Search for Dark Matter Candidates and Large Extra Dimensions in events with a photon and missing transverse momentum in pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = 7$ TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb^{-1} are used. Good agreement is observed between the data and the Standard Model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.
Search for Dark Matter Candidates and Large Extra Dimensions in events with a photon and missing transverse momentum in pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

Events with an energetic photon and large missing momentum in the final state constitute a clean and distinctive signature in searches for new physics at colliders. In particular, monophoton and monojet final states have been studied in the context of searches for supersymmetry and large extra spatial dimensions (LED), aiming to provide a solution to the mass hierarchy problem, and the search for weakly interacting massive particles (WIMPs) as candidates for dark matter (DM).

The Arkani-Hamed, Dimopoulos, and Dvali (ADD) model for LED explains the large difference between the electroweak unification scale $O(10^2)$ GeV and the Planck scale $M_{PL} \sim O(10^{19})$ GeV by postulating the presence of n extra spatial dimensions of size R, and defining a fundamental Planck scale in $4+n$ dimensions, M_D, given by $M_D^2 \sim M_{PL}^2 R^n$. The extra spatial dimensions are compactified, resulting in a Kaluza-Klein tower of massive graviton modes. At hadron colliders, these graviton modes may escape detection and can be produced in association with an energetic photon or a jet, leading to a monophoton or monojet signature.

The presence of a non-baryonic DM component in the universe is inferred from the observation of its gravitational interactions, although its nature is otherwise unknown. A WIMP χ with mass m_χ in the range between 1 GeV and a few TeV is a plausible candidate for DM. It could be detected via its scattering with heavy nuclei, the detection of cosmic rays, or via $\chi \chi$ pair-production at colliders where the WIMPs do not interact with the detector and the event is identified by the presence of an energetic photon or jet from initial-state radiation. The interaction of WIMPs with Standard Model (SM) particles is assumed to be driven by a mediator with mass at the TeV scale and described using a non-renormalizable effective theory with several operators. The vertex coupling is suppressed by an effective cut-off mass scale $M_c \sim M/\sqrt{g_1 g_2}$, where M denotes the mass of the mediator and g_1 and g_2 are the couplings of the mediator to the WIMP and SM particles.

This Letter reports results of the search for new phenomena in monophoton final states, based on $\sqrt{s} = 7$ TeV proton-proton collision data corresponding to an integrated luminosity of 4.6 fb$^{-1}$ collected with the ATLAS detector at the LHC during 2011. The ATLAS detector is described in detail elsewhere. The data are collected using a three-level trigger system that selects events with missing transverse momentum greater than 70 GeV. In the analysis, events are required to have $E_T^{miss} > 150$ GeV, where E_T^{miss} is computed as the magnitude of the vector sum of the transverse momentum of all noise-suppressed calorimeter topological clusters with $|\eta| < 4.9$. A photon is also required with transverse momentum $p_T > 150$ GeV and $|\eta| < 2.37$, excluding the calorimeter barrel/end-cap transition regions. With these criteria, the trigger selection is more than 98% efficient, as determined using events selected with a muon trigger. The cluster energies are corrected for the different response of the calorimeters to hadronic jets, τ leptons, electrons or photons, as well as dead material and out-of-cluster energy losses.

The photon candidate must pass tight identification criteria and is required to be isolated: the energy not associated with the photon cluster in a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ around the candidate is required to be less than 5 GeV. Jets are defined using the anti-k_t jet algorithm with the distance parameter set to $R = 0.4$. The measured jet p_T is corrected for detector effects and for contributions from multiple proton-proton interactions per beam bunch crossing (pileup).

