
Towards

an Intermediate Language

based on

Graph Rewriting

H.P. Barendregt2, M.C.J.D. van Eekelen2, J.R.W. Glauert1,

 J.R. Kennaway1, M.J. Plasmeijer2 and M.R. Sleep1.

1School of Information Systems, University of East Anglia, Norwich, Norfolk NR4 7TJ, U.K.,
partially supported by the U.K. ALVEY project,

2Computing Science Department, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands,
partially supported by the Dutch Parallel Reduction Machine Project.

Abstract.

Lean is an experimental language for specifying computations in terms of graph rewriting. It is based on
an alternative to Term Rewriting Systems (TRS) in which the terms are replaced by graphs. Such a Graph
Rewriting System (GRS) consists of a set of graph rewrite rules which specify how a graph may be
rewritten. Besides supporting functional programming, Lean also describes imperative constructs and allows
the manipulation of cyclic graphs. Programs may exhibit non-determinism as well as parallelism. In
particular, Lean can serve as an intermediate language between declarative languages and machine
architectures, both sequential and parallel.

1. Introduction.

Emerging technologies (VLSI, wafer-scale integration), new machine architectures, new language

proposals and new implementation methods [VEG84] have inspired the computer science community

to consider new models of computation. Several of these developments have little in common with

the familiar Turing machine model. It is our belief that in order to be able to compare these

developments, it is necessary to have a novel computational model that integrates graph

manipulation, rewriting, and imperative overwriting. In this paper we present Lean, an experimental

language based on such a model. In our approach we have extended Term Rewriting Systems

[O’DO85, KLO85] to a model of general graph rewriting. With this model it should be possible to

reason about programs, to prove correctness, and to port programs to different machines. The

language as presented here does not yet meet all these goals, but we believe that it is a good step in

the right direction.

A Lean computation is specified by an initial graph and a set of rules used to rewrite the graph to

its final result. The rules contain graph patterns that may match some part of the graph. If the graph

matches a rule it can be rewritten according to the specification in that rule. This specification makes

it possible to first construct an additional graph structure and then link it into the existing graph by

redirecting arcs.

Lean programs may be non-deterministic. The semantics also allows parallel evaluation where

candidate rewrites do not interfere. There are few restrictions on Lean graphs (cycles are allowed and

even disconnected graphs). Lean can easily describe functional graph rewriting in which only the

root of the subgraph matching a pattern may be overwritten. Through non-root overwrites and use of

global nodeids in disconnected patterns imperative features are also available.

In this paper we first introduce Lean informally. Then we show how a Lean program can be

transformed to a program in canonical form with the same meaning. The semantics of Lean is

explained using this canonical form. The semantics adopted generalises Staples’ model of graph

rewriting [STA80], allowing, for example, multiple redirections. A formal description of the graph

rewriting model used in this paper can be found in [BAR87], as it applies to the special case of

purely declarative term rewriting. After explaining the semantics we give some program examples to

illustrate the power of Lean. The syntax of Lean and the canonical form is given in appendix A.

Appendix B contains a summary of the predefined Lean rules.

2. General description of Lean.

2.1 Lean graphs.

 The object that is manipulated in Lean is a directed graph called the data graph. When there is no

confusion, the data graph is simply called the graph. Each node in the graph has an unique identifier

associated with it (the node identifier or nodeid). Furthermore a node consists of a symbol and a

possibly empty sequence of nodeids which define arcs to nodes in the graph. We do not assume that

symbols have fixed arities. The data graph is a closed graph, that is, it contains no variables. It may

be cyclic and may have disjoint components. This class of data graphs is, abstractly, identical to that

discussed in [BAR87]. We refer to that paper for a formal discussion of the precise connection

between graphs and terms.

Programming with pictures is rather inconvenient so we have chosen a linear notation for graphs.

In this notation we use brackets to indicate tree structure and repeated nodeids to express sharing, as

shown in the examples below. Nodeids are prefixed with the character ‘@’. Symbols begin with an

upper-case character.

 Lean notation: Graphical equivalent:

Hd (Cons 0 Nil);

Hd

Cons

Nil0

@Cyclic: F @Cyclic; @Cyclic: F

Plus @Child @Child,
 @Child: Fac 1000;

Plus

 @Child:Fac

1000

Tuple 1 -3 5 -7 11;

Tuple

 1 -3 5 -7 11

Fac 1000,
@Trace: TRUE;

Fac

1000

@Trace: True

2.2 Lean programs.

A Lean program consists of a set of rewrite rules including a start rule. A rewrite rule specifies a

possible transformation of a given graph. The initial graph is not specified in a Lean program (see

also section 4.2).

