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Abstract
In this paper, a fully automatic computer-aided detection (CAD) method is
proposed for the detection of prostate cancer. The CAD method consists of
multiple sequential steps in order to detect locations that are suspicious for
prostate cancer. In the initial stage, a voxel classification is performed using
a Hessian-based blob detection algorithm at multiple scales on an apparent
diffusion coefficient map. Next, a parametric multi-object segmentation method
is applied and the resulting segmentation is used as a mask to restrict the
candidate detection to the prostate. The remaining candidates are characterized
by performing histogram analysis on multiparametric MR images. The resulting
feature set is summarized into a malignancy likelihood by a supervised classifier
in a two-stage classification approach. The detection performance for prostate
cancer was tested on a screening population of 200 consecutive patients and
evaluated using the free response operating characteristic methodology. The
results show that the CAD method obtained sensitivities of 0.41, 0.65 and
0.74 at false positive (FP) levels of 1, 3 and 5 per patient, respectively. In
conclusion, this study showed that it is feasible to automatically detect prostate
cancer at a FP rate lower than systematic biopsy. The CAD method may assist
the radiologist to detect prostate cancer locations and could potentially guide
biopsy towards the most aggressive part of the tumour.

(Some figures may appear in colour only in the online journal)

1. Introduction

Prostatic adenocarcinoma (PCa) is the second leading cause of cancer-related deaths among
males in the United States, with an estimated number of 217 730 new cases in 2010 (Jemal
et al 2010). Early detection of PCa can be life saving. Recently, it was demonstrated in a large
randomized European study that prostate specific antigen (PSA)-based screening reduces the
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rate of death from PCa by 31%. However, the benefit was associated with a high risk of
overdiagnosis and overtreatment (Schröder et al 2009, Roobol et al 2009). Moreover, the PSA
test is not able to predict the aggressiveness of the cancer. As a result, slow-growing and
non-aggressive prostate cancer is frequently diagnosed in older patients but is not the main
cause of death in these patients.

PSA is a nonspecific marker for prostate cancer. As a result, urologists are often faced
with the dilemma of how to manage a patient with a high PSA level and an initial set of
negative prostate biopsies. Hence, the possibility remains that these patients may still have
tumour, as prostate cancer is often multifocal and heterogeneous in nature. Systematic prostate
transrectal ultrasound (TRUS)-guided biopsy is the standard procedure for prostate histological
sampling. The technique involves systematic sampling of multiple areas in the prostate during
TRUS-guided biopsy regardless of the presence of hypoechoic lesions. In recent years, many
reports have shown that systematic biopsies do not detect all clinically significant cancers and
efforts have been made to improve the protocol by increasing the number of biopsies and/or
changing biopsy positions. Roehl et al (2002) showed in a large study that by using routine
6-sector TRUS-guided biopsy, nearly a quarter (23%) of detectable cancers were missed. In
other words, TRUS-guided biopsy has a sensitivity of 77% with a false positive (FP) rate of 6.
Nevertheless, the volume of prostatic tissue sampled is relatively small which makes it difficult
to detect tumour. More importantly, the technique fails to sample the most representative part
of the tumour (Hodge et al 1989, Djavan et al 2001). To prevent patient anxiety, more accurate
methods need to be found to detect or rule out significant disease (Carlsson et al 2007).

Prostate magnetic resonance imaging (MRI) has the potential to improve the specificity of
PSA-based screening scenarios as a non-invasive detection tool. Several studies showed that
combining anatomical, functional and metabolic MRI information leads to a PCa detection
accuracy of up to 92% (Fütterer et al 2006, Haider et al 2007, Puech et al 2009, Tanimoto
et al 2007, Kitajima et al 2010). Furthermore, multiparametric MRI can target biopsies towards
regions determined to be suspicious of cancer (Hambrock et al 2010). Unfortunately, prostate
MRI analysis requires a high level of expertise and suffers from observer variability (Lim et al
2009). Furthermore, the interpretation of the multiple MR images and their derived maps for
a single patient diagnosis is a labour-intensive procedure. For that reason, the technique
is considered cost-inefficient and, as a result, has not been implemented in a screening
environment (Hoeks et al 2009).

