Article 25fa End User Agreement

This publication is distributed under the terms of Article 25fa of the Dutch Copyright Act. This article entitles the maker of a short scientific work funded either wholly or partially by Dutch public funds to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.

Research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act, are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and/or copyrights owner(s) of this work. Any use of the publication other than authorised under this licence or copyright law is prohibited.

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the University Library know, stating your reasons. In case of a legitimate complaint, the University Library will, as a precaution, make the material inaccessible and/or remove it from the website. Please contact the University Library through email: copyright@ubn.ru.nl. You will be contacted as soon as possible.

University Library
Radboud University
Measurement of the photon + b-jet production differential cross section in \(p \bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV

D0 Collaboration

M. Padillaa, A. Palb, N. Parasharay, V. Pariharbu, S.K. Parkab, R. Partridgebu,5, N. Paruaax, A. Patwabq, B. Penningat, M. Perfilovah, Y. Petersap, K. Petridisap, G. Petrillobo, P. Pétroffm, M.-A. Pleierbq, P.L.M. Pedosta-Lermaac,8, V.M. Podstavkovat, A.V. Popovai, M. Prewittbx, D. Priceax, N. Prokopenkoai, J. Qianbg, A. Quadtf, B. Quinnbi, M.S. Rangelh, K. Ranjany, P.N. Ratoffan, I. Razumova, P. Renkelbw, I. Ripp-Baudotp, F. Rizatdinovabt, M. Rominskyat, A. Rossan, C. Royono, P. Rubinovat, R. Ruchtiaz, G. Sajotk, P. Salcidoav, A. Sánchez-Hernández\textsuperscript{ac, MP. Sandersv, B. Sanghiat, A.S. Santosa,g, G. Savageat, L. Sawyerbd, T. Scanlonao, R.D. Schambergerbp, Y. Scheglovaj, H. Schellmanaw, S. Schlobohmbz, C. Schwanenbergerap, R. Schwienhorstbh, J. Sekaricbb, H. Severinibs, E. Shabalinaf, V. Sharyo, S. Shawbh, A.A. Shchukinai, R.K. Shivpuriy, V. Simakg, P. Skubicbs, P. Slatterybo, D. Smirnovaz, K.J. Smithbm, G.R. Snowbj, J. Snowbx, S. Snyderbq, S. Söldner-Remboldap, L. Sonnenscheinr, K. Soustruzniki, J. Starkk, D.A. Stoyanovaam, M. Straussbs, L. Stuttleat, L. Suterap, P. Svoiskybs, M. Takahashiap, M. Titovo, V.V. Tomkienaf, Y.-T. Tsaibo, K. Tschann-Grimmbp, D. Tsybchevbp, B. Tuchmingo, C. Tullybl, L. Uvarovaj, S. Uvarovdl, S. Uzunyanav, R. Van Kootenax, W.M. van Leeuwenad, N. Varelasau, E.W. Varnesaq, I.A. Vasilyevai, P. Verdierq, A.Y. Verkhovv, L.S. Vertogradovaf, M. Verzocchiat, M. Vesterinenap, D. Vilanovao, P. Vokacd, H.D. Wahlab, M.H.L.S. Wangaj, J. Warcholaz, G. Wattsbz, M. Wayneaz, J. Weichertt, L. Welty-Riegeraw, A. Whitebv, D. Wickew, M.R.J. Williamsan, G.W. Wilsonbb, M. Wobischaz, D.R. Woodbi, T.R. Wyattap, Y. Xieat, L. Yamadaat, W.-C. Yangap, T. Yasudaat, Y.A. Yatsunenkoaf, W. Yebp, Z. Yeat, H. Yinat, K. Yipbq, S.W. Younat, J. Zennamobm, T. Zhaobz, T.G. Zhaoap, B. Zhoubg, J. Zhubg, M. Zielinskibo, D. Zieminskaax, L. Zivkovicbu

