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T o function normally, human cells require energy in the form 
of ATP. In many cell types, ATP is primarily generated by mitochondria, 
which are also key players in other important cellular processes, such as 

adaptive thermogenesis,1 ion homeostasis,2 innate immune responses,3 production 
of reactive oxygen species,4 and programmed cell death (apoptosis).5 Mitochondria 
contain their own DNA (mtDNA), which encodes 13 mitochondrial proteins, 2 ribo-
somal RNAs (rRNAs), and 22 transfer RNAs (tRNAs). The replication, transcription, 
translation, and repair of mtDNA are controlled by proteins encoded by nuclear DNA 
(nDNA).6,7

Mitochondrial dysfunction is not only observed in monogenic mitochondrial 
disorders but is also associated with more common pathologic conditions, such as 
Alzheimer’s disease,8 Parkinson’s disease,9 cancer,10 cardiac disease,11 diabetes,12 
epilepsy,13 Huntington’s disease,14 and obesity.15 In addition, a progressive decline in 
the expression of mitochondrial genes is a central feature of normal human aging.16 
It is not entirely clear whether the changes in expression that occur with aging have 
positive or negative effects on life span. Given the aging of the population in devel-
oped societies and the increasing prevalence of conditions such as Alzheimer’s dis-
ease and diabetes, the investigation of mitochondrial processes and diseases may 
make a timely contribution to our understanding of the human aging process and its 
relationship with the above conditions.

Other sources of interference in mitochondrial function include the off-target ef-
fects of environmental toxins (e.g., rotenone) and frequently used drugs (e.g., 
amiodarone, biguanides, haloperidol, statins, valproic acid, zidovudine), anesthetics 
(e.g., halothane), antibiotics (e.g., chloramphenicol), chemotherapeutic agents (e.g., 
doxorubicin), and even aspirin (acetylsalicylic acid).17,18 Certain drugs may lead more 
frequently to adverse reactions and side effects in patients with mitochondrial dis-
orders than in healthy persons.17,19 The term “mitochondrial medicine”20 refers to 
approaches that have been developed to manage mitochondrial dysfunction and, 
directly or indirectly, its consequences.21

In the past decade, the analysis of monogenic mitochondrial diseases has consid-
erably advanced our understanding of the cellular pathophysiology of mitochondrial 
dysfunction. Here we summarize these insights and explain how they can contribute 
to the rational design of intervention strategies for mitochondrial dysfunction; we 
present our ongoing research on human mitochondrial complex I deficiency as an 
example of mitochondrial medicine. This information is preceded by a brief primer 
on the basics of mitochondrial structure and ATP generation.
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In ter na l a nd E x ter na l 
S TRUC T UR E A ND ATP GENER ATION

Structure

Mitochondrial internal and external structure var-
ies with cell type and metabolic state and often 
becomes altered during mitochondrial dysfunction 
(Fig. 1A and 1B).22 Net mitochondrial morphology 
depends on the balance between mitochondrial 
motility, fission, and fusion. This equilibrium is 
regulated by dedicated proteins and plays a role in 
metabolic energy dissipation, turnover of dam-
aged mitochondria, distribution of mitochondria 
throughout the cell, induction of apoptosis, mito-
chondrial inheritance during cell division, and de-
fense against aging.23 Mitochondria consist of outer 
and inner membranes that envelop an aqueous 
compartment, the mitochondrial matrix (Fig. 1C 
and 1D). The space between the inner and outer 
membranes is referred to as the intermembrane 
space. The outer membrane is relatively smooth, 
whereas the inner membrane contains many ma-
trix-protruding folds (or cristae) that increase the 
surface area of the inner membrane and have a dy-
namic structure.22 These structural dynamics may 
serve to regulate mitochondrial metabolism.24

