
Modeling Task Systems Using
Parameterized Partial Orders

Fred Houben
ASML

The Netherlands
Email: fred.houben@asml.com

Georgeta Igna
ICIS, MBSD group

Radboud University Nijmegen,
The Netherlands

Email: g.igna@cs.ru.nl

Frits Vaandrager
ICIS, MBSD group

Radboud University Nijmegen,
The Netherlands

Email: f.vaandrager@cs.ru.nl

Abstract—Inspired by work on model-based design of printers,
the notion of a parametrized partial order (PPO) was introduced
recently. PPOs are a simple extension of partial orders, expressive
enough to compactly represent large task graphs with repetitive
behavior. We present a translation of the PPO subclass to timed
automata and prove that the transition system induced by the
Uppaal models is isomorphic to the configuration structure of
the original PPO. Moreover, we report on a series of experiments
which demonstrates that the resulting Uppaal models are more
tractable than handcrafted models of the same systems used in
earlier case studies.

I. INTRODUCTION

The complexity of today’s embedded systems and their
development trajectories is increasing rapidly. At the same
time, development teams are expected to produce high-quality
and cost-effective products, while meeting stringent time-to-
market constraints. A common challenge during development
is the need to explore extremely large design spaces, involving
multiple metrics of interest (timing, resource usage, energy
usage, or cost). The number of design parameters (number and
type of processing cores, sizes and organization of memories,
interconnect, scheduling and arbitration policies) is typically
very large. Moreover, the relation between parameter settings
and design choices on the one hand and metrics of interest
on the other hand is often difficult to determine. Given these
observations, embedded-system design trajectories require a
systematic approach, that should be automated as far as
possible. To achieve high-quality results, design process and
tooling need to be model-driven.

Many methods and tools for design-space exploration (DSE)
of embedded systems follow the Y-chart pattern [1], [2]. This
pattern is based on the observation that embedded systems
development typically involves the co-development of a set of
applications, a platform, and the mapping of the applications
onto the platform. In the Y-chart pattern, specification of ap-
plications, platforms and mappings are separated. This allows
independent evaluation of various alternatives of one of these

The research of Igna and Vaandrager has been carried out as part of
the OCTOPUS project under the responsibility of the Embedded Systems
Institute. This project is partially supported by the Netherlands Ministry of
Economic Affairs under the Bsik program. This research was also supported
by European Community’s Seventh Framework Programme under grant
agreement no 214755 (QUASIMODO).

system aspects while fixing the others. For example, various
platform and mapping options are often investigated for a
fixed (set of) application(s). Diagnostic information is used
to, automatically or manually, improve application, platform,
and/or mapping.

Applications are typically described in terms of task graphs
representing partially ordered sets of tasks. In practice, we fre-
quently see that certain tasks need to be executed repetitively,
for a finite number of times, and that there exists a hierarchical
relationship between tasks. For instance, a manufacturing
order of a beer brewery consists of several pallets, containing
several crates, each containing several bottles of beer. Another
example concerns a wafer scanner manufacturing system from
the semiconductor industry. Wafers are produced in batches
(lots). A wafer scanner projects a mask on a wafer, using
light. Eventually, the projected masks result in Integrated
Circuits (ICs). On one wafer, multiple ICs and types of ICs are
manufactured. Multiple types of ICs involve multiple masks,
and multiple masks are placed on a reticle. As a final example,
we mention a copier machine, which has to process a certain
number of copies of a file, which in turn consists of a certain
number of pages. Due to the nested, repetitive behavior, task
graphs tend to become very large and no longer practical for
specification and analysis of application behavior. Following
[3], [4], we argue that repetitive task structure of applications
plays an important role in embedded systems design, and
needs to be addressed in methods for specifying and reasoning
about such systems. Repetitive execution of tasks leads to
finite repetitive patterns in schedules. In practice, execution
of the first few instances and last few instances of a task
differ slightly from the rest. This is a large difference with
unlimited repetitive (’periodic’) behavior, which has received
much attention in the scheduling literature.

Within concurrency theory, several semantic models have
been proposed that are based on partial ordering of events
such as Mazurkiewicz [5] traces, pomsets (partially-ordered
multisets) [6], and event structures [7]), but these models
do not incorporate an explicit notion of repetitive events.
Partial orderings of events with repetition can be defined
using Colored Petri Nets [8], [9], but this is an extremely
rich and expressive formalism, which may be considered too
complicated for the task at hand.

The Octopus project has developed a Design-Space Ex-
ploration (DSE) toolset [10] that aims to leverage existing
modeling, analysis, and DSE tools to support model-driven
DSE for embedded systems [11]. Recently, inspired by work
on model-based design of printers, the Octopus project has
introduced the notion of parametrized partial orders [12].
PPOs are a simple extension of partial orders, but expressive
enough to compactly represent large task graphs with repetitive
behavior.

The Octopus DSE toolset is centered on an intermediate rep-
resentation, DSEIR (Design-Space Exploration Intermediate
Representation), to capture design alternatives. DSEIR models
can be exported to various analysis tools. This facilitates
reuse of models across tools and provides model consistency
between analyses. The use of an intermediate representation
also supports domain-specific abstractions and reuse of tools
across application domains. The current version of the Octopus
DSE toolset integrates CPN Tools [8], [9] for stochastic simu-
lation of timed systems, SDF3 [13] for worst-case throughput
calculation, and Uppaal [14] for model checking and schedule
optimization. The toolset translates high-level PPO models
of an application into the intermediate DSEIR representation,
which in turn can be translated into the input formats of CPN
Tools and Uppaal. A translation of PPOs to CPN Tools has
recently been described in [12]. In this paper, we define a
restricted version of PPOs that is more amenable to model
checking. Moreover, we give a translation into timed automata,
the semantic model underlying Uppaal.

Uppaal [14] is a model checker for networks of timed
automata [15]. It has been successfully used in many domains,
e.g. for finding optimal solutions for scheduling problems
[16], performance analysis of real-time distributed systems
[17], [18], protocol verification [19] and controller synthesis
[20]. Within the Octopus project, we aim at harnessing the
verification power of Uppaal for DSE of embedded systems.
We have applied Uppaal for DSE of industrial printer de-
signs, in particular for computing and optimizing schedules,
latencies, and controller strategies [21], [22], [23]. Although
these case studies demonstrate that Uppaal is able to handle
industrial sized designs, the tool is really pushed to its limits.
Therefore, it is crucial to have a translation from PPOs to
Uppaal that is maximally efficient. By unfolding a PPO into
a task graph and introducing a separate automaton for each
task in the unfolding, we obtain a general translation of PPOs
to Uppaal. However, especially when we have many repetitive
events (e.g. a print job with 300 pages) the translation becomes
intractable. Based on the observation that in practice the PPOs
often contain tasks that are not auto-concurrent and precedence
relations between task instances obey certain monotonicity
conditions, we define a subclass of PPOs that allows a much
more efficient translation. This brings us to the two main
results of this paper: (a) a definition of a PPO subclass
and its translation to Uppaal together with a correctness
proof (the transition system induced by the Uppaal model is
isomorphic to the configuration structure of the PPO), and (b) a
series of experiments which demonstrates that Uppaal models

obtained through this translation are in fact more tractable than
handcrafted models of the same systems used in [21]. Our
results boost the verification power of the Octopus toolset but,
due to the omnipresence of finite repetitive tasks in embedded
systems design, their applicability is much broader.