a LAEx, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
b Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
c Universidade Federal do ABC, Santo André, Brazil
d University of Science and Technology of China, Hefei, People's Republic of China
e Universidad de los Andes, Bogotá, Colombia
f Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
g Czech Technical University in Prague, Prague, Czech Republic
h Center for Particle Physics, Institute of Academy of Sciences of the Czech Republic, Prague, Czech Republic
i Universidad San Francisco de Quito, Quito, Ecuador
j LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
k LPC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
l CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
m LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
n LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
o CEA, Ifri, SPI, Saclay, France
p IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
q IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, and Université de Lyon, Lyon, France
r IF, Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
s Physikalisches Institut, Universität Freiburg, Freiburg, Germany
t II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
u Institut für Physik, Universität Münster, Münster, Germany
v Ludwig-Maximilians-Universität München, München, Germany
w Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
x Panjab University, Chandigarh, India
y Delhi University, Delhi, India
z Tata Institute of Fundamental Research, Mumbai, India
aa University College Dublin, Dublin, Ireland
ab Korea Detector Laboratory, Korea University, Seoul, Republic of Korea
ac CINVESTAV, Mexico City, Mexico
ad Nikhef, Science Park, Amsterdam, The Netherlands
ae Radboud University Nijmegen, Nijmegen, The Netherlands
af Joint Institute for Nuclear Research, Dubna, Russia
ag Institute for Theoretical and Experimental Physics, Moscow, Russia
ah Moscow State University, Moscow, Russia
ai Institute for High Energy Physics, Protvino, Russia
aj Petersburg Nuclear Physics Institute, St. Petersburg, Russia
ak Institución Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d'Altes Energies (IFAE), Barcelona, Spain
al Uppsala University, Uppsala, Sweden
am Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
an Lancaster University, Lancaster LA1 4YB, United Kingdom
ao Imperial College London, London SW7 2AZ, United Kingdom
ap The University of Manchester, Manchester M13 9PL, United Kingdom
aq University of Arizona, Tucson, AZ 85721, USA
ar University of California Riverside, Riverside, CA 92521, USA
as Florida State University, Tallahassee, FL 32306, USA
at Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
au University of Illinois at Chicago, Chicago, IL 60607, USA
av Northern Illinois University, DeKalb, IL 60115, USA
aw Northwestern University, Evanston, IL 60208, USA
In hadron–hadron collisions, high-energy photons (γ) emerge unaltered from the hard-scattering process of two partons and therefore provide a clean probe of the parton level dynamics. Study of such photons (called prompt or direct) produced in association with a b-quark jet is of particular interest, as it provides information about the b-quark and gluon (g) parton distribution functions (PDFs) of the incoming hadrons. Such events are produced in Quantum Chromodynamics (QCD) primarily through the Compton-like scattering process $gb \rightarrow \gamma b$, which dominates up to photon transverse momenta (p_T^γ) of ≈ 70 GeV, and through quark–antiquark annihilation $q\bar{q} \rightarrow \gamma g \rightarrow \gamma b\bar{b}$, which dominates at high p_T^γ [1]. The inclusive $\gamma + b$ production may also originate from partonic processes like $gg \rightarrow b\bar{b}$ or $bg \rightarrow bg$, where the final state b-quark or gluon fragments into a photon [1]. However, photon isolation requirements substantially reduce the contributions from this process.

The measurements of the differential cross section as a function of p_T^γ and the photon (and/or b-jet) rapidity can be used to test the $\gamma + b$ production mechanism and the underlying dynamics of QCD hard-scattering subprocesses with different momentum transfer scales Q^2 and parton momentum fraction x. Measurements involving γ/Z-boson and b-quark final states have previously been performed by the D0 and CDF Collaborations [2–6]. In comparison to the previous $\gamma + b$ measurement [6], we now consider not only the leading (in p_T) b-jet, but all b-jets in the event. To increase statistics in p_T^γ bins, we have also extended the $|y_{\gamma b}|$ region which results in a larger contribution from the annihilation process. The large integrated luminosity recorded with the D0 detector in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron Collider and more advanced photon and b-jet identification tools [7–9] enable us to perform more precise measurements and to extend them in kinematic regions previously unexplored.

In this Letter, we present measurements of the inclusive $\gamma + b$-jet production cross sections using data collected from June 2006 to September 2011. The cross sections are measured as a function of p_T^γ in the photon rapidity regions, $|y_{\gamma}| < 1.0$ (central) and $1.5 < |y_{\gamma}| < 2.5$ (forward). The rapidity, y, is related to the polar scattering angle θ with respect to the proton beam axis by
energy corrections as a function of y^*. They are derived using a detailed
GEANT-based [13] simulation of the D0 detector response. These
corrections are largest, $\approx 2\%$, at photon energies of about 30 GeV.
The data used in this analysis satisfy D0 data quality requirements
and are collected using a combination of triggers requiring a clus-
ter of energy in the electromagnetic (EM) calorimeter with loose
shower shape requirements, and correspond to an integrated luminosity of 8.7 ± 0.5 fb$^{-1}$ [14]. The trigger efficiency is $\approx 96\%$
for photon candidates with $p_T^\gamma \sim 30$ GeV and $\approx 100\%$ for $p_T^\gamma > 40$ GeV.

Offline event selection requires a reconstructed $p\bar{p}$ interaction
vertex [12] within 60 cm of the center of the detector along the beam
axis. The efficiency of the vertex requirement is $\approx (96–98)\%$,
depending on p_T^γ. The missing transverse momentum in the event
is required to be less than $0.7p_T^\gamma$ to suppress background from $W \to e\nu$ decays. Such a requirement is highly efficient for sig-
nal events, with an efficiency $\sim 98\%$ even for events with semi-
leptonic heavy-flavor quark decays.