Computer-aided detection (CAD) systems can be of benefit to improve the diagnostic
accuracy of the radiologist, reduce reader variability and speed up the reading time. CAD
aims to automatically highlight cancer suspicious regions, leading to a reduction of search
and interpretation errors, as well as a reduction of the variation between and within observers
(Giger et al 2008). CAD research has been successfully pursued in other diagnostic areas
such as mammography (Karssemeijer et al 2006, Singh et al 2008), CT chest (Ge et al 2005,
Beigelman-Aubry et al 2009, Hogeweg et al 2010), CT colonography (Graser et al 2007,
Summers et al 2010) as well as retinal imaging (Abràmoff et al 2008). CAD systems generally
consist of multiple sequential stages. In the initial stage, lesion candidates are selected within
a likelihood map that was generated by a voxel classification of one or more images. Hereafter,
the lesion candidates are segmented into a region of interest from which region-based features
are extracted. Finally, the extracted information is fused by a classifier into a malignancy
likelihood. The last stage ensures a reduction of the amount of FPs that were localized in the
initial stage.

Most prostate CAD researchers have focused on the initial voxel classification stage (Chan
et al 2003, Viswanath et al 2009, Langer et al 2009, Liu et al 2009, Ozer et al 2010, Lopes
et al 2011). They obtained likelihood maps by combining information from multiparametric
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Figure 1. Dataflow diagram of the implemented CAD system. A Hessian-based filter initially
detects possible lesion candidates at multiple scales by detecting local maxima in the generated
blob likelihood map. A prostate segmentation method is applied to the pelvis and the resulting
prostate segmentation is used as a mask to restrict the candidate detection to the prostate. A region
of interest is defined surrounding the candidates from which features are extracted using histogram
analysis. The features are summarized by a supervised classifier to calculate the likelihood of
malignancy in the region of interest.

MR images using mathematical descriptors. These studies showed on a voxel basis that the
discrimination between benign and malignant tissues is feasible with good performances.
Recently, we presented a work that focused on the regional classification stage (Vos et al
2010). In the proposed CAD method, the radiologist was instructed to localize a lesion
candidate in the peripheral zone of the prostate and delineate a region of interest. Hereafter,
relevant features from multiparametric MRI were extracted on demand and summarized by
a supervised classifier into a malignancy likelihood. Experience with the system, however,
showed that the semi-automatic approach is subject to observer variability due the differences in
lesion segmentation or incorrect segmentation. Furthermore, tumours located in the transition
zone were not included. To the best of our knowledge, a fully automated prostate CAD method
based on multiparametric MRI analysis has not been described in the literature.

The purpose of this study was to investigate the feasibility of a CAD method that fully
automatically detects cancer suspicious regions in the prostate. The study focused on a
population that included patients with elevated PSA levels with one negative biopsy. The
ultimate goal was to detect more tumour regions at a lower FP rate than systematic biopsy.

2. Method

2.1. Overview

The proposed CAD method is schematically outlined in figure 1. It comprises of multiple
sequential steps in order to detect locations that are suspicious for prostate cancer. In the initial
part of the CAD scheme, the method detects lesion candidates in apparent diffusion coefficient
(ADC) maps that are acquired during the MR examination. Firstly, a voxel classification
is performed using a Hessian-based blob detection algorithm at multiple scales. Next, a
parametric multi-object segmentation method is applied to the pelvis to segment the prostate
automatically. The prostate segmentation is used as a mask to restrict the candidate detection
to the prostate. Hereafter, candidate lesions are determined by detecting local maxima in the
generated blob likelihood map and are characterized by performing histogram analysis within
a region of interest on multiple MR images. Finally, the extracted features are summarized by
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a linear discriminant analysis (LDA) classifier into a malignancy likelihood. The individual
steps of the scheme will be explained in more detail in the remainder of this section.

2.2. Initial voxel classification

In the first stage of the CAD system, dark blob-like regions are localized in the ADC map.
This approach was inspired by the clinical practise of the radiologist at our hospital as they
localize lesions by the more structured property of PCa in an ADC map. A common approach
to automatically determine the blob likelihood of a voxel x is to use the eigenvalues λσ,k of
the Hessian matrix Hσ at scale σ of the ADC map, with k = 1, 2, 3 (Frangi et al 1998). The
likelihood of a voxel at scale σ to belong to a blob is defined by Qiang et al (2003):

P(x, σ ) =
⎧⎨
⎩

λσ,1(x)λσ,1(x)

|λσ,3(x)| λσ,k(x) < 0 k ∈ 1, 2, 3

0.

