
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/111087

Please be advised that this information was generated on 2019-09-18 and may be subject to

change.

http://hdl.handle.net/2066/111087

Verification of the Temporal Properties of
Dynamic Clean Processes ?

Zoltán Horváth1, Peter Achten2, Tamás Kozsik1, and Rinus Plasmeijer2

1 Department of General Computer Science
University Eötvös Loránd,Budapest, Hungary
hz@ludens.elte.hu, tamas.kozsik@elte.hu

2 Faculty of Mathematics and Computer Science
University Nijmegen, The Netherlands
peter88@cs.kun.nl, rinus@cs.kun.nl

Abstract. The behavior of concurrent and parallel programs can be
specified in a functional style. We introduced a relational model for syn-
thesizing abstract parallel imperative programs this way earlier. In this
paper we investigate the applicability of the specification and verification
tools of the model for proving temporal properties of concrete programs
written in a pure functional language, in Concurrent Clean. Destructive
updates preserving referential transparency are possible in this language
by using the so called unique types. For example Clean programs per-
form I/O by accessing their unique environment. Furthermore, dynamic
types of Clean make it possible to load some pieces of the program during
run-time. We present a methodology for proving safety and liveness prop-
erties of concurrent, interleaved Clean Object I/O processes that also use
dynamic types and show simple examples for verification of correctness
of such Clean programs.

1 Introduction

The behavior of concurrent and parallel programs can be specified in a func-
tional style. We introduced a relational model for synthesizing abstract parallel
imperative programs earlier [7, 6]. We use the methodology and the abstract,
programming language independent specifications presented in [3, 7, 8].

In this paper we investigate the applicability of the specification and verifi-
cation tools of the model for proving temporal properties of reactive programs
written in a pure functional language, in Concurrent Clean [14]. We also consider
the dynamic possibilities of this language, viz. that certain components can be
loaded into the system during run-time.

Verification of reactive ERLANG programs are investigated in [5, 4]. We use
our UNITY like [3], temporal logic based reasoning instead of the first-order
fixed-point calculus applied there. Automatic verification of Clean programs may
be possible also by integrating temporal reasoning with CPS [12].
? This work is the continuation of the research introduced in [9]. The research was

supported by the Hungarian State Eötvös Fellowship and by the Hungarian Ministry
of Education, Grant Nr. FKFP 0206/97

2 Z. Horváth, P. Achten, T. Kozsik, R. Plasmeijer

2 Abstract specifications of reactive systems

Reactive systems may be formulated in Clean as part of a unique environment
[16, 1]. To specify the behavior of a reactive system we need temporal logic based
notation [3, 6, 8] referring to program state and local state [1].

A specification of a reactive system may be given as a set of properties of
its unique environment (for full and detailed description of the model see [6]).
Every property is a relation over the powerset of the state space. Let P,Q,R,U :
A 7−→ L be logical functions.1 We define ., 7→, ↪→∈ P(P(A) × P(A)), and
FP, INIT, inv,TERM ⊆ P(A).

A program satisfies the safety property P .Q, if and only if there is no direct
state-transition from P ∧ ¬Q to ¬P ∧ ¬Q only through Q if any. A program
satisfies the progress properties P 7→ Q or P ↪→ Q if the program starting from
P inevitably reaches a state, in which Q holds. P 7→ Q defines further restriction
for the direction of progress. The fixed point property R ∈ FP (also denoted by
FP ⇒ R for reasons of tradition [3]) defines necessary conditions for the case
when the program is in one of its fixed point. The Q ∈ INIT property defines
sufficient condition for the initial states of the program. Q ∈ TERM (or with
the traditional notation, Q ↪→ FP) expresses that the program starting from Q
inevitably reaches one of its fixed points. P is said to be stable if and only if
P. ↓, where ↓ denotes the constant function False. If P holds initially and P is
stable, then P is an invariant, denoted by invP .

We specify closed systems, that is we describe the joint behavior of all compo-
nents. If dynamics are used then open specifications [3, 4] should be applied, i.e.
we define statically the semantical properties of dynamically loaded components
in forward. These semantical requirements should be satisfied run-time.

3 Clean constructs and libraries

The scope of the present paper is restricted to interactive programs written in
standard Clean 1.3, using the Object I/O library 1.0.2 [1, 2]. Experimental Con-
current Clean systems supporting true concurrency and parallelism [10, 16] are
not investigated. In [10] concurrent and parallel evaluation of Clean expressions
are controlled by program annotations. Message passing needed for the commu-
nication of arguments and results is implicit. An explicit version is proposed in
[16]. Here, functions are provided to create threads and channels, and also for
message passing and receiving.

Clean is a strongly typed language based on term graph rewriting. Destruc-
tive updates preserving referential transparency are possible by using so called
uniqueness types [14, 17]. I/O in Clean uses the world as value paradigm. In
this paradigm, external resources such as the file system and event stream are

1 Logical functions are characterized by their truth set, so truth sets are used in the
notations at place of logical functions and vice versa if it is not confusing.

