Search for resonant WZ production in the $WZ \rightarrow \ell\nu\ell\ell'$ channel in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector

The ATLAS Collaboration

Abstract

A generic search is presented for a heavy particle decaying to $WZ \rightarrow \ell\nu\ell\ell'$ ($\ell, \ell' = e, \mu$) final states. The data were recorded by the ATLAS detector in $\sqrt{s} = 7$ TeV pp collisions at the Large Hadron Collider and correspond to an integrated luminosity of 1.02 fb$^{-1}$. The transverse mass distribution of the selected WZ candidates is found to be consistent with the Standard Model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a WZ pair.
Search for resonant WZ production in the $WZ \to \ell\nu\ell'\ell'$ channel in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector

The ATLAS Collaboration

(Dated: June 29, 2012)

A generic search is presented for a heavy particle decaying to $WZ \to \ell\nu\ell'\ell'$ ($\ell, \ell' = e, \mu$) final states. The data were recorded by the ATLAS detector in $\sqrt{s} = 7$ TeV pp collisions at the Large Hadron Collider and correspond to an integrated luminosity of 1.02 fb$^{-1}$. The transverse mass distribution of the selected WZ candidates is found to be consistent with the Standard Model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a WZ pair.

PACS numbers: 12.60.Nz, 12.60.Cn

I. INTRODUCTION

The study of electroweak boson pair production is a powerful test of the spontaneously broken gauge symmetry of the Standard Model (SM) and can be used as a probe for new phenomena beyond the SM. Heavy particles that can decay to gauge boson pairs are predicted by many scenarios of new physics, including the Extended Gauge Model (EGM) $^{[1]}$, Extra Dimensions $^{[2, 3]}$, and Technicolor models $^{[4, 5]}$.

This paper describes the search for a resonant structure in $WZ \to \ell\nu\ell'\ell'$ production above 200 GeV. The dataset used corresponds to an integrated luminosity of 1.02 fb$^{-1}$, collected by the ATLAS detector at the Large Hadron Collider in pp collisions at a center-of-mass energy of $\sqrt{s} = 7$ TeV during the 2011 data taking. Events are selected with three charged leptons (electrons or muons) and large missing transverse momentum (E_T^miss) due to the presence of a neutrino in the final state. Two benchmark models, which predict the existence of narrow heavy particles decaying into WZ, are used to interpret the results: the EGM, through heavy vector boson W' production, and the Low Scale Technicolor model (LSTC) $^{[4]}$, through technimeson production.

The couplings of the EGM W' boson to the SM particles are the same as those of the W boson, except for the coupling to WZ, whose strength is $g_{W'WZ} = g_{WWZ} \times m_W m_Z / m_{W'}^2$, where g_{WWZ} is the SM WWZ coupling strength, and m_W, m_Z and $m_{W'}$ are the masses of the W, Z and W' particles, respectively. Strong bounds exist on $m_{W'}$ from $W' \to t\bar{t}$ searches $^{[6, 10]}$, assuming the Sequential Standard Model (SSM) as the benchmark model, in which the W' coupling to WZ is strongly suppressed. The $W' \to WZ$ search presented in this paper is thus independent of, and complementary to, $W' \to t\bar{t}$ searches. Searches for the EGM W' boson in the WZ channel have been performed at the Tevatron and W' bosons with a mass between 180 GeV and 690 GeV are excluded at 95% confidence level (CL) $^{[11, 12]}$. In the LSTC model, technimesons with narrow widths are predicted which decay to WZ. Examples are the lightest vector technirho ρ_T and its axial-vector partner techni-a_T. A previous search in the WZ decay channel has been performed by the D0 experiment and ρ_T technimesons with a mass between 208 GeV and 408 GeV are excluded at 95% CL under the specific mass hierarchy assumption $m_{\rho_T} < m_{\pi^+} + m_W$, where m_{ρ_T}, m_{π^+} are the masses of the technirho and technipion, respectively $^{[13]}$.