(1)

Note that the three eigenvalues are sorted as |λσ,1(x)| < |λσ,2(x)| < |λσ,3(x)|. The approach
is applied using a recursive implementation of the Gaussian filter at multiple scales, namely
three scales are used: 8, 10 and 12 mm in diameter. The blob detector is normalized for each
scale. The likelihood L(x) of a voxel x to belong to a blob is finally given as

L(x) = max
σmin�σ�σmax

L(x, σ ). (2)

2.3. Prostate segmentation

The initial voxel classification is performed on the whole ADC map to prevent the need
for boundary conditions. As a result, the automatic prostate segmentation is crucial to avoid
detection of local maxima that lie outside the prostate. We used a parametric multi-object
method that was developed in previous work (Litjens et al 2011). The method consists of
two steps: model fitting and voxel segmentation with prior model constraints. In the first
stage, a model is constructed based on multiple parametric objects that define the shape and
appearance of each organ in multiparametric MR images. For this paper, the ADC and T2
maps were used to automatically segment the prostate. The model is fitted to the different
MR images simultaneously. A realistic organ representation is obtained by constraining the
parameters within a population model. In the second stage, a Bayesian framework is used to
obtain the final segmentation as previously described in Litjens et al (2011). Here, the fitted
model is used as a prior to the Naive Bayes classifier such that prior information about spatial
and multivariate appearance relations between anatomical structures is efficiently taken into
account.

The final label image is denoted by B(x) where the image voxels are labelled with the
corresponding organ. An example of the segmentation method is shown in figure 2.

2.4. Lesion candidate detection

This section describes how lesion candidates are selected from the obtained likelihood map
L(x). Obviously, a lesion candidate i should lie within the prostate segmentation B(x) to be
selected. Additionally, the candidates are selected based on using the following peak detection
criteria: the peak value L(xi) should exceed τ ; L(x) should exceed the mean value of its
sphere-shaped neighbourhood � with diameter d and the difference between L(xi) and the
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(a) ADC map. (b) T2-weighted.

Figure 2. Cross-sectional transversal views of (a) ADC and (b) T2-weighted image, with a
transparent (colour) overlay of the segmentation: bladder (red); prostate (blue) and rectum (green).

(a) ADC map. (b) Candidate detection result. (c) Peak detection.

Figure 3. Cross-sectional transversal views of an example ADC map of a patient with a tumour in
the transition zone. (a) Multiple dark blob-like regions are visible in and outside the prostate. (b)
The ADC map is shown with the blob likelihood map displayed as a colour-coded overlay. Lesion
candidates are detected in the pelvis showing FPs outside the prostate. These are ignored using
the prostate segmentation. (c) The remaining lesion candidates are displayed within the prostate
segmentation. The (red) arrow indicates a tumour with Gleason grade 3+4 which was detected by
the peak detector with the highest likelihood of all detected blobs.

mean neighbourhood value should be more than the squelch threshold ε. Let φ be the group
of final selected candidates, then xi ∈ φ when

B(xi) = 1 ∧ L(xi) > τ ∧ (L(xi) − mean(�(xi), r)) > ε. (3)

For this paper, the diameter d was set to 5 mm which represents the minimal size of a significant
prostate tumour (Wolters et al 2011), and ε and τ were empirically set to 0.1 and 1, respectively.
An example of the candidate detection procedure is shown in figure 3.

Candidates were ignored when the corresponding MR values were outside empirically
determined thresholds. The following thresholds were obtained from the literature: the ADC
value was below 200 or above normal prostate diffusion of 1600 mm s−2 (Matsuki et al 2007);
the T2 relaxation time was above normal prostate 100 ms or below muscle 36 ms (Gibbs
et al 2001) and the interstitial volume Ve was below normal prostate of 20 mmHg (Delorme
and Knopp 1998).
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(a) ADC map and colour-coded overlay of the
output of the blob detector.

(b) ADC map and colour-coded overlay of a
pharmacokinetic parameter.

