Search for Events with Large Missing Transverse Momentum, Jets, and at Least Two Tau Leptons in 7 TeV Proton-Proton Collision Data with the ATLAS Detector

The ATLAS Collaboration

Abstract

A search for events with large missing transverse momentum, jets, and at least two tau leptons has been performed using 2 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set, where the visible cross section is defined by the product of cross section, branching fraction, detector acceptance and event selection efficiency. A 95% CL lower limit of 32 TeV is set on the gauge-mediated supersymmetry breaking scale Λ independent of $\tan\beta$. These limits provide the most stringent tests to date in a large part of the considered parameter space.
Search for Events with Large Missing Transverse Momentum, Jets, and at Least Two Tau Leptons in 7 TeV Proton-Proton Collision Data with the ATLAS Detector

The ATLAS Collaboration

Abstract

A search for events with large missing transverse momentum, jets, and at least two tau leptons has been performed using 2 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set, where the visible cross section is defined by the product of cross section, branching fraction, detector acceptance and event selection efficiency. A 95% CL lower limit of 32 TeV is set on the gauge-mediated supersymmetry breaking (GMSB) scale Λ independent of $\tan\beta$. These limits provide the most stringent tests to date in a large part of the considered parameter space.

1. Introduction

Supersymmetry (SUSY) [1–5] introduces a symmetry between fermions and bosons, resulting in a SUSY partner (sparticle) for each Standard Model (SM) particle with identical mass and quantum numbers except a difference by half a unit of spin. As none of these sparticles have been observed, SUSY must be a broken symmetry if realised in nature. Assuming R-parity conservation [6, 7], sparticles are produced in pairs. These would then decay through cascades involving other sparticles until the lightest SUSY particle (LSP) is produced, which is stable.

Minimal gauge-mediated supersymmetry breaking (GMSB) [8–13] models can be described by six parameters: the SUSY breaking mass scale felt by the low-energy sector (Λ), the messenger mass (M_{mess}), the number of SU(5) messengers (N_5), the ratio of the vacuum expectation values of the two Higgs doublets ($\tan\beta$), the Higgs sector mixing parameter (μ) and the scale factor for the gravitino mass (C_{grav}). In this analysis Λ and $\tan\beta$ are treated as free parameters and the other parameters are fixed to $M_{\text{mess}} = 250$ TeV, $N_5 = 3$, $\mu > 0$ and $C_{\text{grav}} = 1$, similar to other GMSB benchmark points in the literature, e.g. G2a [14] and SPS7 [15]. The C_{grav} parameter determines the lifetime of the next-to-lightest SUSY particle (NLSP). For $C_{\text{grav}} = 1$ the NLSP decays promptly ($c\tau_{\text{NLSP}} < 0.1$ mm). With these parameters, the production of squark and/or gluino pairs is expected to dominate at the present Large Hadron Collider (LHC) energy. These sparticles decay direct or through cascades into the NLSP, which subsequently decays to the LSP. In GMSB models, the LSP is the very light gravitino (\tilde{G}). Due to the gravitino’s very small mass of $\mathcal{O}(\text{keV})$, the NLSP is the only sparticle decaying into the LSP. This leads to multiple jets and missing transverse momentum (E_T^{miss}) in the final states. The experimental signature is then largely determined by the nature of the NLSP, which can be either the lightest stau ($\tilde{\tau}_1$), a right handed slepton ($\tilde{\ell}_R$), the lightest neutralino ($\tilde{\chi}_1^0$), or a sneutrino ($\tilde{\nu}$), leading to final states containing taus, light leptons ($\ell = e, \mu$), photons, b-jets, or neutrinos. For $N_5 = 3$ the $\tilde{\tau}_1$ and $\tilde{\ell}_R$ NLSPs become more dominant compared to lower values of N_5. At large values of $\tan\beta$, the $\tilde{\tau}_1$ is the NLSP for most of the parameter space, which leads to final states containing between two and four tau leptons. In the so-called CoNLSP [16] region, the mass difference between the $\tilde{\tau}_1$ and the $\tilde{\ell}_R$ is smaller than the tau lepton mass such that both sparticles decay directly into the LSP and are therefore NLSP.

