Search for Higgs boson production in oppositely charged dilepton events in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

(The D0 Collaboration*)

1 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3 Universidade Federal do ABC, Santo André, Brazil
4 University of Science and Technology of China, Hefei, People’s Republic of China
5 Universidad de los Andes, Bogotá, Colombia
6 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7 Czech Technical University in Prague, Prague, Czech Republic
8 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9 Universidad San Francisco de Quito, Quito, Ecuador
10 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14 LPNHE, Université Paris VI and VII, CNRS/IN2P3, Paris, France
15 CEA, SPP, Saclay, France
16 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21 Institut für Physik, Universität Mainz, Mainz, Germany
22 Ludwig-Maximilians-Universität München, München, Germany
23 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
24 Panjab University, Chandigarh, India
25 Delhi University, Delhi, India
26 Tata Institute of Fundamental Research, Mumbai, India
27 University College Dublin, Dublin, Ireland
28 Korea Detector Laboratory, Korea University, Seoul, Korea
29 CINVESTAV, Mexico City, Mexico
30 Nikhef, Science Park, Amsterdam, the Netherlands
31 Radboud University Nijmegen, Nijmegen, the Netherlands
32 Joint Institute for Nuclear Research, Dubna, Russia
33 Institute for Theoretical and Experimental Physics, Moscow, Russia
34 Moscow State University, Moscow, Russia
35 Institute for High Energy Physics, Protvino, Russia
36 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
37 Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
38 Uppsala University, Uppsala, Sweden
39 Lancaster University, Lancaster LA1 4YB, United Kingdom
40 Imperial College London, London SW7 2AZ, United Kingdom
41 The University of Manchester, Manchester M13 9PL, United Kingdom
42 University of Arizona, Tucson, Arizona 85721, USA
43 University of California Riverside, Riverside, California 92521, USA
44 Florida State University, Tallahassee, Florida 32306, USA
45 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46 University of Illinois at Chicago, Chicago, Illinois 60607, USA
47 Northern Illinois University, DeKalb, Illinois 60115, USA
48 Northwestern University, Evanston, Illinois 60208, USA
49 Indiana University, Bloomington, Indiana 47405, USA
50 Purdue University Calumet, Hammond, Indiana 46323, USA
51 University of Notre Dame, Notre Dame, Indiana 46556, USA
52 Iowa State University, Ames, Iowa 50011, USA
We present a search for the standard model Higgs boson using events with two oppositely charged leptons and large missing transverse energy as expected in $H \rightarrow WW$ decays. The events are selected from data corresponding to 8.6 fb$^{-1}$ of integrated luminosity in pp collisions at $\sqrt{s} = 1.96$ TeV collected with the D0 detector at the Fermilab Tevatron Collider. No significant excess above the standard model background expectation in the Higgs boson mass range this search is sensitive to is observed, and upper limits on the Higgs boson production cross section are derived.

PACS numbers: 14.80.Bn, 13.85.Qk, 13.85.Rm

INTRODUCTION

In the standard model (SM), the Higgs boson appears during the spontaneous breaking of the electroweak symmetry $SU(2) \times U(1)$ that is responsible for the generation of the masses of the W and Z bosons. Although the SM requires the existence of this neutral scalar particle, its mass (M_H) is a free parameter. Direct searches at the CERN e^+e^- collider (LEP) yield a lower limit of $M_H > 114.4$ GeV at the 95% C.L. Precision electroweak data yield, including the latest W boson mass requirements from CDF [2] and D0 [3], constrain the mass of a SM Higgs boson to $M_H < 152$ GeV at 95% C.L.

In this Article, we present a search for the SM Higgs boson in final states containing two oppositely charged leptons ($\ell\ell' = e\mu$, ee, or $\mu\mu$, where small contributions from leptonic τ decays are also included) and missing transverse energy (\vec{E}_T), using 8.6 fb$^{-1}$ of pp collisions collected with the D0 detector at the Fermilab Tevatron Collider. These three leptonic final states are combined to produce a result which supersedes our previously published search for Higgs boson production in the oppositely charged dilepton and missing transverse energy final state based on data corresponding to an integrated luminosity of 5.4 fb$^{-1}$ [4]. A similar search was published by the CDF Collaboration at the Tevatron using 4.8 fb$^{-1}$ of integrated luminosity [5] and by the ATLAS and CMS Collaborations at the CERN Large Hadron Collider (LHC) using 4.7 fb$^{-1}$ and 4.6 fb$^{-1}$ of data, respectively [6, 7]. Using up to 5.4 fb$^{-1}$ of integrated luminosity, the combination of the results from the Tevatron led to the first exclusion using the $H \rightarrow WW$ decays, excluding the Higgs boson beyond the LEP limits, in the mass range from 162 to 166 GeV at the 95% C.L. [8]. Recently, both ATLAS and CMS Collaborations have individually combined all their searches, and the results from ATLAS have excluded a Higgs boson in the mass range from 111.4 to 116.6, 119.4 to 122.1, 129.2 to 541 GeV, while results from CMS excluded a Higgs boson in the range 127 to 600 GeV at the 95% C.L. [9, 10].

The primary signal for opposite charge dilepton signa-
tures with considerable missing energy arises from production of Higgs bosons by gluon fusion $qq \rightarrow H$ with subsequent decay $H \rightarrow WW \rightarrow \ell \nu \ell' \nu'$. Additional contributions to this signature come from vector boson fusion (VBF), $qq' \rightarrow qq' H$, where the initial state partons radiate weak gauge bosons that then fuse to form a Higgs boson, and from production in association with a vector boson $qq' \rightarrow V H = (W/Z) H$. The dominant background contribution is from diboson production, in particular, contributions from non-resonant $p\bar{p} \rightarrow WW \rightarrow \ell \nu \ell' \nu'$ processes. Additionally, two types of instrumental backgrounds with considerable missing energy arises from production of Higgs bosons by gluon fusion $gg \rightarrow H$, where jets can be misidentified as leptons. Electroweak single top quark production is not considered since its contribution is negligible. The WW-jet and Z-jet production processes are modeled using ALPGEN [23], with showering and hadronization provided by PYTHIA. Diboson production processes (WW, WZ, and ZZ) are simulated using PYTHIA. The Z-jets and W-jet processes are normalized using the NNLO cross section calculations of Ref. [24] which uses the NLO CTEQ6.1 PDFs. The Z boson p_T distribution is weighted to match the distribution observed in data [25], taking into account its dependence on the number of reconstructed jets. The W boson p_T distribution is corrected to match the measured Z boson p_T spectrum [27] multiplied by the ratio of the W boson p_T to Z boson p_T distributions as predicted in NLO QCD [26]. For the search in the ee and $\mu\mu$ channels, the W-jet sample includes contributions from events in which a jet or a photon is misidentified as an electron. For $t\bar{t}$ production, approximate NNLO cross sections are used, while the NLO production cross section values are used for WW, WZ, and ZZ processes [28]. For the irreducible background source, WW production, the p_T of the diboson system is modeled using the MC@NLO simulation [29]. All MC samples are processed through a GEANT simulation of the detector [30]. Recorded detector signals from randomly selected beam crossings with the same luminosity profile as data are added to the simulated detector signals of MC events in order to model effects of detector noise and additional $p\bar{p}$ interactions. The simulated background samples are subsequently normalized to the integrated luminosity.