ATP Generation

The best-known mitochondrial function is the 
production of ATP. For this purpose, glucose is 
converted to pyruvate through the glycolysis path-
way in the cytosol (Fig. 1E). Pyruvate can be con-
verted into lactate10 or taken up by mitochondria, 
where it is converted to acetyl coenzyme A (CoA). 
Acetyl CoA enters the tricarboxylic acid cycle that 
generates the reduced forms of NADH and flavin 
adenine dinucleotide (FADH2). Alternatively, fatty 
acids25 and glutamine10 can be used as substrates. 
NADH and FADH2 fuel the oxidative-phosphory-
lation system, which consists of five functionally 
coupled mitochondrial protein complexes.26 NADH 
and FADH2 are oxidized at mitochondrial com-
plexes I and II, respectively (Fig. 1F). The released 
electrons are transported to complex III by coen-
zyme Q10 (CoQ10) and then to complex IV by cy-
tochrome c, where they are donated to molecular 
oxygen to form water. The energy released by 
electron transport is used at complexes I, III, and 
IV to expel protons (H+) from the mitochondrial 
matrix, which establishes a proton gradient 
across the mitochondrial inner membrane. The lat-
ter is associated with an inside-negative inner-

membrane potential (Δψ) and a matrix-directed 
proton-motive force. The proton-motive force is 
used at complex V to generate ATP, which is 
transported to the cytosol by the adenine nucleo-
tide translocator. The proton-motive force also 
sustains many other mitochondrial functions 
(e.g., ion transport, metabolite exchange, protein 
import, and mitochondrial fusion).27 As a conse-
quence, defects in oxidative phosphorylation of-
ten induce multiple cellular aberrations.

MONO GENIC CELL MODEL S OF 
MI T O CHONDR I A L DYSFUNC TION

Primary and Secondary Disorders

With the use of mitochondrial proteome analysis,28 
approximately 1000 genes encoding mitochondrial 
proteins have been identified in humans (MitoCarta 
human inventory, Broad Institute). Mitochondrial 
dysfunction can arise from a mutation in one of 
these genes (causing a primary mitochondrial dis-
order) or from an outside influence on mitochon-
dria (causing a secondary mitochondrial disorder). 
Causes of secondary disorders include viral infec-
tions29 and off-target drug effects.17,18 To date, 
mutations in 228 protein-encoding nDNA genes 
and 13 mtDNA genes have been linked to a human 
disorder (Fig. 2). (For a list of these genes and 
their associated disease phenotypes, see Table 1 in 
the Supplementary Appendix, available with the 
full text of this article at NEJM.org.) Given the 
preponderance of nDNA-encoded mutations, this 
review focuses mainly on these genes. A detailed 
discussion of mtDNA mutations and their associ-
ated pathology is provided elsewhere.30-35

Mutations and Phenotype

Although it is evident that mutations in mito-
chondrial proteins induce mitochondrial dysfunc-
tion, it is less clear how specific genetic defects 
are linked to dysfunction at the level of cells, or-
gans, and the whole organism. One major diffi-
culty in determining the effects of specific defects 
is that the consequences of mitochondrial dysfunc-
tion are affected by the action of compensatory 
stress–response pathways. At the cellular level, 
these responses include mitochondrial biogenesis, 
increased expression of oxidative phosphorylation 
proteins, a switch to a more glycolytic mode of 
ATP production, and the removal of dysfunctional 
mitochondria by quality-control systems.9,36-39 To 
complicate matters even further, the substrate sup-
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ply, the mode of ATP generation, the level of de-
mand for ATP, mitochondrial dynamics, and the 
rate of oxidative phosphorylation differ among cell 
types and tissue types.

These factors increase the likelihood that the 
various types of tissue are not equally sensitive to 
mitochondrial dysfunction.27,40 At the level of the 

organism, genetic background — both mitochon-
drial and nuclear — also modifies the phenotype 
of human mitochondrial diseases (e.g., as reported 
by Bénit et al.41). In this sense, mutations in mi-
tochondrial proteins can evoke pathologic pheno-
types specific to a cell, tissue, organ, or patient 
that are manifested only when a certain threshold 
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of mitochondrial dysfunction or cellular demand 
on mitochondrial metabolism is exceeded. This 
phenomenon is exemplified by the broad variety of 
clinical presentations associated with mutations 
in nDNA-encoded mitochondrial genes (see Table 
1 in the Supplementary Appendix).

