Observation of a narrow mass state decaying into $\Upsilon(1S) + \gamma$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

1) LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2) Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3) Universidade Federal do ABC, Santo Andre, Brazil
4) University of Science and Technology of China, Hefei, People's Republic of China
5) Universidad de los Andes, Bogotá, Colombia
6) Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7) Czech Technical University in Prague, Prague, Czech Republic
8) Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9) Universidad San Francisco de Quito, Quito, Ecuador
10) LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11) LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12) CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13) LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14) LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
15) CEA, Irfu, SPP, Saclay, France
16) IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17) IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18) III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19) Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20) II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21) Institut für Physik, Universität Mainz, Mainz, Germany
22) Ludwig-Maximilians-Universität München, München, Germany
23) Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
24) Panjab University, Chandigarh, India
25) Delhi University, Delhi, India
26) Tata Institute of Fundamental Research, Mumbai, India
27) University College Dublin, Dublin, Ireland
28) Korea Detector Laboratory, Korea University, Seoul, Korea
29) CINVESTAV, Mexico City, Mexico
30) Nikhef, Science Park, Amsterdam, the Netherlands
31) Radboud University Nijmegen, Nijmegen, the Netherlands
32) Joint Institute for Nuclear Research, Dubna, Russia
33) Institute for Theoretical and Experimental Physics, Moscow, Russia
34) Moscow State University, Moscow, Russia
35) Institute for High Energy Physics, Protvino, Russia
36) Petersburg Nuclear Physics Institute, St. Petersburg, Russia
37) Institut de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
38) Uppsala University, Uppsala, Sweden
39) Lancaster University, Lancaster LA1 4YB, United Kingdom
40) Imperial College London, London SW7 2AZ, United Kingdom
41) The University of Manchester, Manchester M13 9PL, United Kingdom
42) University of Arizona, Tucson, Arizona 85721, USA
43) University of California Riverside, Riverside, California 92521, USA
44) Florida State University, Tallahassee, Florida 32306, USA
45) Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46) University of Illinois at Chicago, Chicago, Illinois 60607, USA
47) Northern Illinois University, DeKalb, Illinois 60115, USA
48) Northwestern University, Evanston, Illinois 60208, USA
49) Indiana University, Bloomington, Indiana 47405, USA
50) Purdue University Calumet, Hammond, Indiana 46323, USA
51) University of Notre Dame, Notre Dame, Indiana 46556, USA
52) Iowa State University, Ames, Iowa 50011, USA
53) University of Kansas, Lawrence, Kansas 66045, USA
54) Kansas State University, Manhattan, Kansas 66506, USA
Using data corresponding to an integrated luminosity of 1.3 fb$^{-1}$, we observe a narrow mass state decaying into $\Upsilon(1S) + \gamma$, where the $\Upsilon(1S)$ meson is detected by its decay into a pair of oppositely charged muons, and the photon is identified through its conversion into an electron-positron pair. The significance of this observation is 5.6 standard deviations. The mass of the state is centered at 10.551 ± 0.014 (stat.) ± 0.017 (syst.) GeV/c^2, which is consistent with that of the state recently observed by the ATLAS Collaboration.

PACS numbers: 12.38-t, 14.40.Pq, 14.65.Fy

The study of heavy quarkonium is of fundamental importance to our understanding of perturbative and non-perturbative quantum chromodynamics (QCD). The heavy quarkonium state is one of the simplest QCD systems and the observed masses and branching fractions are in quantitative agreement with theoretical expectations for almost all of the known states. The recent observations of unexpected quarkonium-like states have, however, raised new questions. The discovery of the $X(3872)$ in 2003 [1] provided the first surprise. One explanation for this state is a D^*D^* molecule [2], but the subsequent discoveries of several other unexpected particles containing a $c\bar{c}$ pair have suggested otherwise. The $Y(4260)$ [3] is most naturally explained as a hybrid $c\bar{c}$-gluon state [2], but it could also be a four-quark state [4]. The $Z(4430)$ [5] is likely a four-quark charmonium-like particle by virtue of its non-zero electric charge, and the recently observed charged structures decaying into $\pi \Upsilon$ might be similar states containing b quarks [6].

Discoveries of more b-quark counterparts to these exotic states could shed light on the underlying structure of this class of particles. In this Letter, we present a search for such new particles decaying into $\Upsilon(1S) + \gamma$. This decay mode is shared by the $\varphi(1S)$ and $\chi_b(2S)$ bottomonium states, which each consist of three spin states ($J = 0, 1, 2$) with hyperfine mass splittings. In addition to these known particles, the ATLAS Collaboration has recently published the observation of a narrow structure in this decay mode with a mass of 10.530 ± 0.005 (stat.) ± 0.009 (syst.) GeV/c^2, which they interpret as the $\chi_b(3S)$ system [7].