Events with more than one jet with $p_T > 30$ GeV and $|\eta| < 4.5$ are rejected. Events with one jet are retained to increase the signal acceptance and reduce systematic uncertainties related to the modeling of initial-state radiation. The reconstructed photon, E_T^{miss} vector and jets (if found) are required to be well separated in the transverse plane with $\Delta \phi(\gamma, E_T^{miss}) = 0.4$, $\Delta R(\gamma, \text{jet}) > 0.4$, and $\Delta \phi(\text{jet}, E_T^{miss}) > 0.4$. Additional quality criteria are applied to ensure that jets and photons are not produced by noisy calorimeter cells, and to avoid problematic detector regions. Events with identified electrons

PACS numbers: 14.70.Kv, 13.85.Rm, 13.85.Qk, 14.80.Rt, 14.70.Bh
or muons are vetoed to reject mainly W/Z+jets and W/Z + γ background processes with charged leptons in the final state. Electron (muon) candidates are required to have $p_T > 20$ GeV and $|\eta| < 2.47$ ($p_T > 10$ GeV and $|\eta| < 2.4$), and to pass the medium (combined) criteria \cite{20}. The final data sample contains 116 events, where 88 and 28 events have zero and one jet, respectively.

The SM background to the monophoton signal is dominated by the irreducible $Z(\rightarrow \nu\nu) + γ$ process, and receives contributions from $W/Z + γ$ events with unidentified electrons, muons or hadronic τ decays, and $W/Z+γ$ events with an electron or jet misconstructed as a photon. In addition, the monophoton sample receives small contributions from top-quark, $γγ$, diboson (WW, ZZ, WZ), $γ$+jets, and multi-jet processes.

Background samples of simulated $W/Z + γ$ events are generated using ALPGEN \cite{21}, interfaced to HERWIG \cite{22}, with JIMMY \cite{23}, and SHERPA \cite{24}, using CTEQ6L1 \cite{25} parton distribution functions (PDFs) and requiring a minimum photon p_T of 40 GeV. Background samples of W/Z+jets and $γ$+jets processes are generated using ALPGEN plus HERWIG/JIMMY, with CTEQ6L1 PDFs. Top-quark production samples are generated using MC@NLO \cite{26} and CT10 \cite{27} PDFs, while diboson processes are generated using HERWIG/JIMMY normalized to next-to-leading-order (NLO) predictions with MRST2007 \cite{28} PDFs. Multi-jet and $γγ$ processes are generated using PYTHIA 6 \cite{29} with MRST2007 PDFs.

Signal Monte Carlo (MC) samples are generated according to the ADD model using the PYTHIA 8 leading-order (LO) perturbative QCD (pQCD) implementation with default settings, requiring a minimum photon p_T of 80 GeV, and an ATLAS tune for the underlying event (UE) contribution \cite{30} including the CTEQ6L1 PDFs. The number of extra dimensions n is varied from 2 to 6 and values of M_D in the $1−2$ TeV range are considered. For consistency with a previous monojet analysis performed in ATLAS \cite{31,32}, the yields corresponding to CTEQ6.6 \cite{33} PDFs are used, as obtained by reweighting these samples. The samples are normalized to NLO predictions \cite{34}. The LO-to-NLO normalization factors decrease from 1.5 to 1.1 as n increases.

Simulated events corresponding to the $\chi\bar{\chi} + γ$ process with a minimum photon p_T of 80 GeV are generated using LO matrix elements from MADGRAPH \cite{35} interfaced to PYTHIA 6 using CTEQ6L1 PDFs. Values for m_χ between 1 GeV and 1.3 TeV are considered. In this analysis, WIMPs are assumed to be Dirac fermions and the vertex operator is taken to have the structure of a scalar, vector, axial-vector or tensor, corresponding respectively to the operators D1, D5, D8 and D9 in Refs. \cite{12,36}. These operators correspond to spin-independent (D1 and D5) and spin-dependent (D8 and D9) interactions. The MC samples are passed through a full simulation \cite{35} of the ATLAS detector and trigger system, based on GEANT4 \cite{36}. The simulated events are reconstructed and analyzed with the same analysis chain as the data.