Developing a Rational Intervention Strategy

Mitochondrial function is often studied in mito-
chondrial suspensions that have been isolated from 
patient cells or tissues with the use of detergent 

treatment.42 However, mitochondrial metabolism 
in situ is closely linked to that of the cell and is 
generally associated with submaximal rates of mi-
tochondrial enzyme activity. In addition, the cel-
lular milieu provides for communication among 
mitochondria, cytosol, and other organelles, and 
mitochondrial structure is greatly altered during 
isolation. As a consequence, the functional prop-
erties of isolated mitochondria differ considerably 
from those within the cell.43-45

Mitochondrial function can also be investigated 
in intact (patient) cells.22,24,25,27,42,46-48 Here we 
summarize our ongoing research on complex I 
deficiency to illustrate how live-cell analysis can be 
integrated into an approach to the development 
of treatment strategies (Fig. 3).

Using biopsy specimens from pediatric patients 
carrying nDNA-encoded complex I mutations, we 
have cultured primary fibroblast cell lines, which 
are maintained under standardized conditions.47 
Cellular and mitochondrial physiology is assessed 
with the use of fluorescent reporter molecules that 
are introduced into the cells and analyzed by 
means of live-cell microscopy (Fig. 4). The results 
are then compared with those in cells from healthy 
children.49,52-57 Statistical evaluation of 26 phys-
iological variables in 14 control and 24 patient cell 
lines has revealed that complex I mutations lead to 
a reduction in the expression of complex I, depo-
larization of mitochondrial membrane potential, 
the accumulation of NADH, increased levels of 
reactive oxygen species, aberrations in mitochon-
drial structure, and aberrations in the homeostasis 
of cytosolic and mitochondrial Ca2+ and ATP.58 
The extent of these aberrations has been corre-
lated with the age of the patient at disease onset 
and with death from the disease.58

These results are currently being used in dis-
ease modeling and drug-target prediction to de-
sign an intervention strategy focused on the above 
aberrations. Once a lead compound has been iden-
tified, the dependence of its effects on time and 
concentration can be evaluated at the cellular level 
to assess structure–activity relationships and its 
properties of absorption, distribution, metabolism, 
and excretion (or toxicity).59 In the case of complex 
I deficiency, lead compounds will then be evaluat-
ed in an animal model.57,60 Animal models are also 
available for several other primary and second-
ary mitochondrial disorders.31,32,56,61,62 Once the 
outcome scores in the animal model are satisfac-
tory, the effects of any compounds that are de-
veloped can be evaluated in clinical trials.

Figure 1 (facing page). Mitochondrial Structure 
and ATP Generation.

Panel A shows elongated mitochondria (filaments) in  
a living skin fibroblast from a healthy person (staining 
with the mitochondria-specific cation tetramethylrho-
damine methyl ester [TMRM] and visualized with fluo-
rescence microscopy). The more intense (red) the 
TMRM signal, the more negative the mitochondrial 
membrane potential (Δψ). Panel B shows the fragment-
ed mitochondrial structure in living skin fibroblasts 
from a patient with a mitochondrial disorder (Leigh’s 
disease) caused by a mutation in NDUFS2, which en-
codes a subunit of complex I. TMRM staining is less in-
tense (i.e., membrane potential is less negative) than in 
healthy fibroblasts. In the electron micrograph shown 
in Panel C, individual mitochondrial filaments (arrows) 
can be seen in the cytosol of a fixed primary-skin fibro-
blast from a healthy person. The dark line is the mem-
brane of the cell nucleus. Panel D shows mitochondrial 
ultrastructure and compartmentalization, highlighting 
the mitochondrial outer membrane (MOM), mitochon-
drial inner membrane (MIM), and intermembrane space 
(IMS). Panel E summarizes the main ATP production 
pathway in human cells. In the cytosol, glucose is con-
verted into pyruvate, which is subsequently processed 
in the mitochondrion to acetyl coenzyme A (CoA) and 
the reduced forms of NADH and flavin adenine dinu-
cleotide (FADH2). In addition to using pyruvate as a 
substrate, the mitochondrion can also use fatty acids 
and glutamine. Mitochondrial ATP production is car-
ried out by the oxidative phosphorylation (OXPHOS) 
system, shown at the bottom of Panel E. This system is 
embedded in the MIM and consists of five multiprotein 
complexes (CI through CV), as shown in Panel F. NADH 
and FADH2 are oxidized at CI and CII, and the electrons 
released are transported to CIII by coenzyme Q10 
(CoQ10). The electrons are then transferred to cyto-
chrome c and delivered to CIV, where they react with 
molecular oxygen (O2). TCA denotes tricarboxylic acid. 
The energy released during electron transport is used 
to expel protons (H+) from the mitochondrial matrix 
across the MIM into the IMS. This creates a proton 
gradient across the MIM, which is associated with an 
inside-negative potential. At CV, the energy stored in 
the proton gradient is used to drive ATP production by 
allowing the reentry of H+ into the matrix. Because of 
the presence of voltage-dependent anion channels 
(VDACs), the MOM is ion-permeable.
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IN TERV EN TION S TR ATEGIES