Figure 4. Cross-sectional transversal views of an example ADC map, candidate detection and
pharmacokinetic map to illustrate the idea that hotspots are visible at different locations among
multiparametric MR images. (a) The arrows indicate the extent of the whole tumour with Gleason
score 4+3. The (red) arrow indicates the detected location by the candidate detector, where the
ADC values are most low and the Gleason 4 component is present. (b) The pharmacokinetic
parameter showed multiple enhancing hotspots within the tumour. Note that the location found
by the candidate detector (red cursor) and the nearby hotspot (blue region) do not overlap. The
difference in location is approximately 2.5 mm.

2.5. Local feature analysis

Prostate cancers can be discriminated from benign abnormalities by their strong heterogeneity.
That is hotspots or local enhancements are visible in multiparametric MR images at different
locations within the extent of the tumour. Because lesion segmentation methods typically
are applicable to monoparametric MR images only, crucial information available from
the multiparametric MR images may be missed. As a result, those approaches potentially
underestimate the size and, more importantly, the grade of the tumour. Figure 4 illustrates the
idea that hotspots are visible at different locations among multiparametric MR images. For
this paper, we therefore define a spherical region R with radius r that surrounds a lesion
candidate i at location xi such that analysis can be performed on multiple MR images
simultaneously.

Analysis was performed within a region R by combining a histogram analysis of T2,
pharmacokinetic, T1 and ADC maps with texture-based features. Quartiles were used for
further analysis as they are less sensitive to extreme values often observed in the MR image
data. In total, nine features were collected from the MR data within each R. The selected
intensity-based features reflect the clinical practise at our hospital, where prostate cancer
diagnosis is performed on a daily basis (Fütterer et al 2006). Based on the preferences in our
clinic, we expect the following intensity features to be the most representative for detecting
aggressive cancers.

f1 25% percentile T2. The 25% percentile was extracted from the T2 map as it has been
established that prostate cancer typically demonstrates lower T2 relaxation time than normal
prostate tissue (Wang et al 2008).

f2 25% percentile ADC. The 25% percentile was extracted from the ADC map because lower
ADC values in prostate cancer are related to tightly packed glandular elements found in
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cancers that locally replace the fluid-containing peripheral and transition zone ducts (Tamada
et al 2008, Langer et al 2010, Hambrock et al 2011).

f3 75% percentile Ktrans. The pharmacokinetic parameter Ktrans or transfer constant (1/min)
relates to the permeability surface area product. The permeability area surface product refers
to the ability of tracer molecules to pass through interendothelial fenestrae and junctions
into the interstitial compartment. High permeability of the vasculature is a characteristic of
pathological blood vessels in inflamed tissues and tumours. An increased capillary permeability
is observed in prostate cancer (Collins et al 2004). The upper quartile captures the presence
of hotspots.

f4 75% percentile Ve. In the extravascular extracellular space (EES) of normal tissue, pressure
is near atmospheric (25 mmHg) values, whereas in tumours it may reach 50 mmHg or
even more. The interstitial hypertension may be due to increased vascular permeability in
combination with a lack of lymphatic drainage due to the absence of functional lymphatic
vessels within the tumour itself. This results in an increase of the EES. The EES is
defined as percentage per unit volume of tissue. An increased interstitial leakage space is
observed in tumour; hence, the upper quartile is used to capture these hotspots (Delorme and
Knopp 1998).

f5 25% percentile wash-out. The kinetic parameter wash-out quantifies the slope of
the curve after the first wash-in phase. Although it does not directly correlate with
physiological parameters, such as pharmacokinetic parameters, the presence of wash-
out is considered highly indicative of PCa. When capillary permeability is high, the
backflow of contrast medium is also rapid, resulting in a negative wash-out following
the shape of the plasma concentrations. The 25th percentile is used because the
presence of wash-out is often heterogenous within the extent of the tumour (Collins
et al 2004).

f6 50% percentile T1 map. Post-biopsy haemorrhage mimics high tumour vascularity.
Fortunately, haemorrhage is clearly visible as a high-intensity area on a T1-weighted (T1-
w) image. As biopsy haemorrhage is often visible as a large homogeneous area, the 50%
percentile is extracted from the T1 map that was automatically generated from the T1-w
image as described in Hittmair et al (1994).