The dominant background processes for the search are $Z/\gamma^*+\text{jets}$, $W+\text{jets}$, diboson, $t\bar{t}$, and multijet production where jets can be misidentified as leptons. Electroweak single top quark production is not considered since its contribution is negligible. The $W+\text{jets}$ and $Z+\text{jets}$ backgrounds are modeled using ALPGEN [23], with showering and hadronization provided by PYTHIA. Diboson production processes (WW, WZ, and ZZ) are simulated using PYTHIA. The Z-jets and W-jets processes are normalized using the NNLO cross section calculations of Ref. [24] which uses the NLO CTEQ6.1 PDFs. The Z boson p_T distribution is weighted to match the distribution observed in data [25], taking into account its dependence on the number of reconstructed jets. The W boson p_T distribution is corrected to match the measured Z boson p_T spectrum [27] multiplied by the ratio of the W boson p_T to Z boson p_T distributions as predicted in NLO QCD [26]. For the search in the ee and $\mu\mu$ channels, the W-jet sample includes contributions from events in which a jet or a photon is misidentified as an electron. For $t\bar{t}$ production, approximate NNLO cross sections are used, while the NLO production cross section values are used for WW, WZ, and ZZ processes [28]. For the irreducible background source, WW production, the p_T of the diboson system is modeled using the MC@NLO simulation [29]. All MC samples are processed through a GEANT simulation of the detector [30]. Recorded detector signals from randomly selected beam crossings with the same luminosity profile as data are added to the simulated detector signals of MC events in order to model effects of detector noise and additional $p\bar{p}$ interactions. The simulated background samples are subsequently normalized to the integrated luminosity.

EVENT SIMULATION

Higgs boson signal samples are simulated using the PYTHIA [12] Monte Carlo (MC) event generator with the CTEQ6L1 parton distribution functions (PDFs) [14] for $115 \leq M_H \leq 200$ GeV in increments of 5 GeV. The normalization of these MC samples is obtained using the highest-order cross section calculation available for the corresponding production process. The cross section for the gluon fusion process is calculated at next-to-next-to-leading order (NNLL) in quantum chromodynamics with soft gluon resummation to next-to-next-to-leading-log (NNLL) accuracy [14]. For WH, ZH and vector boson fusion processes, cross section calculations at NNLO are used [13,17]. All signal cross sections are computed using the MSTW2008 PDF set [13]. The PDF uncertainties are assessed according to the recommendations given in Refs. [12,21]. The Higgs boson branching ratio predictions are from HDECAY [21]. The distribution of the transverse momentum (p_T) of the Higgs boson in the PYTHIA-generated gluon fusion sample is reweighted to match the p_T as calculated by HQT, at NNLL and NNLO accuracy [22].

DETECTOR AND OBJECT RECONSTRUCTION

The innermost part of the D0 detector [3] is composed of a central tracking system with a silicon microstrip tracker (SMT) and a central fiber tracker (CFT) embedded within a 2 T solenoidal magnet. The tracking system is surrounded by a central preshower detector (CPS) and a liquid-argon and uranium calorimeter with electromagnetic (EM), fine and coarse hadronic sections. A muon spectrometer resides beyond the calorimetry and is made of drift tubes, scintillation counters and toroidal magnets. The D0 detector was upgraded in Spring 2006 to include modifications to the trigger system [31] as well as an additional inner layer of silicon microstrip tracking installed near the beam pipe and referred to as Layer 0 [32]. The data used for this analysis include 1.1 fb$^{-1}$ collected before these upgrades (Run IIa) and 7.5 fb$^{-1}$ collected afterwards (Run IIIb).

Electrons are identified as clusters in the EM calorimeter and are required to spatially match a track reconstructed in the central tracking detector. The electron
energy is measured from the calorimeter energy deposits within a cone of a radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$, in the four layers of the EM calorimeter and the first layer of the hadronic calorimeter, where η and ϕ are the pseudorapidity and the azimuthal angle, respectively. Due to the different probabilities for jets and photons to be misidentified as electrons in the central (CC, $|\eta| < 1.1$) and the forward (EC, $|\eta| > 1.5$) calorimeter regions, different criteria are required for the electron clusters. The most important of these are: (1) calorimeter isolation f_{iso}, less than 0.15 (CC) or less than 0.1 (EC), with $f_{\text{iso}} = [E_{\text{tot}}(R < 0.4) - E_{\text{EM}}(R < 0.2)]/E_{\text{EM}}(R < 0.2)$, where E_{tot} is the total energy in the isolation cone of radius $R = 0.4$ and E_{EM} is the EM energy in a cone of radius $R = 0.2$; (2) an EM fraction f_{EM} larger than 0.9, where f_{EM} is the fraction of total energy deposited in the EM calorimeter, where the energies are measured within a cone of radius $R = 0.2$; (3) a track isolation h_{iso} less than 3.5 GeV (CC) or less than $(-2.5 \times |\eta| + 7.0)$ GeV (EC), where h_{iso} is the scalar sum of the p_T of all tracks originating from the primary $p\bar{p}$ interaction vertex in an annulus $0.05 < R < 0.4$ around the cluster; (4) a cluster shape consistent with that of an EM shower; (5) an eight-variable electron likelihood L_8 that is required to be greater than 0.05, where L_8 is constructed using the variables: $f_{\text{iso}}, f_{\text{EM}}, h_{\text{iso}}$, the ratio of the electron cluster energy to track momentum (E/p), the number of tracks within a cone of radius $R = 0.4$, the track-cluster match probability computed from the spatial separation and the expected resolution, the track distance to the $p\bar{p}$ interaction vertex at closest approach (dca), and covariance matrices that contain variables that relate the energy depositions between various layers of the calorimeter as well as the longitudinal and lateral shower development; and (6) an artificial neural network trained using information from the track, calorimeter and CPS detector to further reject backgrounds from jets misidentified as electrons.

Muons are identified by the presence of at least one track segment, reconstructed in the muon spectrometer, that is spatially consistent with a track in the central detector. The momentum and charge are measured by the curvature of the central track. The muon candidate must pass quality requirements aimed at reducing false matching and background from cosmic rays. Muons are required to be isolated. The isolation variables are defined to be the scalar sum of the transverse energy in the calorimeter (ΣE_T^{calo}) within an annular cone $0.1 < R < 0.4$ and the scalar sum of the transverse momenta (Σp_T^{trk}) of tracks within a cone $R < 0.5$ around the muon candidate. In the $\mu\mu$ channel, the isolation variables for each muon must satisfy $\Sigma p_T^{\text{trk}} < 0.25 \times p_T^\mu$ and $\Sigma E_T^{\text{calo}} < 0.4 \times p_T^\mu$, p_T^μ being the momentum of the muon. Similarly in the $e\mu$ channel, the isolation variables must satisfy $\Sigma p_T^{\text{trk}} < 0.15 \times p_T^e$ and $\Sigma E_T^{\text{calo}} < 0.15 \times p_T^e$. For $e\mu$ and $\mu\mu$ channels, the momentum of the muon track, the momentum of the electron track, and the electron energy deposit in the calorimeter are not considered when calculating isolation variables for the other lepton. This prevents the presence of one lepton to spoil the isolation of the other lepton in events where the separation of leptons in (η, ϕ) space is smaller than $R = 0.5$.