The data used for this analysis corresponds to 1.3 fb$^{-1}$ of integrated luminosity collected with the D0 experiment between April 2002 and February 2006. The D0 detector is described in detail elsewhere [8]. The detector elements crucial for this search are the central tracking and muon systems. The central tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a 2 T superconducting solenoidal magnet with pseudorapidity coverage $|\eta| < 3$ and $|\eta| < 2.5$, respectively. The muon system, which extends to $|\eta| \approx 2$, consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T iron toroids, followed by two similar layers after the toroids. The events used in this analysis were...
tracks are required to be loosely associated to the same site charge that form a good vertex are selected. These spaced mass states. Well-measured track pairs of opposite-kinematic region. This allows for a separation of closely-the tracking system provides excellent resolution in this low to be precisely measured in the calorimeter, while energies of photons from quarkonia decay are typically too direct detection in the calorimeter because the electron-positron pairs. We use this technique instead to have \(M_{\mu\mu} < 8 \) GeV/c\(^2\). These selection criteria are confirmed by a study of double conversion pairs from \(\pi^0 \to \gamma\gamma \) decays. The origin, in the plane transverse to the beam direction, of the track pairs passing these criteria is shown in Fig. 2, where the structure of the silicon tracker is clearly visible.

 Converted photons passing these requirements are combined with muons passing the \(\Upsilon(1S) \) selection. The photon and both muons must be consistent with coming from a common vertex, and both muon trajectories must intersect the beam axis within a distance of 1.2 cm from that of the photon. The \(\Upsilon(1S)\gamma \) system is also required to have \(p_T > 5 \) GeV/c.

 The resulting distribution of \(\Delta M = M_{\mu\mu\gamma} - M_{\mu\mu} \) is shown in Fig. 3. Peaks corresponding to the \(\chi_b(1P) \) and \(\chi_b(2P) \) states are clearly seen at \(\Delta M \approx 0.4 \) GeV/c\(^2\) and \(\Delta M \approx 0.8 \) GeV/c\(^2\), respectively. A third peak is also observed centered around \(\Delta M \approx 1 \) GeV/c\(^2\), which is consistent with the recent observation of a new state by the ATLAS Collaboration. The mass resolution is not good enough to separate the hyperfine splitting of the known \(\chi_b \) states, and we find no indication of substructure in the mass region of the new state. The mea-

FIG. 1: Dimuon invariant mass spectrum for opposite-charge pairs passing the muon selection criteria. The solid curve is a fit to the data assuming three \(\Upsilon \) resonances and a combinatorial background. The relative contributions from the \(\Upsilon(1S) \), \(\Upsilon(2S) \), and \(\Upsilon(3S) \) states are also shown.

FIG. 2: The vertex position in the \(x-\gamma \) plane for photon conversion candidates passing the photon selection requirements. The \(x-\gamma \) plane is perpendicular to the beam, with \(\gamma \) pointing upwards and positive \(x \) pointing to the right when viewed in the anti-proton direction.
The mass distribution $M = M_{\mu\mu\gamma} - M_{\mu\mu} + m_{\Upsilon(1S)}$, where $m_{\Upsilon(1S)}$ is the world average value 9.4603 GeV/c^2 [10], is shown in Fig. 4 along with the results of an unbinned maximum likelihood fit with three signal peaks and a background shape determined from the mixed event model. Crystal Ball functions [11] are used to describe the signal mass shapes to take into account the radiative tails due to bremsstrahlung. We use single Crystal Ball functions to describe the mass of the $\chi_b(1P)$ and $\chi_b(2P)$ systems and that of the new state. The center for each χ_b mass function is fixed to its world average value corrected by the electron/positron energy loss scale factor. The widths of the signal functions are described by a single parameter scaled by the mass of each state, and the lengths of the radiative tails are the same for all three states. The constraints, determined from the data without consideration of the new structure, have also been verified using Monte Carlo simulations. The widths of all three peaks obtained in the fit are compatible with the D0 detector’s resolution. The fit yields 65 ± 11 events above background corresponding to the new state. A similarly good fit is also obtained by using an exponential function multiplied by a low-mass turn on curve to describe the background. The shape of the resulting background agrees well with that of the mixed-event model.

A significance of more than six standard deviations is determined from the difference in the log likelihood of the fits with and without the new state’s contribu-
tion. Considering the probability of an upward fluctuation of the background producing a signal of this width anywhere in the search region, reduces the significance to 5.6 standard deviations. The mass of the new state is corrected by the same scale factor used to fit the $\chi_b(1P, 2P)$ states and is measured to be 10.551 ± 0.014(stat.) ± 0.017(syst.) GeV/c^2. The main sources of systematic uncertainty are due to the unknown mixture of χ_b spin states (13 MeV/c^2), the mass scale correction (10 MeV/c^2), and variations in the background model (5 MeV/c^2).

In summary, we present a search for new particles with masses below the $B\bar{B}$ threshold which decay into $\Upsilon(1S) + \gamma$. In addition to the known states $\chi_b(1P)$ and $\chi_b(2P)$, a third peak is observed at a mass consistent with the new state observed by the ATLAS collaboration. No other mass peaks are observed. The background distribution is well described over a wide mass range by a background model which mixes $\Upsilon(1S)$ and γ candidates from different events. A likelihood fit to the mass distribution results in a measured mass of 10.551 ± 0.014(stat.) ± 0.017(syst.) GeV/c^2 for the new state with a width consistent with the D0 detector’s mass resolution. Further analysis is underway to determine whether this structure is due to the $\chi_b(3P)$ system or some exotic bottom-quark state.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).