Search for Events with Large Missing Transverse Momentum, Jets, and at Least Two Tau Leptons in 7 TeV Proton-Proton Collision Data with the ATLAS Detector

The ATLAS Collaboration

Abstract

A search for events with large missing transverse momentum, jets, and at least two tau leptons has been performed using 2 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set, where the visible cross section is defined by the product of cross section, branching fraction, detector acceptance and event selection efficiency. A 95% CL lower limit of 32 TeV is set on the gauge-mediated supersymmetry breaking scale Λ independent of $\tan \beta$. These limits provide the most stringent tests to date in a large part of the considered parameter space.
Search for Events with Large Missing Transverse Momentum, Jets, and at Least Two Tau Leptons in 7 TeV Proton-Proton Collision Data with the ATLAS Detector

The ATLAS Collaboration

Abstract

A search for events with large missing transverse momentum, jets, and at least two tau leptons has been performed using 2 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% CL upper limit on the visible cross section is set, where the visible cross section is defined by the product of cross section, branching fraction, detector acceptance and event selection efficiency. A 95% CL lower limit of 32 TeV is set on the gauge-mediated supersymmetry breaking (GMSB) scale Λ independent of $\tan\beta$. These limits provide the most stringent tests to date in a large part of the considered parameter space.

1. Introduction

Supersymmetry (SUSY) \cite{1,2,3} introduces a symmetry between fermions and bosons, resulting in a SUSY partner (sparticle) for each Standard Model (SM) particle with identical mass and quantum numbers except a difference by half a unit of spin. As none of these sparticles have been observed, SUSY must be a broken symmetry if realised in nature. Assuming R-parity conservation \cite{6,7}, sparticles are produced in pairs. These would then decay through cascades involving other sparticles until the lightest SUSY particle (LSP) is produced, which is stable.

Minimal gauge-mediated supersymmetry breaking (GMSB) \cite{8,9,10,11,12} models can be described by six parameters: the SUSY breaking mass scale felt by the low-energy sector (Λ), the messenger mass (M_{mess}), the number of SU(5) messengers (N_5), the ratio of the vacuum expectation values of the two Higgs doublets ($\tan\beta$), the Higgs sector mixing parameter (μ) and the scale factor for the gravitino mass (C_{grav}). In this analysis Λ and $\tan\beta$ are treated as free parameters and the other parameters are fixed to $M_{\text{mess}} = 250$ TeV, $N_5 = 3$, $\mu > 0$ and $C_{\text{grav}} = 1$, similar to other GMSB benchmark points in the literature, e.g. G2a \cite{14} and SPS7 \cite{15}. The C_{grav} parameter determines the lifetime of the next-to-lightest SUSY particle (NLSP). For $C_{\text{grav}} = 1$ the NLSP decays promptly ($c\tau_{\text{NLSP}} < 0.1$ mm). With these parameters, the production of squark and/or gluino pairs is expected to dominate at the present Large Hadron Collider (LHC) energy. These sparticles decay directly or through cascades into the NLSP, which subsequently decays to the LSP. In GMSB models, the LSP is the very light gravitino (\tilde{G}). Due to the gravitino’s very small mass of O(keV), the NLSP is the only sparticle decaying into the LSP. This leads to multiple jets and missing transverse momentum (E_T^{miss}) in the final states. The experimental signature is then largely determined by the nature of the NLSP, which can be either the lightest stau ($\tilde{\tau}_1$), a right handed slepton ($\tilde{\ell}_R$), the lightest neutralino ($\tilde{\chi}^0_1$), or a sneutrino ($\tilde{\nu}$), leading to final states containing taus, light leptons ($\ell = e, \mu$), photons, b-jets, or neutrinos. For $N_5 = 3$ the $\tilde{\tau}_1$ and $\tilde{\ell}_R$ NLSPs become more dominant compared to lower values of N_5. At large values of $\tan\beta$, the $\tilde{\tau}_1$ is the NLSP for most of the parameter space, which leads to final states containing between two and four tau leptons. In the so-called CoNLSP \cite{16} region, the mass difference between the $\tilde{\tau}_1$ and the $\tilde{\ell}_R$ is smaller than the tau lepton mass such that both sparticles decay directly into the LSP and are therefore NLSP.