The following texture features were extracted.

f7 Peak value. The peak value or blob likelihood L(xi) that was obtained after the initial voxel
classification stage for a lesion candidate i at location xi.

f8 Mean neighbourhood value. The mean neighbourhood value of �(.) at location xi.

f9 Squelch value. The squelch value is the difference between the peak value f7 and the mean
neighbourhood value f8.

The assumption is that all image volumes I1, I2, . . . , Ik are registered to each other in the
MR coordinate system and as a result, a lesion segmentation in Ik will represent the same lesion
area in Ik+1, regardless of the image resolution or orientation. A mutual information affine
registration strategy was applied to correct for patient movement such that the assumption will
hold (Vos et al 2010).

Let θi = { f1, f2, . . . , fL} represent a feature vector for a candidate i, with L being
the number of features, where each feature is a first-order statistic of the scalar values of
volume Ik.
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2.6. Classification

In the classification step, candidate regions are classified into malignant or benign using a
two-stage classification approach. This approach removes spurious candidates from the data
in the first stage by estimating a coarse decision boundary using only a subset of features. After
spurious candidate removal, the decision boundary is refined in the second stage taking into
account the complete set of features. The proposed two-stage classification approach avoids
that the final estimation of the classification boundary is driven by spurious and/or outlying
data.

For the first stage, the two most discriminant features according to the Fishers discriminant
(FD) ratio (Jobson 1992) were independently selected and a LDA classifier (Friedman 1989)
was trained to remove spurious candidates from the data. Note that the FD ratio analyses
the individual discrimination power of the features without taking into account the rest of
the features. This provides a fast determination of a coarse classification boundary. Those
candidates that lie far away from the obtained decision boundary (i.e. their posterior probability
is higher than a specific threshold) are removed and the threshold is set such that no true
positives (TPs) are lost in the first phase for the training set. Before performing the feature
selection, the feature values were transformed using the Box–Cox transformation (Box and
Cox 1964) in order to approximate the feature distribution to a normal distribution.

In the second stage, a classifier was trained using a selection of features from the complete
feature set θ . After pilot experiments with several classifiers, a LDA classifier yielded the
best results and was therefore chosen in favour of k-nearest neighbour (Cover and Hart
1967) classifier, quadratic discriminant analysis classifier (Friedman 1989) and support vector
machines (Chang and Lin 2001). The selection of features was carried out by sequential
forward floating selection (SFFS) (Pudil et al 1994) to establish the most discriminant features.
The SFFS procedure uses leave-one-out training and testing with the area under the receiver
operating characteristic (ROC) curve as the criterion to be optimized. Table 2 summarizes the
selected features in order of selection.

3. Data and experiments

3.1. Data

Imaging data were used from a cohort of clinical patients scheduled between January and
December 2009 at the RUNMC radiology department. These patients had elevated PSA
levels and one negative biopsy. Images were acquired with a 3.0T whole-body MR scanner
(TrioTim, Siemens Medical Solutions, Erlangen, Germany). The machine body and a pelvic
phased-array surface coil were used for RF transmitting and receiving, respectively. An amount
of 1 mg of glucagon (Glucagon R©, Novo Nordisk, Bagsvaerd, Denmark)) was administered
directly before the MRI scan to all patients to reduce peristaltic bowel movement during the
examination.

For our experiments, the MR data from each patient comprised a T2-weighted axial
volume (with dimensions 256 × 256 × 15 and voxel size 0.75 mm × 0.75 mm × 4 mm), a
proton density-weighted volume (with dimensions 128 × 128 × 12 and voxel size 1.8 mm
× 1.8 mm × 4 mm), contrast enhanced 3D T1-w spoiled gradient echo images and an ADC
map (with dimensions 136 × 160 × 10 and voxel size 1.625 mm × 1.625 mm × 3.6 mm) that
was generated by the MR scanner. Additionally, gadolinium chelate concentration curves were
calculated and dynamic contrast enhanced derived parameter maps (Ktrans, Ve, wash-out) were
generated at a dedicated workstation (Vos et al 2008). All the MR data were automatically
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normalized such that quantitative assessment was possible for the pharmacokinetic, T1 and
T2 map using a previously presented method (Vos et al 2009, 2010).

