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1. INTRODUCTION.

Let Hn denote hyperbolic space of dimension n, and let S be an index set for a

finite collection of open half spaces H+
s in Hn bounded by codimension one hyperplanes

Hs. We assume that for all distinct s, t ∈ S either Hs ∩ Ht is not empty and the

(interior) dihedral angle of H+
s ∩ H+

t along Hs ∩ Ht has size π
mst

for certain integers

mst = mts ≥ 2, or Hs ∩Ht is empty while H+
s ∩H+

t is not empty. In the latter case we

put mst = mts = ∞ and we also put mss = 1. Under these assumptions the intersection

C =
⋂

s H+
s is not empty, and its closure D is called a hyperbolic Coxeter polytope.

By abuse of notation let s ∈ S also denote the reflection of Hn in the hyperplane

Hs. Now the group W of motions of Hn generated by the reflections s ∈ S is discrete,

and D is a strict fundamental domain for the action of W on Hn. Moreover (W, S)

is a Coxeter group with Coxeter matrix M = (mst), i.e. W has a presentation with

generators s ∈ S and relations (st)ms,t = 1 for s, t ∈ S. Let ℓ(w) denote the length of

w ∈ W with respect to the generating set S, and let PW (t) ∈ Z[[t]] be the Poincaré

series of W defined by PW (t) =
∑

w tℓ(w).

THEOREM: If D has finite hyperbolic volume then we have the relation

1

PW (1)
=

{

(−1)
n
2 2voln(D)

voln(Sn)
if n is even,

0 if n is odd.
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For D compact this can be derived from the work by Serre on the cohomology

of discrete groups [Se]. Here we obtain the result as a consequence of the differential

volume formula of Schläfli. This method was inspired by a recent paper of Kellerhals

where vol2n(D) was computed in case D is a (possibly simply or doubly truncated)

orthoscheme [Ke1, IH].

The above theorem is essentially just a specialization of the Gauss-Bonnet theorem

to the present situation [Ho, Fe, AW, Ch, Sa]. Nevertheless I have found it worthwhile

to write these things up in some details in order to emphasize the elementary nature

of this approach. For partial results on the computation of voln(D) for n odd one is

referred to [Ke2, Ke3] and the references mentioned there.

The author would like to thank E.N. Looijenga and H. de Vries for helpful discus-

sions.

2. THE DIFFERENTIAL VOLUME FORMULA OF SCHLÄFLI AND

SOME CONSEQUENCES.

Let D be a spherical or a hyperbolic simplex of dimension n. The codimension one

faces of D are labeled Ds for s ∈ S an index set of cardinality n+1. The faces of D are

of the form DJ =
⋂

s∈J Ds with J a proper subset of S. Clearly DJ has codimension

|J |. The interior angle of D along DJ is denoted by DJ . Clearly DJ is a simplicial

cone in a euclidean space of dimension |J |, and it also determines a spherical simplex

DJ ∩S|J|−1 of dimension |J | − 1. Note that the simplex D is determined up to motions

by its dihedral angles αJ := vol1(D
J ∩ S1) with J ⊂ S and |J | = 2.

THEOREM (DIFFERENTIAL VOLUME FORMULA OF SCHLÄFLI): For J ⊂ S with |J | =

2 we have
∂

∂αJ
(voln(D)) =

ε

n − 1
voln−2(DJ)

where ε = 1 if D is a spherical simplex and ε = −1 if D is a hyperbolic simplex.

In the spherical case this formula was found by Schläfli in 1852 [Sc]. The three

dimensional hyperbolic version goes back to Lobachevsky [Co]. A nice and simple proof

of this formula (valid in both spherical and hyperbolic case) was given by Kneser [Kn,

BH].

COROLLARY: Renormalize voln(D) by putting Gn(D) =
voln(D)

voln(Sn)
. For J ⊂ S with
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|J | = 2 we have
∂Gn(D)

∂G1(DJ ∩ S1)
= εGn−2(DJ ).

Proof: This is just a reformulation of the differential volume formula using that voln(S
n)

= 2π
n+1

2 Γ
(

n+1
2

)−1
. QED.

THEOREM (REDUCTION FORMULA): With the convention G−1(·) = 1 we have

ε
n
2 (1 + (−1)n)Gn(D) =

∑

I$S

(−1)|I|G|I|−1(D
I ∩ S|I|−1).

Proof: By induction on the dimension n of D. The case n = 1 is trivial. In case n = 2

and D is a triangle with angles α, β, γ the equality of the left hand side 2ε
4π

vol2(D) and

the right hand side (1 − 3
2 + 1

2π (α + β + γ)) is a familiar formula. Now suppose n ≥ 3.