The normalization of the MC predictions for the dominant $W/Z + γ$ background processes are set using scale factors determined in a data control sample, resulting in a significant reduction of the background uncertainties. A $γ + μ + E_T^{miss}$ control sample with an identified muon is defined by inverting the muon veto in the nominal event selection criteria discussed above. According to the simulation, the sample contains a 71% (19%) contribution from $W + γ$ ($Z + γ$) processes. This control sample is used to normalize separately the $W + γ$ and $Z + γ$ MC predictions determined by ALPGEN and SHERPA, respectively. In each case, the scale factor is defined as the ratio of the data to the given MC prediction, after the contributions from the rest of the background processes are subtracted. The scale factors, extracted simultaneously to take into account correlations, are $k(W + γ) = 1.0\pm0.2$ and $k(Z + γ) = 1.1\pm0.2$, where statistical and systematic uncertainties are included.

Dedicated studies are performed to determine the probability for electrons or jets to be identified as photons, resulting in data-driven estimates of $W/Z + jet$ background contributions. A data sample of Z boson candidates is employed to compute the fraction of electrons from the Z boson decay that are reconstructed as photons. This fraction decreases from 2% to 1% as p_T increases from 150 GeV to 300 GeV, and increases from 1% to 3% as $|\eta|$ increases. These rates are employed to determine the $W(\rightarrow eν)+jets$ background in the signal region, for which a control data sample selected with the nominal selection criteria and an electron instead of a photon is used. This results in a total $W(\rightarrow eν)+jet$ background estimation of 14 ± 6 events, where the uncertainty is dominated by the limited size of the control data sample. Control samples enhanced in jets identified as photons are defined using nominal selection criteria as non-isolated photon candidates and/or photon candidates passing a loose selection \cite{16} but not the nominal identification requirements. The ratio of isolated to non-isolated photons in the loose-photon selected sample together with the number of non-isolated photons passing the nominal identification requirements are used to determine the rate of jets identified as photons in the signal region, after the contribution from $W/Z + γ$ processes has been subtracted. This gives an estimate of 4.3 ± 1.9 $W/Z + jet$ background events.

The $γ$+jet and multi-jet background contributions to the signature of a photon and large E_T^{miss} originate from the misreconstruction of the energy of a jet in the calorimeter. The direction of E_T^{miss} vector therefore tends to be aligned with the jet. These background contributions are determined from data using a control sample with the nominal selection criteria and at least one jet with $p_T > 30$ GeV and $Δφ(jet, E_T^{miss}) < 0.4$. After the subtraction of electroweak boson and top-quark production processes, a linear extrapolation of the measured
The uncertainty is due to the ambiguity in the functional form used in the extrapolation. Background contributions from top-quark, $\gamma\gamma$, and diboson production processes, determined using MC samples, are small. Finally, non-collision backgrounds are negligible.

A detailed study of systematic uncertainties on the background predictions has been performed. An uncertainty of 0.3% to 1.5% on the absolute photon energy scale [12], depending on the photon p_T and η, translates into a 0.9% uncertainty on the total background prediction. Uncertainties on the simulated photon energy resolution, photon isolation, and photon identification efficiency introduce a combined 1.1% uncertainty on the background yield. Uncertainties on the simulated lepton identification efficiencies introduce a 0.3% uncertainty on the background predictions. The uncertainty on the absolute jet energy scale [18] and jet energy resolution introduce 0.9% and 1.2% uncertainties on the background estimation, respectively. A 10% uncertainty on the absolute energy scale for low p_T jets and unclustered energy in the calorimeter, and a 6.6% uncertainty on the subtraction of pileup contributions, are taken into account. They affect the E_T^{miss} determination and translate into 0.8% and 0.3% uncertainties on the background yield, respectively. The dependence of the predicted $W/Z + \gamma$ backgrounds on the parton shower and hadronization model used in the MC simulations is studied by comparing the predictions from SHERPA and ALPGEN. This results in a conservative 6.9% uncertainty on the total background yield. Uncertainties due to the choice of PDFs and the variation of the renormalization and factorization scales in the $W/Z + \gamma$ MC samples introduce an additional 1.0% uncertainty on the total background yield. Other sources of systematic uncertainty related to the trigger selection, the lepton p_T scale and resolution, the pileup description, background normalization of the top quark, $\gamma\gamma$ and diboson contributions, and a 1.8% uncertainty on the total luminosity [27] introduce a combined uncertainty of less than 0.5% on the total predicted yields. The different sources of uncertainty are added in quadrature, resulting in a total 15% uncertainty on the background prediction.

