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Abstract

There is increasing evidence that non-synaptic communication by volume transmission in the flowing CSF plays an
important role in neural mechanisms, especially for extending the duration of behavioral effects. In the present
review, we explore the mechanisms involved in the behavioral and physiological effects of β-endorphin (β-END),
especially those involving the cerebrospinal fluid (CSF), as a message transport system to reach distant brain areas.
The major source of β-END are the pro-opio-melano-cortin (POMC) neurons, located in the arcuate hypothalamic
nucleus (ARH), bordering the 3rd ventricle. In addition, numerous varicose β-END-immunoreactive fibers are situated
close to the ventricular surfaces. In the present paper we surveyed the evidence that volume transmission via the
CSF can be considered as an option for messages to reach remote brain areas. Some of the points discussed in the
present review are: release mechanisms of β-END, independence of peripheral versus central levels, central β-END
migration over considerable distances, behavioral effects of β-END depend on location of ventricular administration,
and abundance of mu and delta opioid receptors in the periventricular regions of the brain.
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Introduction
There is increasing evidence that non-synaptic com-
munication by volume transmission in the flowing CSF
plays an important role in neural mechanisms, espe-
cially for extending the duration of behavioral effects
[1-4]. Beta-Endorphin (β-END) is a neuropeptide, pro-
duced by pro-opio-melanocortin (POMC) neurons as
well as by pituitary cells mainly located in the inter-
mediate lobe [5,6], by cleavage from a larger precursor
molecule, beta-lipotropin. β-END is its C-fragment
(containing the amino acids 61–91) and was character-
ized by Guillemin et al, in 1977 [7,8], in combination
with its sister peptides, α-melanocyte-stimulating hor-
mone (α-MSH), adrenocorticotropic hormone, (ACTH)
and other substances [9-13]. The molecular weight of
β-END is 3465 g/mol.
The behavioral effects of β-END were soon recognized

and vary from prolonged muscular rigidity [14] to
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general arousal [15]. More specifically, β-END was
shown to play a role in several kinds of behavior, like
feeding [16-18], sexual behavior [19,20], learning pro-
cesses [21,22], reward [23,24], pain-regulating mechan-
isms [25-31], as well as in a variety of physiological
functions such as cardiovascular regulation [32,33] and
stress responses [12,34-37].
Interestingly, β-END is produced in the pituitary for

release into the peripheral systemic circulation, and by
hypothalamic POMC neurons for release inside the cen-
tral nervous system (CNS). Since it has been observed
that peripheral administration of β-END does not neces-
sarily induce the same effects as intracerebroventricular
(icv) administration, this suggests the existence of two
functionally different β-END systems, one for the central
effects and one for the peripheral effects. The present re-
view explores the existence of a special central and
brain-directed β-END system and the possibility that the
cerebrospinal fluid (CSF) plays a special role in the
propagation of these brain-directed β-END messages.
The evidence discussed in the present review has led

to the conclusion that CSF-levels of β-END are not a re-
flection of the peripheral levels, but are controlled and
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Figure 1 Diagram showing the opiocortin projections from the
arcuate nucleus of the hypothalamus. The arcuate nucleus (ARH)
contains most β-END cell bodies and is located in the mediobasal
hypothalamus, at both sides of the 3rd ventricle (not shown).
Extensive opiocortin projections arise from the ARH and extend in
rostral, cortical, hypothalamic and caudal brainstem directions. The
most caudal projections extend into the dorsal vagal complex (DVC),
comprising the area postrema, the dorsal vagal nucleus and the
nucleus of the solitary tract (NTS). Limbic regions predominate as
target areas for the ARH projections. In the caudal brainstem, in the
NTS itself, another group of β-END cells has been detected. Their
opiocortin fibers project mainly to brainstem areas as well as down
the spinal cord. A number of brainstem areas, involved in numerous
autonomic functions, receive a double innervation from both the
ARH and the NTS: locus coeruleus (LC), the parabrachial region (PB)
and several raphe nuclei (RN). Abbreviations: NAc: nucleus
accumbens; Olf. Tub: olfactory tubercle; DBB: diagonal band nuclei;
POA: preoptic area; PVH: paraventricular hypothalamic nucleus; SON:
supraoptic hypothalamic nucleus; pv: periventricular thalamus; Pit:
pituitary; VTA: ventral tegmental area.

Veening et al. Fluids and Barriers of the CNS 2012, 9:16 Page 2 of 16
http://www.fluidsbarrierscns.com/content/9/1/16
regulated by separate inputs and by specific mechanisms
that are functionally separate from the pituitary release
mechanisms involved in the plasma levels. This conclu-
sion does not necessarily indicate that central CSF and
peripheral plasma levels of β-END are totally unrelated.
Peripheral β-END may be able to access the CNS from
the periphery via the circumventricular organs (CVO’s)
lacking in a blood–brain barrier (BBB), and the choroid
plexus [38,39]. In addition, the spinal cord seems to be
accessible for entrance of blood born proteins [40] and
for reentrance of proteins circulating in the surrounding
arachnoid space [41-43]. In the other direction, a satur-
able transporter mechanism, P-glycoprotein, from brain
to blood makes it possible that CSF peptides like β-END
can gain access to peripheral systems at the brain capil-
laries [44-46]. These and other efflux mechanisms most
probably serve a modulatory purpose to integrate cen-
tral/behavioral and peripheral responses.
The flowing CSF serves as a medium to transport neu-

ropeptides or other substances to distant receptive brain
areas. This type of transport has been described as long-
distance volume transmission (VT) [1-3,39,47-56]. For a
few neuropeptides, the evidence favoring such a message
function for the CSF has been reviewed in more detail:
for vasopressin, corticotropin releasing hormone (CRH)
[48,49], and for oxytocin (OT) [4]. For other substances,
like melatonin, gonadotropin-releasing hormone as well
as for factors influencing food intake, the evidence is
convincing that substances, released into the ventricular
system at a specific site, exert their effects at a different
brain location, arriving there by moving with the flow of
the CSF [57-66].
On the basis of the evidence presented here, we

propose the following: There are two functionally differ-
ent systems for the release of β-END, one for the periph-
eral effects via the systemic circulation and one directed
to the central nervous system. The latter system uses
synaptic communication and additional volume transport
mechanisms provided by the flowing CSF. It is on the
second part of this hypothesis that our present paper is
focused.

