Search for resonant $WZ$ production in the $WZ \rightarrow \ell \nu \ell' \ell'$ channel in $\sqrt{s} = 7$ TeV $pp$ collisions with the ATLAS detector

The ATLAS Collaboration

Abstract

A generic search is presented for a heavy particle decaying to $WZ \rightarrow \ell \nu \ell' \ell'$ ($\ell, \ell' = e, \mu$) final states. The data were recorded by the ATLAS detector in $\sqrt{s} = 7$ TeV $pp$ collisions at the Large Hadron Collider and correspond to an integrated luminosity of 1.02 fb$^{-1}$. The transverse mass distribution of the selected $WZ$ candidates is found to be consistent with the Standard Model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a $WZ$ pair.
Search for resonant $WZ$ production in the $WZ \to \ell\ell\ell'$ channel in $\sqrt{s} = 7$ TeV $pp$ collisions with the ATLAS detector

The ATLAS Collaboration
(Dated: June 29, 2012)

A generic search is presented for a heavy particle decaying to $WZ \to \ell\ell\ell'$ ($\ell, \ell' = e, \mu$) final states. The data were recorded by the ATLAS detector in $\sqrt{s} = 7$ TeV $pp$ collisions at the Large Hadron Collider and correspond to an integrated luminosity of 1.02 fb$^{-1}$. The transverse mass distribution of the selected $WZ$ candidates is found to be consistent with the Standard Model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a $WZ$ pair.

PACS numbers: 12.60.Nz, 12.60.Cn

I. INTRODUCTION

The study of electroweak boson pair production is a powerful test of the spontaneously broken gauge symmetry of the Standard Model (SM) and can be used as a probe for new phenomena beyond the SM. Heavy particles that can decay to gauge boson pairs are predicted by many scenarios of new physics, including the Extended Gauge Model (EGM) [1], Extra Dimensions [2, 3], and Technicolor models [4–6].

Two benchmark models, which predict the existence of techni-mesons with narrow widths $m_{\pi^T}$, whose strength is $m_{\pi^T} < m_{\pi_T} + m_W$, where $m_{\pi_T}$, $m_{\pi_T}$ are the masses of the technirho and technipion, respectively [13].

II. THE ATLAS DETECTOR

The ATLAS detector [14] is a general-purpose particle detector with an approximately forward-backward symmetric cylindrical geometry, and almost 4$\pi$ coverage in solid angle [15]. The inner tracking detector (ID) covers the pseudorapidity range of $|\eta| < 2.5$ and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by a calorimeter system covering an $\eta$ range up to 4.9, which provides three-dimensional reconstruction of particle showers. For $|\eta| < 2.5$, the electromagnetic calorimeter is finely segmented and uses lead as absorber and liquid argon (LAr) as active material. The hadronic calorimeter uses steel and scintillating tiles in the barrel region, while the endcaps use LAr as the active material and copper as absorber. The forward calorimeter also uses LAr as active medium with copper and tungsten as absorber. The muon spectrometer (MS) is based on one barrel and two endcap air-core toroids, each consisting of eight superconducting coils arranged symmetrically in azimuth, and surrounding the calorimeter. Three layers of precision tracking stations, consisting of drift tubes and cathode strip chambers, allow a precise muon momentum measurement up to $|\eta| < 2.7$. Resistive plate and thin-gap chambers provide muon triggering capability up to $|\eta| < 2.4$.

III. MONTE CARLO SIMULATION

Monte Carlo (MC) simulated samples are used to model signal and background processes. Events are generated at $\sqrt{s} = 7$ TeV and the detector response simulation [16] is based on the GEANT4 program [17].
The simulation of the signals, both for the EGM W′ and the LSTC ρT production, is based on the leading-order (LO) PYTHIA 18 event generator, with modified leading-order (LO*) 19 parton distribution function (PDF) set MRST2007 LO* 20. By default, PYTHIA also includes aT production, as discussed below. A mass-dependent k-factor is used to rescale the LO* PYTHIA prediction to the next-to-next-to-leading order (NNLO) cross section. The k-factor is computed using the z2prod program 21 in the approximation of zero-width for the resonance; its value decreases with the resonance mass from 1.17 at mW′ = 200 GeV to 1.08 at mW′ = 1 TeV.