II. THE ATLAS DETECTOR

The ATLAS detector $^{[14]}$ is a general-purpose particle detector with an approximately forward-backward symmetric cylindrical geometry, and almost 4π coverage in solid angle $^{[15]}$. The inner tracking detector (ID) covers the pseudorapidity range of $|\eta| < 2.5$ and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by a calorimeter system covering an η range up to 4.9, which provides three-dimensional reconstruction of particle showers. For $|\eta| < 2.5$, the electromagnetic calorimeter is finely segmented and uses lead as absorber and liquid argon (LAr) as active material. The hadronic calorimeter uses steel and scintillating tiles in the barrel region, while the endcaps use LAr as the active material and copper as absorber. The forward calorimeter also uses LAr as active medium with copper and tungsten as absorber. The muon spectrometer (MS) is based on one barrel and two endcap air-core toroids, each consisting of eight superconducting coils arranged symmetrically in azimuth, and surrounding the calorimeter. Three layers of precision tracking stations, consisting of drift tubes and cathode strip chambers, allow a precise muon momentum measurement up to $|\eta| < 2.7$. Resistive plate and thin-gap chambers provide muon triggering capability up to $|\eta| < 2.4$.

III. MONTE CARLO SIMULATION

Monte Carlo (MC) simulated samples are used to model signal and background processes. Events are generated at $\sqrt{s} = 7$ TeV and the detector response simulation $^{[10]}$ is based on the GEANT4 program $^{[17]}$.
The simulation of the signals, both for the EGM W' and the LSTC ρ_T production, is based on the leading-order (LO) PYTHIA 18 event generator, with modified leading-order (LO*) 19 parton distribution function (PDF) set MRST2007 LO* 20. By default, PYTHIA also includes a_T production, as discussed below. A mass-dependent k-factor is used to rescale the LO* PYTHIA prediction to the next-to-next-to-leading order (NNLO) cross section. The k-factor is computed using the Z2PROD program 21 in the approximation of zero-width for the resonance; its value decreases with the resonance mass from 1.17 at $m_{W'} = 200$ GeV to 1.08 at $m_{W'} = 1$ TeV.

The LSTC simulated samples correspond to the following set of parameters: number of technicolors $N_{TC} = 4$, charges of up-type and down-type technifermions $Q_U = 1$, $Q_D = 0$, mixing angle between technipions and electroweak gauge boson longitudinal component $\sin \chi = 1/3$. The ρ_T can decay both to WZ and $\pi T W$; if the ρ_T and π_T masses are degenerate, the branching ratio $BR(\rho_T \to WZ) = 100\%$. Two-dimensional exclusion regions are set on the technicolor production in the $(m_{\pi_T}$, $m_{\rho_T})$ plane. In addition, for comparison purpose with previous results 13, the relation $m_{\rho_T} = m_{\pi_T} + m_W$ is used when extracting one-dimensional limits on the resonance value; its decrease with the resonance mass from 1.17 at $m_{W'} = 200$ GeV to 1.08 at $m_{W'} = 1$ TeV.

The simulation of the signals, both for the EGM W' and the LSTC ρ_T production, is based on the leading-order (LO) PYTHIA 18 event generator, with modified leading-order (LO*) 19 parton distribution function (PDF) set MRST2007 LO* 20. By default, PYTHIA also includes a_T production, as discussed below. A mass-dependent k-factor is used to rescale the LO* PYTHIA prediction to the next-to-next-to-leading order (NNLO) cross section. The k-factor is computed using the Z2PROD program 21 in the approximation of zero-width for the resonance; its value decreases with the resonance mass from 1.17 at $m_{W'} = 200$ GeV to 1.08 at $m_{W'} = 1$ TeV.

The SM WZ production, which is an irreducible background for this search, is modeled by the MC@NLO event generator 22, which incorporates the next-to-leading-order (NLO) matrix elements into the parton shower by interfacing to the HERWIG program 23. The underlying event is modeled with JIMMY 24. Other SM processes that can mimic the same final state include: $ZZ \to \ell\ell'\ell\ell'$, where one of the leptons is not detected or fails the selection requirements; $Z(\to \ell\ell') + \gamma$, where the photon is misidentified as an electron; and processes with two identified leptons and jets, namely Z production in association with jets (Z+jets), $t\bar{t}$ and single top events, where leptons are present from b- or c-hadron decays or one jet is misidentified as a lepton. SM ZZ events are simulated at LO using HERWIG and $WZ + \gamma$ production is modeled with SHERPA 25. The cross sections for these two processes are corrected to the NLO calculation computed with MCFM 26,27. The W/Z+jets process is modeled at LO using ALPGEN 28, and then corrected to the NNLO cross section computed with FEWZ 29. Single top and $t\bar{t}$ events are simulated at NLO using MC@NLO. The backgrounds due to the Z+jets, $t\bar{t}$ and single top processes (called the “$\ell\ell'$+jets” background in this paper) are estimated using data-driven methods and the corresponding MC samples mentioned above are used only for cross-checks.