Sources of β-END
POMC neurons in the hypothalamic arcuate nucleus
(ARH)
Numerous immunocytochemical as well as in situ
hybridization studies have confirmed the existence of a
main population of β-END-immunoreactive (IR) neu-
rons in the mediobasal hypothalamic region, most of
them located in the arcuate hypothalamic nucleus
(ARH) [67-73] (Figure 1). These neurons have been
described as pro-opio-melanocortin (POMC) neurons
because in these neurons a large precursor molecule
(POMC) is cleaved into smaller peptides, like ACTH, α-
MSH and β-END [11,71]. At the electron microscope
level, β-END IR processes penetrate the ependymal layer
of the basal hypothalamic ventricular wall as well as the
pia mater overlying the ventral surface of the hypothal-
amus [73]. The axons traverse the sub-ependymal layers
and show many varicosities, local swellings containing
numerous vesicles but without synaptic specializations,
suggesting local non-synaptic release mechanisms
[11,68,73-76]. Also, in Xenopus, β-END neurons have
been described as contacting the CSF directly [77,78].
These contacts make it possible for the hypothalamic β-
END cells to release their contents into either the CSF
of the 3rd ventricle or of the subarachnoid space [79],
bordering the ARH ventrally. Interestingly, many POMC
neurons also participate in an intrinsic local network
resulting in many POMC-POMC synapses inside the
ARH [80]. Such contacts may synchronize the activities
of the POMC neurons to integrate or coordinate as a
functional unit, and this mechanism may regulate the
amount of β-END released into the CSF.
The process of cleaving POMC molecules, followed by

additional processing during axonal transport (see
below), controlled release and extrinsically controlled
levels of receptors (see below), provides the POMC sys-
tem with a high degree of plasticity. We mention a few
aspects: Firstly, while ACTH, β-END and α-MSH are
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fully co-localized in the ARH POMC neurons [69,70,72],
their cellular concentrations are rather different. Sec-
ondly, ACTH and β-END are present in the same se-
cretion granules [81] in about equimolar quantities, but
the amount of α-MSH is at least 4 times higher in the
cell bodies and up to 15 times higher in some terminal
fields [70], suggesting that further processing of these
neuropeptides occurs during axonal transport [70,82].
Therefore, it is improbable that the POMC derivatives
will be secreted in a fixed balance over all trajectories
or terminal fields [83]. In addition, Swanson et al [84-86]
have shown that in paraventricular hypothalamic neu-
rons, the balance between co-localized neuropeptides
is under regulatory control, and can be disturbed by
external factors like manipulation of the pituitary-
adrenal axis or gonadectomy [84,86-88]. Such plastic
fluctuations may lead to considerable variations in
connectivity and to serious disturbances in the effects
of activity in specific neuronal networks. Since similar
changes seem to occur in the β-END projections to
the supraoptic nucleus [89], these mechanisms appear
to work in the POMC system also.
The extrinsic projections of the hypothalamic POMC

neurons, also known as opiocortin projections, have
been mapped extensively [68,76,90-96]. Their trajector-
ies and destinations extend from rostral telencephalic
regions, like the olfactory tubercle and diagonal band
nuclei, to caudal brainstem areas like the ambiguous and
lateral reticular nuclei [11,67,71].
There are a number of aspects of the POMC circuitry

that deserve special attention. There is a prevalence of
POMC projections in brain areas such as the amygdala
(central and medial nuclei), hypothalamus, periventricu-
lar thalamic nuclei and the periaqueductal gray (PAG). In
the hypothalamus the densest innervations are provided
to the parvocvellular, paraventricular, preoptic, periven-
tricular and arcuate nuclei, which are all involved in an-
terior pituitary functions, via the median eminence [70].
The relationship between the paraventricular and supra-
optic hypothalamic nuclei, including their magnocellular
parts, has been studied in detail [89,94,97-101] and indi-
cate possible modulatory effects of ACTH or β-END on
the peripheral release of vasopressin or oxytocin (OT). A
remarkable co-distribution has been recognized between
opiocortin fibers and the corticotrophin-releasing factor
(CRF)-immunoreactive fibers [67,102], suggesting a spe-
cific role of β-END on the effects of activation of the
hypothalamus-pituitary-adrenal (HPA) axis, involving
stress. In addition, the catecholaminergic cells, like nora-
drenergic neurons in the locus coeruleus as well as sero-
tonergic neurons in the pontine raphe nuclei [67,93]
receive a dense POMC innervation which suggests a
regulatory involvement of β-END in a wide variety of
brain functions. The more so as these brainstem regions
receive additional opiocortin fibers from the neurons
located in the lower brainstem (see below).
Studies combining retrograde tracers with POMC