The reference standard for lesion localization and pathology was established by combining
the findings of an experienced prostate radiologist with, when available, histopathology of MR-
guided MR-biopsy samples. The workflow was as follows: firstly, the radiologist screened the
MR examination for PCa. When no evidence of PCa could be found, the patient was considered
healthy. If a repeat study was advised and performed, the result was used to establish the
reference standard. Secondly, all locations that were considered malignant by the radiologist
were recorded in a local database. At those locations, a biopsy was performed after which
histopathology established the true nature of the finding. The pathologist was blinded to the
imaging results. The annotated tumour regions were labelled as low grade when histopathology
confirmed a tumour of Gleason grade less than 6. Regions were labelled as high-grade tumours
when histopathology confirmed a tumour of Gleason grade if 7 or more. When the Gleason
score was 6 or no histopathology was available and the radiologist indicated the presence of
tumour, the region was labelled as intermediate.

Our principal interest is the detection of malignant abnormalities. Benign abnormalities
were not annotated, and therefore will induce a number of FP signals.

3.2. Experiments

Free response operating characteristic (FROC) methodology was performed to evaluate the
detection accuracy of the CAD system. The detection performance of the CAD system
was estimated by a threefold cross validation in which a fold was used to train both
stages separately. Cross-validation folds were obtained by randomly drawing whole patient
cases.

A tumour was considered as detected when the detection location was inside the reference
standard. If multiple detections were found inside the same reference standard region, they
were recorded as a single hit. Candidates outside the reference standard were counted as FPs.
The specificity was computed using detected tumour locations in those patients where no
presence of PCa was found based on radiology reports, follow-up reports and MR-biopsy
outcome. In this way, a FP rate is obtained that is representative for a screening population,
where the majority of the patients will be normal. Another reason only to use non-cancerous
patients is that prostate cancer is often multifocal and may incorrectly induce FP signals when
not all tumour areas are carefully annotated or if they are missed.

Three experiments were performed to evaluate the detection performance of the CAD
method. Firstly, it was determined which size of the spherical region R provides the optimal
detection performance by varying the radius parameter r. In the second experiment, the results
of the proposed approach were compared to the results obtained using only feature f7 for
classification, i.e. the peak value obtained after the initial voxel classification stage. In that way,
we analyse the improvement obtained by adding additional information from multiparametric
MR images. The difference in performance between the initial voxel classification stage and
the local feature analysis was evaluated by jackknife FROC analysis (Chakraborty 2006).
In the third experiment, the detection performance for prostate cancer was analysed taking
into account the malignancy grade. Therefore, the detection performance was evaluated for
all tumours, high-grade tumours, intermediate-grade tumours and low-grade tumours. The
results were compared to the performance of a method that detects malignant regions based
on complete random guess (random detection based on the average prostate size and tumour
size). All detection performances were evaluated at FP levels of 1, 2 and 5 per healthy
patient.
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Table 1. Discriminating performance Az of the CAD system for different radius r of region R.

r (mm) Az

3 0.786 ± 0.117
5 0.833 ± 0.052
7 0.832 ± 0.065
9 0.799 ± 0.120

Table 2. The features and their descriptions that were selected in the two-stage classification
approach in order of selection.

Feature Description

f7 Peak value
f5 25% percentile wash-out
f2 25% percentile ADC
f3 75 % K trans

f1 75 % T2

4. Results

4.1. PSA levels and histopathological findings

The study set consisted of 200 consecutive patients with the mean age 60 (range 50–69) years.
The mean PSA level was 13.6 (range 1–58) ng mL−1 and the mean Gleason score was 7.3 (range
5–9). MRI was performed on average three weeks after the transrectal-ultrasonographically-
guided sextant biopsy of the prostate. From those patients, 23 had to be excluded due to
failed calculation of the ADC map (2), missing or incomplete DCE data (11) or because those
patients were scanned for staging (3), post-therapy evaluation (1) or recurrence detection (6).

In the resulting 177 patients, the radiologist annotated 48 locations of prostate cancer
in 41 patients. In the 41 patients, biopsy confirmed five low-grade, five intermediate and 15
high-grade tumours. Additionally, the radiologist identified 23 patients with prostate cancer
that did not undergo a biopsy. Those prostate cancers were graded as intermediate. The prostate
volume of all patients was measured by the radiologist and was on average 67.5cc (±33.8).
The average tumour volume used as reference standard was 2.78cc (±3.9).