The structure of this paper is as follows. The next sec-
tion recalls some preliminary definitions regarding labeled
transition systems, the underlying notion used throughout the
paper. Section III defines PPOs and their semantics, and
the translation of a subset of PPOs into networks of timed
automata together with a proof of its correctness. Section IV
explains the timed automata models generated on this theory.
Section V presents performance evaluation results of models
generated by comparing them with handcrafted Uppaal models
presented before in our papers1. Concluding remarks and
future work follow in Section VI.

II. PRELIMINARIES

We use R≥0 and R>0 to denote the sets of nonnegative and
positive real numbers, respectively, and N to denote the set of
natural numbers.

If X and Y are sets then we write X ↪→ Y for the set
of partial functions from X to Y . Given a partial function
f ∈ X ↪→ Y , we write f(x) ↓ if f(x) is defined, and f(x) ↑
if f(x) is undefined, for x ∈ X .

A labeled transition system (LTS) is a tuple L =
(S, s0,Σ,→), where:
• S is a set of states,
• s0 ∈ S is an initial state,
• Σ is a set of action labels, and
• →⊆ S × Σ× S is a transition relation.

We write s a−→ s′ iff (s, a, s′) ∈→ and s→ s′ if there exists an
action a ∈ Σ such that s a−→ s′. A path of L is a sequence of
states π = s0s1 · · · sn such that, for all 0 ≤ i < n, si → si+1.
In this case we say π is a path from s0 to sn. A state s ∈ S
is reachable in L if there exists a path from s0 to s.

Two labeled transition systems L1 = (S1, s
1
0,Σ1,→1) and

L2 = (S2, s
2
0,Σ2,→2) are isomorphic if Σ1 = Σ2 and there

exists a bijective function f : S1 → S2 such that:
• f(s10) = s20 and
• s

a−→1 s
′ ⇔ f(s)

a−→2 f(s′), for all s, s′ ∈ S1, a ∈ Σ1.
Given an LTS L = (S, s0,Σ,→), reach(L) =

(S′, s0,Σ,→′) is the LTS with S′ equal to the set of reachable
states of L and →′= {(s, a, s′) | s, s′ ∈ S′ ∧ s a−→ s′}.

III. PARAMETERIZED PARTIAL ORDERS

A parametrized partial order (PPO) is a partial order that
comes equipped with some extra structure to capture repetitive
behavior. In [12], a PPO is defined at task level and assumes
a precedence relation between tasks. In this paper, we view
a PPO from a different angle where tasks are decomposed
into events and a PPO imposes a partial order relation at
event level. This perspective allows us to introduce a subclass

1The models generated for Section V and all the proofs are available at
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/HIV11.

2

of PPOs that can be efficiently translated into networks of
automata, and later in this section we establish the correctness
of this translation.

A. Definition of PPOs

Tasks in a PPO may be executed repeatedly: each task
has a collection of parameters and each valuation of these
parameters defines a task instance. The events in a PPO are
structured and correspond to either the start or the end of a
task instance.

Formally, we assume a universe P of typed variables called
parameters. A valuation of a set P ⊆ P of parameters is
a function that maps each parameter in P to an element of
its domain. We assume that the domain of each parameter is
a nonempty set. We write V (P) for the set of valuations of
variables in P .

A parameterized partial order (PPO) is a tuple A =
(T ,M, E, U) where
• T is a finite set of tasks. Let E = {s, e} × T . Projection

functions task : E → T and type : E → {s, e} are
given by task((t, T)) = T and type((t, T)) = t, and
embeddings start : T → E and end : T → E are given by
start(T) = (s, T) and end(T) = (e, T), with t ∈ {s, e},
and T ∈ T .

• M is a function that assigns to each task T a finite set
of parameters in P; we write V (T) as a shorthand for
V (M(T)).

• E ⊆ E×E is a set of edges. We require, for each T ∈ T ,
(start(T), end(T)) ∈ E.

• For each edge p = (A,B) ∈ E, U(p) : V (task(A)) ↪→
V (task(B)) is a precedence function. We write A u→ B
if (A,B) ∈ E and U(A,B) = u. We require that the
start of a task instance precedes the end of that instance,
that is, for each task T ∈ T and valuation v ∈ V (T),
U((start(T), end(T)))(v) = v.

Below, we present two examples that illustrate how PPOs
can be used to model scheduling applications.

Example 1 (Printer): Figure 1a depicts a part of an appli-
cation encountered in the printer domain (see [21]). There
are three tasks: Scan, ScanIP and Delay, represented by
rectangles. The corresponding start and end event types are
indicated by subrectangles inscribed with s and e. Edges show
the dependencies between event types (the edges from start to
corresponding end are not shown). All three tasks have one
parameter: p of type [0, . . . , L] representing the number of the
current page processed. The constant L ∈ N is a bound for
the parameter p. A precedence function A u→ B is represented
by a predicate that may contain both the parameters of
task(A) and primed versions of the parameters of task(B). For
instance, the predicate p′ = p+ 1 on the edge from ScanIP to
Scan represents the precedence function that maps a valuation
v of the ScanIP parameters to the unique valuation v′ of the
Scan parameters that satisfies v′(p) = v(p) + 1.

An instance v of ScanIP may start as soon as its correspond-
ing v instance of Scan has started. These task instances of Scan
and ScanIP may then proceed in parallel. However, the next

instance of Scan may only start after the current instances
of both Scan and ScanIP have ended. Between the ScanIP
and Delay tasks, there is a sequential dependency: after the
occurrence of the start event in the ScanIP task, the start event
of the corresponding Delay task may occur.

Scan[p],

p:[0,L]
es

ScanIP[p],

p:[0,L]
es

Delay[p],

p:[0,L]
es

p' = p p' = p

p' = p

p' = p+1

p' = p+1

p' = p+1

p' = p+1

(a) Printer

Lot[l],

l:ℕ
es

Wafer[l,w],

l:ℕ, w:[1,15]
es

l'=l,

w'=1 l' = l

l' = l+1

(w<15 ˄ l'=l ˄ w'=w+1) ˅

(w=15 ˄ l'=l+1 ˄ w'=1)

(b) Wafer production

Fig. 1: PPO representation

Example 2 (Wafer production): The PPO displayed in Fig-
ure 1b describes the production of an infinite series of lots,
where each lot is composed of 15 wafers. This example is
inspired by [4]. After the start of each lot, 15 wafer tasks are
executed in sequence, followed by the end of the lot.