staining techniques have shown that subpopulations of
the POMC neurons project to different destinations
[103]. The β-END innervation of the ependymal and
subependymal layers surrounding the ventricular system
is extremely dense at some locations but varies consider-
ably [67,68,70,73-76,93,95,104]. Despite the common
origin of the POMC-derived neuropeptides, the relative
densities of the ACTH, β-END and α-MSH fibers along
the ventricular walls also varies considerably [70].
POMC neurons in the caudal brainstem
In 1983 an additional group of opiocortin neurons was
described in the caudal brainstem, within the commis-
sural division of the nucleus tractus solitarius (NTS)
[67,105]. These neurons project rostrally towards sev-
eral pontine and medullary regions that also receive
projections from the ARH. Apparently, autonomic
brainstem regions like the parabrachial nucleus and
locus coeruleus are provided with a double opiocortin
innervation originating from both the arcuate nucleus
and the caudal brainstem [106]. Other projections from
this caudal group descend into the spinal cord, via the
(dorso-)lateral funiculus to terminate around the central
canal, and may be involved in the modulation of pain
transmission [107].
Pituitary: the source for peripheral release
In addition to the POMC neurons in the brain, the pi-
tuitary contains large numbers of POMC-producing
cells. These cells are located in the intermediate as well
as in the anterior lobe. Interestingly, however, the pro-
cessing of the large POMC molecule seems to vary in
different parts of the pituitary. In the anterior pituitary
cells, ACTH is one of the main products of the POMC
fragmentation, while in the intermediate lobe β-END and
α-MSH predominate as the main fragments of POMC
processing [11,13,36,108-110]. The paucity of vessels in
the intermediate lobe [111,112] raises questions about
the route used after cellular release, the more so as the
human pituitary does not have a distinct pars intermedia,
which is present in the whale, elephant and several other
mammals [113]. Accordingly, only very low concentra-
tions of α-MSH can be detected in the adult human pitu-
itary gland [113,114]. These questions, related to the
specific release mechanisms of the pituitary, are, how-
ever, beyond the scope of our present review.
In summary, there are three sources of POMC and its

derivatives including β-END: the ARH, NTS and pituit-
ary. The first two are directed towards the CNS
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including the spinal cord, the last one towards the sys-
temic circulation and peripheral organs.

Central and peripheral β-END are regulated
differentially
Peripheral changes in β-END only minimally affect CSF
β-END
Early experiments showed that β-END in brain changed
very little, or not at all, after hypophysectomy, while the
peripheral concentration decreased dramatically and it
was concluded that brain and peripheral β-END were
regulated independently [8,110,115]. To study the differ-
ential regulatory mechanisms in more detail, the relative
concentrations of β-END in CSF and plasma were deter-
mined. The CSF/plasma ratio ranged from 1.5 to 3 in
rodents, [115-118] with an occasional exception [119],
and up to 10 in humans [12,113,115-128], also with an
occasional exception [129]. These variations appeared to
be due to the diversity of methods and experimental
conditions involving stress, pain-related manipulations,
and infections [111,113,116-118,120,129-133]. Another
complicating factor is that β-END levels show diurnal
fluctuations in plasma as well as in the CSF [134,135].
The conclusion is that CSF β-END concentration mostly
exceeds peripheral β-END, which excludes the possibility
that central levels are a passive reflection of peripheral
levels.
The functional correlation between CSF- and periph-

eral β-END is clear. With only one exception [136], all
papers reporting a wide variety of experimental condi-
tions, agree on the existence of complete dissociation
between blood and CSF levels of β-END and on specific
and different central versus peripheral regulatory
mechanisms [116,120-122,128,129,137-140]. All studies
since 1990 have consistently drawn the same conclusion:
an intact BBB prevents the free exchange of β-END be-
tween plasma and CSF. Half-life values of β-END vary
from 2 to 10 min in the peripheral circulation of rat
and rabbit and between 20 and 50 min in the human cir-
culation [115,141,142], while in the CNS, degradation of
β-END hardly occurs at all [141,142]. The age–related
changes throughout human life are also completely dif-
ferent: the peripheral levels show a parabolic peak at the
age of about 50 years, while the CSF shows a steady de-
crease over the successive decades of life, down to less
than 25% of peak at the age of 70+ [122].
Despite the general conclusion about separate central

and peripheral control mechanisms, we have to keep in
mind that the plasma and CSF compartments of β-END
are not completely independent. Early experiments in the
rabbit [115] already showed a steady but slow increase in
CSF concentration after a single intravenous bolus injec-
tion of a radiolabeled marker. Starting after about 30 sec-
onds, the radioactivity levels in the CSF increased up to
20-25% of the periphery after 60–90 minutes [115]. Ap-
parently, peripheral β-END has some limited access to
the CSF, but the delay is considerable. De Kloet et al
[111] have discussed these possible pituitary-brain opio-
cortin transport mechanisms, consisting of vascular
backflow via the terminal branches of the subependymal
plexus [143], or backflow via the CSF and the pericapil-
lary spaces of the median eminence [111] or uptake and
retrograde axonal flow from the pericapillary spaces of
the portal vessels [144]. In addition, membrane transpor-
ters of the organic anion-transporting polypeptide (Oatp)
family may play a role in the transport of opioid peptides
across the BBB and blood-CSF-barrier of the mammalian
brain [145]. Such mechanisms may serve some long-term
modulatory effect but are far too slow to affect changes
in behavioral states, let alone the immediate physiological
reactions to a painful stimulus.