The LSTC simulated samples correspond to the following set of parameters: number of technicolors N_{TC} = 4, charges of up-type and down-type technifermions Q_U = 1, Q_D = 0, mixing angle between technipions and electroweak gauge boson longitudinal component sinχ = 1/3. The ρT can decay both to WZ and π1T; if the ρT and π1T masses are degenerate, the branching ratio BR(ρT → WZ) = 100%. Two-dimensional exclusion regions are set on the technicolor production in the (m_{π1T}, m_{π2T}) plane. In addition, for comparison purpose with previous results 13, the relation m_{π1T} = m_{π2T} + m_W is used when extracting one-dimensional limits on the ρT mass, which entails a value of BR(ρT → WZ) = 98%.

The axial-vector partner of the ρT, the aT, also decays to WZ, and depending on its mass, contributes to the WZ production cross section. Two scenarios for the value of the mass of the aT technimeson are considered: m_{aT} = 1.1 \times m_{ρT}, which is the standard value implemented in PYTHIA, and m_{aT} \gg m_{ρT}, which is simulated by removing the aT contribution at the generator level.

The SM WZ production, which is an irreducible background for this search, is modeled by the MC@NLO event generator 22, which incorporates the next-to-leading-order (NLO) matrix elements into the parton shower by interfacing to the HERWIG program 23. The underlying event is modeled with Jimmy 24. Other SM processes that can mimic the same final state include: ZZ → ℓℓ′ℓ′, where one of the leptons is not detected or fails the selection requirements; Z(→ ℓℓ) + γ, where the photon is misidentified as an electron; and processes with two identified leptons and jets, namely Z production in association with jets (Z+jets), tt and single top events, where leptons are present from b- or c-hadron decays or one jet is misidentified as a lepton. SM ZZ events are simulated at LO using HERWIG and W/Z + γ production is modeled with SHERPA 25. The cross sections for these two processes are corrected to the NLO calculation computed with MCFM 26, 27. The W/Z+jets process is modeled at LO using ALPGEN 28, and then corrected to the NNLO cross section computed with FEWZ 29. Single top and tt events are simulated at NLO using MC@NLO. The backgrounds due to the Z+jets, tt and single top processes (called the “tt+jets” background in this paper) are estimated using data-driven methods and the corresponding MC samples mentioned above are used only for cross-checks.

### IV. EVENT SELECTION

The data analyzed are required to have been selected online by a single-lepton (e or μ) trigger with a threshold of 20 GeV on the transverse energy (E_T) in the electron case and 18 GeV on the transverse momentum (p_T) in the muon case. After applying data quality requirements, the total integrated luminosity of the dataset used in this analysis is 1.02 ± 0.04 fb^{-1} 30, 31.

Due to the presence of multiple collisions in a single bunch-crossing, about 6 on average, each event can have multiple reconstructed primary vertices. The vertex having the largest sum of squared transverse momenta of associated tracks is selected as the primary vertex of the hard collision and it is used to compute any reconstructed quantity referred to the primary interaction vertex. To reduce the contamination due to cosmic rays, only events where the primary vertex of the hard collision has at least three associated tracks with p_T > 0.5 GeV are considered.

Electrons are reconstructed from a combination of an ID track and a calorimeter energy cluster, with E_T > 25 GeV and |η| < 1.37 or 1.52 < |η| < 2.47, avoiding the transition region between the barrel and the end-cap electromagnetic calorimeters. Candidate electrons must satisfy the medium 32 quality definition, which is based on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster. To make sure candidate electrons originate from primary interaction vertex, they are also required to have a longitudinal impact parameter (|z_0|) smaller than 10 mm and a transverse impact parameter (d_0) with significance (|d_0|/σ_{d_0}) smaller than 10, both with respect to the selected primary vertex. In addition, the electron is required to be isolated in the calorimeter such that the sum of the E_T of the clusters around the electron within a cone of ∆R = √{Δη^2 + Δϕ^2} = 0.3 is less than 4 GeV. Corrections are applied to account for the energy deposition inside the isolation cone due to electron energy leakage and additional pile-up collisions.

Muon candidates must be reconstructed in both the ID and the MS, and the combined track is required to have p_T > 25 GeV and |η| < 2.4. Good quality is ensured by requiring a minimum number of silicon strip and pixel hits associated to the track. To suppress the contribution of muons coming from hadronic jets, the p_T sum of other tracks with p_T > 1 GeV, within a cone of ∆R = 0.2 around the muon track, is required to be less than 10% of the muon p_T. The muon candidate is required to be compatible with the selected primary vertex, with |z_0| < 10 mm and |d_0|/σ_{d_0} < 10.