The left-hand-side of a rewrite rule consists of a Lean graph which is called a redex pattern. The

right-hand-side consists of a (possibly empty) Lean graph called the contractum pattern and,

optionally, a set of redirections. The patterns may be disconnected graphs and they are open, that is,

they may contain nodeid variables. These are denoted by identifiers starting with a lower-case letter.

Nodeids of the data graph may also occur in the rules. These are called global nodeids. When there

can be no confusion with the nodeids in the data graph, we sometimes refer to the nodeid variables

and the global nodeids in the rules just as nodeids. Here is an example program:

Hd (Cons a b) → a ;

Fac 0 → 1
Fac n:INT → *I n (Fac (-I n 1))

F (F x) → x ;

Start → Fac (Hd (Cons 1000 Nil)) ;

The first symbol in a redex pattern is called the function symbol. Rules starting with the same

function symbol are collected together forming a rule-group. The members of a rule-group are

separated by a ‘|’. Note that function symbols may also occur at other positions than the head of the

pattern. A symbol which does not occur at the head of any pattern in the program is called a

constructor symbol.

2.3 Rewriting the data graph.

The initial graph of a Lean program is rewritten to a final form by a sequence of applications of

individual rewrite rules. A rule can only be applied if its redex pattern matches a subgraph of the data

graph. A redex pattern in general consists of variables and symbols. An instance of a redex pattern

is a subgraph of the data graph, such that there is a mapping from the pattern to that subgraph which

preserves the node structure and is the identity on constants. This mapping is also called a match.

The subgraph which matches a redex pattern is called a redex (reducible expression) for the rule

concerned.

We will use the following rules which have a well-known meaning, as a running example to

illustrate several concepts of Lean.

Add Zero z → z | (1)
Add (Succ a) z → Succ (Add a z) ;

Now assume that we have the following data graph:

 Add (Succ Zero) (Add (Succ (Succ Zero)) Zero);

There are two redexes:

 a z
Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) redex matching rule 2

 a z
Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) redex matching rule 2

In graphical form this is:

data graph redex pattern data graph redex pattern

 Add

Succ

Zero

 Add

ZeroSucc

Succ

Zero

 Add

Succ

 a

z

 Add

Succ

Zero

 Add

Succ

Zero

 Add

Succ

 a

zZeroSucc

Note that there may be several rules for which there are redexes in the graph. A rule may match

several redexes and a redex can match several rules. For instance, in the example above there is only

one rule which matches any part of the data graph, but it matches two redexes. In general, therefore,

there are many rewriting sequences for a given graph.

Evaluation of a Lean program is controlled by a rewriting strategy. In its most general form:

(1) It decides which rewritings to perform.

(2) It decides when to perform no further rewritings. The graph at this point is said to be in

strategy normal form, or briefly, in normal form.

(3) It specifies what part of the resulting graph is the outcome of the computation.

For the purposes of graphical implementations of functional languages, strategies need only

consider the subgraph of nodes accessible from the data root, for the purposes of identifying both

redexes and terminal states. However, more general applications of Lean may not wish to be

constrained in this way: for example, graphical rewrite rules may be used to represent non-

terminating behaviours of practical interest such as operating systems.

The choices made by a rewriting strategy may affect the efficiency of rewriting, as well as its

termination properties. In the future we aim to incorporate facilities into Lean to permit programmer

control of strategy where necessary.

Once the strategy has chosen a particular redex and rule, rewriting is performed. The first step is

to create an instantiation of the graph pattern specified on the right-hand-side of the chosen rule. This

instantiation is called the contractum. In general this contractum has links to the original graph since

references to nodeid variables from the left-hand-side are linked to the corresponding nodes

identified during matching. A new data graph is finally constructed by redirecting some arcs from the

original graph to the contractum. In most cases all arcs to the root node of the redex are redirected to

the root node of the contractum as in Staples’ model [STA80]. This has an effect similar to

“overwriting” the root of the redex with the root of the contractum. This is what happens when no

redirections are given explicitly in the rule. Explicit redirection of arbitrary nodes is also possible.

The process of performing one rewrite step is often called a reduction. The graph after one

reduction is called the result of the reduction. Initially, the data graph contains a node with the

symbol Start. Hence, the rewriting process can begin with matching the start rule and hereafter

rewriting is performed repeatedly until the strategy has transformed the graph to one which it deems

to be in normal form.

[BAR87] gives a formal discussion of how graph rewrite rules with root-only redirection model

term rewriting, and proves certain soundness and completeness results. The definition of rewriting

given in that paper only covers rules of this form, but the extension of the formal description to the

general cases of multiple and/or non-root redirection is straightforward.