B. From PPOs to Configuration Structures

The semantics of a PPO can be described in terms of
a labeled transition system, referred to as the configuration
structure of the PPO (see [7], [24]). The states of a config-
uration structure are configurations, finite sets of events that
have already occurred. Each transition marks the occurrence
of a single new event for which all the immediate predecessors
have occurred.

Formally, an event is a pair (A, v) where A is an event
type and v ∈ V (task(A)) is a valuation of its task parameters.
We write ev type((A, v)) = A and task((A, v)) = task(A).
Also, we write ev(A) for the set of events of a PPO A. We
call event (B,w) an immediate predecessor of event (A, v),
notation (B,w) 7→ (A, v), if (B,A) ∈ E ∧ U(B,A)(w) = v.

Let C ⊂ ev(A) and α ∈ ev(A) with α 6∈ C. We say that C
enables α, and write C ` α, if all immediate predecessors of
α are in C.

Let A be a PPO. The set conf(A) of configurations of A
is the smallest subset of the power set ℘(ev(A)) of events of
A such that:

1) ∅ ∈ conf(A),
2) if C ∈ conf(A), and C ` α then C ∪ {α} ∈ conf(A).

The configuration structure of A is the LTS C(A) =
(conf(A), ∅, E ,), where (C,A,C ∪ {α}) ∈ iff C ∈
conf(A), ev type(α) = A and C ` α. We write C A

 C ′ if

3

(C,A,C ′) ∈ . Also, we sometimes write C α
 C ′ to denote

that C
ev type(α)
 C ′ and C ′ = C ∪ {α}.

The above definition implies that each configuration C ∈
conf(A) has a securing, that is, a sequence α1, . . . , αn of
events such that C = {α1, . . . , αn} and, for each 1 ≤ i ≤ n,
{αj | j < i} ∈ conf(A) and {αj | j < i} ` αi.

In a PPO there are no conflicts between events: it is
not possible that the occurrence of one event disables the
occurrence of another event. In fact, it is easy to prove that
the set of configurations of a PPO is closed under union: if
C ∈ conf(A) and C ′ ∈ conf(A) then C ∪ C ′ ∈ conf(A). We
call an event reachable if it occurs in some configuration, and
write rev(A) for the set of reachable events of A. Note that,
since in a PPO we allow cyclic predecessor relations, it may
occur that some (or even all) events are not reachable. If α and
β are in rev(A), we write α ≤A β, if for each configuration
C ∈ conf(A), β ∈ C implies α ∈ C. The technical lemma
belowstates that the ≤A contains the immediate predecessor
relation:

Lemma 1: Let A be a PPO with events α and β such that
α 7→ β. Then β ∈ rev(A) implies α ∈ rev(A) and α ≤A β.

Proof: If β ∈ rev(A), then there is a configuration
C ∈ conf(A) that contains β. Furthermore, this configura-
tion has a securing, that is, a sequence α1, ..., αn such that
C = {α1, ..., αn} and there is a configuration Cβ that we
can construct with some of the events of C that enables β.
Since Cβ ` β, Cβ contains all immediate predecessors of β.
Let α be an immediate predecessor of β. Since α ∈ Cβ , then
α ∈ rev(A). Because Cβ ⊂ C, then α ∈ C, namely in any
configuration that contains β, therefore α ≤A β.

The following lemmastates that a parametrized partial order
(PPO) induces a partial ordering relation on its (reachable)
events.

Lemma 2: Let A be a PPO, then ≤A is a partial order on
rev(A).

Proof:

1) (Reflexivity). We need to prove that α ≤A α is true, for
any α ∈ rev(A). This is obviously true since for each
configuration C that contains α, the event α from the
left side of the ≤A relation is also in C.

2) (Antisymmetry). Let α, β ∈ rev(A). We should prove
that if α ≤A β, and β ≤A α =⇒ α = β. Assume
that α 6= β. If α ≤A β, there exists a securing that
contains a configuration Cβ , with α ∈ Cβ that enables β.
Further, if β ≤A α, there exists a securing that contains
a configuration Cα, with β ∈ Cα that enables α and
Cβ ⊂ Cα. This implies that α ∈ Cα and Cα ` α, which
is impossible.

3) (Transitivity). Let α, β, γ ∈ rev(A). We should prove
that if α ≤A β, and β ≤A γ =⇒ α ≤A γ. Assuming
that α ≤A β, this implies that any configuration that
contains β, also contains α. Further, if β ≤A γ, any
configuration that contains γ also contains β. Since any
configuration that contains β, also contains α, this allows
us to conclude that any configuration that contains γ also

contains α, and therefore α ≤A γ.

C. Restricted PPOs

We explore the behavior of PPOs using the Uppaal model
checker, and for this we need to translate PPOs to the input
language of Uppaal. Here we describe a translation of a
subclass of PPOs in which no two instances of a task can
run concurrently. It is possible to translate arbitrary PPOs to
Uppaal (provided the parameter domains are finite) but this
translation leads to networks of automata that are much harder
to analyze.

We call a PPO A restricted if it satisfies the following five
conditions, for all tasks T and T ′, for all precedence functions
A

u→ B with task(A) = T and task(B) = T ′, and for all
valuations v, w ∈ V (T):
• C0: The only edges between events of the same task are

the one from the start event to the end event, and the one
from the end event to the start event:

task(A) = task(B) ⇒ ((A,B) ∈ E ⇔ A 6= B)

We write next(T) for the function U((end(T), start(T)),
and let <T be the least transitive relation on valuations
in V (T) satisfying v <T next(T)(v). Write v ≤T w iff
v <T w or v = w.

• C1: There is exactly one valuation of the parameters of
T that does not appear in the range of next(T). This
valuation is referred to as the initial valuation of T , and
is written v0T .

• C2: next(T) is injective
• C3: u is only defined for reachable valuations:

u(v) ↓ ⇒ v0T ≤T v

• C4: u is monotonic:

v ≤T w ∧ u(w) ↓ ⇒ u(v) ↓ ∧ u(v) ≤T ′ u(w)

Axioms C0, C1 and C2 impose precedence restrictions be-
tween event instances of the same task that exclude auto-
concurrency. Axiom C0 implies that we have an edge from
the end event type of a task to the corresponding start event
type. Axiom C1 implies that, for each task, there is only
one event that does not depend on some other event of the
same task: necessarily this is going to be the first event of
the task that will occur. Axiom C2 implies that each event
from a task, except the initial one, has a unique immediate
predecessor event that belongs to the same task. Axioms C0-
C2 still allow cyclic precedence edges between events of the
same task, but axiom C3 implies that u is not defined for such
“ghost events”. Axiom C4, finally, states that a precedence
function that links events of different tasks is monotonic w.r.t
the event ordering within tasks. The reader may check that the
PPOs of Examples 1 and 2 are restricted.