The missing transverse momentum, E_T^miss, is reconstructed, in the range |η| < 4.5, as the negative vector sum of calorimeter cell transverse energies, calibrated to the electromagnetic scale 33, to which the transverse momenta of identified muons are added.
The $WZ \rightarrow \ell\ell'\ell'\ell'$ candidate events are selected by requiring two oppositely-charged same-flavor leptons with an invariant mass within 20 GeV of the $Z$ boson mass, plus a third lepton and $E_{T}\text{miss} > 25$ GeV. The transverse mass of the reconstructed $W$ boson, i.e. $m_{T}^{W} = \sqrt{2p_{T}^{\ell}E_{T}\text{miss}(1 - \cos \Delta \phi)}$, where $p_{T}^{\ell}$ is the transverse momentum of the charged lepton and $\Delta \phi$ is the opening angle between the lepton and the $E_{T}\text{miss}$ direction in the plane transverse to the beam, is required to be greater than 15 GeV to suppress multijet background. Selected events are also required to have exactly three charged leptons to suppress the $ZZ \rightarrow \ell\ell\ell\ell$ background. Such selection criteria define the signal region. Four decay channels $ee\nu\nu$, $\mu\nu\mu\mu$, $\mu\nu ee$, and $\mu\nu\mu\mu$ are analyzed separately and then combined. The measurement of the inclusive $e\nu\mu\mu$, $\mu\nu e\nu$, $\mu\nu\mu\mu$, and $\mu\nu\mu\mu$ cross sections has been reported by ATLAS [34]. This analysis goes further by using the reconstructed event properties to probe for new phenomena.

After the final selection, the transverse mass of the $WZ$ candidates ($m_{T}^{WZ}$) is examined for any resonant structure. Here $m_{T}^{WZ}$ is calculated as

$$m_{T}^{WZ} = \sqrt{(E_{T}^{Z} + E_{T}^{W})^2 - (p_{T}^{Z} + p_{T}^{W})^2 - (p_{T}^{\nu} + p_{T}^{\ell})^2}$$

where $E_{T}^{Z}$ and $E_{T}^{W}$ are the scalar sums of the transverse energies of the decay products of the $Z$ and $W$ candidates, respectively. The $E_{T}\text{miss}$ vector is used as the estimator of the transverse momentum of the neutrino arising from the $W$ boson decay.

**V. BACKGROUND ESTIMATION**

The dominant background for the $WZ$ resonance search comes from SM $WZ$ production. Its contribution is estimated using MC simulation. Simulated events are required to pass the event selection criteria and the final yield is normalized to the integrated luminosity. Lepton reconstruction and identification efficiencies, energy scale and resolution in the MC simulation are corrected to the corresponding values measured in the data in order to improve the overall modeling. Other diboson processes such as $ZZ$ and $Z\gamma$ are also estimated using MC simulation.

A data-driven approach is used to estimate the contribution of the $\ell\ell'$+jets background in the signal region. It is estimated by selecting a data sample containing two leptons that pass all the quality criteria requested in the lepton selection, and a lepton-like jet, which is defined as a reconstructed object that satisfies all quality criteria but fails the electron $medium$ quality or the muon isolation requirement. The overall contribution is obtained by scaling each event by a correction factor $f$. The factor $f$ is the ratio of the probability for a jet to satisfy the full lepton identification criteria to the probability to satisfy the lepton-like jet criteria. The factor $f$ is measured both for muons and electrons in a dijet-enriched data sample as a function of the lepton $p_T$, and corrected for the small contribution of leptons coming from $W$ and $Z$ bosons decays using MC simulation.

Data and SM predictions are compared in two dedicated signal-free control regions, selected by requiring the same selection criteria as used for the signal region except requiring $m_{T}^{WZ} < 300$ GeV for the “SM $WZ$ control region”, and requiring $E_{T}\text{miss} < 25$ GeV for the “$\ell\ell'$+jets control region”. The SM $WZ$ control region is used to test the modeling of the irreducible background from non-resonant $WZ$ production, and the $\ell\ell'$+jets control region is used to assess the modeling of the $\ell\ell'$+jets background. Good agreement between data and SM predictions is found in both control regions, as shown by the transverse mass distribution of the $W$ boson in the SM $WZ$ control region and by the invariant mass distribution of the two leptons coming from the $Z$ boson decay in the $\ell\ell'$+jets control region displayed in Fig. 1.