4.2. CAD performance

The candidate detection step generated 6227 candidates of which 44 were TPs, resulting in a
sensitivity of 92%. The maximum performance in the second-stage classification is corrected
to the sensitivity of 92%. The 6227 candidates were used for training and evaluation of the
two-stage classification approach by a threefold cross validation.

The results of the first experiment are shown in table 1. It can be observed that using
a spherical region R with radius 5 results in the optimal discriminating performance of the
classifier. Although the obtained performances are not statistically different, a radius of 5 was
used in the remaining experiments.

The first stage of the two-stage classification approach removed 37.2% of the candidates
at the expense of eliminating two TPs, after selecting the features f9 and f2. The selected
features in the second stage of the two-stage classification approach are summarized in order
of selection in table 2.
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Figure 5. FROC curve showing the detection performances of the CAD method for different
selected features. The horizontal axis shows the number of FP detections per healthy patient and
the vertical axis shows the sensitivity that is achieved at this specificity level. The (red) dotted
FROC curve corresponds to the detection performance when only the blob likelihood ( f7) was
used as feature. The (blue) solid FROC curve corresponds to the detection performance using the
two-stage classification approach. The (cyan) big-dashed FROC curve corresponds to the detection
performance when a random detection is performed taking into account the average tumour and
prostate size. There is a significant improvement in the detection performance when using the
two-stage approach (p < 0.05).

Figure 5 shows the detection results for the second experiment. The results demonstrate
that the additional local feature analysis leads to a significantly improved detection
performance compared to voxel classification and random detection (p < 0.05).

The detection performances for the different tumour grades were measured at the FP
levels of 1, 3 and 5 per patient. At these levels, the CAD method obtained the sensitivities of
0.48, 0.73 and 0.88, respectively, for the detection of high-grade tumours. The sensitivities for
detecting all malignant regions were 0.41, 0.65 and 0.74, respectively. Detecting intermediate-
grade tumour resulted in sensitivities of 0.41, 0.65 and 0.74. Low-grade tumours were detected
with sensitivities of 0.27, 0.40 and 0.68, respectively. Random detection of prostate cancer
based on prostate volume and tumour volume resulted in sensitivities of 0.041, 0.12 and 0.21.
Figure 6 demonstrates the detection results of the different data sets that were obtained by
FROC analysis.

5. Discussion

In this paper, we have presented a novel fully automatic CAD method and applied it to a
cohort of prostate MRI data acquired of men with one negative biopsy. This study showed
that it is feasible to automatically detect PCa using information from multiple MR images
simultaneously using a two-stage classification system. The CAD system is able to detect 74%
of all tumours at a FP level of 5 per patient. When focusing only on high-grade tumours, a
sensitivity of 88% was obtained at a FP level of 5 per patient, which is a strong improvement
over systematic biopsy being known to understage half of the tumours. Furthermore, the CAD
system is able to detect tumours in all zones of the prostate.

The proposed method achieved a good performance for the detection of prostate cancer
in a challenging cohort of patient MR data. The MR data were acquired during screening for
prostate cancer for patients with elevated PSA levels. As a result, the patient database consisted
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Figure 6. FROC curves showing the detection performances of the CAD method for different
tumour grades. The horizontal axis shows the number of FP detections per healthy patient and
the vertical axis shows the sensitivity that is achieved at this specificity level. The (blue) solid
FROC curve corresponds to the detection performance of high-grade tumours. The (red) dashed
FROC curve corresponds to the detection performance of intermediate-grade tumours. The (green)
dotted FROC curve corresponds to the detection performance of all tumours. The (purple) dot-
dashed FROC curve corresponds to the detection performance of low-grade tumours. The (cyan)
big-dashed FROC curve corresponds to the detection performance when a random detection is
performed taking into account the average tumour and prostate size.

of both healthy and prostate cancer patients. In figure 6, it can be observed that high-grade
tumours are detected with a sensitivity of 0.734 at only a FP rate of 2.3 per patient. Detecting
only the high-grade tumour can potentially help in preventing the inclusion of patients that
have slow-growing and not aggressive prostate cancer. When detecting tumour of all grades,
the sensitivity was 0.60. Although intermediate-grade tumours are considered to be more
difficult to detect, the obtained performance was similar to the result of detecting all tumours.
However, it is difficult to differentiate between high- and intermediate-grade tumours. Low-
grade tumours are more difficult to detect. The results show a sensitivity of 40% with 2.3 FPs.
Nevertheless, the achieved performance is still considerably better than randomly detecting
PCa.