This Letter reports on the search for events with large E_T^{miss}, jets, and at least two hadronically decaying tau leptons. The analysis has been performed using 2 fb$^{-1}$ of proton-proton (pp) collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the LHC between March and August 2011. Although the analysis is sensitive to a wide variety of models for physics beyond the Standard Model, the results shown here are interpreted in the context of a minimal GMSB model. The three LEP Collaborations ALEPH \cite{17}, DELPHI \cite{18} and OPAL \cite{19} studied $\tilde{\tau}_1$ pair production, with the subsequent decay $\tilde{\tau}_1 \rightarrow \tau \tilde{G}$ in the minimal GMSB model. The best limits are set by the OPAL Collaboration and $\tilde{\tau}_1$ NLSPs with masses below 87.4 GeV are excluded. A limit on the SUSY breaking mass scale Λ of 26 TeV was set for $N_5 = 3$, $M_{\text{mess}} = 250$ TeV, independent of $\tan\beta$ and the NLSP lifetime. The CMS Collaboration searched for new physics in same-sign ditau events \cite{20} and multi-lepton events including ditaus \cite{21} using 35 pb$^{-1}$ of data, but the minimal GMSB model was not considered. A search for supersymmetry in final states containing at least one hadronically decaying tau lepton, missing transverse momentum and jets with the ATLAS detector is presented in another Let-
2. ATLAS detector

The ATLAS detector \cite{23} is a multi-purpose apparatus with a forward-backward-symmetric cylindrical geometry and nearly 4π solid angle coverage. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon strip detector and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field and by fine-granularity lead/liquid-argon (LAr) electromagnetic calorimeters. An iron/scintillating-tile calorimeter provides hadronic coverage in the central rapidity range. The endcap and forward regions are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. An extensive muon spectrometer system that incorporates large superconducting toroidal magnets surrounds the calorimeters.

3. Simulated samples

Monte Carlo (MC) simulations are used to extrapolate backgrounds from control regions (CRs) to the signal region (SR) and to evaluate the selection efficiencies for the SUSY models considered. Samples of W and Z/γ∗ production with accompanying jets are simulated with ALPGEN \cite{24}, using CTEQ6L1 \cite{25} parton density functions (PDFs). Top quark pair production, single top production and diboson pair production are simulated with PROSPINO \cite{26} and the next-to-leading order (NLO) PDF set CTEQ6.6 \cite{26}. Fragmentation and hadronisation are performed with HERWIG \cite{27}, using JIMMY \cite{28} for the underlying event simulation and the ATLAS MC10 parameter tune \cite{29}. TAUOLA \cite{30,31} and PHOTOS \cite{32} are used to model the decays of τ leptons and the radiation of photons, respectively. The production of multi-jet events is simulated with PYTHIA 6.4.25 \cite{33} using the AMBT1 tune \cite{34} and MRST2007 LO∗ \cite{35} PDFs. For the minimal GMSB model considered in this analysis, the SUSY mass spectra are calculated using ISAJET 7.80 \cite{36}. The MC signal samples are produced using HERWIG++ 2.4.2 \cite{37} with MRST2007 LO∗ PDFs. NLO cross sections are calculated using PROSPINO 2.1 \cite{38}. All samples are processed through the GEANT4-based simulation \cite{39} of the ATLAS detector. The variation of the number of pp interactions per bunch crossing (pile-up) as a function of the instantaneous luminosity is taken into account by modeling the simulated number of overlaid minimum bias events according to the observed distribution of the number of pile-up interactions in data, with an average of ~6 interactions.

4. Object reconstruction

Jets are reconstructed using the anti-kt jet clustering algorithm \cite{40} with radius parameter R = 0.4. Their energies are calibrated to correct for calorimeter non-compensation, upstream material and other effects \cite{50}. Jets are required to have transverse momentum (pT) above 20 GeV and |η| < 2.5.

Muons are identified as tracks in the ID matched to track segments in the stand-alone muon spectrometer, while electrons are identified as isolated tracks with a corresponding energy deposit in the electromagnetic calorimeter. The selection criteria applied to muons and “medium” quality electrons are described in more detail in Refs. Refs. \cite{61} and \cite{52}, respectively.

The measurement of the missing transverse momentum two-dimensional vector \(p_T^{\text{miss}} \) (and its magnitude \(E_T^{\text{miss}} \)) is based on the transverse momenta of identified jets, electrons, muons and all calorimeter clusters with |η| < 4.5 not associated to such objects \cite{53}. For the purpose of the measurement of \(E_T^{\text{miss}} \), taus are not distinguished from jets.