IV. EVENT SELECTION

The data analyzed are required to have been selected online by a single-lepton (e or μ) trigger with a threshold of 20 GeV on the transverse energy (E_T) in the electron case and 18 GeV on the transverse momentum (p_T) in the muon case. After applying data quality requirements, the total integrated luminosity of the dataset used in this analysis is 1.02 ± 0.04 fb-1 30,31.

Due to the presence of multiple collisions in a single bunch-crossing, about 6 on average, each event can have multiple reconstructed primary vertices. The vertex having the largest sum of squared transverse momenta of associated tracks is selected as the primary vertex of the hard collision and it is used to compute any reconstructed quantity referred to the primary interaction vertex. To reduce the contamination due to cosmic rays, only events where the primary vertex of the hard collision has at least three associated tracks with $p_T > 0.5$ GeV are considered.

Electrons are reconstructed from a combination of an ID track and a calorimeter energy cluster, with $E_T > 25$ GeV and $|\eta| < 1.37$ or 1.52 < |\eta| < 2.47, avoiding the transition region between the barrel and the end-cap electromagnetic calorimeters. Candidate electrons must satisfy the medium 32 quality definition, which is based on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster. To make sure candidate electrons originate from primary interaction vertex, they are also required to have a longitudinal impact parameter ($|z_0|$) smaller than 10 mm and a transverse impact parameter (d_0) with significance ($|d_0|/\sigma_{d_0}$) smaller than 10, both with respect to the selected primary vertex. In addition, the electron is required to be isolated in the calorimeter such that the sum of the E_T of the clusters around the electron within a cone of $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2} = 0.3$ is less than 4 GeV. Corrections are applied to account for the energy deposition inside the isolation cone due to electron energy leakage and additional pile-up collisions.

Muon candidates must be reconstructed in both the ID and the MS, and the combined track is required to have $p_T > 25$ GeV and $|\eta| < 2.4$. Good quality is ensured by requiring a minimum number of silicon strip and pixel hits associated to the track. To suppress the contribution of muons coming from hadron jets, the p_T sum of other tracks with $p_T > 1$ GeV, within a cone of $\Delta R = 0.2$ around the muon track, is required to be less than 10% of the muon p_T. The muon candidate is required to be compatible with the selected primary vertex, with $|z_0| < 10$ mm and $|d_0|/\sigma_{d_0} < 10$.

The missing transverse momentum, E_T^{miss}, is reconstructed, in the range $|\eta| < 4.5$, as the negative vector sum of calorimeter cell transverse energies, calibrated to the electromagnetic scale 33, to which the transverse momenta of identified muons are added.
The \(WZ \to \ell\ell\ell' \) candidate events are selected by requiring two oppositely-charged same-flavor leptons with an invariant mass within 20 GeV of the \(Z \) boson mass, plus a third lepton and \(E_{\text{miss}}^W > 25 \) GeV. The transverse mass of the reconstructed \(W \) boson, i.e. \(m_T^W = \sqrt{2p_T^\ell E_{\text{miss}}^W(1 - \cos \Delta \phi)} \), where \(p_T^\ell \) is the transverse momentum of the charged lepton and \(\Delta \phi \) is the opening angle between the lepton and the \(E_{\text{miss}}^W \) direction in the plane transverse to the beam, is required to be greater than 15 GeV to suppress multijet background. Selected events are also required to have exactly three charged leptons to suppress the \(ZZ \to \ell\ell\ell' \) background. Selection criteria define the signal region. Four decay channels \(e\nu e\nu, \mu\nu\mu\mu, \mu e\nu\nu \) and \(\mu\mu\mu\mu \) are analyzed separately and then combined. The measurement of the inclusive cross section has previously been reported by ATLAS \([34]\). This analysis goes further by using the reconstructed event properties to probe for new phenomena.