Lemma 3: Let A be a restricted PPO with task T and
valuation v. Then

1) (end(T), v) ∈ rev(A) implies (start(T), v) ∈ rev(A)
and (start(T), v) ≤A (end(T), v).

4

start(T)!
update()
end(T)?

L1

dep_met(end(T))
not done[T] &&
dep_met(start(T))

L2

Fig. 2: Automaton for task T

2) (start(T), next(T)(v)) ∈ rev(A) implies (end(T), v) ∈
rev(A) and (end(T), v) ≤A (start(T), next(T)(v)).

3) ≤A is a total ordering on the set {α ∈ rev(A) |
task(α) = T} of reachable events of T .

Proof: (1) and (2) are immediate consequences of
Lemma 1.
For (3), first observe that ≤A is a partial order on rev(A) by
Lemma 2. Hence it is also a partial order on the subset of
reachable events of T . Let α, β ∈ rev(A) with task(α) = T
and task(β) = T . It suffices to prove that either α ≤A β
or β ≤A α. Assuming that α = (tα, vα), β = (tβ , vβ), with
tα, tβ ∈ {end(T), start(T)}. If vα = vβ , then by applying the
first case of this lemma, if follows that α ≤A β or β ≤A α.
If not, without loss of generality, we assume vα <T vβ .
Then using the first two cases of this lemma, if follows that
(tα, vα) ≤A (start(T), next(T)(vα)) ≤A ... ≤A (tβ , vβ),
which by transitivity implies that α ≤A β.

D. From Restricted PPOs to Networks of Automata

We will show how each restricted PPO can be translated into
a Uppaal-style parallel composition of a number of automata
in such a way that (the reachable part of) the LTS induced
by the composition of these automata is isomorphic to the
configuration structure of the PPO. We refer the reader to [14]
for an introduction to Uppaal.

Let A be a PPO as above. We define N (A) to be the LTS
induced by the parallel composition of the Uppaal template
displayed in Figure 2, for each task T ∈ T . Below we explain
the various predicates and functions occurring in Figure 2. The
composed system N (A) has the following set of global shared
variables:

{T.p, loc[T], done[T] | T ∈ T ∧ p ∈M(T)}.

Variable loc[T] records the current location of the task au-
tomaton for T , which can be either L1 or L2. Boolean variable
done[T] records whether the last event of T has been executed.
Since different tasks may use the same parameter names, we
make a copy T.p of each parameter p ∈ M(T). As long as
task T has not yet been completed, variable T.p gives the value
of p in the next event of T that will occur. Variable loc[T]
is initialized to L1, variable done[T] is initialized to false,
and variable T.p is initialized to v0T (p), for each parameter
p ∈M(T).

For a given state of the automaton for task T , let function
val(T) return the current valuation of the parameters of task
T . For each event type A with task(A) = T , function done(A)
returns true iff the last event of A has occurred:

done(A) = done[T] ∨ (loc[T] = L2 ∧
type(A) = s ∧ next(T)(val(T)) ↑)

If the last event of A has not occurred, function next(A) gives
the valuation of the parameters for the next event of A:

next(A)=

{
next(T)(val(T)), if loc[T] = L2 ∧ type(A) = s
val(T) , otherwise

Suppose that the last event of type A has not occurred, then
in order to decide whether the next event of A may occur, we
check for each incoming precedence edge B

u→ A whether
the dependency induced by that edge has been met:

dep met(A) = ∀B, u : B
u→ A ∧ task(B) 6= task(A) =⇒

dep met(B, u,A)

Note that the task automaton already takes care of the depen-
dencies induced by precedence functions between pairs of start
and end events of T . In order to decide whether the dependen-
cies induced by B

u→ A are met, we first check if done(B)
evaluates to true. If so then all events of B have occurred and
hence all dependencies induced by B

u→ A have been met.
Next we check whether u(next(B)) is defined. If not then, by
monotonicity, all dependencies induced by B u→ A have been
met. Finally, we check whether next(A) precedes u(next(B)).
If so, then for any immediate predecessor of next(A), that is,
for any parameter valuation v of B with u(v) = next(A),
monotonicity implies v < next(B). Formally,

dep met(B, u,A) = done(B) ∨ u(next(B)) ↑
∨ next(A) <T u(next(B))

Finally, function update() sets done[T] to true if the last event
for task T has occurred, and otherwise updates the parameters
of T according to function next(T).

Lemma 4: For all reachable states s of N (A) and for all
tasks T ∈ T , the following invariant properties hold:

1) v0T ≤T s.val(T)
2) s.done[T]⇒ next(s.val(T)) ↑
3) s.done[T]⇒ s.loc[T] = L1

Proof: Straightforward by induction on the length of the
shortest path leading to s.

Theorem 1: Let A be a PPO. Then C(A) and reach(N (A))
are isomorphic.

Proof: Let N (A) = (S, s0, E ,→). If s ∈ S is a state
and e is an expression containing variables of N (A), then we
write s.e for the result of evaluating expression e in state s. For
each event type A ∈ E , we define a function <A : S → 2ev(A)

that associates to each state of N (A) a set of events of type
A. Intuitively, this is the set of events of type A that have

5

occurred before reaching state s. Suppose task(A) = T . Then

<A(s) = if s.done(A) then

{(A, v) ∈ ev(A) | v ≤T s.val(T)}
else

{(A, v) ∈ ev(A) | v <T s.next(A)}
fi

Let function < : S → 2ev(A) be defined by:

<(s) =
⋃
A∈E
<A(s)

We will prove that < is an isomorphism from reach(N (A))
to C(A).

Claim 1. <(s0) = ∅.
Proof: Let A be an event type. Let task(A) = T . By

definition of s0 we have s0.done(A) = false and s0.next(A) =
v0T . Hence, by definition of <A, <A(s0) = {(A, v) | v <T
v0T }. But since, by condition C1, v0T does not appear in the
range of next(T), there exists no v such that v <T v0T . Hence
<A(s0) = ∅. Since A was chosen arbitrarily, it follows that
also <(s0) = ∅.

Claim 2. If s is a reachable state and s A−→ s′ then <(s) `
(A, s.val(T)).

Proof: Let v = s.val(T). Assume that s A−→ s′ and assume
that (B,w) is an immediate predecessor of (A, v). It suffices
to prove that (B,w) ∈ <B(s).