CSF β-END can be manipulated without affecting the
peripheral levels
The strongest evidence that there is a separate central
mechanism for β-END comes from the following experi-
mental manipulations that induced elevated CSF levels
without affecting peripheral concentration: electrical and
chemical stimulation (10 Hz) of the ARH [146-148];
obesity [126] and ischemic attacks and strokes [125];
electroconvulsive shocks [149] and methadone mainten-
ance schedules [150]; learning processes causing rapid
CSF increases [151,152] and low levels of vasopressin
affecting the release as well as the clearance of β-END
from the CSF [116,153,154]. In these experiments in the
rat brain, cisterna magna cannulation was shown to have
differential effects on levels of β-END in plasma and
CSF, which lasted for hours or even days [120].
In conclusion, for the purpose of the present review,

we assume that the effects of peripheral levels of β-
END on the CSF-levels are too limited and too slow to
explain any of the direct brain and behavioral effects of
central β-END. The extracellular pathways involved
have been discussed by Banks and may possibly play a
role in long-term treatment of Alzheimer’s disease or
stroke [155,156].
Summarizing, we conclude that the available data sug-

gest that central β-END effects on the CNS may occur
in three successive stages using different time intervals.
First, in a matter of milliseconds, β-END released from
terminals and varicosities of the β-END-IR fibers may
have immediate action on the neighboring receptive
neuronal elements. Second, β-END, arriving with the
flow of the CSF after seconds or only a few minutes,
may influence a larger number of receptive brain areas
for a longer period of time, partially sustaining the earl-
ier neuronal release effects. Third, elevated peripheral
levels of β-END slowly penetrate the CSF compartment
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and induce after a delay of 30 min or more, some in-
crease in CSF concentration. However, these slow effects
are perhaps modulatory and do not seem to play a role
in the behavioral or pain-suppressing effects of β-END
discussed below.

β-END in the CSF
Short- and long-distance volume transmission (VT)
From the earliest reports, it has been recognized that
POMC-fibers closely surround the ventricular spaces,
traverse the subependymal layers and contain many var-
icosities. These may release their contents by non-
synaptic release or exocytosis, either into the CSF or into
the neighboring extracellular fluid (ECF) where it can in-
fluence receptive neurons locally [4,11,157,158]. This
phenomenon has been denoted volume transmission
(VT) [1-3,50,55,159,160]. It can work at short as well as
long distances, guided by fiber tracts or by the flow of
the CSF. Beta-END released from the ARH is in an ex-
cellent position to use long-distance VT for sending
messages to a variety of brain areas using the caudally-
directed flow of CSF (Figure 2). Beta-END was involved
from the beginning in the development of the concept
of volume transmission including the flow of CSF, as
one of the distribution mechanisms [1-3,51,56,160-166].
Long-distance VT via the CSF has been implicated for a
number of other neuromessengers: vasopressin and
corticotropin-releasing hormone (CRH) [48,49], oxytocin
[4], melatonin and gonadotropin-releasing hormone as
well as for factors influencing food-intake [57-66].
Strategic location of the ARH: The median eminence

of the hypothalamus is open to the portal vessels con-
necting the hypothalamus to the pituitary, without a
BBB-ensheathment, but closed to the CSF. On the other
hand, the ARH is open to the CSF in the third ventricle
and in the subarachnoid space. Along the dorsolateral
Figure 2 Diagram showing the flow of CSF in the volume transmissio
nucleus of the hypothalamus. The additional hindbrain site is located just v
(AQ) to penetrate the mesencephalic periaqueductal gray before reaching
regions are important target areas for the flowing β-END. After leaving the
in the brainstem, hypothalamus and olfactory regions. A considerable part
the olfactory nerves penetrating the cribriform plate. The telencephalon is
yellow, similar to the brainstem structures and the cerebellum is blue. Black
Other symbols: numbers 1–6: circumventricular organs; cc: central canal of
the 3rd ventricles; V3: 3rd ventricle. (The original figure was kindly provided
and ventromedial borders, the ARC is completely sur-
rounded by relatively impenetrable barriers [79,167].
These barriers consist mainly of tanycyte processes [167-
172], which impede the diffusion of neuropeptides from
the ARH into either the medially-located median emi-
nence or the dorsolaterally-adjoining ventromedial hypo-
thalamic nucleus [79]. This diffusion blockade in medial
and lateral directions, combined with the open passage
towards the third ventricle and the subarachnoid space
[79,167,168,170,171], suggests that an activated group of
POMC neurons in the ARH creates high levels of intra-
nuclear POMC products that can only be released into
the ventricular CSF (dorsomedial direction) or into the
subarachnoid CSF (ventral direction). In addition to be-
havioral effects, opioid receptors are abundantly
expressed in the proliferative zones of the fetal rat brain.
They are likely targets for peptides distributed by CSF
bulk flow and play a key role in modulating the mitotic
activity and growth in neurogenic regions of the CNS
[173]. The POMC neurons in the ARH are readily access-
ible for signals arriving within the CSF, because the flow
along the ARH is slow due to the local absence of multici-
liated cells [79]. On the other hand, β-END easily diffuses
considerable distances in the brain [163]. The existence
of a very long half-life of β-END in the CNS [142,174]
supports the existence of these long-distance effects.
Natural conditions rapidly increase central β-END