Jets are reconstructed from energy deposits in the calorimeter using Ban iterative midpoint cone algorithm with a cone radius of 0.5. All jets are required to have at least two associated tracks matched to the $p\bar{p}$ interaction vertex. The efficiency of this requirement is adjusted in the simulation to match that measured in data. Jets can be identified as likely containing b quarks (b-tagged) if they pass a selection cut on the output of a multivariate (MVA) based b-tagging discriminant, trained to separate b jets from light jets. The jet energies are calibrated using transverse momentum balance in γ+jet events. To account for differences in the quark/gluon jet composition between the γ+jet events and the W/Z+jet events, the jet energies are further corrected in simulated events to match those measured in Z+jets data. Comparison of Alpgen with other generators and with the data shows discrepancies in jet η and dijet angular separation. Therefore a data based correction allows for a better modeling of these quantities in the Alpgen Z/γ^*+jets samples.

The E_T is obtained from the vector sum of the transverse components of energy depositions in the electromagnetic and fine hadronic sections of the calorimeter and is corrected for any identified muons. All energy corrections to leptons and to jets are propagated to the E_T. Data based corrections are applied to MC samples which allow for a better modeling of the calorimeter response to unclustered objects.

In order to increase acceptance, all events satisfying any trigger requirement from the complete suite of triggers used for data taking are considered. While most of the candidate events in the analysis are selected by single-lepton and dilepton triggers, a gain in efficiency of up to 20%, depending on the channel is achieved by including events which pass lepton+jets and lepton+E_T triggers.

EVENT SELECTION

Candidate events are selected by requiring at least two high-p_T oppositely charged leptons (e or μ), to originate from the same $p\bar{p}$ interaction vertex along the beam line (i.e., within $\Delta z=2$ cm, where Δz is the distance between lepton tracks along the beam axis, measured at the distance of closest approach to this axis). Additional selections are carried out in two steps, “pre-selection” and the “final-selection”. The following section describes the selections imposed in each step and also outlines the additional kinematic and quality requirements for the search.
Preselection

In the $\mu\mu$ and ee channels, the two highest-p_T leptons are required to satisfy $p_T^{\mu} > 15$ GeV and $p_T^{e} > 10$ GeV respectively, whereas in the $e\mu$ channel, $p_T^{\mu} > 15$ GeV and $p_T^{e} > 10$ GeV are required. Electrons are required to be within the acceptances of the EM calorimeter and tracking system ($|\eta| < 1.1$ or $1.5 < |\eta| < 2.5$) and muons are restricted to the fiducial coverage of the muon system $|\eta| < 2.0$. In the ee channel, events are rejected when both electrons are found in the EC calorimeter as this eliminates only a small contribution to the signal which has poor signal to background ratio. Additionally, in the ee and $\mu\mu$ final states, the dilepton invariant mass $M_{\ell_1\ell_2}$ is required to be greater than 15 GeV. These criteria define the "preselection" stage of the analysis.

To correct for any possible mismodeling of the lepton reconstruction and trigger efficiencies, and to reduce the impact of the luminosity uncertainty, scale factors are applied to the MC samples at the preselection stage to match the data. The normalization factors are determined from Drell-Yan dominated samples within a dilepton mass window of $M_{\ell_1\ell_2} \in [80, 100]$ GeV for ee, $\mu\mu$ and $M_{\ell_1\ell_2} \in [57, 75]$ GeV for $e\mu$, and their differences from unity are smaller than the luminosity uncertainty. Figures 4 and 5 show a comparison between data and the background prediction for the distributions of the kinematic quantities for each of the dilepton final states after preselection requirements. In the dilepton mass distributions shown in Figs. 2a and 3a, the peak in the signal expectation at M_Z originates from ZH associated production where the two observed leptons are from the Z boson decay. The differences in the widths of the resonance in the ee and $\mu\mu$ channels is due to detector resolution. The transverse mass is defined as

$$M_T(\ell, E_T) = \sqrt{2 \cdot p_T \cdot E_T \cdot [1 - \cos \Delta \phi(\ell, E_T)]},$$

and consequently the minimal transverse mass, M_T^{min}, shown in figs. 2b and 3b, is the minimum of the two $M_T(\ell, E_T)$ defined for each lepton.

Jets are considered in this analysis only if they have $p_T > 20$ GeV and $|\eta| < 2.4$. The preselected samples are further subdivided by the number of jets present in the event. Dividing the analysis into different jet multiplicity bins significantly increases the sensitivity of this search as the signal and background composition change between each sample. In particular, $gg \rightarrow H \rightarrow WW$ signal processes populate primarily the 0 and 1 jet multiplicity bins whereas contributions to higher multiplicity bins arise mainly from vector boson fusion production and associated VH processes which contain additional jets in the event. For the background, WW diboson production tends to dominate lower jet multiplicity bins while $t\bar{t}$ events generally contain two jets that are often b-tagged. Subsequent analysis steps are carried out separately for events with zero jets, one jet, and two or more jets in order to optimally separate signal from backgrounds, resulting in a total of nine analysis channels (i.e., three dilepton final states with three jet multiplicity bins each). The jet multiplicity spectrum of the simulated $Z/\gamma^* + \text{jets}$ sample is corrected to match that of the data for each channel considered. These corrections are derived within the mass windows as described above and have the primary effect of improving the ALPGEN modeling of $Z/\gamma^* + \text{jets}$.

The number of events for each jet multiplicity bin at preselection can be found in Table III. In general, good agreement between data and the expected background contribution is observed. At this stage, the Z/γ^* contribution is the dominant background source.

Final Selection

In the ee and $\mu\mu$ channels, a multivariate discriminant is used to remove the dominant Z/γ^* background present in the preselected data sample. The complete details are discussed later in this Article.

As the Z/γ^* contribution is smaller in the $e\mu$ channel, kinematic selections are instead applied to suppress backgrounds after preselection. For the signal, the E_T is not aligned with any of the leptons in the final state, while for the Z/γ^* background processes, the E_T is mostly caused by inaccurate measurements of the energies of the leptons and tends to point in the direction of one of the two leptons. Observables that take into account both the absolute value and the direction of the E_T are M_T^{min} and M_{T2}, where M_{T2} is an extension of the transverse mass for final states with two visible and two invisible particles [39]. It is obtained as the minimum of the M_T^{min} between either lepton and neutrino pair using a minimization procedure, where the sum of the momenta of the neutrinos is varied under the constraint that the sum of the momenta of the lepton pair is the missing transverse energy in the event. The distributions of these two observables in the $e\mu$ channel after the preselection are shown in Fig. 4 for each jet multiplicity bin. The requirements $M_T^{\text{min}} > 20$ GeV and $M_{T2} > 15$ GeV define the final selection for this channel. The number of events at this selection stage for the $e\mu$ state can be found in Table IV.