If task(B) = task(A) and A = start(T) then, by C0,
B = end(T) and next(T)(w) = v. Since s

A−→ s′,
s.done[T] = false. This implies s.done(B) = false. Also
s.next(B) = s.val(T) = v. We infer that

<B(s) = {(B, x) ∈ ev(A) | x <T v}

Since w <T v it follows that (B,w) ∈ <B(s), as required.
If task(B) = task(A) and A = end(T) then B = start(T)

and w = v. If s.done(B) holds then (B,w) ∈ <B(s) and we
are done. If s.done(B) does not hold then next(T)(val(T))) ↓
and next(B) = next(T)(val(T))). It follows that (B,w) ∈
<B(s).

We may therefore assume that task(B) 6= task(A). Let
U(B,A) = u and task(B) = T ′. Then u(w) = v. Since
s

A−→ s′, s.dep met(B, u,A) holds. This means that one of
the following three cases applies:
• s.done(B).

Using the first invariant of Lemma 4, we infer v0T ′ ≤T ′

s.val(T ′). Using the second invariant of Lemma 4, we
infer that next(T ′)(s.val(T ′)) ↑. Condition C3 implies
that v0T ′ ≤T ′ w. It follows that w ≤T ′ s.val(T ′). Hence
(B,w) ∈ <B(s), as required.

• s.done(B) = false and u(s.next(B)) ↑.
By monotonicity imposed by condition C4, we do not
have s.next(B) <T ′ w. Condition C3 implies v0T ′ ≤T ′ w,
and Lemma 4 implies v0T ′ ≤T ′ s.next(B). Hence w <T ′

s.next(B) and thus (B,w) ∈ <B(s).

• s.next(A) <T u(s.next(B)).
Since s

A−→ s′, s.next(A) = s.val(T) = v. As in the
previous case, we use conditions C3, C4 and Lemma 4 to
argue that w <T ′ s.next(B), and thus (B,w) ∈ <B(s).

Claim 3. If s A−→ s′ then <(s′) = <(s) ∪ {(A, s.val(T))}.
Proof: Assume s A−→ s′. It is easy to check that for all

event types B with task(B) 6= task(A), <B(s′) = <B(s).
Let : E → E be the function given by start(T) = end(T)
and end(T) = start(T), for all T . We claim that <A(s′) =
<A(s) ∪ {(A, s.val(T))} and <A(s′) = <A(s). We consider
four cases:
• A = start(T) and next(T)(s.val(T)) ↑.

Since s A−→ s′, s.next(A) = s.val(T) and s.done(A) =
false. Hence

<A(s) = {(A, v) ∈ ev(A) | v <T s.val(T)}

Since s A−→ s′, s′.loc[T] = L2 and s′.val(T) = s.val(T).
Thus next(T)(s′.val(T)) ↑ and s′.done(A). Hence

<A(s′) = {(A, v) ∈ ev(A) | v ≤T s.val(T)}

Thus <A(s′) = <A(s) ∪ {(A, s.val(T))}. Since s
A−→

s′, s.done(end(T)) = false and s′.done(end(T)) =
false. Moreover s′.next(end(T)) = s.next(end(T)) =
s.val(T). Hence

<A(s′) = <A(s)

= {(A, v) ∈ ev(A) | v <T s.val(T)}

• A = start(T) and next(T)(s.val(T)) ↓.
Since s A−→ s′, s.next(A) = s.val(T) and s.done(A) =
false. Hence

<A(s) = {(A, v) ∈ ev(A) | v <T s.val(T)}

Since s A−→ s′, s′.loc[T] = L2 and s′.val(T) = s.val(T).
Thus next(T)(s′.val(T)) ↓, s′.done(A) = false, and
s′.next(A) = next(T)(s′.val(T)). Hence

<A(s′) = {(A, v) ∈ ev(A) | v <T next(T)(s.val(T))}

By C2, <A(s′) = <A(s) ∪ {(A, s.val(T))}. Since s A−→
s′, s.done(end(T)) = false and s′.done(end(T)) =
false. Moreover s′.next(end(T)) = s.next(end(T)) =
s.val(T). Hence

<A(s′) = <A(s)

= {(A, v) ∈ ev(A) | v <T s.val(T)}

• A = end(T) and next(T)(s.val(T)) ↑.
Since s

A−→ s′, done(A) = false and s.next(A) =
s.val(T). Hence

<A(s) = {(A, v) ∈ ev(A) | v <T s.val(T)}

Moreover, s′.done[T], s′.done(A) and s′.val(T) =
s.val(T). Hence

<A(s′) = {(A, v) ∈ ev(A) | v ≤T s.val(T)}

6

Thus <A(s′) = <A(s)∪{(A, s.val(T))}. By the assump-
tions, s.done(A). We can also infer s′.done(A). Hence

<A(s′) = <A(s)

= {(A, v) ∈ ev(A) | v ≤T s.val(T)}

• A = end(T) and next(T)(s.val(T)) ↓.
Since s

A−→ s′, done(A) = false and s.next(A) =
s.val(T). Hence

<A(s) = {(A, v) ∈ ev(A) | v <T s.val(T)}

Moreover, s′.done(A) = false, s′.next(A) = s′.val(T)
and s′.val(T) = next(T)(s.val(T)). Hence

<A(s′) = {(A, v) ∈ ev(A) | v <T next(T)(s.val(T))}

By C2, <A(s′) = <A(s) ∪ {(A, s.val(T))}. By the
assumptions, s.done(A) = false and s′.done(A) = false.
Moreover

s.next(A) = next(T)(s.val(T)) = s′.val(T) = s′.next(A)

This implies

<A(s′) = <A(s)

It follows that <(s′) = <(s) ∪ {(A, s.val(T))}.
Claim 4. If s is a reachable state of N (A) then <(s) ∈

conf(A).
Proof: Straightforward, by induction on the length of the

shortest path to s, using Claims 1-3.
Claim 5. If s, s′ are reachable states of N (A) and s A−→ s′

then <(s)
A
 <(s′).

Proof: Straightforward, by combining Claims 2, 3 and
4.

In order to prove that < is bijective, we define an inverse
function S that maps configurations of A to states of N (A).
Let C be a configuration and let T be a task. Write CT for
the subset of C of events of type T . We consider four cases:

1) If CT = ∅ then variable loc[T] is set to L1, variable
done[T] is set to false, and variable T.p is set to v0T (p),
for each parameter p ∈M(T).

2) If CT 6= ∅ and the unique maximal event of CT (cf
Lemma 3) is of the form (start(T), v), then variable
loc[T] is set to L2, variable done[T] is set to false,
and variable T.p is set to v(p), for each parameter
p ∈M(T).