**VI. SYSTEMATIC UNCERTAINTIES**

Different sources of systematic uncertainties have been considered. The first source is related to the lepton trigger, reconstruction and identification efficiencies. These efficiencies are evaluated with tag-and-probe methods using $Z \rightarrow \ell\ell$, $W \rightarrow \ell\nu$ and $J/\psi \rightarrow \ell\ell$ events [35]. Scale factors are used to correct for differences between data and MC simulation. The lepton trigger efficiency scale factors are compatible with unity and a systematic uncertainty of 1% is considered. The lepton reconstruction and identification scale factors are close to one and have a systematic uncertainty of 1.2% for the electrons and 0.5% for muons [35]. The lepton isolation efficiency uncertainties are estimated to be 2% for electrons and 1% for muons.

The second source of uncertainty is related to the lepton energy, momentum and $E_{T}\text{miss}$ reconstruction. Additional smearing is applied to the muon $p_T$ and to the electron cluster energy in the simulation, so that they replicate the $Z \rightarrow \ell\ell$ invariant mass distributions in data. The uncertainty due to the lepton resolution smearing is of the order of 0.1% [35]. The uncertainty on the $E_{T}\text{miss}$ reconstruction receives contributions from different sources: energy deposits due to additional $pp$ collisions which are in-time and out-of-time with respect to the bunch-crossing; energy deposits around clusters associated to reconstructed jets and electrons; energy deposits not associated to any reconstructed objects; and muon momentum uncertainties. The total systematic uncertainty on the dominant SM $WZ$ background estimation due to the $E_{T}\text{miss}$ uncertainties lies between (2–3)%, depending on the channel considered.

The third source of uncertainty is due to the limited knowledge of the theoretical cross sections of SM processes, used both to evaluate $WZ$, $ZZ$ and $Z\gamma$ background contributions, and for subtracting contributions of $W$ and $Z$ leptonic decays from the dijet sample used for the measurement of the correction factor $f$. An un-
uncertainty of 7% is assigned for the $WZ \rightarrow \ell\ell'\gamma$ process, 5% for the $ZZ$ process and 8% for the $Z\gamma$ process \cite{22}, to which the MC statistical uncertainty is added in quadrature.

The fourth source of uncertainty is related to the uncertainty on the $\ell\ell' + \text{jets}$ background estimation. The systematic uncertainty comes mainly from the uncertainty on $f$ due to differences in the kinematics and flavor composition of the QCD dijet events with respect to the $\ell\ell' + \text{jets}$ processes, and differences in event selection criteria for QCD dijet events and $WZ$ candidates. The factor $f$ is around 0.15 for muons and 0.07 for electrons over the full range of $p_T$ and $\eta$, with a relative uncertainty between 5% and 20%. The estimated number of events from the $\ell\ell' + \text{jets}$ background in the signal region using the data-driven method is $6.4\pm1.0\text{(stat.)}\pm3.2\text{(syst.)}$. A MC-based cross-check gives a consistent estimation of $4.5\pm1.1\text{(syst.)}$ events.

The fifth source of uncertainty is related to the estimation of the signal acceptance based on MC simulation. The systematic uncertainty is mainly due to the choice of PDF and is found to be 0.6% when comparing the differences between the predictions of the nominal PDF set MRST2007 LO* and the ones given by MSTW2008 LO \cite{38}, using the standard LHAPDF framework \cite{37}. A cross-check has been done using the NNPDF LO* \cite{39}, CT09MCS, CT09MC1 and CT09MC2 \cite{39} PDF sets, leading to a compatible uncertainty.

Finally the luminosity uncertainty is 3.7\% \cite{39,51}.

\section{RESULTS AND INTERPRETATION}

The numbers of events expected and observed after the final selection are reported in Table \ref{tab:results}. A total of 48 $WZ \rightarrow \ell\ell'\gamma$ candidate events are observed in data, to be compared to the SM prediction of 45.0 \pm 1.0(stat.)\pm4.0(syst.) events. The expected numbers of events for a $W'$ with a mass of 750 GeV and a $\rho_T$ with a mass of 500 GeV are also reported.