This Letter reports on the search for events with large E_T^{miss}, jets, and at least two hadronically decaying tau leptons. The analysis has been performed using 2 fb$^{-1}$ of proton-proton (pp) collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the LHC between March and August 2011. Although the analysis is sensitive to a wide variety of models for physics beyond the Standard Model, the results shown here are interpreted in the context of a minimal GMSB model. The three LEP Collaborations ALEPH [17], DELPHI [18] and OPAL [19] studied $\tilde{\tau}_1$ pair production, with the subsequent decay $\tilde{\tau}_1 \rightarrow \tau \tilde{G}$ in the minimal GMSB model. The best limits are set by the OPAL Collaboration and $\tilde{\tau}_1$ NLSPs with masses below 87.4 GeV are excluded. A limit on the SUSY breaking mass scale Λ of 26 TeV was set for $N_5 = 3$, $M_{\text{mess}} = 250$ TeV, independent of $\tan\beta$ and the NLSP lifetime. The CMS Collaboration searched for new physics in same-sign ditau events [20] and multi-lepton events including ditaus [21] using 35 pb$^{-1}$ of data, but the minimal GMSB model was not considered. A search for supersymmetry in final states containing at least one hadronically decaying tau lepton, missing transverse momentum and jets with the ATLAS detector is presented in another Let-
2. ATLAS detector

The ATLAS detector [23] is a multi-purpose apparatus with a forward-backward symmetric cylindrical geometry and nearly 4π solid angle coverage. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon strip detector and a transition radiation tracker. The ID is surrounded by a thin superconducting toroidal solenoid providing a 2 T magnetic field and by fine-granularity lead/liquid-argon (LAr) electromagnetic calorimeters. An iron/scintillating-tile calorimeter provides hadronic coverage in the central rapidity range. The endcap and forward regions are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. An extensive muon spectrometer system that incorporates large superconducting toroidal magnets surrounds the calorimeters.

3. Simulated samples

Monte Carlo (MC) simulations are used to extrapolate backgrounds from control regions (CRs) to the signal region (SR) and to evaluate the selection efficiencies for the SUSY models considered. Samples of W and Z/γ∗ production with accompanying jets are simulated with ALPGEN [24], using CT10 PDFs. Top quark pair production, single top production and diboson pair production are simulated with MADGRAPH [25] and the next-to-leading order (NLO) PDF set CTEQ6.6 [26]. Fragmentation and hadronisation are performed with HERWIG++ [27, 28] and the next-to-leading order (NLO) PDF set CTEQ6.6 [26].

During a part of the data-taking period, an electronics problem in the initialisation of one of the front-end stages caused a loss of approximately 1 6% of the integrated luminosity of \(\sim 6 \times 10^{33} \) pb\(^{-1}\). The measurement of the missing transverse momentum is sensitive to the transverse and longitudinal shape of the calorimeter shower and on tracking information, combined in a boosted decision tree (BDT) discriminator [54]. Transition radiation and calorimeter information is used to veto electrons misidentified as taus. A tau candidate must have
\[p_T > 10 \text{ GeV}, \quad |\eta| < 4.5, \quad \text{and one or three associated tracks} \]

Jets are reconstructed using the anti- \(k_T \) jet clustering algorithm [49] with radius parameter \(R = 0.4 \). Their energies are calibrated to correct for calorimeter non-compensation, upstream material and other effects [54]. Jets are required to have transverse momentum \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.5 \).

Muons are identified as tracks in the ID matched to track segments in the stand-alone muon spectrometer, while electrons are identified as isolated tracks with a corresponding energy deposit in the electromagnetic calorimeter. The selection criteria applied to muons and “medium” quality electrons are described in more detail in Refs. [51] and [52], respectively.

The measurement of the missing transverse momentum two-dimensional vector \(p_T^{\text{miss}} \) (and its magnitude \(E_T^{\text{miss}} \)) is based on the transverse momenta of identified jets, electrons, muons and all calorimeter clusters with \(|\eta| < 4.5 \) not associated to such objects [53]. For the purpose of the measurement of \(E_T^{\text{miss}} \), taus are not distinguished from jets.

In this search, only hadronically decaying taus are considered. The tau reconstruction is seeded from anti- \(k_T \) jets with \(p_T > 10 \text{ GeV} \). An \(\eta \) and \(p_T \)-dependent energy calibration to the hadronic tau energy scale is applied. Hadronic tau identification is based on observables sensitive to the transverse and longitudinal shape of the calorimeter shower and on tracking information, combined in a boosted decision tree (BDT) discriminator [54]. The tau reconstruction is seeded from anti- \(k_T \) jets with \(p_T > 10 \text{ GeV} \), \(|\eta| < 2.5 \), and on three associated tracks of \(p_T > 1 \text{ GeV} \) with a charge sum of \(\pm 1 \). The efficiency of the BDT tau identification (the “loose” working point in Ref. [54]), determined using \(Z \rightarrow \tau \tau \) events, is about 60%, independent of \(p_T \), with a jet background rejection factor of 20 – 50.