3) If CT 6= ∅, the unique maximal event of CT is of the
form (end(T), v) and next(T)(v) ↓, then variable loc[T]
is set to L1, variable done[T] is set to false, and variable
T.p is set to next(T)(v)(p), for each parameter p ∈
M(T).

4) If CT 6= ∅, the unique maximal event of CT is of the
form (end(T), v) and next(T)(v) ↑, then variable loc[T]
is set to L1, variable done[T] is set to true, and variable
T.p is set to v(p), for each parameter p ∈M(T).

The following claim directly implies that < is injective.
Claim 6. For each reachable state of N (A), S(<(s)) = s.

Proof: Routine checking.
Claim 7. If s is reachable, <(s) = C, C A

 C ′ and s′ =

S(C ′) then s A−→ s′.
Proof: By Claim 6, S(C) = s. Let task(A) = T . By

Lemma 3 and the definition of S, if A = start(T) then
s.loc[T] = L1 and if A = end[T] then s.loc[T] = L2.
Moreover, since C A

 C ′, s.done[T] = false. Hence, in order
to prove that s enables an A-transition, it suffices to establish
that dep met(A) holds in s. For this, in turn, it suffices
to prove, for any incoming precedence edge B

u→ A with
task(B) 6= task(A), that dep met(B, u,A) holds in s. Let
C ′ = C ∪ {α} with α = (A, v). Since C ` α, all immediate
predecessors of α are in C. Let task(B) = T ′. The proof now
proceeds with a routine case distinction in which 4x4 cases are
considered, following the case distinction in the definition of S
for both T and T ′. We conclude that s enables an A-transition.
Suppose s A−→ s′′. Then, by Claim 5, <(s)

A
 <(s′′). Since C

has only one outgoing A-transition, <(s′′) = C ′. Hence, by
Claim 6, s′′ = s′, as required.

Claim 8. < is a bijection from the reachable states of N (A)
to conf(A).

Proof: Straightforward using Claims 1, 4, 6 and 7.
The theorem now follows by combination of the claims.

IV. GENERATED UPPAAL MODELS

As mentioned in the introduction, we have developed a
toolset for exploring embedded system designs, that is centered
around an intermediate, Y-chart based representation. In this
representation, a system is described as a combination of three
modules: applications, platform and one of their possible map-
pings. Applications are described as PPOs and the platform as
a collection of resources. Each resource is characterized by
two parameters: total capacity and pace per time unit. The
latter parameter might change at runtime e.g. the pace of a
bus depends on the number of tasks that use the bus at some
point in time. In this pattern, the mapping module contains
details about the number of resources that some tasks claim
and release at the beginning and at the end of their execution,
respectively.

The generated Uppaal models have a simple structure: each
task and resource that appears in the Y-chart representation
instantiates a task template or a resource template, respectively,
that we detail below.

The task template is shown in Figure 3. This is an extended
version of the untimed task template of Figure 2. The task
template of Figure 3 is enriched with timing and resource
constraints, like a parameter for the amount of data (the cSize
variable) that should be processed, a tPace() function which
returns the pace at which the data is processed per time unit,
that is dependent on the current paces of resources claimed.
From these, a task duration can be computed which is the
amount of time between the start event of a task and the
corresponding end event.

Formally, the templates of Figures 2 and 3 can be related
through the notion of a timed step simulation introduced in

7

[25]. Since timed step simulations are compositional [25], we
can associate to any reachable state of our timed model a
configuration of the PPO that represents the application part
of it. Note however that, due to the imposed timing constraints,
certain configurations of a PPO cannot be reached in the timed
setting.

In Figure 3, the transition from the Idle to the Running
location encodes a start event, and the reverse transition
between these two locations encodes an end event. A start
event can occur if the done function returns false, meaning
that the last start event has not occurred yet, the dependencies
induced by the event precedence functions are satisfied (the
dep met function) and all the resources claimed have enough
capacity available to process the task (the canClaim condition).
Tasks are scheduled using either a greedy or a lazy policy.
If a resource changes its pace, then a throttle channel is
urgently enabled in each task automaton that uses the resource
at that moment. On the transition between the committed and
Running locations, the remaining amount of data unprocessed
is computed (the cSize variable) and also the task pace is
updated. For these updates, a select statement is used in
order to under-approximate the time elapsed from the latest
pace modification recorded by the x clock (of real type) to
the closest integer (the i variable) below this value. This
approximation is necessary because clock variables cannot
be utilized in expressions. Finally, the transition between the
Running and Idle states, that encodes an end event, will
fire when the dependencies of the end event are satisfied
(dep met(end(t))) and the task duration has elapsed. On this
transition, the valuations of the parameters for the next task
instance are computed.

Idle

Running
(tPace()!=oldPace) || (tPace()>0
imply x <= divide(cSize,tPace()))

!done()&&dep_met(start(T))&&
canClaim(start(T))&&greedy

greedyClaim!
setClaimRequest(start(T)),
x=0,
cSize=size,
oldPace = tPace()

!done()&&
dep_met(start(T))&&
canClaim(start(T))&&
!greedy
lazyClaim!
setClaimRequest(start(T)),
x=0,
cSize=size,
oldPace = tPace()tPace()!=oldPace

throttle!

i:int[0,size]
i<=x && (i+1)>x
cSize=(cSize-oldPace*i)>? 0,
oldPace = tPace(), x=0

dep_met(end(T)) &&
tPace()==oldPace &&
tPace()>0 &&
x >= divide(cSize,tPace())

release!

setReleaseRequest(end(T)),
next_M(),oldPace=0,
cSize=0

Fig. 3: Task Template

The resource template has a simpler structure as shown in
Figure 4. The transitions with the greedyClaim and lazyClaim
channels fire at the occurrence of a start event, whereas the
transition with the release channel fires when an end event
occurs. The channels in this template are broadcast which
implies that all resources that instantiate this, interact with
any task where an event occurs. The resMessages array is
shared between tasks and resources, and it is updated by a
task in the setClaimRequest and setReleaseRequest functions
with the amount of resource capacities claimed or released,

respectively. At the occurrence of an event in a task, the
resources that are used by the task have a non-zero value
placed at their position in the resMessages array. Further, they
subtract or add this value from their available current capacity.

release?
resource_cap[id]+=resMessages[id].reqCap,
resMessages[id].reqCap=0

greedyClaim?
resource_cap[id]-=resMessages[id].reqCap,
resMessages[id].reqCap=0

lazyClaim?
resource_cap[id]-=resMessages[id].reqCap,
resMessages[id].reqCap=0

Fig. 4: Resource template

V. EXPERIMENTS

Fig. 5: Océ printer architecture

We now turn to an experimental evaluation of our trans-
lation from PPOs to timed automata. We compare generated
Uppaal models with handcrafted models that were previously
described in [21] for printing systems. The latter category
of models contains a distinct template for each application
(use case) type and each transition there encodes an event
that can occur in that application. All the experiments are
performed with Uppaal, version 4.1.2, on a Sun Fire X4440
server with 16 cores (AMD Opteron 8356, 2.3GHz) and 128
Gb of DDR2 RAM. The printer architecture is depicted in
Figure 5. The USB has two modes: static, when the bus pace is
not influenced by the number of simultaneous tasks transfered
and dynamic when the pace is lower in case of bidirectional
bus usage.