Verification of the Temporal Properties of Dynamic Clean Processes 3

passed explicitly as a value to functions. These values are also called environ-
ments. The external world is of type World. I/O programs are functions of type
:: *World -> *World. The * in front of World means that the World argument
is unique: when the function is evaluated it is guaranteed that this function
has the only reference to the world. In addition, it must yield a world with one
reference.

Uniqueness is a function property. The type system derives the uniqueness
properties of all functions. Many functions do not change the uniqueness of
their arguments. The simplest example is the identity function id defined as:
id a = a. Its derived type is: id :: .x -> .x. This type indicates that id can
both be applied to a unique value and a non-unique (or shared) value.

Using uniqueness information the Clean compiler is able to generate better
code by letting functions reuse unique argument components instead of rebuild-
ing them. An example is the use of unique arrays.

Clean programs using the Object I/O library create their own unique state
space and define initialization and state-transition functions. The library sup-
ports interactive processes, which can be created and closed dynamically. Each
interactive process may consist of an arbitrary number of interactive objects.
These are: windows, dialogues, menus, timers, and receivers. Again, these ob-
jects can be created and closed dynamically. An interactive process is a state
transition system. Its state is a value of type PSt l p, defined as:
:: PSt l p = {ls::l, ps::p, io::*IOSt l p}.
The ls and ps components constitute the “logical” state of the interactive pro-
cess which must be defined by the programmer. The io component is managed
entirely by the Object I/O system. It contains, amongst others, the current state
of all interactive objects of the interactive process. So the IO state represents
the external environment of the interactive process and it is therefore uniquely
attributed.

Interactive objects are created by passing an abstract description to the
proper creation function. Such an abstract description is usually an algebraic
data type value. One can find examples in the Clean programs in Section 5.2, line
13–14 (a timer), and Section 6.2, line 45–48 (a dialogue). The important point of
such abstract descriptions is that they contain the state transitions of the inter-
active process. These state transitions are higher order function arguments of the
algebraic data types. They are usually of type: (PSt .l .p) -> (PSt .l .p).
Event handlers of I/O processes on the same processor are interleaved. Atomic
actions correspond to handling of one event.2

The Object I/O system keeps evaluating all interactive processes until each of
them has terminated. An interactive process terminates by applying the library
function closeProcess to its process state. This function will close all current
interactive objects from the IO state component and turn it into the empty IO
state, which is its final state.

2 The current implementation supports only processes on a single processor. However,
using the Object I/O TCP/IP library (developed by Martin Wierich) allows one to
create distributed communicating programs.

4 Z. Horváth, P. Achten, T. Kozsik, R. Plasmeijer

Dynamics in Clean [13, 15] are dynamically loadable, mobile components that
consist of code of Clean expressions and certain type information. This latter,
the so-called type code can be used to check and unify the type of the loaded
Clean expression during run-time. So, Clean applications can be extended with
data and code dynamically in a type safe manner with a functionality obtained
e.g. from some other process or a location somewhere on the Internet.

Verification of Clean programs using Dynamics may require the encapsu-
lation of further semantic properties of the dynamically sent and for the dy-
namically received components, respectively. This semantical code of safety, and
certain liveness properties could be given in an encoded form of some program
properties described in section 2. This additional semantic information could
then be used to check the appropriateness of a mobile component during run-
time by comparing the requirement specification in the receiver and the behavior
description in the sent component. Our research aims at the extension of the Dy-
namic construct of Clean in this direction.

4 A calculus of verification

We use a two phase model. In the first phase the abstract model of the Clean pro-
gram is constructed. We give a formal specification and model the behaviour of
the concrete program by an abstract program. The program text is analyzed and
the state transition functions are extracted. The relatively well defined structure
of the Object I/O processes makes this possible. A tool, which assists this first
phase is needed in the future to ensure the correctness of the abstract model in
respect of the main semantical properties of the concrete Clean program.

We prove the correctness of the abstract program in respect of the specifi-
cation in the second phase. This phase has a well-developed mathematical basis
[3, 6]. In the following we give a short description of the main concepts.

A problem is defined as a set of specification relations, more precisely a
problem F is a relation over the parameter space B and ordered tuples of speci-
fication relations. The appropriate choice of the parameter space reduces the size
of the problem and the number of verification steps. Every specification relation
is defined over the powerset of the state space (see section 2).

The abstract program is regarded as a relation generated by a set of nonde-
terministic (simultaneous) conditional assignments [7] similar to the concept of
abstract program in UNITY [3] and to the concept of parallel program given by
van Lamsweerde and Sintzoff [11]. By virtue of its definition the effect relation
of a conditional assignment is total, i.e., its domain is equal to the whole state
space. This means that a conditional assignment always terminates [6]. Some
assignments are selected nondeterministically and executed in each step of the
execution of the abstract program. Every statement is executed infinitely often,
i.e., an unconditionally fair scheduling is postulated. If more than one proces-
sor selects statements for execution, then the executions of different processors
are fairly interleaved. A fixed point is said to be reached in a state, if none of
the statements changes that state [3]. We denote the conditional assignment

Verification of the Temporal Properties of Dynamic Clean Processes 5

sj ∈ S the following way: (‖
i∈[1,n]

(vi :∈ Fji(v1, .., vn), if πji)). The sign ‖ means
that in the simultaneous assignment all vi (i ∈ [1, n]) variables can get a new
value, which value is chosen nondeterministically from the set of values that Fji
deliveres, if the condition πji holds. This Fji is a function of all vk variables.

