Search for Pair Production of a New b' Quark that Decays into a Z Boson and a Bottom Quark with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 5 April 2012; published 16 August 2012)

A search is reported for the pair production of a new quark b' with at least one b' decaying to a Z boson and a bottom quark. The data, corresponding to 2.0 fb$^{-1}$ of integrated luminosity, were collected from pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector at the CERN Large Hadron Collider. Using events with a b-tagged jet and a Z boson reconstructed from opposite-charge electrons, the mass distribution of large transverse momentum b' candidates is tested for an enhancement. No evidence for a b' signal is detected in the observed mass distribution, resulting in the exclusion at a 95% confidence level of b' quarks with masses $m_{b'} < 400$ GeV that decay entirely via $b' \rightarrow Z + b$. In the case of a vectorlike singlet b' mixing solely with the third standard model generation, masses $m_{b'} < 358$ GeV are excluded.

The matter sector of the standard model (SM) consists of three generations of chiral fermions, with each generation containing a quark doublet and a lepton doublet. A natural question is whether quarks and leptons exist beyond the third generation [1]. In this Letter, we present a search for the pair production of a new quark with electric charge $-1/3$, denoted b', using data collected by the ATLAS experiment at the Large Hadron Collider. New quarks appear in a variety of models that address shortcomings of the SM [1–5]. In addition to signaling a richer matter content at high energy, their existence would impact lower-energy $b\bar{b}$ events [6].

Several collaborations have previously searched for a chiral b'. A search by D0 [8] for the decay $b' \rightarrow \gamma + b$ excludes b' quarks with masses below $m_Z + m_b = 96$ GeV. CDF [9] searches for the decay $b' \rightarrow Z + b$ exclude masses below $m_W + m_b = 256$ GeV. These limits apply to prompt b' decays. CDF and D0 have also searched for nonprompt $b' \rightarrow Z + b$ decays [10], excluding, for example, b' masses below 180 GeV for $c\tau = 20$ cm [11]. More recently, CDF [12], CMS [13], and ATLAS [14] have searched for the prompt charged-current decay $b' \rightarrow W + t$. This decay mode is dominant for a chiral b' with mass in excess of $m_W + m_t$, as the neutral-current modes only occur through loop diagrams [1]. The ATLAS result excludes chiral b' quarks with masses below 480 GeV.

Extensions to the SM often propose new quarks transforming as vectorlike representations of the electroweak gauge groups [2–5]. The decay of a vectorlike b' to a Z boson and a bottom quark is a tree-level process with a branching ratio comparable to that of the decay $b' \rightarrow W + t$. In particular, the branching ratios $Wt/Zb/Hb$ approach the proportion 2:1:1 in the limit of a large b' mass as a consequence of the Goldstone boson equivalence theorem [2,5]. Furthermore, if a signal were observed in the Wt/Zt final state, a search for a resonant $Z + b$ signal would aid in establishing the charge of the new quark. In light of these observations, this search explores the $Z + b$ jet final state for the presence of a b' quark.

The ATLAS detector [15] consists of particle-tracking detectors, electromagnetic and hadronic calorimeters, and a muon spectrometer. At small radii transverse to the beam line, the inner tracking system utilizes fine-granularity pixel and microstrip detectors designed to provide precision track impact parameter and secondary vertex measurements. These silicon-based detectors cover the pseudorapidity [16] range $|\eta| < 2.5$. A gas-filled straw tube tracker complements the silicon tracker at larger radii. The tracking detectors are immersed in a 2 T magnetic field produced by a thin superconducting solenoid located in the same cryostat as the barrel electromagnetic (EM) calorimeter. The EM calorimeters employ lead absorbers and utilize liquid argon as the active medium. The barrel EM calorimeter covers $|\eta| < 1.5$, and the end-cap EM calorimeters cover $1.4 < |\eta| < 3.2$. Hadronic calorimetry in the region $|\eta| < 1.7$ is achieved using steel absorbers and scintillating tiles as the active medium. Liquid argon calorimetry with copper absorbers is employed in the hadronic end-cap calorimeters, which cover the region $1.5 < |\eta| < 3.2$.