The cases explored here are depicted in Appendix A. We use
the same notations as in Figure 1. In addition the rectangles
contain between parentheses task durations. The arrow labels
give the precedence function and resources handed over. The
circles encode resources and the parentheses contain their
maximum capacity available (one if not mentioned). The
dashed lines represent resource claims. The difference between
the amount claimed and the one that is handed over is released
at the end of a task.

8

TABLE I: Direct Copy(DC) ‖ Simple Print(SP) Case - Com-
parison Improved Manual Models(grey) vs. Generated Models
(O.M. - out of memory)

DC SP Peak Running Makespan States
Mem(KB) Time(s) (s) Explored

2 3 4500 0.50 23 1130
5432 0.60 23 413

7 10 5480 1.60 71 10578
5748 1.60 71 3050

35 50 12808 11.31 367 149926
9572 17.00 367 48196

70 100 26568 27.92 737 433816
18480 51.42 737 155491

334 500 598996 279.70 3585 6843592
282732 961.98 3585 3038099

667 1000 2321768 1304.87 7166 25206064
1076552 3964.64 7166 11704000

903 1355 4165896 1937.88 9705 45225661
1962576 7805.70 9705 21272017

904 1356 O.M. O.M. O.M. O.M.
1965192 7655.01 9715 21302397

1460 1960 O.M. O.M. O.M. O.M.
4052524 18199.70 15117 44117751

In each experiment we computed the fastest time in which
all tasks are completed (also called makespan) by using
greedy scheduling. Three performance metrics were used to
evaluate each experiment: the peak memory usage (the ’Mem’
column) and running time (the ’Time’ column) of Uppaal,
and the total number of states explored during analysis. For
the comparison we considered the following two scenarios:
Direct Copy in parallel with Simple Print (Table I), and then
Direct Copy in parallel with Process from Store (Table II). The
first two columns in each table indicate the maximum number
of instances per use case. In fact these numbers also indicate
how many task instances are processed in total per use case
(e.g. 7 DC means that there are seven task instances that are
processed in total for each task that composes the direct copy
use case).

To combat state space explosion, we used the sweep line
method of Uppaal [26]. For this, we specified progress mea-
sures in each model (in our case, the task instance) that Uppaal
uses during the analysis to store only the states where the
progress measures are weakly monotonically increasing, or
occasionally decreasing.

The state space of the generated models is significantly
smaller than the state space of the handcrafted models (reduced
between 41% and 71%). There are two important reasons that
cause this. Firstly, in the handcrafted models the resource
template has one extra internal state in addition to the Idle
and Running states, that is used to model a recovery phase
that some resources require like the scanner. In the models
generated, the recovery phase is modeled as an additional
task. The second difference is caused by modeling tasks that
need more than one resource for processing. In the generated
models, one can naturally specify multi-resource claims per
task, as described in the previous section. By contrast, in the
handcrafted models, a multi-resource claim was modeled by a
third party automaton placed between the application automa-

TABLE II: Direct Copy(DC) ‖ Process from Store (PFS) Case
- Comparison Improved Manual Models(grey) vs. Generated
Models (O.M. - out of memory)

DC PFS Peak Running Makespan(s) States
Mem(KB) Time(s) Explored

1 2 4456 0.40 15 704
5916 0.60 15 411

10 20 7540 4.10 114 47551
7332 7.90 114 20118

25 50 21352 19.51 279 334606
14420 48.03 279 135453

120 240 586172 384.66 1324 8255421
244920 1122.34 1324 3269408

240 480 2555392 1857.78 2644 33327861
1008512 4824.23 2644 13162088

303 606 4077452 2419.45 3337 53223828
1573952 8196.21 3337 21007415

304 608 O.M. O.M. O.M. O.M.
1583572 8155.78 3348 21146664

480 960 O.M. O.M. O.M. O.M.
4057584 23394.71 5284 52819448

ton and each resource required. This extra automaton would
register the claim, wait until the resource became available,
grab it for some duration, wait for the resource to signal the
end event and send it back to its corresponding application
automaton. Even more, the use of this extra automaton does
not guarantee that all resources booked started to process a
task at the same time. In the generated models, multi-resource
claims or releases are easily specified by using broadcast
channels, as detailed in the previous section.

The Tables I and II also show up to a 61% decrease
in the peak memory used by Uppaal during the analysis.
However, analysis of the generated models requires more time.
Due to the parametric representation that characterizes the
generated models, a lot of details were encoded into functions.
Furthermore, some of these functions require a lot of time
to be evaluated due to the conditions or function calls that
they incorporate. However, the state space explosion problem
emerges later in the analysis of these models, and we could
analyze a higher number of tasks in comparison with the
handcrafted models.

VI. CONCLUSIONS

PPOs are a simple extension of partial orders, but expressive
enough to compactly represent large task graphs with repetitive
behavior. We have presented a translation from a subclass of
PPOs to Uppaal, together with a correctness proof that the
transition system induced by a Uppaal model is isomorphic
to the configuration structure of a PPO. We also presented
experiments which demonstrate that the Uppaal models ob-
tained through this translation are in fact more tractable than
handcrafted models of the same systems used in earlier case
studies.

As explained in this paper, when the applications (use cases)
of an embedded system design are described using PPOs,
then we have a well-defined partial order structure on the
corresponding events. Due to competition for resources and
timing constraints, only a fragment of all the interleavings of

9

this partial order will be possible in the full system model.
Nevertheless, it will be interesting to see if partial order
reduction techniques [27], [28] will allow us to exploit the
inherent structure of PPOs to alleviate the state space explosion
problem when analyzing the full system model.

Another interesting topic for future research is to adapt the
results of [4] to the PPO settings. This approach reduces the
complexity of scheduling problems by exploiting the repetitive
structure of tasks: it reduces a scheduling problem to a problem
containing a minimal number of identical repetitions, and after
solving this much smaller scheduling problem, the computed
schedule is expanded to a schedule for the original, more
complex scheduling problem.

Acknowledgment: We thank Twan Basten, Alexandre
David, Martijn Hendriks, Nikola Trčka, Marc Voorhoeve, for
inspiring discussions on the topic of this paper. We dedicate
this paper to the memory of Marc Voorhoeve, 1950 - 2011,
who devised the notion of a PPO.