In a primary mitochondrial disorder, the mutation 
directly affects the expression level of the corre-
sponding protein, its function, or both, inducing 
primary cell consequences and secondary cell con-
sequences (Fig. 5).27,63 The secondary consequenc-
es often constitute part of the adaptive signaling 
mechanisms.

Adaptations include the partial mitigation of 
reduced mitochondrial ATP production by in-
creased glycolysis, increases in the cellular levels 
of mitochondrial proteins and mitochondrial func-
tion through mitochondrial biogenesis, and up-
regulation of the detoxification of reactive oxygen 
species, triggered by changes in the redox state 

that were induced by reactive oxygen species. It 
appears that primary and secondary mitochondrial 
disorders have similar consequences at the cellular 
level (Fig. 5).27,58,64,65

Four intervention strategies for mitochondrial 
dysfunction have been described: genetic therapy, 
the use of small molecules to target mitochondrial 
dysfunction, metabolic manipulation, and diet and 
exercise (Fig. 5, and Table 2 in the Supplemen-
tary Appendix). Genetic therapy, which is carried 
out at the preclinical level and focuses mainly on 
mtDNA-associated disorders, is discussed else-
where.19,63,64,66,67 Small-molecule therapies, met-
abolic manipulation, and dietary and exercise regi-
mens generally aim to increase the capacity for 
ATP synthesis, bypass the mitochondrial defect, 
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Figure 2. Genes of Mitochondria-Localized Proteins Linked to Disease in Humans.

This list summarizes the currently identified mtDNA-encoded (red) and nDNA-encoded (black) genes associated with mitochondrial 
diseases in humans when mutated. The genes are categorized according to the predicted localization of their corresponding proteins 
in the mitochondrial matrix (107 genes), the outer membrane (9 genes), the intermembrane space (7 genes), and the inner membrane 
(81 genes). Also included are gene products of unknown submitochondrial location (15 genes) and gene products that partially localize 
to mitochondria (22 genes). Detailed information about the genes and their associated disease phenotypes is provided in Table 1 in the 
Supplementary Appendix.
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stimulate mitochondrial biogenesis, or reduce lev-
els of reactive oxygen species.66 Targeting reactive 
oxygen species may not be entirely beneficial, 
however, since they can act as signaling mole-
cules,4,27,48,53 in which case their elimination might 
also have detrimental effects.