The program properties with respect to an abstract parallel program are
characterized as relations over the powerset of the state space. They are defined
in terms of the weakest precondition (wp) of the element statements of the
abstract program. We use the dual concept of strongest postcondition (sp), too.

We generalize the concept of weakest precondition for abstract parallel pro-
grams [7]; wp(S,R) ::= (∀s ∈ S : wp(s,R)). Let us denote by invS(Q) the set
of logical functions the truth of which is preserved by the elements of S if the
program is started from a state satisfying Q. That is: invS(Q) ⊆ P(A).
invS(Q)::={dP e | sp(s0, Q)⇒ P and P ⇒ wp(S, P)}.
Let us denote by .S the set of ordered pairs (P,Q) of logical functions for which
holds that P is stable while ¬Q during the execution of S. .S ⊆ P(A)× P(A).
.S ::={(dP e, dQe) | (P ∧ ¬Q⇒ wp(S, (P ∨Q)))}.

Let us denote by 7→S the set of ordered pairs (P,Q) of logical functions for
which it holds that P is stable while ¬Q during the execution of S and there
is a conditional assignment sj which ensures the transition from P to Q. Let
↪→S⊆ P(A) × P(A) be the transitive disjunctive closure (denoted by tdl) of
7→S . A fixed point is said to be reached in a state of the state space A, if none
of the statements changes the state. ϕS characterizes the set of fixed points,
ϕS ::=(∧

j∈J,i∈[1..n] (¬πji ∨ (πjid ∧ vi = Fji(v1, . . . , vn)))), where πjid denotes the
logical function, which characterize the set of states over which the relation Fji
is deterministic. Let us denote by TERMS the set {dQe|(Q,ϕS) ∈↪→S}.

The abstract parallel program S ⊆ A×A∗∗∗ is a solution to the problem F , if
∀b ∈ B : ∃h ∈ F (b), such that the program S satisfies all the specification prop-
erties given in the invh, .h, 7→h, ↪→h, FPh, TERMh components of the element of
the parameter space h assuming that the program starts from a state satisfying
all the elements of INITh. The program S satisfies a specification property, if
and only if there exists an invariant property K such that the program satisfies
the specification property with respect to K. This means that a program is said
to satisfy a specification property, even if the program fails to satisfy it over a
subset of the unreachable states [3, 7].

The composition of programs [8] is also allowed in our model. We will use the
union construct in this paper, which corresponds to the concurrent execution
of programs. The initial assignment of the union program is the simultaneous
execution of the initial assignments of the components (the union of programs
can only be constructed if this initial assignment is valid), while the set of as-
signments of the union program is the union of the sets of assignments of the
components. The union construct preserves an invariant, unless or ensures prop-
erty if it holds in each of the components. The union theorem [8] shows how the
behaviour relation of the union of programs can be computed using the behaviour
relations of the components. This way we can prove the correctness of processes

6 Z. Horváth, P. Achten, T. Kozsik, R. Plasmeijer

using dynamics if we suppose that open specifications given for the dynamically
loaded components are satisfied run-time.

The presented model has a temporal logic background but the verification
steps are based on simple weakest precondition calculations.

5 Sorting a list stored in the unique process state

In this section our first simple example is presented, in which we sort a list,
stored in the local process state component of an Object I/O process, by bubble
sort. We prove an invariant, a fixed point property and termination (progress).

5.1 Formal specification of the problem

The state space of the program is the PSt process state of the Object I/O
process. A = pst : PSt. The process state consists of three components, the
local state, the public state and the IO state. The list of elements to be sorted
is stored in the local state. Type V is list of integers.
PSt = (ls : V, ps : NoState, io : IOSt), V = [Int].

We specify that the program inevitably reaches a fixed point and that the list
stored in the local process state is a sorted permutation of the initial unsorted
list.

↑↪→ FP (1)
FP⇒ (pst.ls ∈ perms(unsortedlist) ∧ sorted(pst.ls)) (2)

The specification property (2) is allowed to be refined (substituted) by an
invariant and a weaker fixed point property [6]. It is easy to show that from (3)
and (4) follows (2).

inv(pst.ls ∈ perms(unsortedlist)) (3)
FP⇒ sorted(pst.ls) (4)

5.2 Clean program

The program in Figure 1 starts an Object I/O process and initializes the three
components of the process state by calling the startNDI function. Local state is
set to unsortedlist, public state is set to NoState, the IO state is initialized
to be empty and subsequently modified by initialize to include a Timer. The
TimerFunction is set to the bubble function, i.e. the timer handled by the I/O
process calls bubble again and again after 0 seconds delay.