levels: There are behavioral conditions under which the
β-END level increases rapidly in the CSF. Many animal
and clinical studies have measured CSF and peripheral
levels of β-END but observations were taken at 15 min-
utes after the experimental challenge [117,175]. In a
limited number of studies, observations did start imme-
diately, providing clear information about the speed of
onset of the β-END reaction and/or effects [176,177].
Learning experiments using passive avoidance induced
n of β-endorphin. The main release site for β-END is the arcuate
entral to no 6. The flow of the CSF (red arrows) traverses the aqueduct
the 4th ventricle (V4), and along the ‘vagal-complex’ region. Both
ventricular system, the flowing CSF may affect superficial brain regions
of the CSF and its contents eventually leaves the cranial cavity along
indicated in pink colours. The diencephalon (‘interbrain’) is coloured
structures show the location of fiber systems which cross the midline.
spinal cord; IVF: interventricular foramen, connecting the lateral and
by L.W. Swanson).
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maximal CSF levels within 5 minutes [152,164]. After a
variety of behavioral procedures, hypothalamic release of
β-END started within a few minutes [151,178]. The
amounts released, 20–40 ng per brain, are 8–10 times
higher than the 2–5 ng needed to induce a behavioral ef-
fect after icv administration [151,178]. The effective dose
after peripheral administration, on the other hand, is
about 140 ng/rat [151], which is not inconsistent since
only about 20% of the peripheral β-END may eventually
reach the CSF by two hours after the injection [115,151].
Artificially raised β-END in the CSF induces rapid

effects: Periventricular brain stimulation for pain relief in
humans, resulted in an increase in β-END levels in the
third ventricle CSF to a maximal value up to 20 times
the basal level, within five minutes [176,177]. After icv
administration of β-END, behavioral effects such as mas-
ticatory jaw movements, started within the first minute
[179]. These rapid effects illustrate the capacity of the β-
END system to release considerable amounts of the
neuropeptide into the CSF, without delay. The following
studies suggest that transport via the CSF is the best pos-
sible explanation for the observed effects. Chromaffin
adrenal medullary cells produce and secrete several po-
tential pain-reducing substances, including opioid pep-
tides [180,181]. Yadid et al. [182] transplanted these cells
into the subarachnoid space of the spinal cord of the rat
and observed a marked reduction in pain behavior and
showed the involvement of the central β-END mechan-
isms and the ARH in the observed analgesia, apparently
via long-distance VT. In an another interesting study
[183], genes were transferred into the meninges sur-
rounding the spinal cord, causing pia mater cells to pro-
duce β-END. Clear analgesic effects were observed in an
inflammatory model of persistent pain, apparently
induced by β-END release into the CSF [183].
Uptake of β-END from the CSF: For our hypothesis

concerning long-distance VT, we also need to establish
that specific ependymal and other cells, partially remote
from the ventricular surface, are able to take up specific
substances from the CSF. Such ependymal and neuronal
elements are abundantly present throughout the ven-
tricular system, including the lateral and fourth ventri-
cles, and have been located in both forebrain (dentate
area of the hippocampus, lateral septum, thalamus and
hypothalamus) and a variety of brainstem areas, espe-
cially the raphe nuclei [51,53,161,184-186]. Retrograde
flow mechanisms take care of the transport of substances
like β-END, from the CSF towards the soma of neurons
remote from the ventricles where they may elicit
responses leading to changes in gene expression [51].

Dendritic release of β-END?
The strategic situation of the POMC system shows strik-
ing similarities to that of the oxytocinergic (OT) system,
which in mammals has two separate nuclei, the paraven-
tricular hypothalamic nucleus bordering and freely
accessing the third ventricle, and the supraoptic hypo-
thalamic nucleus bordering and freely accessing the sub-
arachnoid space, reviewed in [4]. The magnocellular
oxytocinergic neurons release major amounts of OT via
their dendrites [187-189], by inducing neighboring OT
dendrites to join the OT release in the manner of a
chain reaction and leading to a thousand fold increase in
local concentrations of OT [190-192]. This questions
how far dendritic release mechanisms of POMC neurons
inside the ARH also play a role in the observed eleva-
tions of POMC levels in the nucleus as well as in the
CSF. Direct evidence for such a release of β-END has
not yet been obtained. This lack of data may just reflect
the fact that the POMC population is more difficult to
investigate than that of the OT-neurons, because of their
location, density and their smaller size and other cellular
characteristics. Although numerous contacts between,
and the dense POMC innervation of POMC neurons,
suggest that axonal/terminal release is the main mechan-
ism for activating the POMC neurons as a group [92],
some experimental findings make it implausible that
interneuronal POMC-POMC interactions are purely
axonal/terminal. First, it has been shown that dendrites
in the ARH with and without spines may extend several
hundreds of microns or even more than 1 mm in a dor-
sal or rostral direction from the nuclear borders
[172,193]. Far away from the soma, thin fibers, probably
axonal collaterals, arise from these POMC dendrites,
suggesting that dendritic and axonal functions are not
fully separate spatially or functionally [193]. POMC den-
drites extending as far rostrally as the preoptic region
were shown to release endocannabinoids to control local
GABAergic inhibition [193], while in the opposite direc-
tion cannabinoids control the expression of β-END
[194]. As dendrites from POMC-neurons extend and re-
lease substances far outside the anatomical border of the
ARH itself, it seems worthwhile to study dendritic re-
lease mechanisms and their role in the interneuronal
POMC interactions.

Peptide release from POMC neurons: plasticity
In 1982, O’Donohue and Dorsa [113] mentioned that
POMC neurons “secrete at least seven peptides which
can be biotransformed to as many as five active peptides
after release”. As mentioned before (section above), fur-
ther processing of these neuropeptides may occur during
axonal transport [70,82,83]. Fluctuations in functional
plasticity have been discussed (see above) which may
lead to considerable variations in connectivity, including
serious disturbances in activity in specific neuronal net-
works. A similar influence has been described for β-END
projections to the supraoptic nucleus [89]. In this case,
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however, manipulation of the pituitary-adrenal axis did
not have much effect on mediobasal hypothalamic
ACTH levels [195]. In addition, it has been observed
that the amount of POMC, secreted into the CSF
was 10–100 times larger than the amount of ACTH or
β-END [196,197]. Energy homeostasis, with leptin play-
ing a crucial role [198-200], caused great variability in
the balance between POMC and its derivatives, ACTH
or α-MSH, in the ARH, which is richly provided with
leptin receptors. Variations in the CSF-levels turned out
to be more pronounced than in the ARH brain tissue
itself [198]. Apparently, the balance between diverse
POMC products is regulated and hormonal signals con-
trolling food intake are involved in this effect. Finally, a
mutually balancing mechanism has been proposed be-
tween β-END on the one hand and the melanopeptides
(ACTH and α-MSH) on the other, in that continuous
icv infusion stimulates the development of tolerance as
well as increased production of the counterbalancing
peptides in the ARH [201,202].
From these data, we conclude that plasticity in the