Mitochondria-Targeted Small Molecules

In contrast with membrane-permeable small 
molecules, which exert their effect throughout 
the cell, novel therapeutic strategies involve the 
specific targeting of mitochondria by small mol-
ecules (referred to as “cargo”).65,68-74 Targeting 
can be achieved by coupling the cargo to a delo-
calized lipophilic cation, leading to its accumula-
tion in mitochondria. Several antioxidants have 
been successfully targeted using the cation ap-
proach (e.g., plastoquinones and CoQ variants). 
Protein-based cargo can be coupled to a mitochon-
drial targeting sequence recognized by the mito-
chondrial protein import machinery. Another strat-
egy involves the use of mitochondria-penetrating 
peptides, engineered cell-penetrating peptides that 
target mitochondria on the basis of their mem-
brane potential and lipophilicity (e.g., the antioxi-
dant Szeto–Schiller peptide, SS-31). There are also 
vesicle-based transporters that target mitochon-
dria through macropinocytosis, endosomal es-
cape, and membrane fusion (e.g., DQAsomes and 

MITO-porters). Recently, in a mouse model of 
mitochondrial lipoamide dehydrogenase (LAD) 
deficiency, mitochondrial enzyme-replacement 
therapy mediated by TAT (a transactivating tran-
scriptional activator of human immunodeficiency 
virus 1) was used to introduce a TAT-LAD fusion 
protein.75

Treatment of Mitochondrial Disorders

In 2006, a large-scale review of published clinical 
trials of various treatments for primary mitochon-
drial disorders revealed no evidence supporting the 
use of any intervention.76 More recently, the results 
of several trials in which a variety of treatments 
for mitochondrial disease were studied, including 
dichloroacetate, vitamins, and a cocktail of spe-
cific food components (nutraceuticals), were re-
viewed.77 Although some of these trials showed a 
positive effect on one or more clinical or biochem-
ical primary end points, none led to the filing of 
a New Drug Application with the Food and Drug 
Administration.

The drug idebenone (a CoQ10 variant) has been 
approved for the treatment of Friedreich’s atax-
ia.41 A large multicenter, randomized, placebo-
controlled trial of idebenone in patients with 
Leber’s hereditary optic neuropathy revealed that 
patients with discordant visual acuities were the 
most likely to benefit from this treatment.78 In 
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Figure 3. Proposed Approach to the Development of Intervention Strategies through Microscopical Analysis of Cells from Patients 
with Mitochondrial Diseases.

This schematic flow chart illustrates how the analysis of patient-derived primary cells by means of fluorescent reporter molecules and live-
cell microscopy can be used to determine the cellular consequences of a mitochondrial dysfunction. This strategy can be used to extract 
the maximal amount of information from individual images (high content), test a large number of conditions (high throughput), or both. 
The information obtained can provide the basis for the discovery of lead compounds with pharmacologic or biologic activity. The chemi-
cal structure of the lead compounds is then modified to improve their potency, selectivity, or pharmacokinetic characteristics (a process 
known as lead optimization). These optimized compounds can then be tested in cells (red line) and, if this step is successful, in a suit-
able animal model and clinical trials. The blue boxes signify the administration of test agents at various concentrations and for various 
durations. SARS denotes structure–activity relationships, and ADME–Tox absorption, distribution, metabolism, excretion, and toxicity.
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one study, investigators found that a ketogenic 
diet was effective in preventing epileptic seizures 
in children with electron-transport-chain defects.79 
The findings in another study indicated that nu-
tritional modulation affects mitochondrial func-
tion, suggesting that it may be worthwhile to 
pursue nutritional treatment strategies.64

A successful treatment strategy has been de-
veloped for patients with a secondary mitochon-
drial disorder involving Ullrich’s congenital mus-
cular dystrophy and Bethlem’s myopathy.80-82 
These myopathies, caused by mutations in the 
extracellular-matrix protein collagen VI, are as-
sociated with mitochondrial dysfunction and 
muscle-cell apoptosis. The pathogenic mechanism 
involves inappropriate opening of the mitochon-
drial permeability transition pore. This action was 
prevented in patients treated with a permeability-
transition-pore desensitizer, cyclosporin A. An-
other study showed that cyclosporin A reduced 
the size of myocardial infarcts during cardiac re-
perfusion.83 Other published intervention strate-
gies are summarized in Table 2 in the Supple-
mentary Appendix.