After the final selection, the transverse mass of the \(WZ \) candidates (\(m_{\text{T}}^{WZ} \)) is examined for any resonant structure. Here \(m_{\text{T}}^{WZ} \) is calculated as \(m_{\text{T}}^{WZ} = \sqrt{(E_T^Z + E_T^W)^2 - (p_T^\ell + p_T^W)^2 - (p_T^\nu + p_T^\ell)^2} \), where \(E_T^Z \) and \(E_T^W \) are the scalar sums of the transverse energies of the decay products of the \(Z \) and \(W \) candidates, respectively. The \(E_{\text{miss}}^W \) vector is used as the estimator of the transverse momentum of the neutrino arising from the \(W \) boson decay.

V. BACKGROUND ESTIMATION

The dominant background for the \(WZ \) resonance search comes from SM \(WZ \) production. Its contribution is estimated using MC simulation. Simulated events are required to pass the event selection criteria and the final yield is normalized to the integrated luminosity. Lepton reconstruction and identification efficiencies, energy scale and resolution in the MC simulation are corrected to the corresponding values measured in the data in order to improve the overall modeling. Other diboson processes such as \(ZZ \) and \(Z\gamma \) are also estimated using MC simulation.

A data-driven approach is used to estimate the contribution of the \(\ell\ell'+\text{jets} \) background in the signal region. It is estimated by selecting a data sample containing two leptons that pass all the quality criteria requested in the lepton selection, and a lepton-like jet, which is defined as a reconstructed object that satisfies all quality criteria but fails the electron medium quality or the muon isolation requirement. The overall contribution is obtained by scaling each event by a correction factor \(f \). The factor \(f \) is the ratio of the probability for a jet to satisfy the full lepton identification criteria to the probability to satisfy the lepton-like jet criteria. The factor \(f \) is measured both for muons and electrons in a dijet-enriched data sample as a function of the lepton \(p_T \), and corrected for the small contribution of leptons coming from \(W \) and \(Z \) bosons decays using MC simulation.

Data and SM predictions are compared in two dedicated signal-free control regions, selected by requiring the same selection criteria as used for the signal region except requiring \(m_{\text{T}}^{WZ} < 300 \) GeV for the “SM \(WZ \) control region”, and requiring \(E_{\text{miss}}^W < 25 \) GeV for the “\(\ell\ell'+\text{jets} \) control region”. The SM \(WZ \) control region is used to test the modeling of the irreducible background from non-resonant \(WZ \) production, and the \(\ell\ell'+\text{jets} \) control region is used to assess the modeling of the \(\ell\ell'+\text{jets} \) background. Good agreement between data and SM predictions is found in both control regions, as shown by the transverse mass distribution of the \(W \) boson in the SM \(WZ \) control region and by the invariant mass distribution of the two leptons coming from the \(Z \) boson decay in the \(\ell\ell'+\text{jets} \) control region displayed in Fig. 4.

VI. SYSTEMATIC UNCERTAINTIES

Different sources of systematic uncertainties have been considered. The first source is related to the lepton trigger, reconstruction and identification efficiencies. These efficiencies are evaluated with tag-and-probe methods using \(Z \to \ell\ell, W \to \ell\nu \) and \(J/\psi \to \ell\ell \) events \([35]\). Scale factors are used to correct for differences between data and MC simulation. The lepton trigger efficiency scale factors are compatible with unity and a systematic uncertainty of 1\% is considered. The lepton reconstruction and identification scale factors are close to one and have a systematic uncertainty of 1.2\% for the electrons and 0.5\% for muons \([35]\). The lepton isolation efficiency uncertainties are estimated to be 2\% for electrons and 1\% for muons.

The second source of uncertainty is related to the lepton energy, momentum and \(E_{\text{miss}}^W \) reconstruction. Additional smearing is applied to the muon \(p_T \) and to the electron cluster energy in the simulation, so that they replicate the \(Z \to \ell\ell \) invariant mass distributions in data. The uncertainty due to the lepton resolution smearing is of the order of 0.1\% \([35]\). The uncertainty on the \(E_{\text{miss}}^W \) reconstruction receives contributions from different sources: energy deposits due to additional \(pp \) collisions which are in-time and out-of-time with respect to the bunch-crossing; energy deposits around clusters associated to reconstructed jets and electrons; energy deposits not associated to any reconstructed objects; and muon momentum uncertainties. The total systematic uncertainty on the dominant SM \(WZ \) background estimation due to the \(E_{\text{miss}}^W \) uncertainties lies between (2–3)\%, depending on the channel considered.