The search for the decay $b' \rightarrow Z + b$ is performed in the final state with the Z boson decaying to an electron-positron pair (e^+e^-) using a dataset collected in 2011 corresponding to an integrated luminosity of

PACS numbers: 14.65.Jk, 12.60.–i, 13.85.Rm, 14.65.Fy

DOI: 10.1103/PhysRevLett.109.071801

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

*Full author list given at the end of the article.
The selected events were recorded with a single-electron trigger that is over 95% efficient for reconstructed electrons [18] with momentum transverse to the beam direction, \(p_T \), exceeding 25 GeV. At least two opposite-charge electron candidates are required, each satisfying \(p_T > 25 \) GeV and reconstructed in the pseudorapidity region \(|\eta| < 2.47 \), excluding the barrel to end-cap calorimeter transition region, \(1.37 < |\eta| < 1.52 \). In addition, the electron candidates satisfy medium quality requirements [18] on the reconstructed track and properties of the electromagnetic shower. The two opposite-charge electron candidates yielding an invariant mass \(m_{ee} \) of the electromagnetic shower. The two opposite-charge electron candidates yielding an invariant mass \(m_{ee} \) of the electromagnetic shower. The two opposite-charge electron candidates yielding an invariant mass \(m_{ee} \) of the electromagnetic shower.

Jets are reconstructed using the anti-\(k_t \) clustering algorithm [19] with a distance parameter of 0.4. The inputs to the algorithm are three-dimensional clusters formed from calorimeter energy deposits. Jets are calibrated using \(p_T \)- and \(\eta \)-dependent factors determined from simulation and validated with data [20]. Jets are rejected if they do not satisfy quality criteria to suppress noise and noncollison backgrounds, as are jets whose axis is within \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.5 \) of a reconstructed electron associated with the \(Z \) candidate. A requirement is made to ensure at least 75% of the total \(p_T \) of all tracks associated with the jet be attributed to tracks also associated with the selected \(pp \) collision vertex [21]. Finally, jets in this analysis are restricted to the region covered by the tracking detectors, \(|\eta| < 2.5 \), and satisfy \(p_T > 25 \) GeV. Approximately 81,000 events pass the \(Z \to e^+e^- \) candidate selection and contain at least one selected jet.

The SM production of \(Z \) bosons in association with jets accounts for most events passing the \(Z^+ \equiv 1 \) jet selection. Two leading-order Monte Carlo (MC) generators, ALPGEN [22] and SHERPA [23], are used to assess the background arising from this process, with ALPGEN providing the baseline prediction. A description of the generation of these samples, in particular, in regard to differences between ALPGEN and SHERPA in the modeling of \(Z \) boson production in association with \(b \) jets, is detailed in Ref. [24]. The predictions of both are normalized such that the inclusive \(Z \) boson cross section is equal to a next-to-next-to-leading-order (NNLO) calculation [25]. All MC samples fully simulate the ATLAS detector [26] and are reconstructed with the same algorithms as those applied to data. The \(Z + \) bottom background category comprises simulated \(Z + \) jet(s) events in which a generated \(p_T > 5 \) GeV bottom quark is matched to a selected reconstructed jet. Similarly, events with a jet matched to a charm quark, but not to a bottom quark, constitute the \(Z + \) charm category. In the \(Z + \) light category, none of the selected jets are matched to a bottom or charm quark.

Additional SM backgrounds modeled with MC events include top quark pair production \((t\bar{t})\), single top production, heavy vector boson pair (diboson) production, \(Z(\to \tau\tau) + \) jet(s) events, and \(W(\to \ell\nu) + \) jet(s) events. Processes with a top quark are simulated with MC@NLO [27,28]. The \(t\bar{t} \) cross section used is the HATHOR [29] approximate NNLO value, while MC@NLO [28] values are used for the single top processes. HERWIG [30] models the contribution of diboson events, with the cross sections set by the MC@NLO predictions. The remaining \(W/Z + \) jet(s) backgrounds are simulated with ALPGEN, and normalized using single vector boson production NNLO cross sections [25]. The multijet background is estimated using a data sample with both electron candidates passing loose criteria [18] but failing the slightly tighter medium criteria. This sample is normalized to the difference in the inclusive \(Z \) sample between the data and all other backgrounds in the region \(50 < m_{ee} < 65 \) GeV. The small single top, diboson, \(Z \to \tau\tau, W \to \ell\nu \), and multijet contributions are combined and denoted Other SM.