4. Object reconstruction

Jets are reconstructed using the anti- \(k_T \) jet clustering algorithm [49] with radius parameter \(R = 0.4 \), their energies are calibrated to correct for calorimeter non-compensation, upstream material and other effects [54]. Jets are required to have transverse momentum \(p_T > 10 \text{ GeV} \) and \(|\eta| < 2.5 \).

Muons are identified as tracks in the ID matched to track segments in the stand-alone muon spectrometer, while electrons are identified as isolated tracks with a corresponding energy deposit in the electromagnetic calorimeter. The selection criteria applied to muons and “medium” quality electrons are described in more detail in Refs. [51] and [52], respectively.

The measurement of the missing transverse momentum two-dimensional vector \(p_T^{\text{miss}} \) (and its magnitude \(E_T^{\text{miss}} \)) is based on the transverse momenta of identified jets, electrons, muons and all calorimeter clusters with \(|\eta| < 4.5 \) not associated to such objects [53]. For the purpose of the measurement of \(E_T^{\text{miss}} \), taus are not distinguished from jets.

In this search, only hadronically decaying taus are considered. The tau reconstruction is seeded from anti- \(k_T \) jets with \(p_T > 10 \text{ GeV} \). An \(\eta \) and \(p_T \)-dependent energy calibration to the hadronic tau energy scale is applied. Hadronic tau identification is based on observables sensitive to the transverse and longitudinal shape of the calorimeter shower and on tracking information, combined in a boosted decision tree (BDT) discriminator [54]. Transition radiation and calorimeter information is used to veto electrons misidentified as taus. A tau candidate must have \(p_T > 20 \text{ GeV} \), \(|\eta| < 2.5 \), and on three associated tracks of \(p_T > 1 \text{ GeV} \) with a charge sum of \(\pm 1 \). The efficiency of the BDT tau identification (the “loose” working point in Ref. [54]), determined using \(Z \rightarrow \tau \tau \) events, is about 60%, independent of \(p_T \), with a jet background rejection factor of 20 – 50.

5. Data analysis

The analysed data sample, after applying beam, detector and data-quality requirements, corresponds to an integrated luminosity of \((2.05 \pm 0.08) \times 10^{33} \) pb\(^{-1}\) [52, 56]. Candidate
and two leading tau candidates. The \(m_{\text{eff}} \) distribution after the \(\Delta(\vec{p}_T^{\text{miss}}, \text{jet}_{1,2}) \) requirement and the \(m_T^2 + m_T^2 \) distribution after the \(m_{\text{eff}} \) requirement are shown in Fig. 2.

After applying all the analysis requirements, 3 events are selected in the data.

6. Background estimation

The dominant backgrounds in the SR arise from top-pair plus single top events (here generically indicated as \(tt \)), \(W \to \tau \nu \tau \) events and \(Z \to \tau \tau \) events. While the latter comprises final states with two true taus, which are well described in the simulation, the \(W \) and \(tt \) background consist of events in which one real tau is correctly reconstructed and the other tau candidates are mis-reconstructed from hadronic activity in the final state. Since mis-identified

\(m_{\text{eff}} \) is calculated as the sum of \(E_T^{\text{miss}} \) and the magnitude of the transverse momenta of the two highest-\(p_T \) jets and all selected taus.

The transverse mass \(m_T \) formed by \(E_T^{\text{miss}} \) and the \(p_T \) of the tau lepton (\(\tau \)) is defined as \(m_T = \sqrt{2p_T^2 E_T^{\text{miss}}(1 - \cos(\Delta(\vec{p}_T^{\text{miss}}, \text{jet}_{1,2})))} \).
taus are not well described in the MC, the background contribution from \(tt \) and \(W \to \tau \nu \tau \) is determined simultaneously in a CR defined by inverting the \(m_{\text{eff}} \) cut. Owing to the requirement on \(\Delta \phi \) and of two or more taus, this CR has negligible contamination from multi-jet events. Moreover, a totally negligible contribution is expected in this CR from signal events. The MC overestimates the number of events in the CR compared to data, due to mis-modeling of tau misidentification probabilities. MC studies show that the tau misidentification probability is, to a good approximation, independent of \(m_{\text{eff}} \), so that the measured ratio of the data to MC event yields in the CR can be used to correct the MC background prediction in the SR.