The third source of uncertainty is due to the limited knowledge of the theoretical cross sections of SM processes, used both to evaluate \(WZ, ZZ \) and \(Z\gamma \) background contributions, and for subtracting contributions of \(W \) and \(Z \) lepton decays from the dijet sample used for the measurement of the correction factor \(f \). An un-
uncertainty of 7% is assigned for the WZ process, 5% for the ZZ process and 8% for the Zγ process [27], to which the MC statistical uncertainty is added in quadrature.

The fourth source of uncertainty is related to the uncertainty on the \(\ell \ell' + \text{jets} \) background estimation. The systematic uncertainty comes mainly from the uncertainty on \(f \) due to differences in the kinematics and flavor composition of the QCD dijet events with respect to the \(\ell \ell' + \text{jets} \) processes, and differences in event selection criteria for QCD dijet events and WZ candidates. The factor \(f \) is around 0.15 for muons and 0.07 for electrons over the full range of \(p_T \) and \(\eta \), with a relative uncertainty between 5% and 20%. The estimated number of events from the \(\ell \ell' + \text{jets} \) background in the signal region using the data-driven method is 6.4\(\pm 1.0 \) (stat.)\(\pm 3.2 \) (syst.). A MC-based cross-check gives a consistent estimation of 4.3\(\pm 1.1 \) (syst.) events.

The fifth source of uncertainty is related to the estimation of the signal acceptance based on MC simulation. The systematic uncertainty is mainly due to the choice of PDF and is found to be 0.6% when comparing the differences between the predictions of the nominal PDF set MRST2007 LO* and the ones given by MSTW2008 LO [30], using the standard LHAPDF framework [37]. A cross-check has been done using the NNPDF LO* [38], CT09MCS, CT09MC1 and CT09MC2 [39] PDF sets, leading to a compatible uncertainty.

Finally the luminosity uncertainty is 3.7% [30, 51].

VII. RESULTS AND INTERPRETATION

The numbers of events expected and observed after the final selection are reported in Table II. A total of 48 \(WZ \rightarrow \ell \ell' \ell' \ell' \) candidate events are observed in data, to be compared to the SM prediction of 45.0 \(\pm 1.0 \) (stat.)\(\pm 4.0 \) (syst.) events. The expected numbers of events for a \(W' \) with a mass of 750 GeV and a \(\rho_T \) with a mass of 500 GeV are also reported.

The overall acceptance times trigger, reconstruction and selection efficiencies \((A \times \epsilon) \) for EGM \(W' \rightarrow WZ \rightarrow \ell \ell' \ell' \ell' \) and the LSTC \(\rho_T \rightarrow WZ \rightarrow \ell \ell' \ell' \ell' \) events as implemented in PYTHIA is shown in Table II for various WZ resonance masses. The value of \(A \times \epsilon \) is 6.2% for \(m_{W'} = 200 \) GeV and increases to 20.5% for \(m_{W'} = 1 \) TeV. The corresponding \(A \times \epsilon \) for the LSTC \(\rho_T \) is found to be slightly lower than that of the EGM \(W' \) due to the fact that the PYTHIA implementation of the \(\rho_T \rightarrow WZ \) process does not account for the polarizations of vector bosons in their decay. A massive \(W' \) boson is expected to decay predominantly to longitudinally polarized \(W \) and Z bosons, as is the \(\rho_T \) technimeson. While the production and decay with spin correlations is fully implemented in PYTHIA for \(W' \), spin correlation information is not considered in the decay of the \(W \) and \(Z \) bosons in the \(\rho_T \) case, hence they each decay isotropically in their respective rest frames. This leads to a softer lepton \(p_T \) spectrum and consequently lower \(A \times \epsilon \). The interpretation of the data in terms of \(\rho_T \) production is performed in two different manners: the first uses the PYTHIA implementation of \(\rho_T \) production and decay, and the second assumes that \(A \times \epsilon \) for the \(\rho_T \) is equal to that of the \(W' \).