REFERENCES

[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara, Hardware-software co-design of embedded systems: the
POLIS approach. Kluwer Academic Publishers, 1997.

[2] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf, “An
approach for quantitative analysis of application-specific dataflow ar-
chitectures,” in ASAP, 1997, pp. 338–349.

[3] N. v. d. Nieuwelaar, J. v. d. Mortel-Fronczak, and J. Rooda, “Design of
supervisory machine control,” in European Control Conference, 2003.

[4] M. Hendriks, B. van den Nieuwelaar, and F. Vaandrager, “Recognizing
finite repetitive scheduling patterns in manufacturing systems,” in MISTA
2003. The University of Nottingham, pp. 291–319.

[5] A. Mazurkiewicz, “Trace theory,” in Petri Nets: Applications and Rela-
tionships to Other Models of Concurrency, ser. LNCS, 1987, vol. 255,
pp. 278–324.

[6] V. Pratt, “Modeling concurrency with partial orders,” International
Journal of Parallel Programming, vol. 15, pp. 33–71, 1986.

[7] G. Winskel, “An introduction to event structures,” in Linear Time,
Branching Time and Partial Order in Logics and Models for Concur-
rency, ser. LNCS, vol. 354, 1989, pp. 364–397.

[8] K. Jensen, L. Kristensen, and L. Wells, “Coloured petri nets and cpn
tools for modelling and validation of concurrent systems,” Int. J. Softw.
Tools Technol. Transf., vol. 9, pp. 213–254, May 2007.

[9] K. Jensen and L. Kristensen, Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, 2009.

[10] Octopus toolset, http://dse.esi.nl.
[11] T. Basten, E. Van Benthum, M. Geilen, M. Hendriks, F. Houben,

G. Igna, F. Reckers, S. De Smet, L. Somers, E. Teeselink, N. Trčka,
F. Vaandrager, J. Verriet, M. Voorhoeve, and Y. Yang, “Model-driven
design-space exploration for embedded systems: the octopus toolset,” in
ISoLA, ser. LNCS, vol. 6415, 2010, pp. 90–105.

[12] N. Trčka, M. Voorhoeve, and T. Basten, “Parameterized partial orders for
modeling embedded system use cases: Formal definition and translation
to coloured petri nets,” ACSD, pp. 13–18, 2011.

[13] S. Stuijk, M. Geilen, and T. Basten, “Sdf3: Sdf for free,” in ACSD, 2006,
pp. 276–278.

[14] G. Behrmann, A. David, and K. Larsen, “A tutorial on Uppaal,” in SFM-
RT, ser. LNCS, vol. 3185, 2004, pp. 200–236.

[15] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, pp. 183–235, April 1994.

[16] Y. Abdeddaı̈m, E. Asarin, and O. Maler, “Scheduling with timed
automata,” Theoretical Computer Science, vol. 354, pp. 272–300, 2006.

[17] M. Hendriks and M. Verhoef, “Timed automata based analysis of
embedded system architectures,” IPDPS, pp. 179–179, 2006.

[18] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker,
R. Henia, R. Racu, R. Ernst, and M. G. Harbour, “Influence of different
system abstractions on the performance analysis of distributed real-time
systems,” in EMSOFT, 2007, pp. 193–202.

[19] J. Berendsen, B. Gebremichael, F. Vaandrager, and M. Zhang, “Formal
specification and analysis of zeroconf using Uppaal,” ACM Transactions
on Embedded Computing Systems, vol. 10, no. 3, Apr. 2011.

[20] F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and P.-A. Reynier,
“Automatic synthesis of robust and optimal controllers - an industrial
case study,” in HSCC, ser. LNCS, vol. 5469, 2009, pp. 90–104.

[21] G. Igna, V. Kannan, Y. Yang, T. Basten, M. Geilen, F. Vaandrager,
M. Voorhoeve, S. Smet, and L. Somers, “Formal modeling and schedul-
ing of datapaths of digital document printers,” in FORMATS, ser. LNCS,
vol. 5215, 2008, pp. 170–187.

[22] G. Igna and F. Vaandrager, “Verification of printer datapaths using timed
automata,” in ISoLA, ser. LNCS, vol. 6415, 2010, pp. 412–423.

[23] I. AlAttili, F. Houben, G. Igna, S. Michels, F. Zhu, and F. Vaandrager,
“Adaptive scheduling of data paths using Uppaal Tiga,” in QFM, ser.
Electronic Proceedings in Theoretical Computer Science, vol. 13, 2009,
pp. 1–12.

[24] R. v. Glabbeek and G. Plotkin, “Configuration structures, event struc-
tures and petri nets,” Theor. Comput. Sci., vol. 410, no. 41, pp. 4111–
4159, 2009.

[25] J. Berendsen and F. Vaandrager, “Compositional abstraction in real-time
model checking,” in FORMATS, ser. LNCS, vol. 5215, 2008, pp. 233–
249.

[26] S. Christensen, L. Kristensen, and T. Mailund, “A sweep-line method
for state space exploration,” in TACAS, ser. LNCS, 2001, vol. 2031, pp.
450–464.

[27] D. Peled, “Ten years of partial order reduction,” in CAV, ser. LNCS, vol.
1427, 1998, pp. 17–28.

[28] K. L. McMillan, “Using unfoldings to avoid the state explosion problem
in the verification of asynchronous circuits,” in CAV, ser. LNCS, vol.
663, 1992, pp. 164–177.

APPENDIX

IP2[p]

(3s)
es

Download[p]

(3s/4s)
es

Upload[p]

(3s/4s)
es

RAM

(96MB)

USB down

IP2

USB up

24MB

p' = p

RAM 12MB

1

1

1

p' = p

RAM 24MB

IP1[p]

(3s)
esIP1

1

p' = p

RAM 24MB

Fig. 6: Process from Store Case

Download[p]

(3s/4s)
es

Print[p]

(4s)
es

RAM

(96MB)

USB down

PrintIP

12MB

1

1

p' = p

RAM12MB

Fig. 7: Simple Print Case

10

ScanRec[p]

(1s)
es

Scan[p]

(6s)
es

IP1[p]

(3s)
es

IP2[p]

(3s)
es

ScanIP[p]

(6s)
es

Upload[p]

(3s/4s)
es

Delay[p]

(3s)
es

p' = p

RAM 48MB
p' = p

p' = p

Scanner 1

RelMem[p]

(0s)
es

p' = p

p' = p

RAM 48MB

Print[p]

(4s)
es

RAM

(96MB)

Scanner

ScanIP

IP1

IP2

USB up

p' = p

p' = p

p' = p

PrintIP

p' = p

p' = p

p’=p

RAM 12MB

1

1

48MB

p’=p

RAM 48MB

p' = p+1

1

1

1

1

Fig. 8: Direct Copy Case Case

11