In figure 5, it is demonstrated that the usage of information from multiple MR images has a
benefit to the detection performance of the CAD system. The results demonstrate that the multi-
stage approach performs significantly better than only using feature f7 for classification, i.e. the
peak value obtained after the initial voxel classification stage. A significant improvement was
obtained by adding additional information from multiple MR images (p < 0.05). Furthermore,
the two-stage classification approach removed 37.2% of the number of candidates after the
first stage. This showed to be an important stage to mitigate the effect on the training of the
classifier.

Only four candidates remained undetected in the initial stage. Nevertheless, the undetected
cases can be considered less clinically relevant. In the first undetected case, histopathology
found only a 5% volume of cancer with Gleason 3+3 in the biopsy sample and the radiologist
indicated a normal diffusion. In two patients, there were two regions annotated by the
radiologist. In both cases, the most dominant tumour was detected, while the other location
was missed due to a high diffusion. In the fourth undetected case, the radiologist identified
the location of PCa in both the current and follow-up examinations. However, the lesion was
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graded less significant due to a high diffusion. Furthermore, no biopsy was performed such
that the reference standard could not truly be established.

The two-stage classification approach removed 37.2% of the candidates in its initial stage.
The approach avoided that the final estimation of the classification boundary was driven by the
spurious and/or outlying data. Experience with a single classification approach showed that
the classifier is indeed performing less. However, two TPs were additionally eliminated. One
TP was graded intermediate, but this was not confirmed by biopsy. Regarding the second TP,
biopsy confirmed a prostate cancer with Gleason score 3+4. Both locations were discarded
because they appeared to have a high diffusion. Additionally, the peripheral zone appeared to
have an abnormal high diffusion. This may suggest the need of a normalization step and is
part of further research.

This is the first study that analysed the detection performance using FROC methodology.
Most studies presented in the literature evaluated a discriminating performance of malignant
and benign voxels using ROC analysis (Chan et al 2003, Viswanath et al 2009, Langer
et al 2009, Liu et al 2009, Ozer et al 2010, Lopes et al 2011). ROC analysis, however, misses
information about the number of FP candidates. Therefore, the method may have a high
discriminative performance though it presents many FP candidates. This can have a negative
influence on the detection performance of the radiologist. Furthermore, the studies presented
in the literature generally use only cancer patients and therefore do not reflect a screening
population. This study, however, was performed on a cohort of patients that had elevated
PSA and an initial set of negative prostate biopsies. As a result, it better reflects a screening
population as both benign and malignant patients were present in the database.

Noguchi et al (2001) demonstrated that the grade assessment with needle biopsy
underestimated the tumour grade in 46% cases and overestimated it in 39 (18%) and as
a result, no single parameter in the biopsy was a predictor of tumour significance. Hence,
the gold standard for detecting PCa, systematic biopsy, lacks sensitivity as well as grading
accuracy. Multiparametric MRI has a potential to guide prostate biopsy towards the most
aggressive and representative part of the tumour (Hambrock et al 2010). However, its clinical
application is limited due to the required high level of experience of the radiologist. Moreover,
it is a difficult and time-consuming procedure to localize the most aggressive part of the
tumour. The presented CAD method has the potential to assist radiologists in the detection of
prostate cancer and to guide prostate biopsy towards the most aggressive and representative
part of the tumour. Therefore, the CAD method could improve the sensitivity of MR-
guided TRUS biopsy without introducing many additional biopsies and is part of further
research.

A limitation of this study was that the reference standard for some patients could
not be accurately established, as follow-up studies were or biopsy was not yet performed.
The reference standard for those patients was graded as intermediate which in fact
could be different. Also, the patient data used to represent a screening population are
somewhat biased, as they were scheduled for an MRI examination after one negative biopsy
session.

To conclude, this study demonstrated that it is feasible to fully automatically detect
locations of prostate cancer at an acceptable FP rate better than random detection by e.g.
systematic biopsy. The CAD method may assist the radiologist to detect prostate cancer
locations and could potentially reduce the number of biopsies.
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