The data graph of the previous example can be rewritten in the following way:

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) → (2)
Succ (Add Zero (Add (Succ (Succ Zero)) Zero)) → (1)
Succ (Add (Succ (Succ Zero)) Zero) → (2)
Succ (Succ (Add (Succ Zero) Zero)) → (2)
Succ (Succ (Succ (Add Zero Zero))) → (1)
Succ (Succ (Succ Zero))

Note that in this example the graph was actually a tree, and remained a tree throughout. There was

no difference with a Term Rewriting System. In the following example there is a data graph in which

parts are shared. Rewriting the shared part will reduce the number of rewriting steps compared to an

equivalent Term Rewriting System.

Add @X @X, @X: Add (Succ Zero) Zero → (2)
Add @X @X, @X: Succ (Add Zero Zero) → (1)
Add @X @X, @X: Succ Zero → (2)
Succ (Add @Z @X), @X: Succ @Z, @Z: Zero → (1)
Succ (Succ Zero)

2.4 Predefined delta rules.

For practical reasons it is convenient that rules for performing arithmetic on primitive types

(numbers, characters etc.) are predefined and efficiently implemented. In Lean a number of basic

constructors for primitive types such as INT, REAL and CHAR are predefined. Representatives of these

types can be denoted: for instance 5 (an integer), 5.0 (a real), '5' (a character). Basic functions, called

delta rules, are predefined on these basic types.

The actual implementation of a representative of a basic type, is hidden for the Lean programmer.

It is possible to denote a representative, pass a representative to a function or delta-rule and check

whether or not an argument is of a certain type in the redex pattern.

Nfib 0 → 1 |
Nfib 1 → 1 |
Nfib n:INT → ++I (+I (Nfib (-I n 1)) (Nfib (-I n 2))) ;

In this example ‘0’, ‘1’ and ‘2’ are denotations for some representation of the numbers 0, 1 and

2, ‘+I’, ‘-I’ and ‘++I’ are function symbols for predefined delta rules defined on these

representations. Hence, an integer consists of the unary constructor INT and an unknown

representation. Note that in general one is allowed to specify just the constructor in the redex pattern

of a rule. The value can be passed to a function by passing the corresponding nodeid (n in the

example).

These predefined rules are however not strictly necessary. For instance, one could define

numbers as: INT Zero to denote 0, INT (Succ Zero) to denote 1, INT (Succ (Succ Zero))

to denote 2 etc., and define a function for doing addition

PlusI (INT x) (INT y) → INT (Add x y) ;

where Add is our running example. This kind of definition makes it possible to do arithmetic in a

convenient way. However, for an efficient implementation one would probably not choose such a

Peano-like representation of numbers, but prefer to use the integer and real representation and the

arithmetic available on the computer.

3. Translating to canonical form.

Lean contains syntactic sugar intended to make programs easier to read and write. Explaining the

semantics of Lean will be done with a form with all syntactic sugar removed known as Canonical

Lean. In this section we show how a Lean program can be transformed to its canonical form.

Canonical Lean programs are valid Lean programs and are unaffected by this translation procedure.

Every Lean program can be seen as a shorthand for its canonical form. Note that this section is all

about syntax. The semantics of the canonical form are explained in section 4.

In the canonical form every node has a definition and definitions are not nested. Every

redirection, including any redirection of the root, is done explicitly and in patterns all arguments of

constructors are specified. In this canonical form a rewrite rule has the following syntax:

Graph → [Graph ,] Redirections

The first Graph is the redex pattern. The second is the optional contractum pattern. Each pattern is

represented as a list of node definitions of the form:

Nodeid: Symbol { Nodeid }

Braces mean zero or more occurrences. The initial Nodeid identifies the node, Symbol is some

function or constructor symbol and the sequence of nodeids identifies zero or more child nodes.

Occurrences of nodeids before a colon are defining occurrences. Every nodeid must have at most one

defining occurrence within a rule. Defining occurrences of global nodeids are allowed on the left-

hand-side only. Within a rule a nodeid which appears on the right-hand-side must either have a

definition on the right-hand-side or it must also appear on the left-hand-side.

3.1 Add explicit nodeids and flatten.

In the canonical form all nodes have explicit nodeids and there are no nested node definitions.

Hence in each rule we have to introduce a new unique nodeid variable for every node that does not

yet have one. Every nested node definition in the rule is then replaced by an application of the

corresponding nodeid variable, and the definitions are moved to the outer level. Applying this

transformation to our running example gives:

x: Add y z,
y: Zero → z |
x: Add y z,
y: Succ a → m: Succ n,

n: Add a z ;

All arguments of symbols (such as Add and Succ) have now become nodeids and brackets are no

longer needed.

