angle-combined mirror symmetry in the continuum-
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medium model. It turns out that such combined sym-
metry has a significant consequence on the relation of
pumping currents in each valley, i.e., Eq.(3), as will be
elaborated further.

Due to the mentioned symmetry, we may focus only on
the K Dirac cone, whose Hamiltonian has the following
form for the different regions (i.e., i = L,R,G denotes
y < −L2 , y > L

2 , |y| ≤ L
2 , respectively):

H+
i (~k, ~A) = ~vf

(
εi/~vf (k̃x − ik̃y)i

(k̃x + ik̃y)i εi/~vf

)
, (11)

where we have defined (k̃x, k̃y)i = (kx − Ax, ky − Ay)i.
In this paper, we consider mainly the symmetric case
εL = εR 6= εG.

The eigenenergies and eigenstates of the Hamiltonian
in Eq.(11) read

Ei(~k) = εi + s~vf
√
k̃2x + k̃2y,

ψi(~k) = ei(kxx+kyiy)

(
1

~vf (k̃x+ik̃y)i
Es−εi

)
, (12)

where s = ±1 refers to electron/hole band, respectively.
Due to translational invariance in x direction, kx is the
same in all three regions. We consider now the equilib-
rium situation where all three regions can be described by
a common chemical potential µ. Obviously, k̃xi

is always

real since kx is real. Then, k̃yi = ±
√
k2fi − k̃

2
xi

, where

kfi = µ−εi
~vf and the ± sign is selected to give the correct

sign in the group velocity, depending whether it is an
incident, transmitted, or reflected waves. Note that k̃y
can be purely imaginary representing evanescent waves
in the central region.

It is straightforward to calculate the scattering matrix
for our device. Without loss of generality, we can focus
on the case with the electron doping (µ− εL > 0) in the
leads. The scattering coefficients are calculated to be

rd = e−ikyLL
C2(d) + C3(d)

C1(d)
,

td = e−ikyLL
−4 sinϕL sinϕGe

iAyLd

C1(d)
, (13)

where rd and td are the reflection and transmition coef-
ficients with d = 1(−1) corresponding to the cases with
incident waves from y = −∞ (left lead) and y =∞ (right
lead), respectively; ϕL and ϕG are defined through

e±iϕL =
kx ± ikyLd

kfL
, e±iϕG =

k̃xG
± ik̃yG
kfG

. (14)

The Ci(d) in Eq.(13) are defined as

C1(d) = 4i sin(k̃yGLd)(1− cosϕL cosϕG) (15)

− 4 cos(k̃yGLd) sinϕL sinϕG,

C2(d) = −2i(1 + e2iϕL) sin(k̃yGLd),

C3(d) = 2ieiϕL [sin(k̃yGLd+ ϕG) + sin(k̃yGLd− ϕG)].

Symmetries related with td and rd. Next, we discuss
symmetry properties of the scattering amplitudes. First,
we note that ϕG(d) = ϕG(−d), ϕL(d) = −ϕL(−d) and
they are independent of the sign of θ. Then, we can
obtain the relations satisfied by Ci’s: C1(d) = −C1(−d),
C2,3(−d)∗ = C2,3(d). Based on these relations and the
odd parity of Ay(θ), we arrive at:

td(kx, θ) = t−d(kx,−θ),
rd(kx, θ) = rd(kx,−θ). (16)

Symmetry of pumped valley-dependent current. Ac-
cording to the adiabatic pumping theory[23] and the sym-
metry relations satisfied by rd and td, we obtain the fol-
lowing relation for the pumping current Ipump,KL (kx, θ)
for K valley:

Ipump,KL (kx, θ)− Ipump,KR (kx,−θ)

=
ieω

4π2

∫ 2π/ω

0

ds[
dr1(θ)

ds
r1(θ)∗ − dr−1(θ)

ds
r−1(θ)∗], ,(17)

where we’ve used s as time symbol to avoid confusion
with transmission coefficient. Now, using the symme-
try relations satisfied by Ci’s and the fact that the com-
mon complex factors for C2 and C3, i.e., ieiϕL , is in-
dependent of time(see Eq.(19) for typical time depen-
dence of pumping parameters for graphene NEM), we
can simply prove that the integrand in Eq.(17) is zero.
By further taking into account the current conserva-
tion condition( Ipump,KL (kx,−θ) + Ipump,KR (kx,−θ) = 0)
and the symmetry relation guaranteed by Eq.(10) (i.e.,

Ipump,K
′

L (−kx, θ) = Ipump,KL (kx,−θ)), we arrive at the
first part of Eq.(3), the relation for pumped valley-
dependent current, which is the central result of this pa-
per. The above derivation based on the explicit solution
of scattering amplitudes demonstrates the usefulness of
the generic crystalline-angle-combined mirror symmetry
of the suspended graphene under uniaxial strain. Later
we will show that Eq.(3) and its consequences are in con-
sistent with inversion symmetry of the whole system.