In a similar way, the multi-jet background expectation is computed in a multi-jet dominated CR defined by inverting the \(\Delta \phi \) and \(m_{\text{eff}} \) cuts. In addition, \(E_{\text{miss}}^{\tau} / m_{\text{eff}} < 0.4 \) is required to increase the purity of this CR sample. The extrapolated contribution of this background source to the SR is found to be negligible.

7. Systematic uncertainties on the background

The theoretical uncertainty on the MC-based corrected extrapolation of the \(W \) and \(tt \) backgrounds from the CR into the SR is estimated using alternative MC samples obtained by varying the renormalisation and factorisation scales, the functional form of the factorisation scale and the matching threshold in the parton shower process. An uncertainty of 14% is estimated from this procedure. Moreover, an uncertainty of 23% is associated to the normalisation factor derived in the CR. This uncertainty is estimated by repeating the normalisation to data independently for \(W \) and \(tt \). Systematic uncertainties on the jet energy scale and jet energy resolution are applied in MC to the selected jets and propagated throughout the analysis, including to \(E_{\text{T}}^{\text{miss}} \). The difference in the number of expected background events obtained with the nominal MC simulation after applying these changes is taken as the systematic uncertainty and corresponds to 18% each. The effect of the tau energy scale uncertainty on the expected background is estimated in a similar way and amounts to 7%. The uncertainties from the jet and tau energy scale are treated as fully correlated. The tau identification efficiency uncertainties on the background depends on the tau identification algorithm, the kinematics of the \(\tau \) sample and the number of associated tracks. The systematic uncertainties associated to the tau identification and misidentification are found to be 2.5% and 0.5%, respectively. For the \(tt \) and \(W \) backgrounds, these uncertainties are absorbed into the normalisation. The systematic uncertainty associated to pile-up simulation in MC is 1%. The normalization of the \(Z \)+jets and diboson backgrounds is affected by the uncertainty of 3.7% on the luminosity measurement. This results in a 0.8% uncertainty on the total background. The contributions from the different systematic uncertainties result in a total background systematic uncertainty of 41%.

In total \(5.3 \pm 1.3 \) (stat) \(\pm 2.2 \) (sys) background events are expected where the first uncertainty is statistical and includes the statistical component of the background correction factor uncertainty and the second is systematic. Roughly half of the background is composed of \(tt \) events and the other half is evenly split into \(W \) and \(Z \) events with accompanying jets.

8. Signal efficiencies and systematic uncertainties

GMSB signal samples were generated on a grid ranging from \(\Lambda = 10 \) TeV to \(\Lambda = 80 \) TeV and from \(\tan \beta = 2 \) to \(\tan \beta = 50 \). The number of selected events decreases significantly with increasing \(\Lambda \) due to the reduced cross section. The cross section drops from 100 pb for \(\Lambda = 15 \) TeV to 5.0 fb for \(\Lambda = 80 \) TeV. The selection efficiency is highest \((\approx 3\% \) for high \(\tan \beta \) and lower \(\Lambda \) values, including in the region of the GMSB4030 point \((\Lambda = 40, \tan \beta = 30 \) which is near the expected limit. It drops to 0.2% in the non-\(\tilde{\tau} \) NLSP regions and for high \(\Lambda \) values. This is primarily a consequence of the light lepton veto and the requirement of two hadronically decaying taus, respectively.

The total systematic uncertainty on the signal selection from the systematic uncertainties discussed in Section 7 ranges between 7.5% and 36% over the GMSB grid. The statistical uncertainty from the limited size of the MC signal samples is of the order of 20%, with variations between 7.6% and 59% at the edges of the accessible signal range. Theory uncertainties related to the GMSB cross section predictions are estimated through variations of the factorisation and renormalisation scales in the NLO PROSPINO calculation between half and twice their default values, by considering variations in \(\alpha_s \), and by considering PDF uncertainties using the CT10 PDF error sets. These uncertainties are calculated for individual SUSY production processes and for each model point, leading to overall theoretical cross section uncertainties between 6.5% and 22%. Altogether this yields 20.8 \pm 3.4 \text{(stat)} \pm 3.6 \text{(sys)} \pm 3.3 \text{(theo)} signal events for the GMSB4030 point.