In Table I the observed number of events and the SM predictions are presented. The data are in agreement with the SM background-only hypothesis with a p-value of 0.2. Figure 1 shows the measured E_T^{miss} distribution compared to the background predictions. The results are expressed in terms of model-independent 90% and 95% confidence level (CL) upper limits on the visible cross section, defined as the production cross section times acceptance times efficiency ($\sigma \times A \times \epsilon$), using the CL$_S$ modified frequentist approach [38] and considering the systematic uncertainties on the SM backgrounds and on the integrated luminosity. Values of $\sigma \times A \times \epsilon$ above 5.6 fb and 6.8 fb are excluded at 90% CL and 95% CL, respectively.

TABLE I: The number of events in data compared to the SM predictions, including statistical and systematic uncertainties. In the case of $W/Z+\text{jets}$, $\gamma+\text{jets}$ and multi-jet processes a global uncertainty is quoted.

<table>
<thead>
<tr>
<th>Background source</th>
<th>Prediction \pm (stat.) \pm (syst.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z(\rightarrow \nu\nu) + \gamma$</td>
<td>93 \pm 16 \pm 8</td>
</tr>
<tr>
<td>$Z/\gamma^* (\rightarrow \ell^+\ell^-) + \gamma$</td>
<td>0.4 \pm 0.2 \pm 0.1</td>
</tr>
<tr>
<td>$W(\rightarrow \ell\nu) + \gamma$</td>
<td>24 \pm 5 \pm 2</td>
</tr>
<tr>
<td>$W/Z + \text{jets}$</td>
<td>18 \pm 6 \pm 6</td>
</tr>
<tr>
<td>Top</td>
<td>0.07 \pm 0.07 \pm 0.01</td>
</tr>
<tr>
<td>$WW, WZ, ZZ, \gamma\gamma$</td>
<td>0.3 \pm 0.1 \pm 0.1</td>
</tr>
<tr>
<td>$\gamma+\text{jets}$ and multi-jet</td>
<td>1.0 \pm 0.5 \pm 0.5</td>
</tr>
<tr>
<td>Total background</td>
<td>137 \pm 18 \pm 9</td>
</tr>
</tbody>
</table>

FIG. 1: The measured E_T^{miss} distribution (black dots) compared to the SM (solid lines), SM+ADD (dashed lines), and SM+WIMP (dotted lines) predictions, for two particular ADD and WIMP scenarios.

The results are translated into 95% CL limits on the parameters of the ADD model. The typical $A \times \epsilon$ of the selection criteria is $20.0 \pm 0.4\text{(stat.)} \pm 1.6\text{(syst.)} \%$, approximately independent of n and M_D. Experimental uncertainties related to the photon, jet and E_T^{miss} scales and resolutions, the photon reconstruction, the trigger efficiency, the pileup description, and the luminosity introduce a 6.8% uncertainty on the signal yield. Uncertainties related to the modeling of the initial- and final-state gluon radiation translate into a 3.5% uncertainty on the ADD signal yield. Systematic uncertainties due to PDFs result in a 0.8% to 1.4% uncertainty on the signal cross section, increasing as n increases. Variations of the renormalization and factorization scales by factors of two and one-half introduce a 0.6% uncertainty on the signal $A \times \epsilon$ and an uncertainty on the signal cross section that decreases from 9% to 5% as n increases. Fig-

$\frac{p_T}{p_T} < 30 \text{ GeV}$ leads to an estimate of 1.0 ± 0.5 background events in the signal region, where the uncertainty is due to the ambiguity in the functional form used in the extrapolation. Background contributions from top-quark, $\gamma\gamma$, and diboson production processes, determined using MC samples, are small. Finally, non-collision backgrounds are negligible.