3.2 Specify the arguments of constructors.

In Lean one may write the following function which checks to see if a list is empty:

x: IsNil n,
n: Nil → t: TRUE |

x: IsNil n,
n: Cons → t: FALSE ;

Cons is a binary constructor symbol, but in Lean one may omit the specification of the arguments

if they are not used elsewhere in the rule. This is not allowed in the canonical form hence the

arguments are made explicit by introducing two new nodeid variables. Transformation of the

example above will give:

x: IsNil n,
n: Nil → t: TRUE |
x: IsNil n,
n: Cons y z → t: FALSE ;

3.3 Make root redirections explicit.

The meaning of both rules in the running example is that the root of the pattern is redirected to the

root of the contractum. Redirections are always made explicit in the canonical form. If no

redirections are specified explicitly, a redirection is introduced to redirect the redex root to the

contractum root. Note that if the right-hand-side of a rule consists only of a nodeid, the root of the

redex is redirected to this nodeid. The running example with explicit redirections now becomes:

x: Add y z,
y: Zero → x := z |
x: Add y z,
y: Succ a → m: Succ n,

n: Add a z,
x := m ;

3.4 Define delta rules.

The predefined rules which are used in the program have to be explicitly added. We can assume

that these rules are already in canonical form.

4. Semantics of Lean.

4.1 Graph terminology.

- Let F be a set of symbols and N be a set of nodes.

- Further, let C be a function (the contents function) from N to F × N*.

- Then C specifies a Lean Graph over F and N.
- If node n has contents F n1 n2 ... nk we say the node contains symbol F and arguments n1,n2,...,

nk.

- There is a distinguished node in the graph which is the root of the graph.

In standard graph theory, a Lean graph is a form of directed graph in which each node is labelled

with a symbol, and its set of out-arcs is given an ordering. In Lean nodes are denoted by their

names, i.e. their nodeids. The canonical form defined in section 3 can be regarded as a tabulation of

the contents function. We will explain the semantics of Lean using this canonical form.

4.2 The initial graph.

The initial graph is not specified in a program. It always takes the following form:

@DataRoot: Graph @StartNode @GlobId1 @GlobId2 ... @GlobIdm,

@StartNode: Start,
@GlobId1: Initial,
@GlobId2: Initial,

...
@GlobIdm: Initial;

The root of the initial graph contains the nodeid of the start node which initially contains the symbol

Start. The root node will always contain the root of the graph to be rewritten. Furthermore the root

node contains all global nodeids addressed in the Lean rules. The corresponding nodes are initialised

with the symbol Initial.

4.3 Operational semantics for rewriting.

Let G be a Lean graph, and R the set of rewrite rules. A reduction option, or redop, of G is a

triple T which consists of a redex g, a rule r and a match μ. The match μ is a mapping from the

nodes of the redex pattern p to the nodes of the graph G such that for every node x of p, if Cp(x) = s
x1 x2 ... xn then Cg(μ(x)) = s μ(x1) μ(x2) ... μ(xn) . That is, μ preserves node structure. A redop

introduces an available choice for rewriting the graph. A redop that is chosen is called a rewrite of the

graph. The process of performing a rewrite is also called rewriting.

The contractum pattern may contain nodeid variables which are not present in the redex pattern.

These correspond to the identifiers of new nodes to be introduced during rewriting. The mapping μ'

is introduced taking as its domain the set of nodeid variables which only appear in the contractum

pattern. Each of these is mapped to a distinct, new, nodeid which does not appear in G or R.

The domains of μ and μ' are distinct, but every nodeid variable in the contractum pattern is in the

domain of one or the other. In order to compute the result of a rewrite one applies the mapping μ"

formed by combining μ and μ', to the contractum pattern resulting in the contractum.

 Finally the new graph is constructed by taking the union of the old graph and the contractum,

replacing nodeids in this union (and in the case that global nodeids are mentioned also in the rules) as

specified by the redirections in the rewrite rule of the chosen redop.

Hence rewriting involves a number of steps:

1. A redop is chosen by the rewriting strategy. This gives us a redex in the graph G, a rule which

specifies how to rewrite the redex and a mapping μ.

2. The contractum is constructed in the following way.

- invent new nodeids (not present in G or R) for each variable found only in the contractum

pattern. This mapping is called μ'.

- apply μ", the combination of μ and μ', to the contractum pattern of the rule yielding the

contractum graph C. Note that the contractum pattern, and hence C, may be empty.

3. The new graph G' is constructed by taking the union of G and C.

4. Each redirection in a rule takes the form O := N. In terms of the syntactic representation, this is

performed by substituting N for every applied occurrence of O in the graph G' and in the rules R.

The definition of O still remains. The nodeids O and N are determined by applying μ" to the left-

hand-side and the right-hand-side of the redirection. All redirections specified in the rule are done

in parallel. This results in the new graph G".

The strategy will start with a rewrite rule which matches the symbol Start in the initial graph.