9. Results

Based on the observation of 3 events in the SR and a background expectation of 5.3 \pm 1.3 \text{(stat)} \pm 2.2 \text{(sys)} events, an upper limit of 5.9 \text{(7.0)} events observed (expected) is set at 95% Confidence Level (CL) on the number of events from any scenario of physics beyond the SM, using the profile likelihood and \(CL_s \) method. Uncertainties on the background and signal expectations are treated as Gaussian-distributed nuisance parameters in the likelihood fit. This limit translates into a 95% observed (expected) upper limit of 2.9 fb (3.4 fb) on the visible cross section for new phenomena, defined by the product of cross section, branching fraction, acceptance and efficiency for the selections defined in Section 5. The resulting expected and
observed 95% CL limits on the GMSB model parameters Λ and $\tan \beta$ are shown in Fig. 3 including the lower limits from OPAL [19] for comparison. These limits are calculated including all experimental and theoretical uncertainties on the background and signal expectations. Excluding the theoretical uncertainties on the signal cross section from the limit calculation has a negligible effect on the limits obtained. The best exclusion is set for $\Lambda = 47$ TeV and $\tan \beta = 37$. The results extend previous limit values and values of $\Lambda < 32$ TeV are now excluded at 95% CL, independent of $\tan \beta$.

10. Conclusions

A search for events with two or more hadronically decaying tau leptons, large E_T^{miss} and jets is performed using 2 fb$^{-1}$ of $\sqrt{s} = 7$ TeV pp collision data recorded with the ATLAS detector at the LHC. Three events are found, consistent with the expected SM background. The results are used to set a model-independent 95% CL upper limit of 5.9 events from new phenomena, corresponding to an upper limit on the visible cross section of 2.9 fb. Limits on the model parameters are set for a minimal GMSB model. The limit on the SUSY breaking scale Λ of 32 TeV is determined, independent of $\tan \beta$. It increases up to 47 TeV for $\tan \beta = 37$. These results provide the most stringent tests in a large part of the parameter space considered to date, improving the previous best limits.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/Irfu, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MESW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[1] Y. A. Golfand and E. P. Likhtman, JETP Lett. 13 (1971) 323.
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

Supa - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

Department of Physics, Boston University, Boston MA, United States of America

Department of Physics, Brandeis University, Waltham MA, United States of America

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; Federal University of Juiz de Fora (UFJF), Juiz de Fora; Federal University of Sao Joao del Rei (UFSG), Sao Joao del Rei; Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

National Institute of Physics and Nuclear Engineering, Bucharest; University Politehnica Bucharest, Bucharest;

West University in Timisoara, Timisoara, Romania

Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, Carleton University, Ottawa ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

Departamento de Fisica, Pontificia Universidad Catolica de Chile, Santiago; Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Department of Modern Physics, University of Science and Technology of China, Anhui; Department of Physics, Nanjing University, Jiangsu;

School of Physics, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

INFN Gruppo Collegato di Cosenza; Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

Section de Physique, Université de Genève, Geneva, Switzerland

INFN Sezione di Genova; Dipartimento di Fisica, Università di Genova, Genova, Italy

E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; High Energy Physics Institute, Tbilisi

State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
Department of Physics and Astronomy, University of Uppsala, Uppsal a, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Also at TRIUMF, Vancouver BC, Canada

Also at Department of Physics, California State University, Fresno CA, United States of America

Also at Novosibirsk State University, Novosibirsk, Russia

Also at Fermilab, Batavia IL, United States of America

Also at Department of Physics, University of Coimbra, Coimbra, Portugal

Also at Università di Napoli Parthenope, Napoli, Italy

Also at Institute of Particle Physics (IPP), Canada

Also at Department of Physics, Middle East Technical University, Ankara, Turkey

Also at Louisiana Tech University, Ruston LA, United States of America

Also at Department of Physics and Astronomy, University College London, London, United Kingdom

Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada

Also at Department of Physics, University of Cape Town, Cape Town, South Africa

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

Also at Manhattan College, New York NY, United States of America

Also at School of Physics, Shandong University, Shandong, China

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

Also at Section de Physique, Université de Genève, Geneva, Switzerland

Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

Also at California Institute of Technology, Pasadena CA, United States of America

Also at Institute of Physics, Jagiellonian University, Krakow, Poland

Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France

Also at Department of Physics, University of Sheffield, Sheffield, United Kingdom

Also at Department of Physics, Oxford University, Oxford, United Kingdom

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

* Deceased