Suppose J ⊂ S with |J | = 2. We will check that the derivatives of both sides with

respect to the renormalized dihedral angle G1(D
J ∩ S1) of D along DJ are equal. This

implies that the formula is correct upto an additive constant. Indeed for the left hand

side we get

ε
n
2 (1 + (−1)n)

∂Gn(D)

∂G1(DJ ∩ S1)
= ε

n−2

2 (1 + (−1)n−2)Gn−2(DJ ),

and for the right hand side we get

∑

J⊂I$S

(−1)|I|
∂G|I|−1(D

I ∩ S|I|−1)

∂G1(DJ ∩ S1)
=

∑

K$S\J

(−1)|K|G|K|−1((DJ)K ∩ S|K|−1).

Here we have used that for J ⊂ I $ S we have (DI)J = (DJ )I\J . Hence we arrive at the

reduction formula for the face DJ . It remains to check the constant. In the spherical

case we take D a simplex with all dihedral angles equal to π
2 . Hence Gn(D) = 2−n−1 and

the reduction formula reduces in this case to the correct identity (1 + (−1)n)2−n−1 =
∑n

k=0

(

n+1
k

)

(−1
2 )k. This proves the reduction formula for D a spherical simplex. Taking

a shrinking sequence of spherical simplices it follows that the angle sum on the right

hand side of the reduction formula vanishes for a euclidean simplex D. In turn this also

shows that the constant matches for D a hyperbolic simplex. QED.

For spherical simplices the reduction formula is due to Schläfli. Unaware of Schläfli’s

work the reduction formula was rediscovered by Poincaré with a different and elegant
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proof [Po]. The extension from a spherical to a hyperbolic simplex was made by Hopf

[Ho].

COROLLARY: Suppose D is a convex hyperbolic polytope with finite volume and of

dimension n. Denote by F (D) the collection of faces of D, and for F a face of D of

codimension |F | write DF for the interior angle (in R|F |) of D along F . Then the

following reduction formula holds

2 cos
(nπ

2

)

Gn(D) =
∑

F∈F (D)

(−1)|F |G|F |−1(D
F ∩ S|F |−1).

Proof: If D is unbounded but with finite volume then some vertices of D lie on the

boundary of Hn. At such a cusp like vertex the size of the interior angle of D equals

zero. Hence by continuity we may assume that D is bounded. For D = ∪Di a simplicial

subdivision of D we get

2 cos
(nπ

2

)

Gn(D) =
∑

i

2 cos
(nπ

2

)

Gn(Di)

=
∑

i

∑

I$Si

(−1)|I|G|I|−1(D
I
i ∩ S|I|−1)

=
∑

F

∑

(i,I)∼F

(−1)|I|G|I|−1(D
I
i ∩ S|I|−1)

where F runs over the faces of D, and we write (i, I) ∼ F if the relative interior of Di,I

is contained in the relative interior of F . Since for fixed (i, I) ∼ F the interior angles

DJ
j with Dj,J = Di,I make up an interior angle DF × R|I|−|F | we conclude that

∑

(i,I)∼F

(−1)|I|G|I|−1(D
I
i ∩ S|I|−1) = (−1)|F |G|F |−1(D

F ∩ S|F |−1),

because the euler characteristic of the relative interior of F is equal to (−1)dim(F ). QED.

A direct consequence of this corollary is the Gauss-Bonnet formula for hyperbolic

space forms originally derived by Hopf along these lines.

COROLLARY: For Γ a group acting discretely on H2n with a smooth compact oriented

quotient Γ\H2n the euler characteristic χ(Γ\H2n) of Γ\H2n is given by

χ(Γ\H2n)vol2n(S
2n) = (−1)n2vol2n(Γ\H

2n).
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3. HYPERBOLIC COXETER GROUPS.

Let M = (mst) be a Coxeter matrix, i.e. mss = 1 for all s ∈ S and mst = mts ∈

{2, 3, . . . ,∞} for all s, t ∈ S. Let G = (gst) with gst = −2 cos π
mst

if mst is finite, and if

mst = ∞ let gst = −2cst with cst = cts ≥ 1 an additional parameter. Let V be a real

vector space with basis {αs; s ∈ S}, and equip V with a symmetric bilinear form by

(αs, αt) = gst. For α ∈ V with (α, α) = 2 let rα ∈ GL(V ) be the orthogonal reflection

in the hyperplane perpendicular to α : rα(λ) = λ−(λ, α)α for λ ∈ V . Let (W, S) be the

Coxeter system corresponding to the matrix M . The homomorphism σ : W → GL(V )

defined by σ(s) = rs for s ∈ S (rs is short for rαs
) is the (possibly deformed) geometric

representation. The theory as developed for example in [Hu, Chapter 5] for the ordinary

(i.e. cst = 1 if mst = ∞) geometric representation goes thru verbatim in the present

situation.