peptide cocktail of the POMC neurons does indeed
occur. In addition to tolerance effects, hormonal factors,
so far mainly controlling energy homeostasis, may in-
duce changes in the composition of the peptide cocktail
which may have serious consequences for the different
activation/inhibition patterns in the projection areas of
the opiocortin neurons. Interestingly, such plastic
changes are even region-specific to some extent, because
certain hormonal conditions induced changes in local
hypothalamic β-END levels only, without affecting other
hypothalamic nuclei [203]. In addition, and very import-
antly for the purpose of the present review, the CSF
levels of POMC and its derivatives are not a mere reflec-
tion of the intracellular neuropeptide balance, but are
controlled by specific mechanisms. See Pritchard and
White [200] for an extensive review of the cellular
mechanisms involved.

Functional subgroups of β-END neurons
Interestingly, many POMC neurons participate in a
dense local network resulting in POMC-POMC synapses
inside parts of the ARH [67,68,70,72,73,80,90,92,95]. As
suggested by a similar mechanism for oxytocin reviewed
by Veening et al [4] , such contacts may synchronize the
activities of the POMC neurons forming one or more
functional units, allowing them “to perform coherently
as a robust processing unit” [204], for instance to pro-
vide the considerable amounts of POMC needed to ele-
vate the CSF levels.
Anatomically, the population of POMC neurons does

not form a single functional unit. As mentioned, there
are two groups of neurons, one located in the ARH and
other in the NTS. These sources have widely diverging
projections: the ARH mainly to mesencephalic, hypo-
thalamic, limbic and forebrain areas, and the NTS
mainly to the caudal brainstem and spinal cord
[106,107]. Overlapping projections from both groups
were only observed in a number of brainstem areas, like
locus coeruleus and parabrachial nucleus, with a dis-
tinctive pattern for both projections in the latter [106].
But even the POMC neurons in and around the ARH

do not seem to be a single homogeneous group either
anatomically or functionally. Retrograde tracer studies
combined with POMC-immunocytochemical staining
are relatively scarce but where available they show that
only a limited portion of the POMC neurons become la-
beled after each tracer injection, with several indications
for a topographical organization of the origins. Such
retrograde double-labeling studies showed that only
about 20% of the POMC neurons project to the preoptic
area [101,103]. Labeled neurons were bilaterally distribu-
ted throughout the rostrocaudal extent of the ARH, with
a peak at the middle levels [101], roughly coinciding
with subgroup 1 described in [68]. After more dorsal
preoptic injections, the pattern of labeled POMC-
neurons tended to shift to the lateral parts of the ARH
[101]. Chronwall [205] observed a similar distribution
after preoptic injections, without rostrocaudal differenti-
ation, but ARH neurons projecting into the PAG were
observed more dorsolaterally, with only a small percent-
age of neurons projecting to both brain areas. Yoshida
and Taniguchi [96] demonstrated that most of the PAG-
projecting neurons were concentrated in the rostral
three-fifths of the ARH, about 20% of them containing
β-END. Sawchenko et al. [94] showed that about 600
basomedial hypothalamic neurons could be stained for
ACTH, and about 40% of them, mostly in the ventral
part of the ARH, projected to the paraventricular hypo-
thalamic nucleus. More recently, Douglas et al. [89]
found that in the rat, the number of POMC-producing
neurons in the ARH increases considerably during preg-
nancy, especially caudally, whereas the retrogradely-
labeled ARH neurons projecting to the supraoptic nu-
cleus, contained about 20% β-END. All of these tracer
experiments suggest that each of the projections arises
from a limited number of β-END neurons, and add-
itional quantitative experiments are required to elucidate
this aspect.
Estrogen receptivity is another factor differentiating be-

tween 4-20% of the β-END neurons from the majority of
the neuronal population [206-208]. These neurons have
been observed equally dispersed over the total β-END
population and their number may vary upward or down-
ward by about 50% after manipulation of estrogen levels
[207,209]. It was known already that the distribution pat-
tern of β-END-fibers in the medial part of the medial
preoptic nucleus show sexually dimorphic differences
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[210] while castration of photostimulated male hamsters
induces >50% increase in β-END levels in the mediobasal
hypothalamus [203].
In summary, it is clear that β-END neurons ‘never

walk alone’, anatomically and functionally, but operate in
subgroups distributed over different regions of the ARH.
Projections to specific brain regions may arise from dif-
ferent subgroups of β-END neurons, since there are
multiple indications for functional differentiation, e.g. es-
trogen receptivity, as well as topographical organization
in the distribution of the fibers originating from different
parts of the ARH. Additional experiments, combining
various retrograde tracers with immunological or in situ
hybridization techniques, are required to elucidate the
functional topographical organization of the mediobasal
hypothalamic β-END neurons in more detail.