INSTRUMENTAL BACKGROUNDS

The main instrumental background processes for this analysis are due to (1) the mismeasurement of E_T in $Z/\gamma^* + \text{jets}$ events, (2) the misidentification of associated jets or photons in $W + \gamma/\text{jets}$ production as leptons, and (3) the misidentification of jets in multijet production as leptons.
FIG. 1: [color online] The (a) dilepton invariant mass, (b) E_T, (c) $\Delta \phi$ between the leptons, and (d) minimum transverse mass for the $e\mu$ channel at the preselection stage. The last bin also includes all events above the upper range of the histogram (a,b,d). The signal distribution shown corresponds to a Higgs boson mass of 165 GeV. The hatched bands show the total systematic uncertainty on the background prediction.

TABLE I: Expected and observed numbers of events at preselection in the $e\mu$, ee, and $\mu\mu$ final states. The signal is for a Higgs boson mass of 165 GeV.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Total background</th>
<th>Signal</th>
<th>Z/γ^*</th>
<th>tt</th>
<th>$W+\gamma$/jets</th>
<th>Dibosons</th>
<th>Multijet</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e\mu$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 jets</td>
<td>13468</td>
<td>13754</td>
<td>35</td>
<td>9275</td>
<td>541</td>
<td>1066</td>
<td>842</td>
<td>2031</td>
</tr>
<tr>
<td>1 jet</td>
<td>10942</td>
<td>11171</td>
<td>20</td>
<td>8023</td>
<td>16</td>
<td>861</td>
<td>677</td>
<td>1594</td>
</tr>
<tr>
<td>≥ 2 jets</td>
<td>1849</td>
<td>1902</td>
<td>10</td>
<td>1088</td>
<td>157</td>
<td>154</td>
<td>142</td>
<td>362</td>
</tr>
<tr>
<td>ee:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 jets</td>
<td>525942</td>
<td>524204</td>
<td>18</td>
<td>513365</td>
<td>244</td>
<td>1091</td>
<td>730</td>
<td>8776</td>
</tr>
<tr>
<td>1 jet</td>
<td>473311</td>
<td>472195</td>
<td>9</td>
<td>463751</td>
<td>9</td>
<td>840</td>
<td>425</td>
<td>7171</td>
</tr>
<tr>
<td>≥ 2 jets</td>
<td>42480</td>
<td>41795</td>
<td>5</td>
<td>40234</td>
<td>64</td>
<td>175</td>
<td>151</td>
<td>1172</td>
</tr>
<tr>
<td>$\mu\mu$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 jets</td>
<td>724131</td>
<td>727456</td>
<td>26</td>
<td>723726</td>
<td>353</td>
<td>397</td>
<td>1107</td>
<td>1872</td>
</tr>
<tr>
<td>1 jet</td>
<td>624062</td>
<td>626473</td>
<td>13</td>
<td>624116</td>
<td>10</td>
<td>316</td>
<td>594</td>
<td>1437</td>
</tr>
<tr>
<td>≥ 2 jets</td>
<td>85349</td>
<td>85856</td>
<td>7</td>
<td>85069</td>
<td>90</td>
<td>68</td>
<td>280</td>
<td>348</td>
</tr>
</tbody>
</table>
Background contributions from Z bosons are estimated using MC simulations. The mismeasurement of E_T in $Z/\gamma^*+\text{jets}$ events adds a significant source of background particularly for the ee and $\mu\mu$ selections, as shown in Figs. 2b and 2d.

A W boson decaying leptonically and associated with one or more jets or a photon may contribute to the background if a jet is misidentified as a lepton or a photon overlaps an isolated track or converts into an electron-positron pair. The contribution from these backgrounds is estimated using MC simulations, and corrections to the contributions of jets and photons misidentified as electrons are derived using data, as explained below.

An enriched sample of $W+\gamma/\text{jets}$ not overlapping with the signal is selected from events passing all the selection criteria except that the charges of the two leptons are required to be identical. This requirement assumes that the probability of misidentifying a lepton as a jet is independent of the lepton charge, and therefore, the like-charge dilepton sample can be used to estimate background corrections from misidentified leptons in the opposite-charge dilepton sample. Corrections are obtained separately for initial state radiation jets and photons (ISR$_{\gamma/j}$) and for final state radiation photons (FSR$_{\gamma}$) by splitting this control sample into high dilepton invariant mass ($M_{\ell_1\ell_2} > 40 \text{ GeV}$) and low dilepton invariant mass ($M_{\ell_1\ell_2} < 20 \text{ GeV}$) samples where the contributions of ISR$_{\gamma/j}$ and FSR$_{\gamma}$ are, respectively, dominant. These corrections are applied in the ee and $e\mu$ final states, whereas they are not required in the $\mu\mu$ final state due to the smaller $W+\gamma/\text{jets}$ contribution.

Multijet Production

A high statistics sample of predominantly multijet events, where jets are misidentified as leptons, is obtained from data by inverting certain lepton selection criteria except that the charges of the two leptons are required to be identical. This requirement assumes that the probability of misidentifying a lepton as a jet independent of the lepton charge, and therefore, the like-charge dilepton sample can be used to estimate background corrections from misidentified leptons in the opposite-charge dilepton sample.

FIG. 2: [color online] The (a) dilepton mass, (b) E_T, (c) $\Delta \phi$ between the leptons, and (d) minimum transverse mass for the ee channel at the preselection stage. The last bin also includes all events above the upper range of the histogram (a,b,d). The signal distribution shown corresponds to a Higgs boson mass of 165 GeV. The hatched bands show the total systematic uncertainty on the background prediction.

Z and W Boson Production

An enriched sample of $W+\gamma/\text{jets}$ not overlapping with the signal is selected from events passing all the selection criteria except that the charges of the two leptons are required to be identical. This requirement assumes that the probability of misidentifying a lepton as a jet is independent of the lepton charge, and therefore, the like-charge dilepton sample can be used to estimate background corrections from misidentified leptons in the opposite-charge dilepton sample. Corrections are obtained separately for initial state radiation jets and photons (ISR$_{\gamma/j}$) and for final state radiation photons (FSR$_{\gamma}$) by splitting this control sample into high dilepton invariant mass ($M_{\ell_1\ell_2} > 40 \text{ GeV}$) and low dilepton invariant mass ($M_{\ell_1\ell_2} < 20 \text{ GeV}$) samples where the contributions of ISR$_{\gamma/j}$ and FSR$_{\gamma}$ are, respectively, dominant. These corrections are applied in the ee and $e\mu$ final states, whereas they are not required in the $\mu\mu$ final state due to the smaller $W+\gamma/\text{jets}$ contribution.
The signal distribution shown corresponds to a Higgs boson mass of 165 GeV. The hatched bands show the total systematic uncertainty on the background prediction.