Figure 1 presents the \(e^+e^- \) invariant mass distribution for events passing the \(Z^+ \equiv 1 \) jet selection, before imposing the \(m_{ee} - m_Z \) requirement, together with the SM prediction. The observed and predicted number of events are listed in Table I for this and two other stages of the event selection. Most events passing the \(Z^+ \equiv 1 \) jet selection arise from the \(Z + \) light category. The appreciable lifetime of the \(b \) hadron originating from the bottom quark in the decay \(b \to Z + b \) provides a means to reduce this background source. A \(b \) jet tagging algorithm referred to as IP3D + SV1 [32] is utilized to select events with at
Figure 2 presents the properties of a reconstructed secondary vertex. In a transverse track impact parameters, while the second utilizes properties of a reconstructed secondary vertex. In a simulated \(b \) sample, the requirement on the discriminant defining a \(b \) jet is 60% efficient for jets with a \(b \) hadron, and yields a light flavor jet rejection rate of 300 [32].

A total of 3466 events satisfy the \(Z+ \geq 1 \) jet selection. Figure 2 presents the \(e^+e^- \) invariant mass distribution in this sample and the SM prediction, before imposing the \(|m_{ee} - m_Z| < 15 \) GeV requirement. The accurate modeling of the mass distribution for values beyond the \(Z \) boson mass supports the prediction of \(t\bar{t} \) and Other SM background events. Within the window around the \(Z \) boson mass, ALPGEN and SHERPA agree to within 1% and 7% in the prediction of the number of \(Z+ \) light and \(Z+ \) charm events, respectively. However, ALPGEN and SHERPA disagree in the prediction of the \(Z+ \) bottom contribution, a fact previously reported in an ATLAS cross section measurement of \(Z \) bosons produced in association with \(b \) jets using a smaller dataset [24]. The ALPGEN and SHERPA \(Z+ \) bottom predictions are scaled to account for the difference between data and all other predicted backgrounds in a subsample of the \(Z+ \geq 1 \) jet sample that contains events failing the requirement discussed below on the transverse momentum of the \(b \) candidate. The scale factors are consistent with those measured in Ref. [24], and the invariant mass distribution of secondary vertex tracks is used to confirm the validity of the resulting prediction for the flavor composition in the \(Z+ \geq 1 \) jet sample [24].

Simulated \(b'\overline{b}' \) events are generated for a range of \(b' \) masses using MADGRAPH [33] with the G4LHC extension [6]. PYTHIA [34] performs fragmentation and hadronization of the parton-level events. The signal cross sections are obtained with HATHOR [29], and vary from 80 \(pb \) to 30 \(fb \) over the range \(m_{b'} = 200–700 \) GeV. In each sample, one \(b' \) decays in the mode \(b' \rightarrow Z+b \), with the \(Z \) boson decaying via \(Z \rightarrow e^+e^- \). Two separate samples are produced for each mass value, with the other \(b' \) decaying either via \(b' \rightarrow Z+b \) or \(b' \rightarrow W+t \), and with all decay modes of the \(Z \) and \(W \) bosons allowed. The factor \(\beta = 2 \times \text{BR}(b' \rightarrow Zb) - \text{BR}(b' \rightarrow Zb)^2 \) characterizes the fraction of signal events with at least one \(b' \rightarrow Z+b \) decay as a function of the branching ratio. The case \(\beta = 1 \) is equivalent to previous measurements [9] which assumed \(\text{BR}(b' \rightarrow Zb) = 1 \). The case of a vectorlike singlet (VLS) mixing solely with the third SM generation is also considered by computing \(\beta \) as a function of the \(b' \) mass [5]. Over the range \(m_{b'} = 200–700 \) GeV, \(\beta \) varies from 0.9 to 0.5. A SM Higgs of mass 125 GeV is assumed.