When a computation terminates, its outcome is that part of the final graph which is accessible from

the root. Thus a “garbage collection” is assumed to be performed at the end of the computation only.

A real implementation may optimise this by collecting nodes earlier, if it can predict that so doing will

not affect the final outcome. Which nodes can be collected earlier will in general depend on the the

rule-set of the program and the computation strategy being used. Note that before the computation

has terminated, nodes which are inaccessible from the root may yet have an effect on the final

outcome, so they cannot necessarily be considered garbage. For certain strategies and rule-sets they

will be, but inaccessibility is not in itself the definition of garbage.

Redirection of global nodeids has as a consequence that all references to the original global nodeid

have to be changed. This includes the references to global nodeids made in the rewrite rules. Hence

global nodeids can be viewed as global variables (they have a global scope), where nodeid variables

are local variables (they have a meaning only within a single rule).

4.4 A small example.

We return to our running example with a small initial graph and see how rewriting proceeds. The

rewriting strategy we choose will rewrite until the data graph contains no redexes only examining

nodes accessible from the @Dataroot.

x: Add y z,
y: Zero → x := z | (1)
x: Add y z,
y: Succ a → m: Succ n,

n: Add a z,
x := m ; (2)

 x: Start → m: Add n o,
n: Succ o,
o: Zero,

 x := m ; (3)

 Initially we have the following graph:

@DataRoot : Graph @StartNode,
@StartNode: Start;

We now follow the rewrite steps.

1. The start node is the only redex matching rule (3). The mapping is trivial: μ(x) = @StartNode and

the redex in the graph is:

@StartNode: Start;

2. Applying μ to the contractum scheme will leave this as it is while x does not appear in it. For all

variables in the scheme we invent new nodeids and map the variables as follows: μ'(m) = @A, μ'(n)

= @B, μ'(o) = @C, μ'(p) = @C. The contractum can now be constructed:

@A: Add @B @C,
@B: Succ @C,
@C: Zero;

3. The union of C and G is G':

@DataRoot : Graph @StartNode,
@StartNode: Start,
@A: Add @B @C,
@B: Succ @C,
@C: Zero;

4. We have to redirect μ"(x) = @StartNode to μ"(m) = @A. All applied occurrences of @StartNode

will be replaced by occurrences to @A. The graph G" after rewriting is now:

@DataRoot : Graph @A,
@StartNode: Start,
@A: Add @B @C,

@B: Succ @C,
@C: Zero;

This completes one rewrite. The start node will not be examined by the strategy anymore. Therefore

it can be considered as garbage and it will be thrown away. The strategy will not stop yet because the

graph still contains a redex accessible from the @DataRoot.

1. The strategy will choose the only redop. It matches rule 2: μ(x) = @A, μ(y) = @B, μ(z) = @C, μ(a)

= @C;

2. Invent new nodeids and map the variables as follows: μ'(m) = @D, μ'(n) = @E. The contractum

can now be constructed:

@D: Succ @E,
@E: Add @C @C;

3. The union of C and G is G':

@DataRoot: Graph @A,
@A: Add @B @C,
@B: Succ @C,
@C: Zero,
@D: Succ @E,
@E: Add @C @C;

4. We have to redirect μ"(x) = @A to μ"(m) = @D. The graph G" after rewriting and removing

garbage is:

@DataRoot: Graph @D,
@C: Zero,
@D: Succ @E,
@E: Add @C @C;

It is now clear how this process may continue: @E is a redex and it matches rule 1: μ(x) = @E, μ(y) =

@C, μ(z) = @C. The strategy chooses this redop, there is no new contractum graph but just a single

redirection which takes μ"(x) = @E to μ"(z) = @C yielding the expected normal form:

@DataRoot: Graph @D,
@C: Zero,
@D: Succ @C;

5. Some Lean programs.

5.1 Merging lists.

The following Lean rules can merge two ordered lists of integers (without duplicated elements)

into a single ordered list (without duplicated elements).

Merge Nil Nil → Nil |
Merge f:Cons Nil → f |
Merge Nil s:Cons → s |
Merge f:(Cons a b)

s:(Cons c d) → IF (<I a c)
 (Cons a (Merge b s))
 (IF (=I a c)
 (Merge f d)
 (Cons c (Merge f d))) ;

<I, =I and IF are predefined delta rules (see appendix B) with the obvious semantics. Note that the

right-hand-side of the last rule uses an application of the argument as a whole as well as its

decomposition.

5.2 Higher order functions, currying.

In this example we show how higher-order functions are treated in Lean, by giving the familiar

definition of the function Map.