The overall acceptance times trigger, reconstruction and selection efficiencies $(A \times \epsilon)$ for EGM $W' \rightarrow WZ \rightarrow \ell\nu\ell'$ and the LSTC $\rho_T \rightarrow WZ \rightarrow \ell\nu\ell'$ events as implemented in PYTHIA is shown in Table \ref{tab:acceptance} for various $WZ$ resonance masses. The value of $A \times \epsilon$ is 6.2\% for $m_{W'} = 200$ GeV and increases to 20.5\% for $m_{W'} = 1$ TeV. The corresponding $A \times \epsilon$ for the LSTC $\rho_T$ is found to be slightly lower than that of the EGM $W'$ due to the fact that the PYTHIA implementation of the $\rho_T$ does not account for the polarizations of vector bosons in their decay. A massive $W'$ boson is expected to decay predominantly to longitudinally polarized $W$ and $Z$ bosons, as is the $\rho_T$ technimeson. While the production and decay with spin correlations is fully implemented in PYTHIA for $W'$, spin correlation information is not considered in the decay of the $W$ and $Z$ bosons in the $\rho_T$ case, hence they each decay isotropically in their respective rest frames. This leads to a softer lepton $p_T$ spectrum and consequently lower $A \times \epsilon$. The interpretation of the data in terms of $\rho_T$ production is performed in two different manners: the first uses the PYTHIA implementation of $\rho_T$ production and decay, and the second assumes that $A \times \epsilon$ for the $\rho_T$ is equal to that of the $W'$.

The transverse mass distribution of the $WZ$ candidates is presented in Fig. \ref{fig:wz_mass} for data and background expectations together with possible contributions from $W'$ and $\rho_T$ using PYTHIA. The $\ell\ell' + \text{jets}$ and $Z\gamma$ background contributions to the $m_T^{WZ}$ distribution are extrapolated using exponential functions to extend over the full $m_T^{WZ}$ signal region. The transverse mass distribution is used to build a log-likelihood ratio (LLR) test statistic \cite{10}, which allows the compatibility of the data with the presence of a signal in addition to the background.
TABLE I: The estimated background yields, the observed number of data events, and the predicted signal yield predicted by 
PYTHIA for a $W'$ boson with a mass of 750 GeV and a $p_T$ technimeson with a mass of 500 GeV, are shown after applying all 
signal selection cuts, for each of the four channels considered and for their combination. For the $p_T$ production, the relation 
$m_{uT} = 1.1 \times m_{pT}$ is used. Where one error is quoted, it includes all sources of systematic uncertainty. Where two errors are 
given, the first comes from the limited statistics of the data and the second includes systematic uncertainties.

<table>
<thead>
<tr>
<th>$WZ$</th>
<th>$\mu\mu\mu$</th>
<th>$e\mu\mu$</th>
<th>$\tau\tau\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WZ$</td>
<td>6.2 ± 0.7</td>
<td>7.6 ± 0.7</td>
<td>9.2 ± 0.8</td>
</tr>
<tr>
<td>$ZZ$</td>
<td>0.25 ± 0.97</td>
<td>0.48 ± 0.14</td>
<td>0.37 ± 0.15</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>1.3 ± 0.7</td>
<td>-</td>
<td>1.0 ± 0.9</td>
</tr>
<tr>
<td>$\ell\ell + jets$</td>
<td>1.1 ± 0.4 ± 0.3</td>
<td>3.0 ± 0.7 ± 0.3</td>
<td>1.0 ± 0.4 ± 0.3</td>
</tr>
<tr>
<td>Overall backgrounds</td>
<td>8.9 ± 0.4 ± 0.4</td>
<td>9.4 ± 0.5 ± 0.3</td>
<td>13.6 ± 0.7 ± 0.3</td>
</tr>
<tr>
<td>Data</td>
<td>9</td>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

$W' \rightarrow WZ$ ($m_{W'} = 750$ GeV) | 0.74 ± 0.07 | 0.82 ± 0.06 | 0.97 ± 0.06 | 1.10 ± 0.08 | 3.64 ± 0.21 |

$\rho_T \rightarrow WZ$ ($m_{\rho_T} = 500$ GeV) | 0.68 ± 0.08 | 0.79 ± 0.08 | 0.97 ± 0.09 | 1.11 ± 0.10 | 3.55 ± 0.24 |

TABLE II: Signal $A \times \epsilon$ for $W' \rightarrow WZ \rightarrow \ell\ell\ell'$ and $p_T \rightarrow WZ \rightarrow \ell\ell\ell'$ samples as implemented in 
PYTHIA, with statistical uncertainties. Missing values for $p_T$ correspond to 
signal samples not considered.