A function parameter is given to bubble, called dynamicSweep, which is
loaded during run-time. The typeCheck function checks whether dynamicSweep
has the appropriate type, while semanticCheck should check whether it satisfies

Verification of the Temporal Properties of Dynamic Clean Processes 7

module dynamic_bubblesort

import StdEnv, StdIO

:: NoState = NoState

Start :: *World -> *World

Start world

= startIO NDI unsortedlist NoState initialize [] world

where

unsortedlist = [100,98..0]

initialize :: (PSt [a] .p) -> PSt [a] .p | < a

initialize pst

(fname, pst) = getFileName pst

(dynamicSweep, pst) = readSweep fname pst

= snd (openTimer undef (Timer 0 NilLS

[TimerFunction (noLS1 (bubble dynamicSweep))]) pst)

getFileName pst

(maybeFileName, pst) = selectInputFile pst

| isNothing maybeFileName = getFileName (appPIO beep pst)

| otherwise = (fromJust maybeFileName, pst)

readSweep :: String (PSt [a] .p) ->

(([a] -> (Bool,Int,Int)), (PSt [a] .p)) | < a

readSweep fname pst

(dynamicFun, pst) = readDynamic fname pst

(checkedFun, pst) = typeCheck dynamicFun pst

| semanticCheck specification checkedFun = (checkedFun,pst)

| otherwise = abort "Semantic check failed!"

where

typeCheck :: Dynamic (PSt [a] .p) ->

(([a] -> (Bool,Int,Int)), (PSt [a] .p)) | TC, < a

typeCheck (f :: ([^a] -> (Bool,Int,Int)) | < a) pst = (f, pst)

typeCheck pst = abort "Type check failed!"

specification = Spec (

\ list -> (isSorted, i, j)

where

isSorted = (forall k in 0..list.dom-2: list!!k <= list!!(k+1))

not isSorted -> (i<j and list!!j < list!!i)

)

bubble :: ([a] -> (Bool,Int,Int)) NrOfIntervals (PSt [a] .p)

-> PSt [a] .p | < a

bubble sweep _ pst=:{ls=list}

| sorted = closeProcess pst

| otherwise = {pst & ls=updateAt i (list!!j)

(updateAt j (list!!i) list)}

where (sorted,i,j) = sweep list

Fig. 1. The dynamic bubble program

the given requirement specification. In the above program the algebraic data type
value constructed by Spec contains this specification: dynamicSweep decides if a

8 Z. Horváth, P. Achten, T. Kozsik, R. Plasmeijer

list is sorted, and if not, it gives back two indeces, that are in inversion. Currently
Clean does not support requirement specifications (Spec and semanticCheck),
only checking of types is possible.

5.3 An abstract model of the program

The s0 initialization assignment is a composition of the initialization of the
components and the subsequent set of the IO state to include the timer. The
program has an iterative structure, the state transforming step pst := bubble(pst)
is repeated until the fixed point is reached. A possible abstract model of the
concrete Clean program is given below. We suppose that the dynamically loaded
function meets the requirement specification.

s0 : pst := InitProc(Timer(bubble), (unsortedlist,NoState, empty))
S : { pst := bubble(dynamicSweep, pst)}

where

bubble(sweep, pst) =
{

(pst.ls, pst.ps, closed) if sorted ∨ pst.io = closed
(newlist(pst.ls), pst.ps, pst.io) otherwise

where
newlist(list) = [list(0), . . . list(i− 1), list(j), list(i+ 1), . . . list(j − 1),

list(i), list(j + 1), . . . list(list.length− 1)]
(sorted, i, j) = sweep(pst.ls)

5.4 Formal proof

We prove invariant (3) first. Let us denote (pst.ls ∈ perms(unsortedlist)) by
P . sp(pst := InitProc(Timer(bubble), (unsortedlist,NoState, empty)), T rue)
= (pst.ls = unsortedlist ∧ pst.ps = NoState ∧ pst.io = [Timer(bubble)]) ⇒
(pst.ls ∈ perms(unsortedlist)) = P . Hence P holds initially. Furthermore,
wp(S, P) = (sorted ∨ pst.io = closed → pst.ls ∈ perms(unsortedlist)) ∧
(¬sorted ∧ pst.io 6= closed → newlist(pst.ls) ∈ perms(unsortedlist)). Both
implications follow from P , since pst.ls ∈ perms(unsortedlist) and, if ¬sorted,
newlist(pst.ls) ∈ perms(pst.ls) by the definition of newlist. Thus P is stable,
too. Being stable and initially true, P is indeed an invariant.

Let K denote (pst.io 6= closed→ sorted). Using the same kind of calculation
it is easy to show that K is also an invariant of the program.

If we want to prove (4) we have to calculate the fixed point of the program.
ϕS = (¬sorted ∧ (pst.io 6= closed) → pst.ls = newlist(pst.ls) ∧ pst.ps =
pst.ps∧pst.io = pst.io) ∧ (sorted∨(pst.io = closed)→ pst.ls = pst.ls∧pst.ps =
pst.ps∧ pst.io = closed). If the condition of the first implication holds, then the
consequence is false by the definition of newlist and the specified properties of
dynamicSweep: two non-equal elements of pst.ls are swapped in newlist(pst.ls).
After reduction we obtain ϕS = ((sorted∨pst.io = closed)∧(¬sorted∨(pst.io =
closed)), so ϕS = (pst.io = closed). Notice, that ϕS∧K ⇒ sorted, so we can con-
clude, using the specification of dynamicSweep, that ϕS ∧K ⇒ sorted(pst.ls).
Thus we have proved (4).