Summary and questions
From the preceding sections we conclude that β-END
can be released into the CSF in sufficient quantities to
induce physiological and/or behavioral effects. The β-
END neurons are located in the mediobasal hypothal-
amus with, on the one hand, interconnections which
permit them to function as sub groups and on the other
an internal topographical organization, enabling them to
send messages to specific targets. Dendritic release from
POMC neurons in the ARH probably occurs but its con-
tribution relative to axonal release from varicosities and
terminals, remains to be investigated. Production and re-
lease of POMC and its derivatives is under control of ex-
ternal factors such as leptin, for energy homeostasis.
This implies that differential messages can be released
into the CSF and/or neuronal target areas participating
in the involved neuronal circuitry. From this summary,
it is clear that quite a few questions remain to be
answered. What are the input–output relationships
among and within the subgroups of POMC neurons? Do
all POMC subgroups contribute to the release into the
CSF? Which external factors influence the activity and
productivity of POMC neurons? Do all POMC neurons
show the same sensitivity for factors like leptin or
GABA-ergic inhibition via the preoptic region?
While several additional questions can be raised, those

mentioned can all be studied by combinations of readily
available techniques.

Long-Distance VT effects of β-END
Downstream location of β-END receptive brain areas
β-END reacts with at least two types of opioid receptors:
mu and delta [211]. The location of these receptors has
been determined using a variety of methods, ranging
from binding studies to recent mRNA techniques [212-
228]. The distribution patterns are quite different for the
two receptor types and a full discussion would go far
beyond the scope of the present review. Furthermore,
the distribution patterns vary widely between different
species [211,221].
There is a so-called ligand-receptor mismatch, where

the distribution of immuno-labeled terminals is different
to the distribution of the relevant receptors [229,230]. In
fact, the occurrence of this β-END terminal-receptor
mismatch was the starting point for the concept of VT
as developed by Agnati and Fuxe and coworkers [1-
3,50,52-56,159,161,165,166,230]. Some of the important
areas where β-END has an effect will be mentioned.
MacMillan et al [148], studied the destination of β-END
released by low-frequency electrical stimulation of the
ARH. They concluded that “the cerebrospinal fluid is an
important mechanism of the transport of β-END” and
that in this way “β-END will affect brain function in a
widespread or global manner”. The many circumventri-
cular β-END-receptive areas show considerable differen-
tiation [148]. The periaqueductal gray (PAG) and the
vagus complex are among the first brain areas exposed to
elevated levels of β-END released into the CSF. These
brain areas are highly receptive and play a prominent
role in pain-regulation, sexual behavior and food intake,
as discussed below. The distance between these brain
areas and release from the ARH is so small that volume
transmission may take effect almost immediately.
In the human brain, specific endorphinoreceptive neu-

rons have been described in the deeper layers of the cin-
gulate and frontal cortices, which are densely ensheathed
by β-END terminals [231]. These layers are easily access-
ible for β-END in CSF. The analogous areas in the rat
brain were shown previously to be highly opioid recep-
tive [212]. In between the many densely-innervated brain
areas, it is remarkable that large parts of the brain, like
most of the neocortex, striatum and hippocampus, but
also a few specific hypothalamic nuclei like the ventro-
medial hypothalamic nucleus and the mammillary nuclei,
are virtually devoid of any opiocortin innervation [211].
Receptor density alone may not be the best indicator

for the size of the expected effect, behaviorally or meta-
bolically, because of possible indirect effects. Ableitner
and Schulz [179] measured the local cerebral glucose
utilization, as a correlate of neuronal activity, after icv
administration of β-END in the rat. The most marked
increases were observed in the hippocampal formation
despite the lack of opiocortin innervation, especially the
ventral components, and in some closely-related limbic
areas. Thalamic nuclei and the caudate-putamen com-
plex, harboring high densities of mu and delta receptors,
respectively, hardly reacted to the icv-administration.
It has been shown by Herbert and his coworkers

[232-235] that the behavioral effects of local β-END infu-
sion may be very subtle, affecting only some specific be-
havioral transitions. Such local effects can elucidate the
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specific effects of β-END but they easily get hidden when
focusing only at the general behavioral effects of the
neuropeptide. β-END is known to induce euphoria and
to have rewarding and reinforcing properties [236]. Nu-
merous recent reviews have discussed the involvement of
mu receptors in the ‘liking’ and ‘wanting’ aspects of food
reward [237-247]. The functional relationship between
the rewarding aspects of sexual behavior and the involve-
ment of opioids are also supported in a series of papers
and reviews [15,248-259]. The bidirectional interactions
between the opioid systems, including β-END, and the
mesolimbic (and incerto-hypothalamic -dopaminergic
systems form neural substrates for the reward effects of
eating and sexual behavior and can be considered as cru-
cial components of the mechanisms involved in motiv-
ational drives and goal-directed behavior. The
motivational effects of numerous neuroactive substances
reflect their inhibitory or excitatory action on this dopa-
minergic reward system, extending between the ventral
tegmental area and the nucleus accumbens. It has been
stated that “The (induction of a) reward state in males
and females is mediated by opioids and the medial pre-
optic area of the anterior hypothalamus is a crucial site
for sexual reward” [252]. In addition, β-END also plays a
role in addiction because of its mutual modulatory rela-
tionships with the mesolimbic dopaminergic system
[260-265].