A multivariate technique is used to characterize events as originating from a Higgs boson signal or from background processes and to achieve maximum separation between them. A random forest of boosted decision trees (BDTs) [40] is used to construct a discriminant from kinematic variables, taking into account their correlations. The decision trees are trained separately in each of the nine analysis channels and for each Higgs boson mass hypothesis. To increase the statistics of the available simulated signal events, signal samples for neighboring mass hypotheses are used for the training of the multivariate discriminant. For example, the training of the multijet background is estimated separately for each jet multiplicity bin. The analysis further assumes contributions of non-multijet processes are negligible in the reversed lepton quality sample.

MULTIVARIATE ANALYSIS

A multivariate technique is used to characterize events as originating from a Higgs boson signal or from background processes and to achieve maximum separation between them. A random forest of boosted decision trees (BDTs) [40] is used to construct a discriminant from kinematic variables, taking into account their correlations. The decision trees are trained separately in each of the nine analysis channels and for each Higgs boson mass hypothesis. To increase the statistics of the available simulated signal events, signal samples for neighboring mass hypotheses are used for the training of the multivariate discriminant. For example, the training of the multijet background is estimated separately for each jet multiplicity bin. The analysis further assumes contributions of non-multijet processes are negligible in the reversed lepton quality sample.

MULTIVARIATE ANALYSIS

A multivariate technique is used to characterize events as originating from a Higgs boson signal or from background processes and to achieve maximum separation between them. A random forest of boosted decision trees (BDTs) [40] is used to construct a discriminant from kinematic variables, taking into account their correlations. The decision trees are trained separately in each of the nine analysis channels and for each Higgs boson mass hypothesis. To increase the statistics of the available simulated signal events, signal samples for neighboring mass hypotheses are used for the training of the multivariate discriminant. For example, the training of the multijet background is estimated separately for each jet multiplicity bin. The analysis further assumes contributions of non-multijet processes are negligible in the reversed lepton quality sample.

MULTIVARIATE ANALYSIS

A multivariate technique is used to characterize events as originating from a Higgs boson signal or from background processes and to achieve maximum separation between them. A random forest of boosted decision trees (BDTs) [40] is used to construct a discriminant from kinematic variables, taking into account their correlations. The decision trees are trained separately in each of the nine analysis channels and for each Higgs boson mass hypothesis. To increase the statistics of the available simulated signal events, signal samples for neighboring mass hypotheses are used for the training of the multivariate discriminant. For example, the training of the multijet background is estimated separately for each jet multiplicity bin. The analysis further assumes contributions of non-multijet processes are negligible in the reversed lepton quality sample.
FIG. 4: [color online] $M_{T\min}^{\mu}$ distribution for the $e\mu$ channel in the (a) 0-jet bin, (b) 1-jet bin, and (c) ≥ 2-jet bin. M_{T2} distribution for the $e\mu$ channel in the (d) 0-jet bin, (e) 1-jet bin, and (f) ≥ 2-jet bin. The last bin also includes all events above the upper range of the histogram. The signal distribution shown corresponds to a Higgs boson mass of 165 GeV. The hatched bands show the total systematic uncertainty on the background prediction.

Multivariate Discriminant against Z/γ^*

A BDT discriminant is used in the ee and $\mu\mu$ final states to reject the large Z/γ^* background while retaining a high signal efficiency. This random forest of BDTs will be referred to as DY-BDT. The DY-BDT is trained...
for each Higgs boson mass hypothesis and jet multiplicity bin, separately for the ee and $\mu\mu$ final states, to differentiate between the Z/γ^* background and all considered SM Higgs boson signal events.

The following input variables are used for the DY-BDT:

(i) lepton p_T

(ii) invariant mass of the leptons, $M_{\ell_1\ell_2}$

(iii) azimuthal opening angle between the two leptons, $\Delta \phi(\ell_1, \ell_2)$

(iv) separation in η, ϕ space between the two leptons, $\Delta R(\ell_1, \ell_2) = \sqrt{(\eta_{\ell_1} - \eta_{\ell_2})^2 + (\phi_{\ell_1} - \phi_{\ell_2})^2}$

(v) minimal transverse mass, $M_{T\text{min}}$

(vi) extended transverse mass, M_T

(vii) missing transverse energy, E_T

(viii) smallest and largest of the azimuthal angles, $\Delta \phi$ between the E_T and either lepton

(ix) transverse mass of the E_T and the dilepton pair, $M_T(\ell_1, \ell_2, E_T)$

(x) special missing transverse energy, E_T^{special}, defined for object ζ, which corresponds to either the nearest lepton or jet in the event relative to the direction of the E_T^\ast:

$$E_T^{\text{special}} = \begin{cases} E_T, & \text{if } \Delta \phi(E_T, \zeta) > \pi/2 \\ E_T \times \sin[\Delta \phi(E_T, \zeta)], & \text{otherwise} \end{cases}$$

(xi) jet p_T

(xii) scaled missing transverse energy defined as

$$E_T^{\text{scaled}} = \frac{E_T}{\sqrt{\sum_{\text{jets}} [\Delta E_{\text{jet}} \cdot \sin \theta_{\text{jet}} \cdot \cos \Delta \phi (\text{jet}, E_T)]^2}}$$

where ΔE_{jet} is a measure of jet energy resolution and is proportional to $\sqrt{E_{\text{jet}}}$; the fluctuation in the measurement of jet energy in the transverse plane can be approximated by the quantity $\Delta E_{\text{jet}} \cdot \sin \theta_{\text{jet}}$.

(xiii) azimuthal angle between the E_T and the jets, $\Delta \phi(E_T, \text{jet})$

(xiv) absolute value of the pseudorapidity difference between the jets, $|\Delta \eta(j_1, j_2)|$, where j_1 and j_2 are the two highest-p_T jets in the event

(xv) invariant mass of the two jets, $M(j_1, j_2)$.

Variables (i) and (ii) exploit the di-lepton kinematics of the event. Variables (iii) and (iv) are related to the opening angle between the two leptons and provide discrimination against SM backgrounds which tend to exhibit back-to-back topologies. This is not the case for Higgs boson decays because of the spin correlation in the scalar decay where leptons tend to be aligned in the same direction.

The E_T-related variables (v)–(ix) help distinguish genuine E_T in the Higgs boson signal from mismeasured E_T in Z/γ^* events. Variable (x) helps to further suppress Z/γ^* events, which populate lower values of E_T^{special} where a mismeasured lepton or jet tends to align with the E_T^\ast direction. Variables (xi)–(xv) are used in the 1-jet and 2-jet bins, as appropriate. Since the events are categorized in terms of jet multiplicities, variables (xii)-(xv) exploit the jet kinematics in the event.

To reject most of the Z/γ^* background after the pre-selection, events are required to appear in the signal-like region of the DY-BDT discriminant. This defines the final selection of the ee and $\mu\mu$ final states. The threshold varies for each Higgs boson mass hypothesis in each jet multiplicity bin and yields a Z/γ^* rejection factor of $O(10^{-5})$, $O(10^{-3})$, $O(10^{-2})$ for the 0-jet, 1-jet, 2-jet bins, respectively for all dilepton channels and Higgs boson masses. The thresholds are chosen to obtain similar rejection factors of background events as the cut-based analysis employed in the previous publication. The DY-BDT discriminants for a Higgs boson mass of 165 GeV are shown in Fig. This figure demonstrates that a good separation is achieved between the Z/γ^* background and the majority of signal. However, it can be noticed that some signal events cannot be distinguished from the background and have a very low DY-BDT discriminant value. This is primarily due to some of the Higgs decay modes which have a signature similar to Z/γ^* background. The numbers of events at the final selection stage for the ee and $\mu\mu$ final states are shown in Table.