Verification of the Temporal Properties of Dynamic Clean Processes 9

For proving (1) the theorem of the variant functions [6] can be applied. We
introduce the variant function v = inversion(pst.ls), that is the number of pairs
of elements in pst.ls that are in wrong order. It is obvious, that v is always
a non-negative integer. We have to show that the variant function inevitably
decreases until the program reaches its fixed point, i.e. ¬ϕS ∧ v = t ∧ K ↪→S

(ϕS ∨ v < t) ∧K. Using the facts that 7→S⊆↪→S and K is stable, it is sufficient
to show, that: ¬ϕS ∧ v = t ∧ K 7→S ϕS ∨ v < t. The weakest precondition
wp(pst := bubble(pst), (ϕS ∨ v < t)) = (¬sorted ∧ (pst.io 6= closed)→ (pst.io =
closed) ∨ (inversion(newlist(pst.ls)) < k)) ∧ (sorted ∨ (pst.io = closed) →
closed = closed ∨ (inversion(pst.ls) < k). The definition of newlist and the
specification of dynamicSweep guarantees, that in case of ¬sorted, the number
of inversions in newlist(pst.ls) is smaller than in pst.ls. Hence it is easy to show,
that the weakest precondition calculated above follows from (¬ϕS ∧ v = t ∧K),
which equals to ((pst.io 6= closed) ∧ (inversion(pst.ls) = t) ∧ K). This proves
the required 7→S property.

6 Properties of communicating I/O processes

In this section we prove the correctness of a program which consists of two
simple communicating Object I/O processes. We present two processes, which
send messages to each other when the user presses a button. The processes are
running in an interleaved way and are interactive. The overall system includes
the user as a third component, who interacts with the processes by pressing
buttons.

6.1 Formal specification of the problem

The overall state space of the program is the smallest common superspace
of the state spaces of the three components. Process A is running over the
subspace pstA : PSt × chab : Ch × chba : Ch × buttonA : Button, where
PSt = (ls : Int, ps : NoState, io : IOSt), Ch = Channel(Int), Button =
{pressed, released}. Similarly process B is running over the subspace pstB :
PSt × chab : Ch × chba : Ch × buttonB : Button. The user is acting over the
subspace buttonA : Button × buttonB : Button. The overall state space of the
system is:
A = pstA : PSt× chab : Ch× chba : Ch× buttonA : Button×

× buttonB : Button× pstB : PSt.
We use the concept of the history of channels in our specification and verifica-
tion. The history of a channel is the list of elements communicated on it ever.
The history of channel c is denoted by c.

We specify that the system reaches one of its fixed points (6) after sending
mc messages (7), which messages are initiated by pressing the buttons (8,9). We
assume that the channels are initially empty and the buttons are released (5).

The parameter space is B = mc : Int.

10 Z. Horváth, P. Achten, T. Kozsik, R. Plasmeijer

chba = chab = chba = chab =<> ∧buttonA = buttonB = released ∈ INITmc(5)
↑↪→mc FP (6)

FPmc ⇒ |chba|+ |chab| = mc (7)
buttonA = pressed ∧ |chab| = t′ .mc buttonA = released ∧ |chab| = t′ + 1 (8)
buttonB = pressed ∧ |chba| = t′ .mc buttonB = released ∧ |chba| = t′ + 1 (9)

6.2 Clean program

The two processes behave in the same way. The function process is the func-
tional abstraction of the common behaviour. The first parameter of the process
is its name, the second parameter is an ordered pair of two identifiers, which are
used to identify the process itself and the other process.

The Process-es are declared to belong to a ProcessGroup with shared state
initialized to NoState, i.e. no useful shared public state exists. Communication
channels are implemented implicitly. The local part of the process state PSt
is initialized by the Process to 0. The initialize function initializes the IO
state.

Two state transition functions are defined. Function pressed may cause a
state transition by sending data and increasing the counter stored in the local
state when the corresponding button is pressed. Function received is activated
to receive data and to increase the counter stored in the local state when a
message is arrived to the process. When the counter reaches the value mc, the
IO state is closed.

The state transition used by pressed and received to increase the counter
in the local state is loaded as a Dynamic. Similarly to the program on page 7 the
typeCheck function is used to check whether this state transition has the proper
type. Further semantic description should be given as a set of specification prop-
erties in the form presented in section 2. These properties should be represented
using the data constructor Spec and be checked run-time by the semanticCheck
function.

Synchronous sending causes an immediate call of the receiver of the partner
process. The event handler processes a synchronous send and the corresponding
receiving of the data in one single atomic action. This results in a very strict
ordering of events, which can be expressed by introducing strict explicit syn-
chronization conditions at the abstract program level. The construction of the
formal proof pointed out that a concrete program performing an asynchronous
message passing instead of the synchronous one would not be correct. On the
other hand an abstract program with weaker synchronization conditions could
have been proved correct with respect to the posed problem. So the concrete
program cannot be less synchronised but the abstract program can.