Next, we discuss some direct consequences of Eq.(3).
By integrating out the transversal wave vector kx, we can
get the following relation,

Ipump,KL/R (θ) = −Ipump,K
′

L/R (θ). (18)

Eq.(18) means that the total pumping current at a given
lead is opposite for different valleys. Thus, the total
charge current is exactly zero. This situation is analogous
to the pure spin current generation in spintronics[27, 28],
thus we call this effect pure valley current generation. In
summary, we have shown that the application of an alter-
nating back gate voltage to graphene NEMs can induce a
pure valley current via adiabatic pumping. In adiabatic
pumping theory, there are two necessary conditions for
finite charge pumping effect, i.e., time reversal symme-
try breaking and mirror symmetry breaking of the the
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FIG. 2: (Color online) The pumped charge per cycle of the
K valley, denoted as QK

c . The valley current can be obtained
by eωQK

c /2π. The width is fixed to be 5000a (≈ 700nm),
calculated for two different length as indicated. We fixed the
phase difference of the driving parameters φ = π/2 and take

| ~Aav|/kf ≈ 0.002, which amounts to a strain u ≈ 1.75×10−4.

left/right leads[24]. The above derivations show that the
valley pumping effect can be realized in a seemingly sym-
metric two-terminal geometry with identical leads. How-
ever, the mirror symmetry of the system (i.e. y→−y) has
actually been broken for each valley when θ 6= nπ

3 . Such
symmetry breaking is embodied in the continuum theory
through a nonzero Ay component. This constitutes the
second part of Eq.(3). For more quantitative understand-

ing, we present some numerical results of Ipump,KL (θ) (in
terms of the pumped charge per cycle ) for the K valley
in Fig.2 using some typical experimental parameters, as
discussed below.

As stated above, the strain (u) and Dirac potential
(εG) in the suspended region are modulated by the ac
back gate voltage. Near resonance, they differs by a phase
difference φ with a typical time dependence given by(with
conventional time symbol t)[22]:

εG = εG0[1 + δε cos(ωt)]
1
2 ,

~A = ~A0[1 + δA cos(ωt+ φ)]2. (19)

Assuming typical numbers for the static part εG0 =
εL = 0.3eV , ~A0 = 0.02kf (cos 3θ,− sin 3θ), and the os-
cillating amplitude δε = δA = 0.2 , we calculated the
pumped charge per cycle QKc (θ) for K valley, as shown in

Fig.2. By definition, the pumping current Ipump,KL (θ) =
eωQKc (θ)/2π. Our calculation indicates a nearly linear
scaling(unshown) of the pumping effect on length L of
the NEMs, which is similar to results in[22]. As explic-
itly shown, the maximum pumping effect is reached for
the crystallographic angles corresponding to armchair-
type x axis (θ = π/2 + nπ/3, n ∈ Z) while it is zero at
zigzag-type x axis (θ = nπ/3, n ∈ Z). The periodicity

2π/3 with θ is easily seen. The valley current can be
defined as Ipump,v(θ) = Ipump,K(θ)− Ipump,K′

(θ), which
is simply twice the value of Ipump,K(θ). For typical reso-
nance frequency of ω ≈ 10MHz[17] to 0.16GHz [18], we
arrive at numerical estimates Ipump,v ≈ 0.1− 10 pA/µm,
a quantity measurable in experiment. Furthermore, the
signal can be amplified by (i) increasing the area of sus-
pended graphene part (the signal is roughly proportional
to both length and width in the theoretical model we con-
sidered) and (ii) tuning the amplitude of the ac voltage
of the back gate to increase the oscillation magnitude of
strain/chemical potential.

The possibility of pure bulk valley current in this sim-
ple pumping scenario looks very promising. The prob-
lem is how to probe the valley current. Here we propose
an all-electrical measurement as shown in Fig.3(note the
voltage contacts are patterned on the supporting leads,
instead of on the suspended region). From Eq.(3), we can
infer that the charge current pertaining to carriers from
the valley K not only has opposite longitudinal compo-
nent with respect to the charge carriers from the valley
K ′, but also their transversal velocities are opposite. As
pictorially shown in Fig.3, we expect charges accumu-
lating on opposite edges on the two sides of the NEMs.
Based on this observation, we predict that the resultant
Hall voltage on the left lead has opposite sign with that
on the right lead, i.e., Sign(V12/V34) = −1, which is the
characteristic feature of the bulk valley current flow.

The above picture can be made more quantitative. Be-
cause kx, like charge, is a conserved quantum number
in our pumping scenario, we can introduce a quantity,
valley-dependent pumping Hall current, which can be cal-
culated as IHall,KL/R (θ) =

∑
kx
Ipump,KL/R (kx, θ)

kx
ky

. This Hall

current accompanying the pure bulk valley current can
be viewed as resulted from an effective pumping force, in-
stead of the usual Lorentz force due to a magnetic field.
From Eq.(3) and the particle conservation law for each
kx channel, we can obtain:

IHall,KL/R (θ) = IHall,K
′

L/R (θ) = −IHall,KR/L (θ). (20)

Such Hall current on different leads can result in the op-
posite Hall voltage. Thus the existence of pure valley
currents possibly can be detected in the leads by means
of nonlocal multiterminal measurements[29]. Finally, it’s
worthy to point out that such hall current pattern is a
reasonable consequence of inversion symmetry and time
reversal symmetry breaking of the system.

Our discussion above is restricted to the case with sym-
metrical leads. It is straightforward to extend our study
to the more general case with differently doped leads.
In the general situation, the current is not purely valley

current, i.e., Ipump,KL/R (θ) 6= −Ipump,K
′

L/R (θ), thus the charge

pumping current is finite.
To conclude, we have shown that through pumping

induced by mechanical vibrations bulk valley polarized
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FIG. 3: (Color online) Pictorial sketch of the pumping gen-
eration of pure valley current and an all-electrical detection
scheme. The Hall voltage difference V12 = V1 − V2 and
V34 = V3 − V4 across the NEMs is predicted to bear oppo-
site sign due to the flow of pure valley current.

currents can be generated in graphene leads connecting
the graphene resonator with trench directed at a gen-
eral crystallographic angle. We have demonstrated that
the generated current is purely valley current (with zero
net charge pumping current) in the setup with the same
doping rate in the graphene leads. Together with an all-
electrical measurement scheme, our proposal opens a new
direction of exploiting the valley degree of freedom, thus
pushing forward graphene-based valleytronics a step for-
ward toward real applications.
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