Table I.

<table>
<thead>
<tr>
<th>Source</th>
<th>(Z+ \geq 1) jet</th>
<th>(Z+ \geq 1) (b) jet</th>
<th>(p_T(Zb) > 150) GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z+) light</td>
<td>74 400 ± 7300</td>
<td>590 ± 140</td>
<td>19 ± 7</td>
</tr>
<tr>
<td>(Z+) charm</td>
<td>5340 ± 520</td>
<td>870 ± 210</td>
<td>18 ± 7</td>
</tr>
<tr>
<td>(Z+) bottom</td>
<td>2540 ± 250</td>
<td>1710 ± 270</td>
<td>52 ± 17</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>320 ± 40</td>
<td>220 ± 40</td>
<td>20 ± 4</td>
</tr>
<tr>
<td>Other SM</td>
<td>1010 ± 280</td>
<td>70 ± 20</td>
<td>1.6 ± 0.4</td>
</tr>
<tr>
<td>Total SM</td>
<td>83 600 ± 8100</td>
<td>3460 ± 580</td>
<td>110 ± 30</td>
</tr>
<tr>
<td>Data</td>
<td>80 519</td>
<td>3466</td>
<td>100</td>
</tr>
<tr>
<td>(m_{b'} = 350) GeV</td>
<td>110 ± 12</td>
<td>93 ± 11</td>
<td>55 ± 7</td>
</tr>
<tr>
<td>(m_{b'} = 450) GeV</td>
<td>27 ± 3</td>
<td>20 ± 2</td>
<td>14 ± 2</td>
</tr>
</tbody>
</table>

![ATLAS](https://www.physics.ox.ac.uk ATLAS GeV 2011 (65/7 TeV")

FIG. 2 (color online). \(e^+e^- \) invariant mass distribution for events passing the \(Z+ \geq 1 \) \(b \) jet selection, before imposing the \(|m_{ee} - m_Z| < 15 \) GeV requirement.
The b' candidate is formed from the e^+e^- pair and the highest p_T b jet. The mass of the b' candidate, $m(Zb)$, is the discriminant distinguishing the background-only and signal-plus-background hypotheses. In b' pair production, the new quarks are typically produced with large transverse momentum, $p_T(Zb)$. Therefore, a $p_T(Zb) > 150$ GeV requirement is applied to increase the signal sensitivity. Figure 3 presents the $p_T(Zb)$ distribution for data and the predicted SM backgrounds. Additionally, the signal distribution is overlaid for a b' mass of 350 GeV, assuming the VLS scenario value $\beta = 0.63$, and for a mass of 450 GeV, assuming $\beta = 1$.

The fraction of signal events passing all requirements varies from 7% to 43% between $m_{\ell\nu} = 200–700$ GeV, assuming $\beta = 1$, with the efficiency to pass the minimum $p_T(Zb)$ requirement contributing most to the degree of variation. The requirement $p_T(Zb) > 150$ GeV was determined by assessing the signal sensitivity for different minimum $p_T(Zb)$ values, as quantified by the expected cross section exclusion limit. The limit is computed using a binned Poisson likelihood ratio test [35] of the $m(Zb)$ distribution for different $m_{\ell\nu}$ hypotheses. Pseudoexperiments are generated according to the background-only and signal-plus-background hypotheses, and incorporate the impact of systematic uncertainties. The cross section limit is evaluated using the CL_s modified frequentist approach [35].

The impact of each systematic uncertainty on the normalization and shape of the $m(Zb)$ distribution is assessed for each SM background source and the expected b' signal. The fractional uncertainty on the total number of background events passing the $p_T(Zb) > 150$ GeV requirement is 27%. Significant contributions arise from uncertainties in the $p_T(Zb)$ distribution shape in $Z + \text{jet(s)}$ events. Such sources of uncertainty include the renormalization and factorization scale choice (14%, evaluated using MCFM [36]), shape differences observed between ALPGEN and SHERPA (12%), and variations in the degree of initial and final state QCD radiation (9%). The uncertainty in the efficiency of the b-tagging requirement contributes an additional 12%. Other sources of uncertainty contributing at the level of 6% or less include the jet energy scale [20], parton distribution functions (PDF), MC sample sizes, electron identification efficiency, Z boson cross section, luminosity, b jet mistag rate, $t\bar{t}$ cross section, jet energy resolution, trigger efficiency, and the Other SM event yield. Most of the above uncertainties, with the notable exception of the $p_T(Zb)$ modeling uncertainties in $Z + \text{jet(s)}$ events, contribute to the total uncertainty on the signal normalization, which varies between 11% and 14% depending on the b' mass.