Map f Nil → Nil | (1)
Map f (Cons a b) → Cons (Ap f a) (Map f

b) ; (2)
Ap (*I a) b → * I a b
; (3)
Start → Map (*I 2) (Cons 3 (Cons 4 Nil)) ; (4)

This can be rewritten, for example, in the following way:

Start → (4)
Map (*I 2) (Cons 3 (Cons 4 Nil)) → (2)
Cons (Ap @L 3) (Map @L (Cons 4 Nil)), @L:*I 2 → (3)
Cons (*I 2 3) (Map @L (Cons 4 Nil)), @L:*I 2 → (*I)
Cons 6 (Map @L (Cons 4 Nil)), @L:*I 2 → (2)
Cons 6 (Cons (Ap @L 4) (Map @L Nil)), @L:*I 2 → (3)
Cons 6 (Cons (*I 2 4) (Map @L Nil)), @L:*I 2 → (*I)
Cons 6 (Cons 8 (Map @L Nil)), @L:*I 2 → (1)
Cons 6 (Cons 8 Nil)

Rule (3) of this example will rewrite (Ap (*I 2) 3) to its uncurried form (*I 2 3) which

makes multiplication possible. One will need such an “uncurry” rule for every function which is used

in a curried manner. Note that during rewriting the node @L:(*I 2) is shared. In this case sharing

only saves space, but not computation.

5.3 Graphs with cycles.

Ham → Cons 1 (Merge (Map (*I 2) Ham) (Map (*I 3) Ham)) ;

A more efficient solution to this problem can be obtained by means of creating cyclic sharing in

the contractum making heavy use of computation already done. The new definition is:

x: Ham → Cons 1 (Merge (Map (*I 2) x) (Map (*I 3) x)) ;

5.4 Copying a tree structure.

This example is very straightforward if the structure of tree nodes is known. Here is a program

which copies a binary tree structure.

Copy (Bin left right) → Bin (Copy left) (Copy right) |
Copy (Leaf x) → x ;

In the present version of Lean it is not possible to copy an arbitrary unknown data structure. We

hope to support more general solutions in a future version of Lean.

5.5 Counting specific rewrites via global assignment.

r: Hd (Cons a b),
@HdCount: Total n:INT → newvalue: Total (++I n),

r := a,
@HdCount := newvalue ;

r: Start → nr: Hd (Cons 1 (Cons 2
Nil)),

initvalue: Total 0,
@HdCount := initvalue ;

We are dealing with disconnected graphs and patterns in this example. The global nodeid

@HdCount in the graph is addressed in a rewrite rule. The integer value in @HdCount will be

increased each time a head of a list is taken. Global nodeids and arbitrary redirections in rewrite rules

make other styles of programming possible involving globals and side effects. Here, the retention of

the canonical notation forces the user to make his text inelegant. Perhaps a useful danger signal, both

to reader and writer?

5.6 Unification using redirection.

This program implements a simple unification algorithm. It operates on representations of two

types, returning “cannot unify” in case of failure. The types are contructed from three basic types I,

B and Var and a composing constructor Com. Different type variables are represented by distinct

nodes. Repeated type variables are represented by shared nodes. References to such a shared node

are taken to be references to the same variable.

root: Start → Unify t1 t2 root,

t1: Com i t1,
t2: Com i (Com i t2),
i: I ;

Unify x x r → x
 o: Unify t1:(Com x y) t2:(Com p q) r → n:
Com (Unify x p r) (Unify y q r),
 o: Unify t1:Var t2 r → o := t2, t1 := t2 |
 o: Unify t1 t2:Var r → o
:= t1, t2 := t1 |

Unify t1:Com t2:I r → n: "cannot unify", r := n |
Unify t1:Com t2:B r → n: "cannot unify", r := n |
Unify t1:I t2:Com r → n: "cannot unify", r := n |
Unify t1:B t2:Com r → n: "cannot unify", r := n |
Unify t1:I t2:B r → n: "cannot unify", r := n |
Unify t1:B t2:I r → n: "cannot unify", r := n ;

5.7 Combinatory logic.

Here we show the Lean equivalent of a well-known TRS using explicit application: combinatory

logic.

Ap (Ap (Ap S a) b) c) → Ap (Ap a c) (Ap b c) |
Ap (Ap K a) b) → a ;

Start → Ap (Ap (Ap S (Ap K K)) (Ap S K)) (Ap (Ap K K)
K)) ;

6. Future work.

Lean is the result of collaboration between two research groups: the Dutch Parallel Reduction

Machine (DPRM) group at Nijmegen and the Declarative Alvey Compiler Target Language (DACTL)

group at UEA. Recognising the current instability of emerging languages and architectures, both

groups wish to identify a computational model appropriate to a new generation rewriting model of

computing. The DPRM group has developed a subset of Lean, called Clean [BRU87], for the

support of purely functional languages. Dactl0 [GLA87] predates Lean, and includes some concepts

not present in Lean. In the future, our groups plan to continue to collaborate on further developing

and refining the computational model and the Lean language based on it. It is intended that later

versions of Lean and Dactl will converge.