Final Multivariate Discriminant

In the final selection step, the signal is separated from the remaining backgrounds using an additional random forest of BDTs. This final random forest of BDTs referred to as FD-BDT, is trained for each Higgs boson mass hypothesis and jet multiplicity bin, separately for the three dilepton final states using signal and background samples, which satisfy the final selection criteria, to differentiate between all Higgs boson production processes and backgrounds. These decision trees use as inputs all the variables from the DY-BDT listed above with the addition of the following variables:

(i) electron quality likelihood output, L_8; for the di-
The requirement is applied in the above distributions of 0.35, -0.6, and -0.85 for the \(e e \) and \(\mu \mu \) final state, in the 0-jet, 1-jet, and \(\geq 2 \)-jet bins, respectively. The hatched bands show the total systematic uncertainty on the background prediction.

(ii) a quality criterion based on the number of hits in the muon spectrometer characterized in four distinct categories; this parameter is referred to as "muon quality" and for the dimuon channel the lower quality of the two muons is used.

(iii) number of Layer 0 hits in the SMT matched to each electron
Some representative input distributions to the FD-BDT at the final selection stage with all jet multiplicity bins added in each distribution are shown in Figs. [4] and [7].

- (iv) track isolation variable of each muon
- (v) the product of charge and pseudorapidity, for both leptons ℓ_1 and ℓ_2
- (vi) b-tag output: the output of a multivariate discriminant to separate jets originating from heavy flavor quarks (b and c) from those originating from light quarks; for the channels with $N_{\text{jets}} \geq 2$, the smallest and largest b-tag outputs are used.
Representative distributions of the electron and muon quality variables, \(L_8 \) and “muon quality,” are shown in Fig. 8. These along with other variables given in (iii) and (iv) gauge the quality of the reconstruction of the lepton and are crucial to discriminate between true leptons and jets misidentified as leptons originating from backgrounds like \(W + \text{jets} \). The distribution for the product of charge and pseudorapidity, \(\eta \) for the signal, however this is not true for the background processes with misidentified leptons.

The output from \(b \)-tagging is used to separate the Higgs boson signal from \(t \bar{t} \) production, which is an important background in the 1 and 2 jet multiplicity bins. An MVA-based \(b \)-tagging [35] is employed in each of the dilepton final states to discriminate the signal, which comprises primarily light flavor quarks, against the heavy flavor jets arising from top quark decays. The distributions for smallest and largest \(b \)-tagging output in the \(\geq 2 \)-jet multiplicity bin are shown in Fig. 9.

The distributions of the final BDT discriminant for each channel and Higgs boson masses of 125 GeV and 165 GeV are shown in Figs. 10 – 12.

SYSTEMATIC UNCERTAINTIES

Systematic uncertainties are characterized for each final state, background, and signal processes. Uncertainties that modify only the normalization and uncertainties that change the shape of the final discriminant distri-
FIG. 9: [color online] The (a) smallest b-tagging MVA output and (b) largest b-tagging MVA output for the ≥2-jet multiplicity bin, for all channels summed up at the final selection stage. The signal distribution shown corresponds to a Higgs boson mass of 165 GeV. The hatched bands show the total systematic uncertainty on the background prediction.

TABLE II: Expected and observed numbers of events after the final selection in the $e\mu$, ee, and $\mu\mu$ final states. The signal is for a Higgs boson mass of 165 GeV.

<table>
<thead>
<tr>
<th></th>
<th>Data Total background</th>
<th>Signal</th>
<th>Z/γ^*</th>
<th>$t\bar{t}$</th>
<th>$W + \gamma$/jets</th>
<th>Dibosons</th>
<th>Multijet</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e\mu$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 jets</td>
<td>1117</td>
<td>1222</td>
<td>18</td>
<td>70</td>
<td>11</td>
<td>641</td>
<td>486</td>
</tr>
<tr>
<td>1 jet</td>
<td>335</td>
<td>307</td>
<td>8</td>
<td>19</td>
<td>98</td>
<td>94</td>
<td>87</td>
</tr>
<tr>
<td>≥2 jets</td>
<td>277</td>
<td>277</td>
<td>4</td>
<td>5</td>
<td>226</td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>ee:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 jets</td>
<td>812</td>
<td>881</td>
<td>8</td>
<td>135</td>
<td>6</td>
<td>499</td>
<td>222</td>
</tr>
<tr>
<td>1 jet</td>
<td>430</td>
<td>408</td>
<td>4</td>
<td>181</td>
<td>54</td>
<td>114</td>
<td>52</td>
</tr>
<tr>
<td>≥2 jets</td>
<td>365</td>
<td>355</td>
<td>2</td>
<td>150</td>
<td>140</td>
<td>45</td>
<td>14</td>
</tr>
<tr>
<td>$\mu\mu$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 jets</td>
<td>645</td>
<td>720</td>
<td>10</td>
<td>227</td>
<td>4</td>
<td>155</td>
<td>236</td>
</tr>
<tr>
<td>1 jet</td>
<td>581</td>
<td>564</td>
<td>5</td>
<td>376</td>
<td>56</td>
<td>35</td>
<td>68</td>
</tr>
<tr>
<td>≥2 jets</td>
<td>724</td>
<td>713</td>
<td>3</td>
<td>498</td>
<td>171</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

The uncertainties on the inclusive $\sigma(VH)$ and $\sigma(qqH)$ are taken as 6% and 5%, respectively.

Sources of systematic uncertainty that affect both the normalization and the shape of the final discriminant distribution are: jet energy scale (1–4)% and jet energy resolution (1–3)%, determined by varying the parameters of the energy scale correction and the energy resolution function within one standard deviation (s.d.) of the uncertainty; and a Z+jets jet-bin-dependent normalization (2–15)%.

Since the analysis is split into categories depending on the number of reconstructed jets, renormalization and factorization scale uncertainties on $\sigma(gg \rightarrow H)$ are estimated following the prescription described in Ref. [11]. By propagating the uncorrelated uncertainties of the NNLL inclusive $[13, 12]$, NLO ≥ 1 jet [20], and NLO ≥ 2 jets [13] cross sections to the exclusive $gg \rightarrow H+0$ jet, ≥ 1 jet, and ≥ 2 jets rates, the uncertainty matrix shown in Table III is built. The PDF uncertainties for $\sigma(gg \rightarrow H)$, obtained using the prescription in Refs. [15, 20], are also summarized in Table III. The uncertainties on the inclusive $\sigma(VH)$ and $\sigma(qqH)$ are taken as 6% and 5%, respectively.
FIG. 10: [color online] Final BDT discriminant for the (top-row) 0-jet, (middle-row) 1-jet, and (bottom-row) ≥ 2-jet bins for the $e\mu$ final state for a Higgs boson masses of 125 GeV [left (a,c,e)] and 165 GeV [right (b,d,f)]. The hatched bands show the total systematic uncertainty on the background prediction.