In this search, only hadronically decaying taus are considered. The tau reconstruction is seeded from anti-kt jets with \(p_T > 10 \text{ GeV} \). An η- and pT-dependent energy calibration to the hadronic tau energy scale is applied. Hadronic tau identification is based on observables sensitive to the transverse and longitudinal shape of the calorimeter shower and on tracking information, combined in a boosted decision tree (BDT) discriminator \cite{54}. Transition radiation and calorimeter information is used to veto electrons misidentified as taus. A tau candidate must have \(p_T > 20 \text{ GeV} \), |η| < 2.5, and one or three associated tracks of \(p_T > 1 \text{ GeV} \) with a charge sum of ±1. The efficiency of the BDT tau identification (the “loose” working point in Ref. \cite{55}), determined using \(Z \rightarrow ττ \) events, is about 60%, independent of pT, with a jet background rejection factor of 20–50.

During a part of the data-taking period, an electronics failure in the LAr barrel EM calorimeter created a dead region in the second and third layers, corresponding to approximately 1.4 × 0.2 radians in \(Δη \times Δφ \). Electron and tau candidates falling in this region are discarded. A correction to the jet energy is made using the energy depictions in the cells neighbouring the dead region; events having at least one jet for which the energy after correction is above 30 GeV are discarded, resulting in a loss of ~6% of the data sample.

5. Data analysis

The analysed data sample, after applying beam, detector and data-quality requirements, corresponds to an integrated luminosity of \((2.05 \pm 0.08) \text{ fb}^{-1} \) \cite{56,57}. Candidate
Two leading tau candidates. The magnitude of the transverse momenta of the two highest-
\(p_T \) jets is required to be larger than 0.4 radians. The transverse mass \(T_{\text{miss}} \) of the two highest-
\(p_T \) jets \(\sum E_{\text{Tmiss}} \) is defined as
\[T_{\text{miss}} = \sqrt{\sum p_T^2 - \sum E_{\text{Tmiss}}^2 (1 - \cos(\Delta\phi(p_T^{\text{Tmiss}}, \text{jet}_{1,2}))}. \]

The transverse mass \(m_{\text{miss}} \) of the two highest-
\(p_T \) jets \(\sum m_{\text{Tmiss}} \) is defined as
\[m_{\text{miss}} = \sum m_T = \sqrt{2P_T^T E_{\text{Tmiss}}^T (1 - \cos(\Delta\phi(P_T^{\text{Tmiss}}, \text{jet}_{1,2}))}. \]

The effective mass \(m_{\text{eff}} \) is calculated as the sum of \(E_{\text{Tmiss}} \) and the magnitude of the transverse momenta of the two highest-
\(p_T \) jets and all selected taus.

The effective mass \(m_{\text{eff}} \) is required to be larger than 700 GeV and \(m_{\text{eff}} > 700 \) GeV and \(m_{\text{miss}} > 80 \) GeV, where \(m_{\text{eff}} \) is the effective mass\(^2\) and \(m_{\text{miss}} \) is the transverse mass\(^3\) of the two leading tau candidates. The \(m_{\text{eff}} \) distribution after
\(\Delta\phi(p_T^{\text{Tmiss}}, \text{jet}_{1,2}) \) requirement and the \(m_{\text{eff}}^2 + m_{\text{miss}}^2 \) distribution after the \(m_{\text{eff}} \) requirement are shown in Fig. 2.

After applying all the analysis requirements, 3 events are selected in the data.

Figure 1: The \(p_T \) spectrum of the leading tau candidates in data (points, statistical uncertainty only) and the estimated SM background after the pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more taus and no light leptons. The band centered around the total SM background indicates the statistical uncertainty. Also shown is the expected signal from a typical GMSB (\(\Lambda = 40 \) TeV, \(\tan \beta = 30 \)) sample.

This selection rejects almost all soft multi-jet background events. Remaining multi-jet events, where highly energetic jets are mis-measured, are rejected by requiring the azimuthal angle between the missing transverse momentum and either of the two leading jets \(\Delta\phi(p_T^{\text{Tmiss}}, \text{jet}_{1,2}) \) to be larger than 0.4 radians.

The SR is defined by requiring \(m_{\text{eff}} > 700 \) GeV and \(m_{\text{miss}} > 80 \) GeV, where \(m_{\text{eff}} \) is the effective mass\(^2\) and \(m_{\text{miss}} \) is the transverse mass\(^3\) of the two leading tau candidates. The \(m_{\text{eff}} \) distribution after
\(\Delta\phi(p_T^{\text{Tmiss}}, \text{jet}_{1,2}) \) requirement and the \(m_{\text{eff}}^2 + m_{\text{miss}}^2 \) distribution after the \(m_{\text{eff}} \) requirement are shown in Fig. 2.

After applying all the analysis requirements, 3 events are selected in the data.