The transverse mass distribution of the WZ candidates is presented in Fig. 2 for data and background expectations together with possible contributions from \(W' \) and \(\rho_T \) using PYTHIA. The \(\ell \ell' + \text{jets} \) and \(Z\gamma \) background contributions to the \(m_T^{WZ} \) distribution are extrapolated using exponential functions to extend over the full \(m_T^{WZ} \) signal region. The transverse mass distribution is used to build a log-likelihood ratio (LLR) test statistic [10], which allows the compatibility of the data with the presence of a signal in addition to the background

![FIG. 1: (color online) Observed and predicted W boson transverse mass \((m_T^W) \) distribution in the SM WZ control region (a) and dilepton invariant mass \((m_\ell^\ell) \) distribution in the \(\ell\ell' + \text{jets} \) control region (b)](image_url)
TABLE I: The estimated background yields, the observed number of data events, and the predicted signal yield predicted by pythia for a W' boson with a mass of 750 GeV and a p_T technimeson with a mass of 500 GeV, are shown after applying all signal selection cuts, for each of the four channels considered and for their combination. For the p_T production, the relation $m_{W'} = 1.1 \times m_{p_T}$ is used. Where one error is quoted, it includes all sources of systematic uncertainty. Where two errors are given, the first comes from the limited statistics of the data and the second includes systematic uncertainties.

<table>
<thead>
<tr>
<th>Channel</th>
<th>$\nu\nuee$</th>
<th>$\mu\nu\mu\mu$</th>
<th>$\nu\nu\mu\mu$</th>
<th>$\mu\nu\mu\mu$</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>WZ</td>
<td>6.2 ± 0.7</td>
<td>7.6 ± 0.7</td>
<td>9.2 ± 0.8</td>
<td>11.6 ± 1.0</td>
<td>34.6 ± 3.1</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.25 ± 0.97</td>
<td>0.48 ± 0.11</td>
<td>0.37 ± 0.15</td>
<td>0.63 ± 0.16</td>
<td>1.7 ± 0.5</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>1.3 ± 0.7</td>
<td>-</td>
<td>1.0 ± 0.9</td>
<td>-</td>
<td>2.3 ± 1.1</td>
</tr>
<tr>
<td>$\ell\ell' + \text{jets}$</td>
<td>1.1 ± 0.4 ± 0.5</td>
<td>3.0 ± 0.7 ± 0.5</td>
<td>1.0 ± 0.4 ± 0.5</td>
<td>6.4 ± 1.0 ± 3.2</td>
<td></td>
</tr>
<tr>
<td>Overall backgrounds</td>
<td>8.9 ± 0.4 ± 0.5</td>
<td>9.4 ± 0.5 ± 0.9</td>
<td>13.6 ± 0.7 ± 0.7</td>
<td>13.2 ± 0.4 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>$W'\rightarrow WZ (m_{W'} = 750 \text{ GeV})$</td>
<td>0.74 ± 0.07</td>
<td>0.82 ± 0.06</td>
<td>0.97 ± 0.06</td>
<td>1.10 ± 0.08</td>
<td>3.64 ± 0.21</td>
</tr>
<tr>
<td>$p_T \rightarrow WZ (m_{p_T} = 500 \text{ GeV})$</td>
<td>0.68 ± 0.08</td>
<td>0.79 ± 0.08</td>
<td>0.97 ± 0.09</td>
<td>1.11 ± 0.10</td>
<td>3.55 ± 0.24</td>
</tr>
</tbody>
</table>

TABLE II: Signal $A \times \epsilon$ for $W' \rightarrow WZ \rightarrow \ell\ell\ell'\ell'$ and $p_T \rightarrow WZ \rightarrow \ell\ell\ell'\ell'$ samples as implemented in pythia, with statistical uncertainties. Missing values for p_T correspond to signal samples not considered.

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>$A \times \epsilon$ for W' (%)</th>
<th>$A \times \epsilon$ for p_T (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>6.2 ± 0.2</td>
<td>5.7 ± 0.2</td>
</tr>
<tr>
<td>250</td>
<td>8.2 ± 0.4</td>
<td>6.1 ± 0.2</td>
</tr>
<tr>
<td>300</td>
<td>10.0 ± 0.5</td>
<td>7.6 ± 0.3</td>
</tr>
<tr>
<td>350</td>
<td>11.6 ± 0.3</td>
<td>9.4 ± 0.3</td>
</tr>
<tr>
<td>400</td>
<td>13.2 ± 0.5</td>
<td>10.8 ± 0.3</td>
</tr>
<tr>
<td>450</td>
<td>14.5 ± 0.6</td>
<td>11.8 ± 0.3</td>
</tr>
<tr>
<td>500</td>
<td>15.9 ± 0.3</td>
<td>12.6 ± 0.3</td>
</tr>
<tr>
<td>550</td>
<td>16.9 ± 0.6</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>17.9 ± 0.6</td>
<td>13.8 ± 0.3</td>
</tr>
<tr>
<td>650</td>
<td>18.7 ± 0.6</td>
<td>-</td>
</tr>
<tr>
<td>700</td>
<td>19.4 ± 0.7</td>
<td>15.6 ± 0.4</td>
</tr>
<tr>
<td>750</td>
<td>19.9 ± 0.3</td>
<td>-</td>
</tr>
<tr>
<td>800</td>
<td>20.3 ± 0.7</td>
<td>16.1 ± 0.4</td>
</tr>
<tr>
<td>850</td>
<td>20.6 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>900</td>
<td>20.6 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>950</td>
<td>20.6 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>20.5 ± 0.3</td>
<td>-</td>
</tr>
</tbody>
</table>

![FIG. 2: (color online) Observed and predicted $m_{WZ}^{W'}$ distribution for events with all selection cuts applied. Predictions from three W' samples with masses of 350 GeV, 500 GeV and 750 GeV and a p_T sample with a mass of 500 GeV using pythia are also shown.](https://example.com/figure2.png)
a Crystal Ball function using RooFit [42]. The obtained Crystal Ball parameters are fitted as a function of the W' mass and the functional value for these parameters is then used to build the m_{WZ} templates for the intermediate W' mass points. The observed (expected) exclusion limit on the W' mass is found to be 760 (776) GeV.

TABLE III: Expected and observed limit on the $\sigma \times BR(W' \rightarrow W Z)$ [pb] for W' production decaying to $W Z$, as a function of the W' mass. The p-values are also reported.

<table>
<thead>
<tr>
<th>W' Mass [GeV]</th>
<th>Expected $\sigma \times BR(W' \rightarrow W Z)$ [pb]</th>
<th>Observed $\sigma \times BR(W' \rightarrow W Z)$ [pb]</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>7.31</td>
<td>7.62</td>
<td>0.43</td>
</tr>
<tr>
<td>250</td>
<td>5.26</td>
<td>6.55</td>
<td>0.34</td>
</tr>
<tr>
<td>300</td>
<td>2.74</td>
<td>3.38</td>
<td>0.28</td>
</tr>
<tr>
<td>350</td>
<td>1.72</td>
<td>2.06</td>
<td>0.25</td>
</tr>
<tr>
<td>400</td>
<td>1.18</td>
<td>1.48</td>
<td>0.25</td>
</tr>
<tr>
<td>450</td>
<td>0.92</td>
<td>1.07</td>
<td>0.23</td>
</tr>
<tr>
<td>500</td>
<td>0.76</td>
<td>0.93</td>
<td>0.21</td>
</tr>
<tr>
<td>550</td>
<td>0.61</td>
<td>0.79</td>
<td>0.19</td>
</tr>
<tr>
<td>600</td>
<td>0.54</td>
<td>0.63</td>
<td>0.26</td>
</tr>
<tr>
<td>650</td>
<td>0.51</td>
<td>0.56</td>
<td>0.33</td>
</tr>
<tr>
<td>700</td>
<td>0.48</td>
<td>0.53</td>
<td>0.34</td>
</tr>
<tr>
<td>750</td>
<td>0.49</td>
<td>0.52</td>
<td>0.34</td>
</tr>
<tr>
<td>800</td>
<td>0.45</td>
<td>0.50</td>
<td>0.37</td>
</tr>
<tr>
<td>850</td>
<td>0.46</td>
<td>0.47</td>
<td>0.38</td>
</tr>
<tr>
<td>900</td>
<td>0.50</td>
<td>0.50</td>
<td>0.39</td>
</tr>
<tr>
<td>950</td>
<td>0.44</td>
<td>0.44</td>
<td>0.40</td>
</tr>
<tr>
<td>1000</td>
<td>0.48</td>
<td>0.46</td>
<td>0.35</td>
</tr>
</tbody>
</table>

The observed (expected) limits on $\sigma \times BR(\rho_T \rightarrow W Z)$ for the ρ_T technimeson are presented in Fig. 3(b) assuming $m_{\rho_T} = 1.1 m_{\rho_T}$ and unpolarized W and Z decays. This corresponds to an observed (expected) limit on the ρ_T mass of 467 (506) GeV. A limit on the ρ_T mass of 456 (482) GeV is obtained if $m_{\rho_T} \gg m_{\rho_T}$. Assuming $A \times \epsilon$ for the ρ_T signal to be equal to that of the W' signal, which is estimated by accounting for predominantly longitudinal W and Z polarization, the observed (expected) limit on the ρ_T mass is 483 (553) GeV for $m_{\rho_T} = 1.1 m_{\rho_T}$, and 469 (507) GeV for $m_{\rho_T} \gg m_{\rho_T}$. Table IV summarizes these limits, which all assume the relation $m_{\rho_T} = m_{\rho_T} + m_W$.