Let V ∗ be the dual vector space of V and {ξs; s ∈ S} the basis of V ∗ dual to

{αs; s ∈ S}. Hence (ξs, αt) = δst for all s, t ∈ S where (., .) also denotes the pairing

between V ∗ and V . For J ⊂ S we put

CJ :=

{

∑

s

xsξs; xs = 0 if s ∈ J, xs > 0 if s /∈ J

}

.

Clearly CS = {0} and C := C∅ is an open simplicial cone. The closure D of C admits a

partition D = ∪JCJ and CJ is a face of D of codimension |J |. For w ∈ W and ξ ∈ V ∗

write w(ξ) for σ∗(w)(ξ). The Tits cone

U :=
⋃

w

w(D)

is a convex cone in V ∗. Moreover CI ∩ w(CJ ) is not empty for I, J ⊂ S and w ∈ W if

and only if I = J and w ∈ WJ . Here WJ is the (parabolic) subgroup of W generated

by J .

Let V ′ be the orthocomplement in V ∗ of the kernel K of the symmetric bilinear

form (., .) on V . Clearly V/K inherits a canonical non-degenerate symmetric bilinear

form from V , and since V/K and V ′ are dual vector spaces this form can be transfered

to V ′. By abuse of notation we denote this form again by (., .). For J ⊂ S let GJ denote

the submatrix of G with indices taken from J .
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PROPOSITION: Suppose the matrix G is indecomposable and has smallest eigenvalue

< 0. Let J ⊂ S such that GJ is positive definite. Then there exists a vector ξJ ∈ CJ∩V ′

with (ξJ , ξJ) < 0, and CJ ∩ V ′ is a face of the polyhedral cone D ∩ V ′ of codimension

|J |.

Proof. Let J ⊂ S such that GJ is positive definite. Let 1J denote the matrix with 1 on

the places ss for s /∈ J and 0 elsewhere. For t ∈ R sufficiently large the matrix G + t1J

is positive definite, and let tJ be the infimum of these t. Clearly tJ > 0 and the matrix

G + tJ1J is positive semidefnite with nonzero kernel. By the Perron-Frobenius lemma

[Hu, Section 2.6] the kernel is one dimensional and spanned by a vector xJ with all

coordinates xJ,s > 0 for s ∈ S. Now put

αJ :=
∑

s∈S

xJ,sαs ∈ V, ξJ :=
∑

s/∈J

xJ,sξs ∈ V ∗.

Then we have on the one hand (the brackets denote the bilinear form on V )

(αJ , αs) = 0 for s ∈ J

(αJ , αs) = −tJxJ,s for s /∈ J,

and on the other hand (the brackets denote the pairing between V ∗ and V )

(ξJ , αs) = 0 for s ∈ J

(ξJ , αs) = xJ,s for s /∈ J.

Hence (αJ , α) + (tJξJ , α) = 0 for all α ∈ V . In turn this implies ξJ ∈ V ′ and (ξJ , ξJ) =

−t−1
J (αJ , ξJ) = −t−1

J

∑

s/∈J x2
J,s < 0. Finally the codimension of CJ as face of D and

the codimension of CJ ∩ V ′ as face of D ∩ V ′ is equal, because the intersection CJ ∩ V ′

is transversal (immediate by induction on |J |). QED.

REMARK: Suppose the matrix G is indecomposable and has smallest eigenvalue < 0. If

J ⊂ S such that GJ is positive semidefinite then it may happen that CJ ∩ V ′ is empty.

However it can be shown that there exist a proper subset I of S containing J and a

vector ξI ∈ CI ∩ V ′ with (ξI , ξI) ≤ 0.

DEFINITION: The matrix G is called hyperbolic if G is indecomposable, and the smallest

eigenvalue of G is < 0, and all remaining eigenvalues of G are ≥ 0. The (irreducible)

Coxeter group (W, S) with Coxeter matrix M is called hyperbolic if there exists a

hyperbolic matrix G compatible with M .
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From now on assume that the matrix G is hyperbolic. The set {ξ ∈ V ′; (ξ, ξ) < 0}

consists of two connected components, and the one containing the point ξ∅ is denoted

by V ′
−.

PROPOSITION: The open cone V ′
− is contained in U ∩ V ′.

Proof: Let R = {w(αs); w ∈ W, s ∈ S} be the (normalized) root system in V , and let

R′ ⊂ V ′ be the “restriction” of R to V ′. It is not hard to show (and for this G need not

be hyperbolic) that R′ is a discrete subset of {ξ ∈ V ′; (ξ, ξ) = 2}. In turn this implies

that the reflection hyperplanes Hα = {ξ ∈ V ′; (ξ, α) = 0} for α ∈ R are locally finite on

V ′
−. Now for ξ ∈ V ′ we have the familiar criterium: ξ ∈ U if and only if the segment

[ξ∅, ξ] intersects only finitely many reflection hyperplanes Hα for α ∈ R. Hence V ′
− is

contained in U ∩ V ′. QED.