<table>
<thead>
<tr>
<th>Mass [GeV]</th>
<th>$A \times \epsilon$ for $W'$ (%)</th>
<th>$A \times \epsilon$ for $p_T$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>6.2 ± 0.2</td>
<td>5.7 ± 0.2</td>
</tr>
<tr>
<td>250</td>
<td>8.2 ± 0.4</td>
<td>6.1 ± 0.2</td>
</tr>
<tr>
<td>300</td>
<td>10.0 ± 0.5</td>
<td>7.6 ± 0.3</td>
</tr>
<tr>
<td>350</td>
<td>11.6 ± 0.3</td>
<td>9.4 ± 0.3</td>
</tr>
<tr>
<td>400</td>
<td>13.2 ± 0.5</td>
<td>10.8 ± 0.3</td>
</tr>
<tr>
<td>450</td>
<td>14.5 ± 0.6</td>
<td>11.8 ± 0.3</td>
</tr>
<tr>
<td>500</td>
<td>15.9 ± 0.3</td>
<td>12.6 ± 0.3</td>
</tr>
<tr>
<td>550</td>
<td>16.9 ± 0.6</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>17.9 ± 0.6</td>
<td>13.8 ± 0.3</td>
</tr>
<tr>
<td>650</td>
<td>18.7 ± 0.6</td>
<td>-</td>
</tr>
<tr>
<td>700</td>
<td>19.4 ± 0.7</td>
<td>15.6 ± 0.4</td>
</tr>
<tr>
<td>750</td>
<td>19.9 ± 0.3</td>
<td>-</td>
</tr>
<tr>
<td>800</td>
<td>20.3 ± 0.7</td>
<td>16.1 ± 0.4</td>
</tr>
<tr>
<td>850</td>
<td>20.6 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>900</td>
<td>20.6 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>950</td>
<td>20.6 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>20.5 ± 0.3</td>
<td>-</td>
</tr>
</tbody>
</table>

to be assessed, in a modified frequentist approach [11]. Confidence levels for the signal plus background hypot-
thesis, $CL_{s+b}$, and background-only hypothesis, $CL_b$, are computed by integrating the LLR distributions obtained 
from simulated pseudo-experiments using Poisson statistics. The confidence level for the signal hypothesis $CL_s$, 
defined as the ratio $CL_{s+b}/CL_b$, is used to determine the exclusion limits.

The probability that the background fluctuations give 
rise to an excess at least as large as that observed in 
data has been computed as $p$-value = $1 - CL_b$ and is 
reported in Table III for the signal hypothesis of a $W'$ 
particle with mass from 200 GeV to 1 TeV. Since no sta-

![FIG. 2: (color online) Observed and predicted $m_{WZ}^{W'}$ distribution for events with all selection cuts applied. Predictions from three $W'$ samples with masses of 350 GeV, 500 GeV and 750 GeV and a $p_T$ sample with a mass of 500 GeV using PYTHIA are also shown.](image-url)
A search for resonant production of a pair of $WZ$ bosons with three charged leptons in the final state has been performed using 1.02 fb$^{-1}$ of data collected with the ATLAS detector in $pp$ collisions at $\sqrt{s} = 7$ TeV at the Large Hadron Collider. No significant excess of events is observed and upper limits are derived on the production cross section times branching ratio of new physics using the transverse mass of the $WZ$ system. EGM $W$ bosons with masses up to 760 GeV are excluded at 95% CL. Using the mass hierarchy assumption $m_{\rho T} = m_{\pi T} + m_W$, LSTC $\rho_T$ technimesons with masses from 200 GeV up to 467 GeV and 456 GeV are excluded at 95% CL for $m_{\pi T} = 1.1 m_{\rho T}$ and $m_{\pi T} \gg m_{\rho T}$ respectively using the PYTHIA implementation of $\rho_T$ production. Assuming the kinematics of the $W$ production and decay are valid for the $\rho_T$ technimesons, $\rho_T$ with masses from 200 GeV up to 483 GeV and 469 GeV are excluded for $m_{\pi T} = 1.1 m_{\rho T}$ and $m_{\pi T} \gg m_{\rho T}$ respectively.