The uncertainty is due to the ambiguity in the functional form used in the extrapolation. Background contributions from top-quark, $\gamma\gamma$, and diboson production processes, determined using MC samples, are small. Finally, non-collision backgrounds are negligible.
Figure 2 shows the expected and observed 95% CL lower limits on M_D as a function of n, as determined using the CL_s method and considering uncertainties on both signal and SM background predictions. Values of M_D below 1.93 TeV ($n = 2$), 1.83 TeV ($n = 3$ or 4), 1.86 TeV ($n = 5$), and 1.89 TeV ($n = 6$) are excluded at 95% CL. The observed limits decrease by 3% to 2% after considering the -1σ uncertainty from PDFs, scale variations, and parton shower modeling in the ADD theoretical predictions (dashed lines in Figure 2). These results improve upon previous limits on M_D from LEP and Tevatron experiments [1, 2]. In this analysis, no weights are applied for signal events in the phase space region with $s > M_D$, which is sensitive to the unknown ultraviolet behavior of the theory. For M_D values close to the observed limits, the visible signal cross sections decrease by 15% to 75% as n increases when truncated samples with $s < M_D^2$ are considered. This analysis probes a kinematic range for which the model predictions are defined but ambiguous.

Similarly, 90% CL upper limits on the pair production cross section of dark matter WIMP candidates are determined. The $A \times \epsilon$ of the selection criteria are typically 11.0 ± 0.2 (stat.) ± 1.6 (syst.)% for the D1 operator, 18.0 ± 0.3 (stat.) ± 1.4 (syst.)% for the D5 and D8 operators, and 23.0 ± 0.3 (stat.) ± 2.1 (syst.)% for the D9 operator, with a moderate dependence on m_χ. Experimental uncertainties, as discussed above, translate into a 6.6% uncertainty on the signal yields. Theoretical uncertainties on initial- and final-state gluon radiation introduce a 3.5% to 10% uncertainty on the signal yields. The uncertainties related to PDFs result in 1.0% to 8.0% and 5.0% to 30% uncertainties on the signal $A \times \epsilon$ and cross section, respectively. Variations of the renormalization and factorization scales lead to a change of 1.0% to 2.0% and 8.0% in the signal $A \times \epsilon$ and cross section, respectively. In the case of the D1 (D5) spin-independent operator, values of M_χ below 31 GeV and 5 GeV (585 GeV and 156 GeV) are excluded at 90% CL for m_χ equal to 1 GeV and 1.3 TeV, respectively. Values of M_χ below 585 GeV and 100 GeV (794 GeV and 188 GeV) are excluded for the D8 (D9) spin-dependent operator for m_χ equal to 1 GeV and 1.3 TeV, respectively. These results can be translated into upper limits on the nucleon-WIMP interaction cross section using the prescription in Refs. [12, 39]. Figure 3 shows 90% CL upper limits on the nucleon-WIMP cross section as a function of m_χ. In the case of the D1 (D5) spin-independent interaction, nucleon-WIMP cross sections above 2.7×10^{-39} cm2 and 5.8×10^{-34} cm2 (2.2 $\times 10^{-39}$ cm2 and 1.7 $\times 10^{-36}$ cm2) are excluded at 90% CL for $m_\chi = 1$ GeV and $m_\chi = 1.3$ TeV, respectively. Spin-dependent interactions cross sections in the range 7.6×10^{-41} cm2 to 3.4×10^{-37} cm2 (2.2 $\times 10^{-41}$ cm2 to 2.7×10^{-38} cm2) are excluded at 90% CL for the D8 (D9) operator and m_χ varying between 1 GeV and 1.3 TeV. The quoted observed limits on M_χ typically decrease by 2% to 10% if the -1σ theoretical uncertainty is considered. This translates into a 10% to 50% increase of the quoted nucleon-WIMP cross section limits. The exclusion in the region 1 GeV $< m_\chi < 3.5$ GeV (1 GeV $< m_\chi < 1$ TeV) for spin-independent (spin-dependent) nucleon-WIMP interactions is driven by the results from collider experiments with the assumption of the validity of the effective theory. The cross section upper limits improve upon CDF results [4] and are similar to those obtained by the CMS experiment [6] which uses axial-vector operators to describe spin-dependent interactions.