THEOREM: The intersection CJ∩V ′
− is not empty if and only if the matrix GJ is positive

definite, and in that case CJ ∩ V ′
− is a face of D ∩ V ′

− of codimension |J |.

Proof: The stabilizer of ξ ∈ V ′
− in the Lorentz group O(V ′) = {g ∈ GL(V ′); g preserves

(., .)} is compact, and hence the stabilizer of ξ ∈ V ′
− in W is finite (as the intersection of

a compact with a discrete set). Hence if CJ ∩ V ′
− is not empty then WJ is finite, which

is equivalent with GJ being positive definite. The converse and the remaining part of

the theorem follows from the first proposition of this section. QED.

Now let H = {ξ ∈ V ′
−; (ξ, ξ) = −1} be hyperbolic space. The hyperbolic Coxeter

polytope D∩H is a fundamental domain for the action of the group W on H. Moreover

each action of an irreducible reflection group on hyperbolic space arises in this way.

CONCLUSION: The Coxeter polytope D ∩H is compact if and only if CJ ∩ V ′ is empty

for all J $ S with GJ not positive definite. Also D ∩ H has finite hyperbolic volume if

and only if CJ ∩ V ′ is empty for all J $ S with GJ indefinite.

In some examples it can be cumbersome to check the above conditions. The results of

this section are essentially due to Vinberg, and we refer to the nice survey paper [Vi]

for a discussion of examples.

4. PROOF OF THE THEOREM.

Let (W, S) be an arbitrary Coxeter group, and write PW (t) =
∑

w tℓ(w) for the

Poincaré series of (W, S). The following formula due to Steinberg [St] gives an effective

way of computing PW (t) by induction on |S|.
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PROPOSITION: The Poincaré series PW (t) is a rational function of t satisfying

1

PW (t−1)
=

∑

J⊂S,WJ finite

(−1)|J| 1

PWJ
(t)

.

Proof: For X ⊂ W write PX(t) =
∑

w∈X tℓ(w). If for J ⊂ S we write W J := {w ∈

W ; ℓ(ws) > ℓ(w)∀s ∈ J} for the minimal length representatives for the left cosets of

WJ then PW (t) = PWJ
(t)PW J (t). For J ⊂ S with WJ finite let N(J) be the length of

the longest element w0(J) in WJ . If J(w) := {s ∈ S; ℓ(ws) < ℓ(w)} for w ∈ W then

w ∈ W Jw0(J) for some J ⊂ S with WJ finite precisely when J ⊂ J(w). We claim that

∑

J⊂S,WJ finite

(−1)|J|PW Jw0(J)(t) = 1.

Indeed the contribution of w ∈ W to the sum on the left hand side equals
∑

J⊂J(w)(−1)|J|, which equals 0 unless J(w) is empty. But J(w) is empty precisely

when w = 1 and the contribution becomes 1. Now we have

PW Jw0(J)(t) = tN(J)PW J (t) = tN(J) PW (t)

PWJ
(t)

=
PW (t)

PWJ
(t−1)

,

and the desired formula

∑

J⊂S,WJ finite

(−1)|J| 1

PWJ
(t−1)

=
1

PW (t)

follows. QED.

The theorem of the introduction follows by applying the reduction formula of Sec-

tion 2 to the Coxeter polytope with finite hyperbolic volume. Combining the theorem

of Vinberg of Section 3 with the above formula of Steinberg (evaluated at t = 1) indeed

proves the desired formula.

5. FINAL REMARKS.

Suppose G is a discrete cocompact group of isometries of hyperbolic space Hn. Fix

a generic point x ∈ Hn with trivial stabilizer in G, and put

D = {y ∈ Hn; d(y, x) ≤ d(y, gx)∀g ∈ G}
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with d the hyperbolic distance. The compact convex polytope D is a fundamental

domain for the action of G on Hn, and the set

S = {g ∈ G; g(D) ∩ D has codimension one}

is a finite set of generators for G. Let ℓ = ℓS denote the length function on G with

respect to S. It was shown by Cannon that the growth series

PG,S(t) =
∑

g∈G

tℓ(g)

is the power series around t = 0 of a rational function in t [Ca]. Now it is a natural

question whether the theorem from the introduction remains valid in the present sit-

uation. Although this seems to be quite often the case, there are counterexamples for

dimension n = 2 [Pa, FP]. We refer to the latter paper for a further discussion of this

problem.
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