Several systematic uncertainties are also included which have a small (< 1%) effect on the background model: modeling of diboson production in terms of $p_T(WW)$, determined by taking the fractional difference of the predicted final discriminant shape between MC@NLO and PYTHIA generators; modeling of diboson production in terms of the impact of the gluon fusion production process on the $\Delta\phi$ distribution between the leptons, determined by taking the fractional difference of the predicted final discriminant shape between MC@NLO.
FIG. 11: [color online] Final BDT discriminant for the (top-row) 0-jet, (middle-row) 1-jet, and (bottom-row) ≥ 2-jet bins for the ee final state for a Higgs boson masses of 125 GeV [left (a,c,e)] and 165 GeV [right (b,d,f)]. The hatched bands show the total systematic uncertainty on the background prediction.

and gg2ww [44] generators; and the p_T of the vector boson from W+jets and Z+jets production. A summary of the dominant systematic uncertainties is given in Table IV.

RESULTS

The methodology of this search is validated by an independent measurement of the $p\bar{p} \to W^+W^-$ cross section using the analysis procedure described in the “Event Selection” section of this Article, considering WW events as the signal. This is motivated by the fact that WW
FIG. 12: [color online] Final BDT discriminant for the (top-row) 0-jet, (middle-row) 1-jet, and (bottom-row) ≥ 2-jet bins for the µµ final state for a Higgs boson masses of 125 GeV [left (a,c,e)] and 165 GeV [right (b,d,f)]. The hatched bands show the total systematic uncertainty on the background prediction.

TABLE III: Elements of the uncertainty matrix of the scale (μ_R, μ_F) and PDF uncertainties on $\sigma(gg \rightarrow H)$ for the three jet multiplicity categories considered, where s_0, s_1 and s_2 are the elements of the uncertainty matrix.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>$\sigma(\mu_R, \mu_F)$</th>
<th>s_0</th>
<th>s_1</th>
<th>s_2</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 jet</td>
<td></td>
<td>13.4%</td>
<td>−23.0%</td>
<td>−</td>
<td>7.6%</td>
</tr>
<tr>
<td>≥ 1 jet</td>
<td>−</td>
<td>35.0%</td>
<td>−12.7%</td>
<td>13.8%</td>
<td></td>
</tr>
<tr>
<td>≥ 2 jets</td>
<td>−</td>
<td>−</td>
<td>33.0%</td>
<td>29.7%</td>
<td></td>
</tr>
</tbody>
</table>
production is the main contributor to the diboson entry in both Tables I and II compared to the expected yields from WZ and ZZ production backgrounds. Similarly to the Higgs boson search, a dedicated BDT is constructed, but now it is trained to separate WW production signal from other SM processes. For this BDT, we use the identical input variables, the same separation method in terms of jet multiplicity bins, and the same treatment of systematic uncertainties as in the Higgs boson search. The ee and $\mu\mu$ final states use only the 0 and 1 jet multiplicity bins while the $e\mu$ final state uses all three jet multiplicity bins yielding a total of seven analysis channels for the combination. The results obtained for the WW cross section in the individual final states and their combination are summarized in Table IV. The measured value of 11.1 ± 0.8 pb is in good agreement with the SM prediction of 11.7 ± 0.8 pb [28]. The presence of a Higgs boson signal in the mass range $115 < M_H < 180$ GeV would bias the cross section measurement result by 5% at most. This maximum bias is reached for $M_H = 165$ GeV, but at low masses ($M_H < 130$ GeV), the bias would be less than 2%.

Figures 13 and 14 show the expected WW and Higgs boson signals, respectively, for the combined decay channels in the analysis. In these distributions, the data is shown, ordered in bins of increasing values of the s/b ratio, after the subtraction of the SM backgrounds. The background model is fit to the data, and the uncertainties on the background are those after the systematic uncertainties have been constrained by the fit.

The final multivariate discriminants of the SM Higgs boson search, shown in Figs. 10 – 12, demonstrate that the data is well described by the sum of the background predictions. In the absence of an excess in the number of observed events above the SM backgrounds, these BDT output distributions are used to set upper limits on the Higgs boson inclusive production cross section $\sigma(p\bar{p} \rightarrow H + X)$ assuming SM values for the branching ratios and for the relative cross sections of the various Higgs production mechanisms considered. The limits are calculated using a modified frequentist method with a log-likelihood ratio (LLR) test statistic [45]. The value of CL_s is defined as $CL_s = CL_{s+b}/CL_b$, where CL_{s+b} and CL_b are the p-values for the signal+background and background-only hypotheses, respectively. Expected limits are calculated from the background-only LLR distribution whereas the observed limits are quoted with respect to the LLR values measured in data. They both are reported at the 95% C.L.

The multivariate discriminants corresponding to the nine individual channels are all used to obtain upper limits on the Higgs boson production cross section. Given the differences in the background contributions to each of the channels, the nine BDT output distributions are not combined in a single distribution for the limit extraction, but treated separately. The degrading effects of systematic uncertainties on the search sensitivity are minimized by fitting individual background contributions to the data by maximizing a profile likelihood function for the background-only and signal+background hypotheses separately, taking into account appropriately all correlations between the systematic uncertainties [46]. Table VI and Fig. 15 present expected and observed upper limits at the 95% C.L. for $\sigma(p\bar{p} \rightarrow H + X)$ relative to SM predictions for each Higgs boson mass considered.

The corresponding LLR distributions are shown in Fig. 16. Included in this plot are the median of the LLR distributions for the background-only hypothesis (LLR_b), the signal-plus-background hypothesis (LLR_{s+b}), and the observed value for the data (LLR_{obs}). The shaded

Table IV: Summary of systematic uncertainties (in %) for source categories. The jet, b-tagging and PDF related uncertainties are quoted for all the backgrounds combined.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall normalization</td>
<td>4.0</td>
</tr>
<tr>
<td>$W+$-jets normalization</td>
<td>6.0 – 50.0</td>
</tr>
<tr>
<td>Diboson cross section</td>
<td>6.0</td>
</tr>
<tr>
<td>$t\bar{t}$ cross section</td>
<td>7.0</td>
</tr>
<tr>
<td>Multijet normalization</td>
<td>30.0</td>
</tr>
<tr>
<td>$Z+$-jets jet-bin normalization</td>
<td>2.0 – 15.0</td>
</tr>
<tr>
<td>$gg \rightarrow H$ cross section</td>
<td>See Table [II]</td>
</tr>
<tr>
<td>VH cross section</td>
<td>6.0</td>
</tr>
<tr>
<td>qqH cross section</td>
<td>5.0</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>1.0 – 4.0</td>
</tr>
<tr>
<td>Jet resolution</td>
<td>1.0 – 3.0</td>
</tr>
<tr>
<td>Jet primary vertex association</td>
<td>1.0 – 2.0</td>
</tr>
<tr>
<td>b-tagging discriminant</td>
<td>1.0 – 2.0</td>
</tr>
<tr>
<td>PDF (background)</td>
<td>2.5</td>
</tr>
</tbody>
</table>
bands represent one and two s.d. departures for LLR_b centered on the median. The separation between the LLR_b and LLR_{s+b} distributions provides a measure of the discriminating power of the search. The current result indicates that the signal+background model can be separated from the background-only model by up to 1 s.d. over most Higgs boson masses between 115 to 200 GeV while the level of separation increases above 2 s.d. for Higgs boson masses between 160 to 170 GeV. The sensitivity of the search reaches an expected exclusion of $159 < M_H < 169$ GeV at 95% C.L. However due to a slight excess in the data, an observed exclusion is not obtained.

CONCLUSIONS

We have performed a search for SM Higgs boson production using final states with two oppositely charged leptons and large missing transverse energy in the $e\mu$, ee, and $\mu\mu$ channels. After imposing all selection criteria, no significant excess in data over expected SM backgrounds is observed. We set upper limits on Higgs boson production at the 95% C.L. The sensitivity of the search reaches an expected exclusion of $159 < M_H < 169$ GeV. The best observed limit is obtained at 160 GeV, where it reaches 1.1 times the SM expectation. This channel is the single most sensitive channel when the $H \rightarrow WW$ branching ratio is dominant ($M_H > 135$ GeV), and for lower masses at $M_H = 125$ GeV, this search still has a similar sensitivity as a single major low mass channel (WH or ZH) with an expected limit of 3.8 times the SM expectation [17]. The results and the analysis techniques are validated through an independent measurement of the WW production cross section, which agrees with the NNLO calculation.

ACKNOWLEDGMENTS

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and
FIG. 14: [color online] The background-subtracted data distributions for the final discriminants, summed in bins with similar signal to background ratio, for (a) \(M_H = 125 \text{ GeV} \) and (b) \(M_H = 165 \text{ GeV} \). The uncertainties shown on the background-subtracted data points are the square roots of the post-fit background predictions in each bin, representing the expected statistical uncertainty on the data. Also shown is the \(\pm 1 \) standard deviation (s.d.) band on the total background after fitting.

TABLE VI: Expected and observed upper limits at the 95\% C.L. for \(\sigma(p\bar{p} \rightarrow H + X) \) relative to the SM for the total combination and separately for the \(e\mu, ee \) and \(\mu\mu \) channels for different Higgs boson masses \((M_H) \).

<table>
<thead>
<tr>
<th>(M_H) (GeV)</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>135</th>
<th>140</th>
<th>145</th>
<th>150</th>
<th>155</th>
<th>160</th>
<th>165</th>
<th>170</th>
<th>175</th>
<th>180</th>
<th>185</th>
<th>190</th>
<th>195</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. all:</td>
<td>8.00</td>
<td>5.37</td>
<td>3.81</td>
<td>3.02</td>
<td>2.43</td>
<td>2.09</td>
<td>1.77</td>
<td>1.53</td>
<td>1.28</td>
<td>0.92</td>
<td>0.85</td>
<td>1.05</td>
<td>1.27</td>
<td>1.49</td>
<td>1.88</td>
<td>2.48</td>
<td>2.87</td>
<td>3.32</td>
</tr>
<tr>
<td>Obs. all:</td>
<td>13.27</td>
<td>9.14</td>
<td>5.00</td>
<td>4.71</td>
<td>3.93</td>
<td>3.28</td>
<td>2.13</td>
<td>1.99</td>
<td>1.75</td>
<td>1.10</td>
<td>1.07</td>
<td>1.40</td>
<td>1.40</td>
<td>1.84</td>
<td>2.34</td>
<td>2.87</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>Exp. (e\mu)</td>
<td>11.25</td>
<td>7.08</td>
<td>5.07</td>
<td>4.01</td>
<td>3.18</td>
<td>2.76</td>
<td>2.29</td>
<td>1.93</td>
<td>1.60</td>
<td>1.21</td>
<td>1.13</td>
<td>1.39</td>
<td>1.64</td>
<td>1.96</td>
<td>2.48</td>
<td>3.12</td>
<td>3.66</td>
<td>4.24</td>
</tr>
<tr>
<td>Obs. (e\mu)</td>
<td>13.86</td>
<td>8.50</td>
<td>5.12</td>
<td>4.62</td>
<td>4.01</td>
<td>2.61</td>
<td>1.96</td>
<td>1.68</td>
<td>1.47</td>
<td>1.10</td>
<td>1.27</td>
<td>1.38</td>
<td>1.60</td>
<td>1.68</td>
<td>2.28</td>
<td>2.52</td>
<td>2.84</td>
<td>3.39</td>
</tr>
<tr>
<td>Exp. (ee)</td>
<td>16.07</td>
<td>11.53</td>
<td>8.08</td>
<td>6.30</td>
<td>4.84</td>
<td>4.05</td>
<td>3.60</td>
<td>3.12</td>
<td>2.65</td>
<td>1.92</td>
<td>1.82</td>
<td>2.11</td>
<td>2.63</td>
<td>3.07</td>
<td>3.66</td>
<td>4.76</td>
<td>5.84</td>
<td>6.52</td>
</tr>
<tr>
<td>Exp. (\mu\mu)</td>
<td>15.09</td>
<td>9.97</td>
<td>7.08</td>
<td>5.44</td>
<td>4.56</td>
<td>3.92</td>
<td>3.37</td>
<td>2.93</td>
<td>2.60</td>
<td>1.99</td>
<td>1.83</td>
<td>2.29</td>
<td>2.72</td>
<td>3.24</td>
<td>4.16</td>
<td>5.08</td>
<td>5.68</td>
<td>6.89</td>
</tr>
<tr>
<td>Obs. (\mu\mu)</td>
<td>25.84</td>
<td>18.83</td>
<td>9.93</td>
<td>8.34</td>
<td>7.01</td>
<td>7.11</td>
<td>5.37</td>
<td>4.45</td>
<td>3.88</td>
<td>2.99</td>
<td>2.31</td>
<td>3.22</td>
<td>3.35</td>
<td>4.82</td>
<td>5.16</td>
<td>7.82</td>
<td>9.24</td>
<td></td>
</tr>
</tbody>
</table>

CNSF (China).

[22] G. Bozzi, S. Catani, D. de Florian, and M. Grazzini,
FIG. 15: [color online] Excluded cross section, $\sigma(p\bar{p} \rightarrow H + X)$, at the 95% C.L. in units of the SM cross section as a function of M_H using (a) all channels, (b) $e\mu$ channel, (c) ee channel, (d) $\mu\mu$ channel.

where θ is the polar angle relative to the proton beam direction.
FIG. 16: [color online] The observed LLR (solid line) as a function of M_H using (a) all channels, (b) $e\mu$ channel, (c) ee channel, (d) $\mu\mu$ channel. Also shown are the expected LLR distributions for the background only hypothesis (dashed line) and for the signal+background (dash-dotted line) hypothesis, with the dark grey and light grey bands indicating ±1 and ±2 s.d. fluctuations of the expected LLR distributions for the background-only hypothesis, respectively.