Figure 2: Distributions of variables used for the signal region definition in data (points, statistical uncertainty only) and the estimated SM background after the pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more taus and no light leptons. The yellow band centered around the total SM background indicates the statistical uncertainty. Also shown is the expected signal from a typical GMSB (\(\Lambda = 40 \) TeV, \(\tan \beta = 30 \)) sample.

6. Background estimation

The dominant backgrounds in the SR arise from top-pair plus single top events (here generically indicated as \(t \bar{t} \)), \(W \to \tau \nu \) events and \(Z \to \tau \tau \) events. While the latter comprises final states with two true taus, which are well de-
scribed in the simulation, the \(W \) and \(t \bar{t} \) background consist of events in which one real tau is correctly reconstructed and the other tau candidates are mis-reconstructed from hadronic activity in the final state. Since mis-identified
taus are not well described in the MC, the background contribution from \(tt\) and \(W \rightarrow \tau \nu\) is determined simultaneously in a CR defined by inverting the \(m_{\text{eff}}\) cut. Owing to the requirement on \(\Delta \phi\) and of two or more taus, this CR has negligible contamination from multi-jet events. Moreover, a totally negligible contribution is expected in this CR from signal events. The MC overestimates the number of events in the CR compared to data, due to mis-modeling of tau misidentification probabilities. MC studies show that the tau misidentification probability is, to a good approximation, independent of \(m_{\text{eff}}\), so that the measured ratio of the data to MC event yields in the CR can be used to correct the MC background prediction in the SR.

In a similar way, the multi-jet background expectation is computed in a multi-jet dominated CR defined by inverting the \(\Delta \phi \) and \(m_{\text{eff}} \) cuts. In addition, \(E_{\text{miss}}/m_{\text{eff}} < 0.4\) is required to increase the purity of this CR sample. The extrapolated contribution of this background source to the CR is found to be negligible.

7. Systematic uncertainties on the background

The theoretical uncertainty on the MC-based corrected extrapolation of the \(W\) and \(tt\) backgrounds from the CR into the SR is estimated using alternative MC samples obtained by varying the renormalisation and factorisation scales, the functional form of the factorisation scale and the matching threshold in the parton shower process.

An uncertainty of 14\% is estimated from this procedure. Moreover, an uncertainty of 23\% is associated to the normalisation factor derived in the CR. This uncertainty is estimated by repeating the normalisation to data independently for \(W\) and \(tt\). Systematic uncertainties on the jet energy scale and jet energy resolution are applied in MC to the selected jets and propagated throughout the analysis, including to \(E_{\text{miss}} \). The difference in the number of expected background events obtained with the nominal MC simulation after applying these changes is taken as the systematic uncertainty and corresponds to 18\% each. The effect of the tau energy scale uncertainty on the expected background is estimated in a similar way and amounts to 7\%. The uncertainties from the jet and tau energy scale are treated as fully correlated. The tau identification efficiency uncertainties on the background depends on the tau identification algorithm, the kinematics of the tau sample and the number of associated tracks. The systematic uncertainties associated to the tau identification and misidentification are found to be 2.5\% and 0.5\%, respectively. For the \(tt\) and \(W\) backgrounds, these uncertainties are absorbed into the normalisation. The systematic uncertainty associated to pile-up simulation in MC is 1\%. The normalization of the \(Z+\text{jets}\) and diboson backgrounds is affected by the uncertainty of 3.7\% on the luminosity measurement. This results in a 0.8\% uncertainty on the total background. The contributions from the different systematic uncertainties result in a total background systematic uncertainty of 41\%.

In total 5.3 ± 1.3(stat) ± 2.2(sys) background events are expected where the first uncertainty is statistical and includes the statistical component of the background correction factor uncertainty and the second is systematic. Roughly half of the background is composed of \(tt\) events and the other half is evenly split into \(W\) and \(Z\) events with accompanying jets.

8. Signal efficiencies and systematic uncertainties

GMSB signal samples were generated on a grid ranging from \(\Lambda = 10\text{ TeV}\) to \(\Lambda = 80\text{ TeV}\) and from \(\tan \beta = 2\) to \(\tan \beta = 50\). The number of selected events decreases significantly with increasing \(\Lambda\) due to the reduced cross section. The cross section drops from 100 pb for \(\Lambda = 15\text{ TeV}\) to 5.0 fb for \(\Lambda = 80\text{ TeV}\). The selection efficiency is highest (\(\approx 3\%\)) for high \(\tan \beta\) and lower \(\Lambda\) values, including in the region of the GMSB4030 point (\(\Lambda = 40, \tan \beta = 30\)) which is near the expected limit. It drops to 0.2\% in the non-\(\tau_1\) NLSP regions and for high \(\Lambda\) values. This is primarily a consequence of the light lepton veto and the requirement of two hadronically decaying taus, respectively.