Figure 4 presents the b' candidate mass distribution after requiring $p_T(Zb) > 150$ GeV and the predicted SM background. The distributions for the signal scenarios depicted in Fig. 3 are shown overlaid. The data are in agreement with the SM prediction over the full range of $m(Zb)$ values. In the absence of evidence of an enhancement, 95% confidence level (C.L.) cross section exclusion limits are derived. Figure 5 presents the expected and observed cross section limits as a function of $m_{\ell\nu}$, computed under the assumption $\beta = 1$. The expected cross section limit was checked to be stable to within 15% over the full mass range considered using the signal samples in which one b' quark.
The approximate NNLO b\bar{b}' cross section prediction is shown multiplied by \(\beta \) factors described in the text.

In conclusion, a search with 2.0 fb\(^{-1} \) of ATLAS data is presented for b\bar{b}' quark pair production, with at least one b\bar{b}' decaying to a W boson and a top quark. This decay mode is particularly relevant in the context of vectorlike Z bosons and is an essential complement to searches in the Z+q mode with both quarks and is an essential complement to searches in the Z+q mode.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER; SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the z axis coinciding with the axis of the beam pipe. The x axis points from the interaction point to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, \phi) parametrize the transverse plane, with \phi as the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \theta as \eta = - \ln \tan(\theta/2).
PRL 109, 071801 (2012) PHYSICAL REVIEW LETTERS week ending 17 AUGUST 2012

SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
Section de Physique, Université de Genève, Geneva, Switzerland
INFN Sezione di Genova, Italy
Dipartimento di Fisica, Università di Genova, Genova, Italy
E.Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi, Georgia
High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
Department of Physics, Hampton University, Hampton Virginia, USA
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge Massachusetts, USA
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington Indiana, USA
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City Iowa, USA
Department of Physics, Iowa State University, Ames Iowa, USA
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
INFN Sezione di Lecce, Italy
Dipartimento di Fisica, Università del Salento, Lecce, Italy
Oliveir Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst Massachusetts, USA
Department of Physics, McGill University, Montreal Quebec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor Michigan, USA
Department of Physics and Astronomy, Michigan State University, East Lansing Michigan, USA
INFN Sezione di Milano, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge Massachusetts, USA
Group of Particle Physics, University of Montreal, Montreal Quebec, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

071801-16
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli, Italy
Department of Science, Università di Napoli, Napoli, Italy
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Department of Physics, Northern Illinois University, DeKalb Illinois, USA
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York New York, USA
The Ohio State University, Columbus Ohio, USA
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman Oklahoma, USA
Department of Physics, Oklahoma State University, Stillwater Oklahoma, USA
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene Oregon, USA
LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
INFN Sezione di Pavia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia Pennsylvania, USA
Petersburg Nuclear Physics Institute, Gatchina, Russia
INFN Sezione di Roma I, Italy
Dipartimento di Fisica E. Fermi, Università di Roma, Rome, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh Pennsylvania, USA
Laboratorio de Instrumentacu˜no y Fisica Experimental de Particulas—LIP, Lisboa, Portugal
Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina Saskatchewan, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
INFN Sezione di Roma I, Italy
Dipartimento di Fisica, Università La Sapienza, Roma, Italy
INFN Sezione di Roma Tor Vergata, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Italy
Dipartimento di Fisica, Università Roma Tre, Roma, Italy
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco
Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco
Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz California, USA
Department of Physics, University of Washington, Seattle Washington, USA
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby British Columbia, Canada
SLAC National Accelerator Laboratory, Stanford California, USA
Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Department of Physics, University of Johannesburg, Johannesburg, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa