Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons

The ATLAS Collaboration

This Letter presents a search for pair production of heavy down-type quarks decaying via $b' \rightarrow Wt$ in the lepton+jets channel, as $b'b' \rightarrow WtW^+ \bar{t}' \rightarrow b\bar{b}W^+W'^-W'^- \rightarrow l^{\pm}b\bar{b}qqqqqq$. In addition to requiring exactly one lepton, large missing transverse momentum and at least six jets, the invariant mass of nearby jet pairs is used to identify high transverse momentum W bosons. In data corresponding to an integrated luminosity of 1.04 fb$^{-1}$ from pp collisions at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector, a heavy down-type quark with mass less than 480 GeV is excluded at the 95% confidence level.

PACS numbers: 12.60.-i, 13.85.Rm, 14.65.-Jk
the same bunch crossing as the selected event (in-time pileup) and, to a lesser extent, collisions during adjacent bunch crossings, within the time the detectors are sensitive for each trigger (out-of-time pileup). The simulation takes both kinds of pileup into account.

The signal and SM backgrounds are modeled using a variety of generators. Pair-production of b' quarks decaying to Wt with subsequent showering and hadronization is generated with PYTHIA [12] using the MRST2007 LO* parton distribution function (PDF) set [13]. Seven samples with $m_{W'}$ masses ranging from 300 to 600 GeV are used. The cross section for each b' mass is calculated at approximate next-to-next-to-leading order (NNLO) using Hather [14]. For a b' quark with a mass of 350 GeV, the cross section is $3.20^{+0.10+0.12}_{-0.19-0.12}$ pb, where the first uncertainty comes from varying the renormalization and factorization scales by a factor of two, and the second one from the PDFs. For a 500 GeV b' quark, the cross section is $0.33^{+0.02}_{-0.01}$ pb.

Top quark pair production is modeled using ALPGEN [15] where hard emission of up to three partons is described using QCD matrix elements, HERWIG [16] is used to model the parton shower, and JIMMY [17] describes multiple parton interactions. The rate of top quark production predicted by the simulation is validated with data using an event sample with three, four or five jets, where little or no b' signal is expected.

Production of a W or Z boson in association with many jets is described in ALPGEN with hard parton emission of up to five partons and HERWIG for the parton shower. The W+jets background is normalized using a data-driven method which fits templates from simulated events to a data sample dominated by W decays [18]. The Z+jets background is normalized to a NNLO calculation [19].

Other processes considered are the production of di-bosons (WW, WZ, ZZ), modeled with ALPGEN and HERWIG and normalized to next-to-leading order (NLO) calculations [20]; single top, modeled with MC@NLO [21] and HERWIG; and $ttW, ttZ, ttWW, tWj, tZj$, and $WWjj$, all modeled with MADGRAPH [22] and PYTHIA.

The multijet background is strongly suppressed by the requirements described below. The residual contribution is estimated using a data-driven technique called the matrix method, described in detail in Ref. [23]. Validation of this background estimate is done by reversing these requirements to enhance the multijet contribution.

Electrons, jets, muons, and missing transverse momentum are used to select events for this search. Electrons are required to have $E_T > 25$ GeV and be within the pseudorapidity range $|\eta| < 2.47$, excluding the barrel-endcap transition region $1.37 < |\eta| < 1.52$. Electrons must pass tight identification requirements [11] and also satisfy calorimeter isolation: the energy not associated to the electron cluster inside a cone of size $\Delta R = 0.2$ around the electron direction must be smaller than 3.5 GeV after the correction for the contributions from interactions additional to the hard process.

Jets are reconstructed from topological calorimeter clusters using the anti-k_T algorithm [24] with radius parameter 0.4. These jets are then calibrated to the hadronic energy scale using p_T- and η-dependent correction factors obtained from simulation and validated with collision data [25]. For this analysis, jets are required to satisfy $p_T > 25$ GeV and $|\eta| < 2.5$. The closest jet within an $\eta-\phi$ cone of 0.2 around an electron candidate is removed.

Muon candidates must satisfy $p_T > 20$ GeV and $|\eta| < 2.5$ and pass tight identification requirements [23]. Muons must also satisfy calorimeter isolation, which requires that the energy, excluding the estimated energy deposited by the muon, is smaller than 4 GeV in a cone of size $\Delta R = 0.3$ around the muon direction, and track isolation, which requires that the summed momentum of all tracks excluding the muon track is smaller than 4 GeV in a cone of size $\Delta R = 0.3$. Finally, all muons within a cone of size $\Delta R = 0.4$ around any jet with $p_T > 20$ GeV are removed.

The missing transverse momentum (E^{miss}_T) is constructed from the vector sum of topological calorimeter energy deposits and muon momenta, projected onto the transverse plane [26].

If each b' quark decays to a top quark and a W boson, the resulting final state is $tWtW^-$. In the lepton + jets decay channel, the final state contains one lepton, E^{miss}_T from the undetected neutrino, and many jets from the eight quarks. Exactly one lepton (e or μ) must pass the selection described above. Since not all jets are expected to satisfy the momentum and rapidity requirements, at least six jets are required.

To reduce the multijet background, additional requirements are placed on the E^{miss}_T and the transverse mass of the leptonically decaying W boson, $m_T^W = \sqrt{2E^{\text{miss}}_T p^\ell_T (1 - \cos(\Delta \phi(E^{\text{miss}}_T, p^\ell_T)))}$. In the electron channel, $E^{\text{miss}}_T > 35$ GeV and $m_T^W > 25$ GeV are required, and in the muon channel, $E^{\text{miss}}_T > 20$ GeV and $E^{\text{miss}}_T + m_T^W > 60$ GeV are required. Only events with six or more jets are considered. For a b' quark with a mass of 350 GeV, $11.2 \pm 1.7\%$ of signal events are accepted with this selection. For a b' quark with a mass of 500 GeV, $13.5 \pm 2.0\%$ of signal events are retained.

At this stage of the selection, pair production of b' quarks is distinguished mostly by the large number of energetic jets, as shown in Fig. 1. Events with b' decays contain jets from three hadronic W decays, while $t\bar{t}$ background events contain only one hadronic W decay.

To identify these hadronic W decays, pairs of jets separated by $\Delta R < 1.0$ are examined. This choice of ΔR selects W bosons with high p_T and reduces the combinatorial background in events with large jet multiplicity. The number of reconstructed W bosons (N_{W^\pm}) is defined as the number of such jet pairs with an invariant mass in the range $70 - 100$ GeV. This range is not symmetric around the W boson mass as additional energy is often included in the cone. Each jet may contribute to only
one identified hadronic W decay. In Fig. 2, the invariant masses of dijet pairs in a control sample of events with only three to five jets are shown. Good agreement is observed between the data and simulation across the entire spectrum including the region close to the W boson mass, where a bump can be seen in the $t\bar{t}$ simulation.

The efficiency of finding a simulated W decay with both quarks matched to separate reconstructed jets depends on the W boson p_T. For simulated $t\bar{t}$ and b' events passing the selection described above and containing a W boson with a p_T of about 250 GeV the two jets from the W boson are found approximately 80% of the time. Once both jets are found, the efficiency that the jets have $\Delta R < 1.0$ and a dijet mass within the specified invariant mass range is approximately 70%, as can be seen in Fig. 3.

To further distinguish the potential b' signal from the backgrounds, nine exclusive bins are examined, defined as a function of the multiplicity of hadronic W decays ($N_W = 0, 1, \geq 2$) and jet multiplicity ($N_{\text{jet}} = 6, 7, \geq 8$).

The agreement between data and simulation for the description of the number of jets is validated in events to have exactly six jets. The efficiency of finding a simulated W boson decay to have $\Delta R < 1.0$ and a dijet mass within the specified invariant mass range is approximately 70%, as can be seen in Fig. 3.

![Graph](image1)

FIG. 1: Jet multiplicity distribution for signal and backgrounds for events with at least one jet. The shaded SM backgrounds are stacked on one another, while the b' signal histograms are not. In this figure and those following, the bottom plot shows the relative difference between the SM prediction and the data together with the uncertainty (shaded band) due to statistics, jet energy scale, and W+jets normalization.

![Graph](image2)

FIG. 2: The invariant mass distribution of jet pairs with $\Delta R < 1.0$ for data and simulation in a control sample of events with exactly three to five jets.

![Graph](image3)

FIG. 3: The efficiency for jet pairs from a simulated W boson decay to have $\Delta R < 1.0$ and a dijet mass within $70 - 100$ GeV, for simulated $t\bar{t}$ and signal events. Events are required to have exactly six jets.

TABLE I: Systematic uncertainties in the predicted total background in the signal region. Some of the uncertainties have been constrained in background-dominated regions, ‘profiled’ as described in the text. Smaller systematic uncertainties, such as those related to lepton identification and theory, and small uncertainties on the rate, are not profiled and are not included here. For the profiled systematics, the uncertainty before profiling is given in parentheses.

<table>
<thead>
<tr>
<th>Uncertainty on Background</th>
<th>Uncertainty on Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profied Uncertainties</td>
<td>Not-profiled Uncertainties</td>
</tr>
<tr>
<td>W+jets Normalization</td>
<td>Jet Energy Scale</td>
</tr>
<tr>
<td>$\pm5% \pm16%$</td>
<td>$\pm31%$</td>
</tr>
<tr>
<td>ISR/FSR</td>
<td>$t\bar{t}$ Simulation Generator</td>
</tr>
<tr>
<td>$\pm12% \pm17%$</td>
<td>$\pm6%$</td>
</tr>
<tr>
<td>Jet Energy Resolution</td>
<td>$t\bar{t}$ Showering Model</td>
</tr>
<tr>
<td>$\pm3% \pm6%$</td>
<td>$\pm3%$</td>
</tr>
<tr>
<td>Jet Reconstruction Efficiency</td>
<td>$\pm2% \pm3%$</td>
</tr>
<tr>
<td>$\pm17% \pm16%$</td>
<td></td>
</tr>
</tbody>
</table>

The main contributions to uncertainty in the
modeling of the backgrounds and b' signal come from the jet energy scale and the level of initial and final state radiation (ISR/FSR) in the top quark pair background. The jet energy scale uncertainty is extracted from dijet events and validated with $\gamma + \text{jet}$ events as discussed in Ref. [28], with an additional uncertainty due to time pileup. The amounts of simulated ISR and FSR are varied according to their uncertainties for both background and signal events. Jet reconstruction efficiency and jet energy resolution lead to smaller uncertainties in the predicted background.

For the largest background source, $t\bar{t}$ with additional jets, uncertainties in the description of the parton shower and fragmentation model are estimated by comparing predictions of POWHEG [27] with PYTHIA to POWHEG with HERWIG. Uncertainties in the modeling of the production and decay of the top quark are estimated by comparing the predictions from POWHEG with HERWIG and ALPGEN.

The W+jets normalization uncertainty is 4%, plus 24% per jet added in quadrature [18]. The uncertainties in lepton reconstruction efficiency and energy scale are derived in dilepton samples dominated by $Z \rightarrow \ell\ell$ decays and applied to the simulated background and signal samples.

The systematic uncertainties are treated as correlated between signal and background, and between electron and muon channels, except where they are specific to the background model (e.g. W+jets normalization) or to a channel (e.g. electron or muon efficiencies).

To extract the most likely value of the $b\bar{b}$ cross section in the nine bins of (N_W, N_{jet}) multiplicity, a binned maximum likelihood fit using a profile likelihood ratio is performed, varying each background rate within its uncertainty, and allowing shape and rate variation due to the systematic uncertainties described above. The signal and background rates are fitted simultaneously.

Events in the final selection which have low hadronic W boson or jet multiplicity ($N_W < 2$ and $N_{\text{jet}} < 8$) are dominated by background processes and serve to constrain some of the systematic uncertainties. The likelihood is maximized with respect to the variation due to the systematic uncertainties. This procedure serves to reduce some of the systematic uncertainties, those listed as ‘profiled’ in Table 4.

The expected background and signal contributions, as well as the observed numbers of events in the data, are shown in Fig. 4 and given in Table 4. No evidence for the production of b' quarks is observed. The CLs method [28] is used to set 95% confidence level (C.L.) cross section upper limits for the pair production of fourth generation quarks, b'. The median expected upper limit is extracted in the background-only hypothesis. The results are shown in Fig. 5 as a function of the b' mass. Systematic uncertainties are taken into account and it is assumed that the branching ratio (BR) for $b' \rightarrow Wt$ is 100%. These cross section limits are interpreted as limits on the b' mass by finding the intersection of the limit curves with the theoretical cross section curve. Uncertainty in the theoretical cross section includes renormalization and factorization scale and PDF uncertainties calculated with Hathor [14].

Masses below 480 GeV are excluded at the 95% confidence level, while the expected limit is $m_{b'} > 470$ GeV. For a particle with a mass of 480 GeV, the expected exclusion limit on the pair production cross section is $\sigma < 0.54^{+0.45}_{-0.22}$ pb, while the observed exclusion is $\sigma < 0.47$ pb.

In conclusion, a search for pair production of heavy down-type quarks decaying via $b' \rightarrow Wt$ in the lepton

<table>
<thead>
<tr>
<th>N_{jet}, N_W</th>
<th>Background</th>
<th>Events</th>
<th>E_b</th>
<th>$E_{b'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>2060 $^{+104}_{-75}$</td>
<td>1839</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>1, 0</td>
<td>410 $^{+104}_{-150}$</td>
<td>410</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>2, 0</td>
<td>28 $^{+10}_{-8}$</td>
<td>32</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>3, 0</td>
<td>570 $^{+320}_{-230}$</td>
<td>521</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>4, 1</td>
<td>166 $^{+49}_{-68}$</td>
<td>142</td>
<td>46</td>
<td>7</td>
</tr>
<tr>
<td>5, 2</td>
<td>17.9 $^{+6.8}_{-6.8}$</td>
<td>21</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>6, 3</td>
<td>170 $^{+180}_{-70}$</td>
<td>173</td>
<td>56</td>
<td>3</td>
</tr>
<tr>
<td>7, 4</td>
<td>69 $^{+33}_{-27}$</td>
<td>57</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>8, 5</td>
<td>12 $^{+8.6}_{-5.2}$</td>
<td>11</td>
<td>22</td>
<td>6</td>
</tr>
</tbody>
</table>

FIG. 4: Distribution of the numbers of events observed in the data and expected from SM processes for jet multiplicity $N_{\text{jets}} = 6, 7, \geq 8$ with hadronic W multiplicity $N_W = 0, 1, \geq 2$. The expected b' signals for two masses are also shown, stacked on top of the backgrounds.
+ jets channel has been performed using 1.04 fb$^{-1}$ of $\sqrt{s} = 7$ TeV pp collision data recorded with the ATLAS detector, selecting events based on the number of jets and hadronic W decays. A heavy down-type quark with mass less than 480 GeV is excluded at the 95% confidence level, improving significantly on previous limits.

I. ACKNOWLEDGEMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFi, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DUNS and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMGF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

FIG. 5: Expected and observed cross section exclusion upper limits at 95% C.L. for a fourth-generation b' quark. Systematic uncertainties on the expected limit are shown with shaded bands. Previously published limits from CDF [3, 4], CMS [5], and ATLAS [7] are also shown.

We use root-two for the LHC, as well as the support staff from our institutions.
007 (2003); S. Frixione et al., JHEP 0603, 092 (2006); S. Frixione et al., JHEP 0807, 029 (2008).

(c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey

19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy

20 Physikalisches Institut, Universität Bonn, Bonn, Germany

21 Department of Physics, Boston University, Boston MA, United States of America

22 Department of Physics, Brandeis University, Waltham MA, United States of America

23 (a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil

24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

28 Department of Physics, Carleton University, Ottawa ON, Canada

29 CERN, Geneva, Switzerland

30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China

33 Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

34 Nevis Laboratory, Columbia University, Irvington NY, United States of America

35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

39 Physics Department, Southern Methodist University, Dallas TX, United States of America

40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America

41 DESY, Hamburg and Zeuthen, Germany

42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

44 Department of Physics, Duke University, Durham NC, United States of America

45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria

47 INFN Laboratori Nazionali di Frascati, Frascati, Italy

48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

49 Section de Physique, Université de Genève, Geneva, Switzerland

50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

51 (a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

56 Department of Physics, Hampton University, Hampton VA, United States of America

57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

60 Department of Physics, Indiana University, Bloomington IN, United States of America

61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

62 University of Iowa, Iowa City IA, United States of America
63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
70 Physics Department, Lancaster University, Lancaster, United Kingdom
71 (a)INFN Sezione di Lecce; (b)Dipartimento di Fisica, Università di Salento, Lecce, Italy
72 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
73 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
74 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
75 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
76 Department of Physics and Astronomy, University College London, London, United Kingdom
77 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
78 Fysiska institutionen, Lunds universitet, Lund, Sweden
79 Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
80 Institut für Physik, Universität Mainz, Mainz, Germany
81 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
82 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
83 Department of Physics, University of Massachusetts, Amherst MA, United States of America
84 Department of Physics, McGill University, Montreal QC, Canada
85 School of Physics, University of Melbourne, Victoria, Australia
86 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
87 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
88 (a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy
89 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
90 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
91 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
92 Group of Particle Physics, University of Montreal, Montreal QC, Canada
93 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
94 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
95 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
96 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
97 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
99 Nagasaki Institute of Applied Science, Nagasaki, Japan
100 Graduate School of Science, Nagoya University, Nagoya, Japan
101 (a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
102 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
103 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
104 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
106 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107 Department of Physics, New York University, New York NY, United States of America
108 Ohio State University, Columbus OH, United States of America
109 Faculty of Science, Okayama University, Okayama, Japan
110 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
111 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
112 Palacký University, RCPTM, Olomouc, Czech Republic
113 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
114 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
115 Graduate School of Science, Osaka University, Osaka, Japan
116 Department of Physics, University of Oslo, Oslo, Norway
117 Department of Physics, Oxford University, Oxford, United Kingdom
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
Faculty of Science, Hiroshima University, Hiroshima, Japan
Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Novosibirsk State University, Novosibirsk, Russia
Also at Fermilab, Batavia IL, United States of America
Also at Department of Physics, University of Coimbra, Coimbra, Portugal
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Department of Physics, Middle East Technical University, Ankara, Turkey
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Department of Physics and Astronomy, University College London, London, United Kingdom
Also at Group of Particle Physics, University of Montreál, Montreál QC, Canada
Also at Department of Physics, University of Cape Town, Cape Town, South Africa
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Manhattan College, New York NY, United States of America
Also at School of Physics, Shandong University, Shandong, China
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Física, Universidade de Minho, Braga, Portugal
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at California Institute of Technology, Pasadena CA, United States of America
Also at Institute of Physics, Jagiellonian University, Krakow, Poland
Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
* Deceased