The total systematic uncertainty on the signal selection from the systematic uncertainties discussed in Section 7 ranges between 7.5\% and 36\% over the GMSB grid. The statistical uncertainty from the limited size of the MC signal samples is of the order of 20\%, with variations between 7.6\% and 59\% at the edges of the accessible signal range. Theory uncertainties related to the GMSB cross section predictions are estimated through variations of the factorisation and renormalisation scales in the NLO PROSPINO calculation between half and twice their default values, by considering variations in \(\alpha_s\), and by considering PDF uncertainties using the CTEQ6.6 PDF error sets. These uncertainties are calculated for individual SUSY production processes and for each model point, leading to overall theoretical cross section uncertainties between 6.5\% and 22\%. Altogether this yields 20.8 ± 3.4(stat) ± 3.6(sys) ± 3.3(theo) signal events for the GMSB4030 point.

9. Results

Based on the observation of 3 events in the SR and a background expectation of 5.3 ± 1.3(stat) ± 2.2(sys) events, an upper limit of 5.9 (7.0) events observed (expected) is set at 95\% Confidence Level (CL) on the number of events from any scenario of physics beyond the SM, using the profile likelihood and CLs method. Uncertainties on the background and signal expectations are treated as Gaussian-distributed nuisance parameters in the likelihood fit. This limit translates into a 95\% observed (expected) upper limit of 2.9 fb (3.4 fb) on the visible cross section for new phenomena, defined by the product of cross section, branching fraction, acceptance and efficiency for the selections defined in Section 5. The resulting expected and
observed 95% CL limits on the GMSB model parameters Λ and $\tan \beta$ are shown in Fig. 3, including the lower limits from OPAL. Additional model parameters $M_{\text{mess}} = 250$ TeV, $N_5 = 3$, $\mu > 0$ and $C_{\text{grav}} = 1$. The previous OPAL limits are also shown.

10. Conclusions

A search for events with two or more hadronically decaying tau leptons, large E_T^{miss} and jets is performed using 2 fb$^{-1}$ of $\sqrt{s} = 7$ TeV pp collision data recorded with the ATLAS detector at the LHC. Three events are found, consistent with the expected SM background. The results are used to set a model-independent 95% CL upper limit of 5.9 events from new phenomena, corresponding to an upper limit on the visible cross section of 2.9 fb. Limits on the model parameters are set for a minimal GMSB model. The limit on the SUSY breaking scale Λ of 32 TeV is determined, independent of $\tan \beta$. It increases up to 47 TeV for $\tan \beta = 37$. These results provide the most stringent tests in a large part of the parameter space considered to date, improving the previous best limits.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[1] Y. A. Golfand and E. P. Likhtman, JETP Lett. 13 (1971) 323.

[37] ATLAS Collaboration, Charged Particle Multiplicities in pp Interactions at √s = 0.9 and 7 TeV in a Diffractive Limited Phase Space Measured with the ATLAS Detector at the LHC and a New PYTHIA6 Tune, ATLAS-CONF-2010-031, July, 2010, http://cdsweb.cern.ch/record/1277665.

(a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest;
(c)West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu;
(d)School of Physics, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3,
Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, København, Denmark
36 (a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a)E.Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington IN, United States of America
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City IA, United States of America
63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Novosibirsk State University, Novosibirsk, Russia
g Also at Fermilab, Batavia IL, United States of America
h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
i Also at Università di Napoli Parthenope, Napoli, Italy
j Also at Institute of Particle Physics (IPP), Canada
k Also at Department of Physics, Middle East Technical University, Ankara, Turkey
l Also at Louisiana Tech University, Ruston LA, United States of America
m Also at Department of Physics and Astronomy, University College London, London, United Kingdom
n Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
o Also at Department of Physics, University of Cape Town, Cape Town, South Africa
p Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
q Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
r Also at Manhattan College, New York NY, United States of America
s Also at School of Physics, Shandong University, Shandong, China
t Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
u Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
v Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
w Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
x Also at Section de Physique, Université de Genève, Geneva, Switzerland
y Also at Departamento de Física, Universidade de Minho, Braga, Portugal
z Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ab Also at California Institute of Technology, Pasadena CA, United States of America
ac Also at Institute of Physics, Jagiellonian University, Krakow, Poland
ad Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
ae Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
af Also at Department of Physics, Oxford University, Oxford, United Kingdom
ag Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
ah Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
ai Also at Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Deceased