Verification of the Temporal Properties of Dynamic Clean Processes 11

module dynamic_processes
import StdEnv, StdIO
:: NoState = NoState
Start :: *World -> *World
Start world
(ridA,world) = openRId world
(ridB,world) = openRId world
= startProcesses [process "A" (ridA,ridB),

process "B" (ridB,ridA)] world
process :: String (RId i, RId i) -> ProcessGroup Process
process name (me,you)
= ProcessGroup NoState (Process NDI 0 initialize [])

where
mc = 10
initialize :: (PSt Int .p) -> PSt Int .p
initialize pst
(fname, pst) = getFileName pst
(dynamicCounter, pst) = readCounter pst fname
= snd (openDialog undef (dialog dynamicCounter) pst)

getFileName pst
(maybeFileName, pst) = selectInputFile pst
| isNothing maybeFileName = getFileName (appPIO beep pst)
| otherwise = (fromJust maybeFileName, pst)

readCounter :: (PSt Int .p) String ->
((Int (PSt Int .p) -> (PSt Int .p)), (PSt Int .p))

readCounter pst fname
(dynCounter, pst) = readDynamic fname pst
(checkedCounter, pst) = typeCheck dynCounter pst
| semanticCheck specification checkedCounter

= (checkedCounter,pst)
| otherwise = abort "Semantic check failed!"
where
typeCheck :: Dynamic (PSt Int .p) ->

((Int (PSt Int .p) -> (PSt Int .p)), (PSt Int .p))
typeCheck (transition :: (Int (PSt Int .p) -> (PSt Int .p)))

pst
= (transition, pst)

typeCheck _ pst = abort "Type check failed!"
specification = Spec (

\ mc pst :
(pst.ls=ls and pst.io=io) in INIT
(pst.ls=ls and pst.io=io) in TERM
(pst.ls=ls+1) in FP
(pst.io=(if (ls+1=mc) closed io)) in FP

)

12 Z. Horváth, P. Achten, T. Kozsik, R. Plasmeijer

dialog counter
= Dialog name (ButtonControl "Press me" DefaultWidth

[ControlFunction (noLS (pressed counter))]
:+: Receiver me (noLS1 (received counter)) []
) []

pressed :: (Int (PSt Int .p) -> (PSt Int .p)) (PSt Int .p) ->
PSt Int .p

pressed counter pst
(_,pst) = syncSend you undef pst
= counter mc pst

received :: (Int (PSt Int .p) -> (PSt Int .p)) .i (PSt Int .p)
-> PSt Int .p

received counter _ pst
= counter mc pst

6.3 An abstract model of the program

We present the overall abstract program as the union of three components [3,
8]. The model behind the abstract program assumes an unconditionally fair
scheduling which differs from the event driven semantics of the concrete program.
Events are represented by conditions and assumed to be initiated by the user.

The s0 initialization assignments of the processes are a composition of the
initialization of the components and the subsequent set of the IO state.

s0A : pstA := Init(Dialog(Button(pressed), Receiver(received)),
(0, NoState, empty))

SA : { pstA, buttonA, chab := counter(pstA), released, send(chab, 0)
if buttonA = pressed ∧ |chab| = |chba| = 0 ∧ pstA.io 6= closed

pstA, chba := counter(pstA), receive(chba)
if |chba| 6= 0 ∧ |chab| = 0 ∧ pstA.io 6= closed

}

s0B : pstB := Init(Dialog(Button(pressed), Receiver(received)),
(0, NoState, empty))

SB : { pstB , buttonB , chba := counter(pstB), released, send(chba, 0)
if buttonB = pressed ∧ |chba| = |chab| = 0 ∧ pstB .io 6= closed

pstB , chab := counter(pstB), receive(chab)
if |chab| 6= 0 ∧ |chba| = 0 ∧ pstB .io 6= closed

}

s0U : SKIP
SU : {
buttonA := pressed, if buttonA = released ∧ |chab| = 0 ∧ pstA.io 6= closed
buttonB := pressed, if buttonB = released ∧ |chba| = 0 ∧ pstB .io 6= closed
}

Verification of the Temporal Properties of Dynamic Clean Processes 13

The dynamically loaded pst := counter(pst) state transition appears in the
assignments of SA and SB . Note, that it is safe to use it as an assignment, since
its specification guarantees, that the computation defined by counter will always
terminate. This state transition is atomic in our abstract program, as well as in
the Clean implementation. In the formal proof below the fixed-point property
specified for counter will also be used.

6.4 Formal proof

Now we prove3 that the abstract program above solves the specification prop-
erties (5-9) introduced in section 6.1. It is enough to show that the program
satisfies those properties for its reachable states. Thus we determine a couple of
invariants first.

|chab| + |chba| − |chba| = pstA.ls ∈ invS (10)
|chba| + |chab| − |chab| = pstB .ls ∈ invS (11)

pstA.ls ≤ mc ∧ (pstA.ls = mc ↔ pstA.io = closed) ∈ invS (12)
pstB .ls ≤ mc ∧ (pstB .ls = mc ↔ pstB .io = closed) ∈ invS (13)

|chab| ∗ |chba| = 0 ∈ invS (14)
pstA.ls+ |chba| = pstB .ls+ |chab| ∈ invS (15)

Initially all of the above predicates hold, since the channels and their histories
are empty, pstA.ls = pstB .ls = 0 < mc and neither pstA.io nor pstB .io is closed.
For proving the stability of the predicates — according to a well-known hint —
it is sufficient to check those assignments that can change the value of one of
the variables occurring in a predicate. Let’s start with (14). It formulates that
one of the channels should always be empty. Only the assignments containing
the send function can make an empty channel non-empty. For example the first
statement in SA can extend channel chab, but only when chba is empty. Since this
assignment does not change the value of chba, there will be an empty channel
after executing it, namely chba. The sender assignment in SB can be checked
similarly.