Because rewriting strategies have a critical influence on efficiency and outcome, future versions

of Lean aim to offer the programmer explicit control. Strategies should be based mainly on local

information so that concurrent evaluation is not constrained. One approach is to employ fine grain

control annotations so that a rule may nominate which of the nodes it creates should be considered as

roots for future redexes. Dactl0 adopts this approach. Its main advantage is that a simple execution

model is obtained. Another approach is to have a high level specification of strategies and a

formalism for combining strategies during evaluation. This approach holds out promise for global

reasoning [EEK86]. We believe that the way forward should involve a careful combination of these

approaches. At the high level formally specified strategy information should be used, allowing

analysis and transformation of programs using abstract interpretation techniques. Correctness

preserving translation tools would then convert such a program into a form using a small set of well-

designed control primitives suitable for efficient parallel implementation.

Besides strategies, there are several other concepts that may be incorporated in Lean in the near

future. These include: more general typing; annotations to allow compiler optimisations; interfacing

with the outside world; modules and separate compilation facilities; support for unification.

7. Conclusions.

Lean is an experimental language for specifying computations in terms of graph rewriting. It is

very powerful since there are few restrictions on the graph that is transformed and the

transformations that can be performed.

The graph rewriting model underlying Lean is of independent interest as a general model of

computation for parallel architectures. It includes as special cases, more restricted systems, such as

Graph Rewriting Systems which model Term Rewriting Systems. For these GRSs certain

soundness and completeness results are shown in [BAR87].

Lean is designed to be a useful intermediate language for those language implementations which

rely on graph rewriting. Compilers targetted to Lean are being implemented for functional languages.

Interpreters for Lean are under development [JAN87]. A first version of a compiler for a restricted

subset of Lean (Clean) is now running on a Vax750 (Unix) [BRU87]. The performance is

encouraging.

8. Acknowledgements.

We would like to thank Jan-Willem Klop of the Centre for Mathematics and Computer Science in

Amsterdam for his explanations, Tom Brus and Maarten van Leer of the University of Nijmegen and

Nic Holt of ICL for their valuable comments.

9. References.

[BAR87] Barendregt, H.P., Eekelen, M.C.J.D. van, Glauert, J.R.W., Kennaway, J.R., Plasmeijer, M.J., Sleep,
M.R., “Term Graph Reduction”, these proceedings, 1987.

[BRU87] Brus, T., Eekelen, M.C.J.D. van, Leer, M. van, Plasmeijer, M.J., “Clean - A Language for Functional
Graph Rewriting”, University of Nijmegen, Internal Report nr. 95, February 1987.

[EEK86] Eekelen, M.C.J.D. van, Plasmeijer, M.J., “Specification of rewriting strategies in Term Rewriting
Systems”, University of Nijmegen, Workshop on Graph Reduction, Santa Fe, 1986.

[GLA87] Glauert, J.R.W., Kennaway, J.R., Sleep, M.R., “DACTL: A Computational Model and Compiler Target
Language Based on Graph Reduction”, University of East Anglia 1987, Internal Report SYS-C87-03.

[JAN87] Jansen, T, “Interpreting Lean”, Masters thesis, University of Nijmegen, may 1987.
[KLO85] Klop, J.W., “Term rewriting systems”, Notes for the Seminar on Reduction Machines, Ustica 1985, to

appear.
[O’DO85] O’Donnell, M.J., “Equational Logic as a Programming Language”, Foundations of Computing Series, MIT

Press, 1985.
[STA80] Staples, J., “Computation on Graph-like Expressions”, Theor. Comp. Sc. 10, North-Holland, 1980, pp.

171-185.
[VEG84] Vegdahl, Steven R., “A Survey of Proposed Architectures for the Execution of Functional Languages”,

IEEE Transactions on Computers, vol. c-33, no. 12, december 1984.

Appendix A : Syntax

LeanProgram = { RuleGroup }.
RuleGroup = Rule { '|' Rule } ';'.
Rule = Graph '->' Graph [',' Redirections] | Graph '->' Redirections.
Graph = [Nodeid ':'] Node { ',' NodeDefinition }.
NodeDefinition = Nodeid ':' Node .
Node = Symbol { Term }.
Term = Nodeid | [Nodeid ':'] Symbol | [Nodeid ':'] '(' Node ')'.
Redirections = Redirection { ',' Redirection } | Nodeid { ',' Redirection }.
Redirection = Nodeid ':=' Nodeid.