An overview of current clinical trials can be 
found online (www.clinicaltrials.gov/ct2/results? 

term-mitochondrial+disease); these include stud-
ies of CoQ10 for the treatment of muscle weakness 
and mitochondrial diseases, dietary supplements 
for MELAS (mitochondrial encephalomyopathy, 
lactic acidosis, and strokelike episodes), EPI-743 
for mitochondrial diseases, human growth hor-
mone for obesity, nutritional therapy for diabetes, 
pioglitazone for diabetes, idebenone for MELAS, 
and vitamin E for mitochondrial trifunctional 
protein deficiency.

FU T UR E PER SPEC TI V ES

A field that began more than 50 years ago, when 
a physician detected a mitochondrial disorder in 
a single patient with hypermetabolism,84 has now 
evolved into the discipline of mitochondrial med-
icine. Lessons learned from studies of rare diseases 
have implications for a broad range of medical 
disciplines. Within the next few years, the appli-
cation of new technologies such as whole-exome 
sequencing can be expected to result in a huge 
expansion of the number of known causative nu-
clear gene defects in patients with mitochondrial 
disease (which is currently diagnosed by means 
of biochemical methods, mtDNA and nDNA se-
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C ROS D Redox State G Size-Based Mitogram

Figure 4. Typical Cell Readouts in Primary Fibroblasts from Human Skin.

Mitochondrial morphology and membrane potential can be visualized with the use of TMRM staining (Panel A),46 NADH levels with auto-
fluorescence (Panel B),49 levels of reactive oxygen species with the chemical reporter CM-H2DCFDA (Panel C),48 mitochondrial redox 
state with the mitochondria-targeted protein-based sensor Mit-roGFP149 (400-nm image shown) (Panel D), the cytosolic free ATP con-
centration with the protein-based sensor ATeam (Panel E),50 and levels of mitochondrial free Ca2+ in a cell stimulated with the hormone 
bradykinin and the calcium-sensitive cation Rhod-2 (Panel F).51 A mitogram shows all mitochondrial structures in the cell, sorted on the 
basis of size (Panel G).52
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quencing, and candidate-gene studies). In the near 
future, the challenge will be to increase our under-
standing of the consequences of mitochondrial 
dysfunction at all levels of complexity in order to 
drive the development of rational treatment strat-
egies. Although gene therapy has been proved 
beneficial, its use is still limited by the sheer 
number of potential mitochondrial gene defects. 
Direct enzyme-replacement therapy may be feasi-
ble in addressing single-protein enzymes, such as 
those in the tricarboxylic acid cycle, and perhaps 
mitochondrial multiprotein enzyme complexes. 
Another promising approach may be indirect 
enzyme-replacement therapy, which bypasses 
electron-transport defects with the use of alter-
native dehydrogenases or oxidases (see Table 2 in 
the Supplementary Appendix). Although more ex-
perimental data are required, exogenous stimula-
tion of endogenous cellular adaptation programs 

may also be useful to at least partially counter-
balance the consequences of mitochondrial dys-
function.

Given the metabolic individuality in humans,85 
we do not expect monotherapeutic metabolic ma-
nipulation strategies to be a magic bullet but pre-
dict that the next step in treatment development 
will be the use of combinations of manipulation 
strategies applied in an individualized way. In 
the meantime, efforts must be made on a global 
scale to genetically categorize patient cohorts, 
monitor them in a standardized way by means of 
prognostic scoring systems,86 and develop new 
biomarkers to allow for proper monitoring of 
the effect of intervention strategies.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.

We thank Dr. J. Fransen, Department of Cell Biology, Radboud 
University Nijmegen Medical Center, for providing electron-
microscopical images.
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Figure 5. Consequences of Mitochondrial Dysfunction and Potential Intervention Strategies.

Mitochondrial dysfunction can have primary and secondary pathologic consequences. Several cellular feedback 
mechanisms exist that can counteract the effects of the mitochondrial dysfunction (adaptation). For instance, the 
increased production of reactive oxygen species (ROS) caused by mitochondrial dysfunction can induce the expres-
sion of antioxidant systems. Possible intervention strategies (indicated by dotted lines) may intervene at the level of 
the protein defect, the primary consequences, the secondary consequences, or the adaptive responses. The symbol 
Δψ denotes change in mitochondrial membrane potential, and PTP permeability transition pore.
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