Stability of the predicates in (12) and (13) is based on the specification of
counter. Only this state transition can change the ls and io components of pstA
and pstB . A pst.ls is increased only by one, and it becomes mc at the very same
time as the pst.io becomes closed. After the pst.io is closed, neither the send nor
the receive statement can be executed, thus pst.ls cannot grow above mc.

When calculating (10) we can observe that the change (growth) of pstA.ls is
always accompanied by either a send or a receive operation on chab and chba,
respectively, which either increases |chab| or decreases |chba|. The values in the
left-hand side of the equation can also be changed by a send on chba, but such

3 For the sake of brevity and understandability we restrict ourselves to give a hint how
weakest preconditions should be calculated. Examples are presented in section 5.4.

14 Z. Horváth, P. Achten, T. Kozsik, R. Plasmeijer

an operation will increase both |chba| and |chba|, their difference will remain the
same. (11) can be done similarly, and (15) is also based on the same phenomenon.

Now that the proof of the invariants is completed, we can compute the set
of fixed points of the abstract program. All the assignments are such that the
left-hand sides cannot be equal to the right-hand sides (either because channels
are changed when a send or receive operation is performed on them, or because
— in the case of SU — the conditions do not allow it). Thus the set of fixed
points is a conjunction of the negated conditions of the statements: the program
does not change its state when none of the conditions is true. After some steps
of simplification the ϕS set of fixed points becomes the following:

ϕS = (pstA.io = closed ∨ |chab| 6= 0) ∧ (pstB .io = closed ∨ |chba| 6= 0) (16)

One of the channels must be empty (from (14)), so one of the IO states
must be closed. Let them be for example chab and pstA.io. This means that
pstA.ls = mc (from 12), thus (15) and the first part of (13) guarantees that
pstB .ls = mc and |chba| = 0, too. Using invariant (10) we can conclude proving
the fixed point specification property (7).

The truth of property (8) is affected only by two assignments: the first from
SA and the first from SU . The others cannot change the value of either buttonA

or chab. Furthermore, the condition of the assignment from SU guarantees that
this assignment will never change the state of the program if the left-hand side of
the . property holds. Finally, the sender statement of SA should be investigated.
A simple weakest precondition calculation reveals, that when the condition of
that assignment holds, thus the variables can change at all, both buttonA and
chab will take on values that satisfy the right-hand side of the . relation. The
proof is analogous for (9).

The correctness of the abstract program in respect of (6) can be proved
by applying the theorem of variant functionS. We choose the variant function
v = 2 ∗ mc + 1 − pstA.ls − pstB .ls. (The invariants guarantee that this value
is a positive integer in every reachable state.) The calculation is similar to the
calculations presented in section 5.4 but is more complicated from technical
point of view. We can show that the variant function will inevitably fall off if
the program is not in one of its fixed points.

As we saw earlier, ϕS is the conjunction of the negated conditions of the
assignments: thus the program is not in fixed point when one of those conditions
hold. Since ”leads-to” is closed under disjunction, it is sufficient to prove sep-
arately for each condition, that the variant function inevitably decreases if the
program is in a state in which the condition holds. Notice, that the statements
in SA and SB decrease the variant function when their conditions permit state
change. If C is a condition of one of the assignments in SA or SB , the property
C ∧ v = k 7→mc v < k is satisfied. The statements of SU keep the left-hand
side stable, and the statements of SA and SB either keep the left-hand side sta-
ble (e.g. when not causing state change) or decrease the variant function. The
assignment with C as condition will surely cause state change and decrease v.

What is left is the conditions of the assignments in SU – as an example let
us take the first one. The following property is easy to prove:

Verification of the Temporal Properties of Dynamic Clean Processes 15

buttonA = released ∧ |chab| = 0 ∧ pstA.io 6= closed
7→mc buttonA = pressed ∧ |chab| = 0 ∧ pstA.io 6= closed

The right-hand side can be written as a disjunction of

a.) buttonA = pressed ∧ |chab| = 0 ∧ pstA.io 6= closed ∧ |chba| = 0 and
b.) buttonA = pressed ∧ |chab| = 0 ∧ pstA.io 6= closed ∧ |chba| 6= 0.

The first of these two formulas is the condition of the first assignment in SA,
while the second is a subset of that of the second. The rest of the proof follows
from the basic properties of the ”leads-to” relation.

7 Conclusions

We presented a two phase methodology for proving the correctness of Clean Ob-
ject I/O processes with a well-defined set of state transition functions. Some of
the state transition functions can be loaded dynamically if the temporal prop-
erties of the requirement specification are fulfilled. We propose to extend the
structure of dynamics with additional semantical information. This can be used
to perform further run-time checks in the next generation of the Clean com-
piler, implementing the extended form of dynamics, and a predefined library
containing the semanticCheck function and the algebraic data type Spec.