TABLE IV: Observed (expected) limit on the ρ_T mass with two different assumptions about $A \times \epsilon$ for ρ_T and two mass hierarchy assumptions between m_{ρ_T} and m_{ρ_T}.

<table>
<thead>
<tr>
<th>ρ_T mass [GeV]</th>
<th>Expected ρ_T mass [GeV]</th>
<th>Observed ρ_T mass [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\rho_T} = 1.1 m_{\rho_T}$</td>
<td>483 (553)</td>
<td>469 (507)</td>
</tr>
<tr>
<td>$m_{\rho_T} \gg m_{\rho_T}$</td>
<td>467 (506)</td>
<td>456 (482)</td>
</tr>
</tbody>
</table>

Figure 4 shows the 95% CL expected and observed excluded regions in the (m_{ρ_T}, m_{ρ_T}) plane for $m_{\rho_T} = 1.1 m_{\rho_T}$ and $m_{\rho_T} \gg m_{\rho_T}$, respectively. Results are shown under the two assumptions on $A \times \epsilon$ for the ρ_T signal.

VIII. CONCLUSION

A search for resonant production of a pair of WZ bosons with three charged leptons in the final state has been performed using 1.02 fb$^{-1}$ of data collected with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV at the Large Hadron Collider. No significant excess of events is observed and upper limits are derived on the production cross section times branching ratio of new physics using the transverse mass of the $W Z$ system. EGM W bosons with masses up to 760 GeV are excluded at 95% CL. Using the mass hierarchy assumption $m_{\rho_T} = m_{\rho_T} + m_W$, LSTC ρ_T technimesons with masses from 200 GeV up to 467 GeV and 456 GeV are excluded at 95% CL for $m_{\rho_T} = 1.1 m_{\rho_T}$ and $m_{\rho_T} \gg m_{\rho_T}$, respectively using the PYTHIA implementation of ρ_T production. Assuming the kinematics of the W' production and decay are valid for the ρ_T technimeson, ρ_T with masses from 200 GeV up to 483 GeV and 469 GeV are excluded for $m_{\rho_T} = 1.1 m_{\rho_T}$ and $m_{\rho_T} \gg m_{\rho_T}$, respectively.

IX. ACKNOWLEDGEMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNR, DNSTC and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI Sw, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; CFI, Taiwan; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
FIG. 3: The observed and expected limits on $\sigma \times BR(W' \rightarrow WZ)$ for $W' \rightarrow WZ$ [a] and $pp \rightarrow \rho_T, a_T \rightarrow WZ$ [b]. The theoretical prediction is shown with a systematic uncertainty of 5% due to the choice of PDF and is estimated by comparing the differences between the predictions of the nominal PDF set MRST2007 LO* and the ones given by MSTW2008 LO PDF using the LHAPDF framework. The green and yellow bands represent respectively the 1σ and 2σ uncertainty on the expected limit.

FIG. 4: The 95% CL expected and observed excluded mass regions in the (m_{ρ_T}, m_{a_T}) plane for $m_{a_T} = 1.1 m_{\rho_T}$ (a) and $m_{a_T} \gg m_{\rho_T}$ (b), above the curves. Two different assumptions about the ρ_T signal $A \times \epsilon$ are used: assuming a ρ_T signal where $A \times \epsilon$ is equal to that of the W' signal and assuming a ρ_T signal where $A \times \epsilon$ is obtained through its implementation in PYTHIA.

ARXIV:0912.0715 [HEP-EX].

[15] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (R, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as \(\eta = -\ln \tan(\theta/2) \). The transverse energy \(E_T \) is defined as \(E \sin \theta \), where \(E \) is the energy associated to the calorimeter cell or energy cluster. Similarly, \(p_T \) is the momentum component transverse to the beam line.

Department of Physics, Indiana University, Bloomington IN, United States of America
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
(a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCP TM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America