For the canonical form of Lean replace the following rules in the syntax above;

Rule = Graph '->' [Graph ','] Redirections.
Graph = NodeDefinition { ',' NodeDefinition }.
Term = Nodeid.
Redirections = Redirection { ',' Redirection }.

Appendix B : Predefined Delta Rules.

EXP
LOG
LOG10
SQRT
POW
NOT
AND
OR
XOR

=B
<>B

+C
-C

++C
--C

=C
<>C
<C
>C
<=C
>=C

+S
SLICE
INDEX
UPDATE
LENGTH

=S
<>S
<S
>S
<=S
>=S

RTOI
ITOR

CTOI
ITOC

ITOS
RTOS
BTOS
CTOS

ABORT

REAL
REAL
REAL
REAL
(REAL,REAL)
BOOL
(BOOL,BOOL
(BOOL,BOOL)
(BOOL,BOOL)

(BOOL,BOOL)
(BOOL,BOOL)

(CHAR,CHAR)
(CHAR,CHAR)

CHAR
CHAR

(CHAR,CHAR)
(CHAR,CHAR)
(CHAR,CHAR)
(CHAR,CHAR)
(CHAR,CHAR)
(CHAR,CHAR)

(STRING,STRING)
(STRING,INT,INT)
(STRING,INT)
(STRING,INT,CHAR)
STRING

(STRING,STRING)
(STRING,STRING)
(STRING,STRING)
(STRING,STRING)
(STRING,STRING)
(STRING,STRING)

REAL
INT

CHAR
INT

INT
REAL
BOOL
CHAR

STRING

->
->
->
->
->
->
->
->
->

->
->

->
->

->
->

->
->
->
->
->
->

->
->
->
->
->

->
->
->
->
->
->

->
->

->
->

->
->
->
->

->

REAL
REAL
REAL
REAL
REAL
BOOL
BOOL
BOOL
BOOL

BOOL
BOOL

CHAR
CHAR

CHAR
CHAR

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

STRING
STRING
CHAR
STRING
INT

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

INT
REAL

INT
CHAR

STRING
STRING
STRING
STRING

halt

exponent
logarithm base e
logarithm base 10
square root
x^y
invert
and
or
exclusive or

equal
not equal

plus
minus

increment
decrement

equal
not equal
lower than
higher than
lower or equal
higher or equal

concatenate strings
slice string
index string
replace char
length of string

equal
not equal
lower than
higher than
lower or equal
higher or equal

convert REAL to INT
convert INT to REAL

convert CHAR to INT
convert INT to CHAR

transform to string
transform to string
transform to string
transform to string

write string, stop.

Name Type Description

normal IF

read file
read file

plus
minus
times
divide
divide
modulo

bit NOT
bit AND
bit OR
bit XOR
bit rotate left

increment
decrement

equal
not equal
lower than
higher than
lower or equal
higher or equal

random number

plus
minus
times
divide

increment
decrement

equal
not equal
lower than
higher than
lower or equal
higher or equal

sinus
cosinus
arcsinus
arccosinus
arctangens
arctangens x/y

*

[STRING]
[CHAR]

INT
INT
INT
INT
INT
INT

INT
INT
INT
INT
INT

INT
INT

BOOL
BOOL
BOO
BOOL
BOOL
BOOL

INT

REAL
REAL
REAL
REAL

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

REAL
REAL
REAL
REAL
REAL
REAL

->

->
->

->
->
->
->
->
->

->
->
->
->
->

->
->

->
->
->
->
->
->

->

->
->
->
->

->
->
->
->
->
->

->
->
->
->
->
->

(BOOL,*,*)

STRING
STRING

(INT,INT)
(INT,INT)
(INT,INT)
(INT,INT)
(INT,INT)
(INT,INT)

INT
(INT,INT)
(INT,INT)
(INT,INT)
(INT,INT)

INT
INT

(INT,INT)
(INT,INT)
(INT,INT)
(INT,INT)
(INT,INT)
(INT,INT)

(REAL,REAL)
(REAL,REAL)
(REAL,REAL)
(REAL,REAL)

REAL->REAL
REAL->REAL

(REAL,REAL)
(REAL,REAL)
(REAL,REAL)
(REAL,REAL)
(REAL,REAL)
(REAL,REAL)

REAL
REAL
REAL
REAL
REAL
(REAL,REAL)

IF

READLINES
READCHARS

+I
-I
* I
/ I
DIV
MOD

NOT%
AND%
OR%
XOR%
ROTL%

++I
--I

=I
<>I
<I
>I
<=I
>=I

RANDOM

+R
-R
*R
/R

++R
--R

=R
<>R
<R
>R
<=R
>=R

SIN
COS
ASIN
ACOS
ATAN
ATAN2

Name Type Description