## VIII. CONCLUSION

A search for resonant production of a pair of $WZ$ bosons with three charged leptons in the final state has been performed using 1.02 fb$^{-1}$ of data collected with the ATLAS detector in $pp$ collisions at $\sqrt{s} = 7$ TeV at the Large Hadron Collider. No significant excess of events is observed and upper limits are derived on the production cross section times branching ratio of new physics using the transverse mass of the $WZ$ system. EGM $W$ bosons with masses up to 760 GeV are excluded at 95% CL. Using the mass hierarchy assumption $m_{\rho T} = m_{\pi T} + m_W$, LSTC $\rho_T$ technimesons with masses from 200 GeV up to 467 GeV and 456 GeV are excluded at 95% CL for $m_{\pi T} = 1.1 m_{\rho T}$ and $m_{\pi T} \gg m_{\rho T}$ respectively using the PYTHIA implementation of $\rho_T$ production. Assuming the kinematics of the $W$ production and decay are valid for the $\rho_T$ technimesons, $\rho_T$ with masses from 200 GeV up to 483 GeV and 469 GeV are excluded for $m_{\pi T} = 1.1 m_{\rho T}$ and $m_{\pi T} \gg m_{\rho T}$ respectively.

## IX. ACKNOWLEDGEMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CPNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
FIG. 3: The observed and expected limits on $\sigma \times BR(W' \rightarrow WZ)$ for $W' \rightarrow WZ$ (a) and $pp \rightarrow \rho_T, a_T \rightarrow WZ$ (b). The theoretical prediction is shown with a systematic uncertainty of 5% due to the choice of PDF and is estimated by comparing the differences between the predictions of the nominal PDF set MRST2007 LO* and the ones given by MSTW2008 LO PDF using the LHAPDF framework. The green and yellow bands represent respectively the 1σ and 2σ uncertainty on the expected limit.

FIG. 4: The 95% CL expected and observed excluded mass regions in the ($m_{\rho_T}, m_{\pi_T}$) plane for $m_{a_T} = 1.1 m_{\rho_T}$ (a) and $m_{a_T} \gg m_{\rho_T}$ (b), above the curves. Two different assumptions about the $\rho_T$ signal $A \times \epsilon$ are used: assuming a $\rho_T$ signal where $A \times \epsilon$ is equal to that of the $W'$ signal and assuming a $\rho_T$ signal where $A \times \epsilon$ is obtained through its implementation in PYTHIA.
ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (R, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2). The transverse energy $E_T$ is defined as $E \sin \theta$, where E is the energy associated to the calorimeter cell or energy cluster. Similarly, $p_T$ is the momentum component transverse to the beam line.
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul;
(c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul
Technical University, Istanbul, Turkey

(a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy

Physikalisches Institut, University of Bonn, Bonn, Germany

Department of Physics, Boston University, Boston MA, United States of America

Department of Physics, Brandeis University, Waltham MA, United States of America

(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, Carleton University, Ottawa ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

(a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington IN, United States of America
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a)INFN Sezione di Lecce; (b)Dipartimento di Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université et CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
(a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

(a)INFN Gruppo Collegato di Udine; (b)ICTP, Trieste; (c)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Deceased

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Also at TRIUMF, Vancouver BC, Canada

Also at Department of Physics, California State University, Fresno CA, United States of America

Also at Novosibirsk State University, Novosibirsk, Russia

Also at Fermilab, Batavia IL, United States of America

Also at Department of Physics, University of Coimbra, Coimbra, Portugal

Also at Università di Napoli Parthenope, Napoli, Italy

Also at Institute of Particle Physics (IPP), Canada

Also at Department of Physics, Middle East Technical University, Ankara, Turkey

Also at Louisiana Tech University, Ruston LA, United States of America

Also at Department of Physics and Astronomy, University College London, London, United Kingdom

Also at Group of Particle Physics, University of Montpellier, Montpellier QC, Canada

Also at Department of Physics, University of Cape Town, Cape Town, South Africa

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

Also at Manhattan College, New York NY, United States of America

Also at School of Physics, Shandong University, Shandong, China

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

Also at Section de Physique, Université de Genève, Geneva, Switzerland

Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

Also at California Institute of Technology, Pasadena CA, United States of America

Also at Institute of Physics, Jagiellonian University, Krakow, Poland

Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France

Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Also at Department of Physics, Oxford University, Oxford, United Kingdom

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Deceased