In summary, we report results on the search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC, based on ATLAS data corresponding to an integrated luminosity of 4.6 fb$^{-1}$. The measurements are in agreement with the SM predic-
tions for the background. The results are translated into model-independent 90% and 95% confidence level upper limits on $\sigma \times A \times \epsilon$ of 5.6 fb and 6.8 fb, respectively. The results are presented in terms of improved limits on M_D versus the number of extra spatial dimensions in the ADD model and upper limits on the spin-independent and spin-dependent contributions to the nucleon-WIMP elastic cross section as a function of the WIMP mass.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEAS-DSM-IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[15] ATLAS uses a cylindrical coordinate system about the beam axis with polar angle θ and azimuthal angle ϕ. Anti-clockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision point to the center of the LHC ring and the positive y-axis points upwards. We define transverse energy $E_T = E \sin \theta$, transverse momentum $p_T = p \sin \theta$, and pseudorapidity $\eta = -\ln \tan(\theta/2)$.
[34] The masses of strange and charm quarks are relevant for the cross sections of the D1 operator and they are set to 0.1 GeV and 1.42 GeV, respectively.
[39] In consultation with the authors of Ref.12, a factor 4.7 \times 10^{-39}\text{cm}^2 is used in the cross section formula for D8 and D9 operators instead of the quoted 9.18 \times 10^{-40}\text{cm}^2.
20 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a)Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu; (d)School of Physics, Shandong University, Shandong, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern-und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington IN, United States of America
61 Institut für Astro-und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City IA, United States of America
63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
117	Department of Physics, University of Oslo, Oslo, Norway
118	Department of Physics, Oxford University, Oxford, United Kingdom
119	(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
120	Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121	Petersburg Nuclear Physics Institute, Gatchina, Russia
122	(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123	Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
124	(a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFAPE, Universidad de Granada, Granada, Spain
125	Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
126	Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127	Czech Technical University in Prague, Praha, Czech Republic
128	State Research Center Institute for High Energy Physics, Protvino, Russia
129	Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130	Physics Department, University of Regina, Regina SK, Canada
131	Ritsumeikan University, Kusatsu, Shiga, Japan
132	(a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133	(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134	(a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135	(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
136	DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
137	Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138	Department of Physics, University of Washington, Seattle WA, United States of America
139	Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140	Department of Physics, Shinshu University, Nagano, Japan
141	Fachbereich Physik, Universität Siegen, Siegen, Germany
142	Department of Physics, Simon Fraser University, Burnaby BC, Canada
143	SLAC National Accelerator Laboratory, Stanford CA, United States of America
144	(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145	(a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146	(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
147	Physics Department, Royal Institute of Technology, Stockholm, Sweden
148	Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
149	Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150	School of Physics, University of Sydney, Sydney, Australia
151	Institute of Physics, Academia Sinica, Taipei, Taiwan
152	Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153	Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154	Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155	International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156	Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157	Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158	Department of Physics, University of Toronto, Toronto ON, Canada
159	(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
160	Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161	Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
162	Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

(a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Novosibirsk State University, Novosibirsk, Russia

Also at Department of Physics, University of Coimbra, Coimbra, Portugal

h Also at Department of Physics, UASLP, San Luis Potosi, Mexico

i Also at Università di Napoli Parthenope, Napoli, Italy

Also at Institute of Particle Physics (IPP), Canada

k Also at Department of Physics, Middle East Technical University, Ankara, Turkey

l Also at Louisiana Tech University, Ruston LA, United States of America

m Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Also at Department of Physics and Astronomy, University College London, London, United Kingdom

Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada

n Also at Department of Physics, University of Cape Town, Cape Town, South Africa

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

Also at Manhattan College, New York NY, United States of America

Also at School of Physics, Shandong University, Shandong, China

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique), Gif-sur-Yvette, France

Also at Section de Physique, Université de Genève, Geneva, Switzerland

Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

Also at California Institute of Technology, Pasadena CA, United States of America

Also at Institute of Physics, Jagiellonian University, Krakow, Poland

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America
Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Also at Department of Physics, Oxford University, Oxford, United Kingdom

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

* Deceased