Is ‘addressing’ of β-END used for regional specific effects?
The findings discussed in the preceding sections raise
interesting possibilities. If POMC neurons function in
separate groups, then messages may be released into
specific areas of the ventricular system and affect par-
ticular CNS sites responsible for physiological/behavioral
reactions. There is evidence to support this. Experiments
show that when a specific messenger is released into the
ventricular system, the location plays an important role
in the resulting effects. For example, administration of
5-HT into the lateral but not the 3rd ventricle stimulated
female sexual behavior in rats [266] and oxytocin admi-
nistered into the lateral ventricle but not into the 3rd
ventricle, suppressed lordosis [267]. On the other hand,
β-END administered into the lateral ventricle facilitated
lordosis but inhibition occurred after 3rd ventricular ad-
ministration [268]. Similar contrasting effects were
observed after lateral ventricle versus cisternal adminis-
tration of lysine-vasopressin [269,270]. The inhibitory
effects of relaxin on the milk ejection reflex as well as
the haemotensive responses elicited by icv administra-
tion, were completely different depending on the site of
injection [271,272]. These findings show that the site of
application into the CSF is very important. To study the
control of food intake, many additional experiments
were performed, aiming at the relative contribution of
fore- and hindbrain areas, with specific administration of
a wide variety of substances into either the 3rd or the 4th

ventricle, combined with or without occlusion of the
cerebral aqueduct. It is beyond the scope of the present
review to discuss these in detail, but it is clear that fac-
tors flowing in the CSF will reach the 4th ventricle region
and influence brainstem areas like area postrema and the
solitary complex that control food intake. Hypothalamic
and hindbrain melanocortin receptors play an important
role [273,274] and the hindbrain relationships with
the POMC neurons have been extensively explored
[275-279].
In addition to the contributions of the hypothalamo-

medullary projections, however, the flowing CSF deserves
more attention as a medium for sending messages into
the brainstem. ARH-activation induces more than 15-
fold increases in β-END in the CSF [176], and the CSF
transports these products to the effective sites in the
mesencephalic central gray region [146,147,177,280-282].
On the other hand, deep brain stimulation in the peri-
ventricular gray region, in patients suffering chronic pain,
resulted in two- to threefold increases in CSF levels of
β-END in the rostral horn of the lateral ventricle [177].
This raises the question how far this increase is the re-
sult of terminal release of β-END from the mesenceph-
alic opiocortin fibers. It is possible that the electrodes
also activated the β-END cell bodies antidromically, in-
ducing additional dendritic release in the arcuate
nucleus.
Finally, since POMC seems to be released into the 3rd

ventricular CSF in amounts at least 10 times larger than
the peptide derivatives [196,197], it might be rewarding
to study volume transmission via the CSF towards the
dorsal and ventral hindbrain, as an active mechanism to
support neuronal transmission of information. Without
exception, all authors of above cited papers conclude
that different populations of neurons, bearing different
types of receptors, are responsible for the differential
effects after local ventricular administration. Concerning
β-END, having different effects on sexual behavior, food
intake and pain regulating mechanisms, it is clear that
widely divergent brain areas play a major role, from
amygdala and rostral hypothalamic sites to midbrain and
caudal brainstem sites. The quality of messages, deliv-
ered via the CSF, would improve considerably if sub-
stances can be delivered at optimal locations in the
ventricular system. The high density of POMC-fibers,
surrounding the ventricular system, suggests that they
are in an excellent position to do so.
There is no direct experimental evidence available that

β-END can be released by specific opiocortin terminals
at other ventricular sites than the lower part of the 3rd

ventricle, surrounded by the arcuate nucleus. Maybe the
use of larger mammals, like sheep or even cows, is
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necessary to obtain experimental evidence for an addres-
sing system with specific behavioral effects. Using sheep,
has turned out to be very fruitful in studies concerning
release and circulation patterns of melatonin [62,64,66]
and GnRH [57,63,283,284]. The most convincing evi-
dence would be obtained if it could be shown that the
distribution of POMC-concentrations over the different
parts of the ventricular system are not identical under
different conditions, like feeding, sexual behavior, or suf-
fering from a painful stimulus.

The periaqueductal gray and other regions as targets for
the β-END-flow
The population of POMC neurons is apparently able to
produce massive amounts of β-END which is released
into the 3rd ventricle, to reach the cerebral aqueduct via
the CSF flow and to influence the periaqueductal gray
(PAG) region of the mesencephalon [146,148,176]. This
region is closely located to the CSF source, the
ARH, and is traversed by numerous POMC fibers
[11,68,70,73-76,89,90,93,210]. We have discussed previ-
ously that neuronal connections with axonal varicosities
may mutually support each other via short-term synap-
tic transmission and via mid-term (up to a few minutes)
transport of CSF messages for brain areas, especially
those surrounding the ventricular system, as fast axonal
release of β-END from the varicosities in the PAG will
penetrate the intercellular space between the PAG-neu-
rons. Slightly later β-END released in the ventral part
of the 3rd ventricle will arrive with the flow of the CSF
to the PAG. When local levels start to diminish after
the instantaneous release, the elevated CSF levels arriv-
ing from the ARH start diffusing into the surrounding
tissue to sustain and prolong the local behavioral effects
of elevated β-END levels. This enables the target cir-
cuitry to be programmed in a flexible way: a different
cocktail of neuropeptides could induce different func-
tionalities of the circuit, by modifying simultaneously a
relevant set of parameters.

Conclusions
In summary the evidence reviewed here suggests that
the combination of axonal release of β-END in specific
brain areas and its transmission via the CSF vary accord-
ing to brain region. The varicose fibers surrounding the
ventricular system allow short- as well as long-distance
VT. The axonal messages of subgroups of β-END neu-
rons are targeting specific destinations. The CSF-mes-
sages, released from the mediobasal hypothalamus, will
arrive with some delay at the downstream brain areas,
supporting and extending the effects of axonal messages.
We conclude that β-END, released into the flowing

CSF, may have effects on distant brain regions where
they affect a variety of behaviors relating to reward
mechanisms and motivational and mental states, and
lead to stress-reduction and homeostatic balance.
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