The methodology can be applied for dynamically extended set of state tran-
sition functions, if the condition of adding new and removing old state transition
functions is well defined. In that case all the state transition functions should be
included into the abstract model at the beginning extended with the appropri-
ate conditions, which conditions allow change of state for the appropriate period
only. The model can be used as well to prove the temporal properties of more
general Clean programs using uniqueness types in principle if unique objects are
regarded as static entities at a different semantical view and abstraction level.
Construction of an abstract model having the same semantics as the concrete
program could be very difficult in practice.

The methodology should be assisted by a two phase tool (not necessarily
by a fully automatic one) in the future, which helps to formulate an abstract
model of the state transitions defined in the Clean program text and ensures the
correctness of the abstract program in respect of the main semantical properties
of the concrete program. Also a proof tool, for example an appropriate extension
of CPS which is working with propositional logic assertions would be necessary
to support the verification of the abstract program in respect of the specification.

References

[1] Achten P., Plasmeijer R.: Interactive Objects in Clean. In: K. Hammond et al
eds., Proc. of Implementation of Functional Languages, 9th International Workshop,
IFL’97. St. Andrews. Scotland, UK, September 1997, LNCS 1467, pp. 304-321.

[2] Achten P.: A Tutorial to the Clean Object I/O Library - version 1.0.2., University
of Nijmegen, 1999.

16 Z. Horváth, P. Achten, T. Kozsik, R. Plasmeijer

[3] Chandy, K.M., Misra, J.: Parallel program design: a foundation, Addison-Wesley,
(1989).

[4] Dam, M., Fredlund, L., Gurov,D.: Toward Parametric Verification of Open Dis-
tributed Systems. To appear, in Compositionality: The Significant Difference (H.
Langmaack, A. Pnueli, W.-P. De Roever (eds)), Springer-Verlag 1998.

[5] Arts, T., Dam, M., Fredlund, L., Gurov, D.: System Description: Verification of
Distributed Erlang Programs. In Proc. of CADE’98, Springer-Verlag, vol 1421, pp.
38-41, 1998.

[6] Horváth Z.: A relational programming model of parallel programs. PhD thesis, in
Hungarian. PhD program in Informatics, Department Group Informatics, University
Eötvös Loránd Budapest, Hungary. 1996.

[7] Horváth Z.: The Formal Specification of a Problem Solved by a Parallel Program –
a Relational Model. In: Proc. of the Fourth Symp. on Programming Languages and
Software Tools, Hungary, 1995, 165-179. to appear in: Annales Uni. Sci. Bp. de R.
Eötvös Nom. Sectio Computatorica (1997).

[8] Horváth, Z., Kozsik, T., Venczel, T.: On Composing Problems and Parallel Pro-
grams. Paakki, J., ed., Proceedings of the Fifth Symposium on Programming Lan-
guages and Software Tools, Jyväskylä, Finland, June 7-8, 1997 (1997) 1-12.

[9] Horváth Z., Achten, P., Kozsik T., Plasmeijer, R.: Proving the Temporal Proper-
ties of the Unique World. Software Technology, Fenno-Ugric Symposium FUSST’99
Proceedings, Technical Report CS 104/99, Tallin, 1999. pp 113-125.

[10] Kesseler, M.: Lazy Copying and Uniqueness. In Proc. of 6th International Work-
shop on the Implementation of Functional Languages, UEA, Norwich,UK, Glauert
Ed., pp. 4.1-4.11.

[11] van Lamsweerde, A., Sintzoff, M.: Formal Derivation of Strongly Correct Concur-
rent Programs. Acta Informatica, Vol. 12, No. 1 (1979) 1-31.

[12] de Mol M.: Clean Prover System. Master Thesis no. 442, University of Nijmegen,
1998.

[13] Pil, M.: First Class File I/O. In Proc. of Implementation of Functional Languages,
8th International Workshop, IFL ’96, Selected Papers, Bad Godesberg, Germany,
Kluge Ed., Springer Verlag, LNCS 1268, pp. 233-246.

[14] Plasmeijer, R., van Eekelen, M.: Functional Programming and Parallel Graph Re-
writing. Addison-Wesley, 1993.

[15] Plasmeijer, R.: Mobile Expressions in the Functional Language Clean. Software
Technology, Fenno-Ugric Symposium FUSST’99 Proceedings, Technical Report CS
104/99, Tallin, 1999. pp 51.

[16] Serrarens, P.R.: Explicit Message Passing for Concurrent Clean. In K. Hammond
et al.: Proc. of Implementation of Functional Languages, IFL’98, 298-308, Sept.
1998, London, to appear in LNCS.

[17] Smetsers S., Barendsen E., van Eekelen M., Plasmeijer R.: Guaranteeing Safe De-
structive Updates through a Type System with Uniqueness Information for Graphs.
In Proc. of Graph Transformations in Computers Science, International Workshop,
Dagstuhl Castle, Germany, Schneider and Ehrig Eds., Springer-Verlag, LNCS 776,
pp. 358-379.