To reconstruct photon candidates, projective towers of calorim-
eter cells with large deposits of energy are used as seeds to create
clusters of energy in the EM calorimeter in a cone of radius $R = 0.4$,
where $R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}$. Once an EM energy cluster
is formed, the final energy (E_{EM}) is obtained summing the
energies of all the calorimeter cells in a smaller cone of $R = 0.2$.
Photon candidates are required to have: (i) $> 97\%$ of their en-
ergy in the EM section; (ii) calorimeter isolation $I = E_{\text{tot}}(0.4)
- E_{\text{EM}}(0.2)/E_{\text{EM}}(0.2) < 0.07$, where $E_{\text{tot}}(R)$ [$E_{\text{EM}}(R)$] is the total
[EM only] energy in a cone of radius R; (iii) scalar sum of p_T less
than 1.5 GeV, calculated from all tracks with $p_T > 0.5$ GeV orig-
inating from the $p\bar{p}$ primary interaction point in an annulus
of $0.05 < R < 0.4$ around the EM cluster; and (iv) energy-weighted
EM shower width consistent with that expected for an electromag-
netic shower. To suppress electrons misidentified as photons, the
EM clusters are required to be not spatially matched to signifi-
cant tracker activity, either a reconstructed track or, in the central
rapidity region, a density of hits in the SMT and CFT consistent
with that of an electron [15]. In the following, this requirement is
referred to as the “track-match veto.”

To further suppress jets misidentified as photons, an artificial
nearby neutral angular (γ-NN) discriminant is defined [8]. It relies
on differences between photons and jets in tracker activity,
energy deposits in the calorimeter, and in the CPS for the central
photons/jets. This γ-NN is trained using PYTHIA [10] Monte Carlo
(MC) samples of photon and jet production, which are processed
through a GEANT-based [13] simulation of the detector geometry
and response. In order to accurately model the effects of mul-
tiple $p\bar{p}$ interactions and detector noise, events from random $p\bar{p}$
crossings with a similar instantaneous luminosity spectrum as in
data are overlaid on the MC events. These MC events are then pro-
cessed using the same reconstruction code as for the data. The
γ-NN performance is verified using a data sample consisting
of photons radiated from leptons in Z boson decays ($Z \to \ell^+\ell^-\gamma$,
$\ell = e, \mu$) [16]. The γ-NN output Q_{NN} distributions for photons
in data and MC are in good agreement and exhibit a significant sep-
oration from the distribution for misidentified jets [7,8]. Photon
candidates are required to have $Q_{\text{NN}} > 0.3$, which is $\approx 98\%$ effi-
cient for photons.

We calculate corrections to the observed number of candidate
events to account for the photon detection efficiency and for the
acceptance of the selection using simulated samples of $\gamma + b$-jet
events. In these samples, the photon is required to be isolated at

11 The polar angle θ and the azimuthal angle ϕ are defined with respect to
the positive z axis, which is along the proton beam direction. Pseudorapidity is defined
as $\eta = -\ln(\tan(\theta/2))$. Also, η_{det} and η_{gen} are the pseudorapidity and the azimuthal
angle measured with respect to the center of the detector.

12 The primary $p\bar{p}$ interaction vertex is that found to be the most likely collision
point, among possibly several collisions within a specific beam crossing, from which
our selected objects emanate. The algorithm for defining it can be found in [9].
particle level by $E_T^{\mathrm{iso}} = E_T^{\gamma\gamma}(0.4) - E_T^\gamma < 2.5$ GeV, where $E_T^{\gamma\gamma}$ is the total transverse energy of particles within a cone of radius $\mathcal{R} = 0.4$ centered on the photon, and E_T^γ is the photon transverse energy. Here, the particle level includes all stable particles as defined in Ref. [17]. Signal events are generated using the SHERPA [18] and PYTHIA event generators, processed through a GEANT-based [13] simulation and events reconstruction as described above. The acceptance is driven by the selection requirements in η_{jet} (applied to avoid edge effects in the calorimeter regions used for the measurement) and ϕ_{bin} in the central rapidity region (to avoid periodic calorimeter module boundaries [12] that bias the EM cluster energy and position measurements), photon rapidity y^γ and energy, and bin-to-bin migration effects due to the finite energy and angular resolution of the EM calorimeter. The acceptance varies within (82–90)% with a relative systematic uncertainty of (2–5)%. The EM clusters reconstructed in the acceptance region are required to pass the photon identification criteria listed in the previous paragraph. Average correction factors to account for differences between data and simulations are obtained with the SHERPA events, while the difference from the corrections obtained with PYTHIA is used as systematic uncertainty. Small differences between data and MC in the photon selection efficiencies are corrected for with suitable scale factors derived using control samples of electrons from Z boson decays, as well as photons from the radiative Z boson decays [16]. The total efficiency of the above photon selection criteria is (68–85)% depending on the p_T^γ and rapidity region. The systematic uncertainties on these values are 3% for $|y^\gamma| < 1.0$ and 7.3% for $1.5 < |y^\gamma| < 2.5$ and are mainly due to uncertainties caused by the track-match veto, isolation, and the γ-NN requirements. The contamination from $Z(\rightarrow e^+e^-)$ + jet and $W(\rightarrow e\nu)$ + jet events is estimated from the simulation and is found to be negligible ($\lesssim 1\%$) for both photon rapidity regions.

At least one jet with $p_T^\gamma > 15$ GeV and $|y^{\text{jet}}| < 1.5$ must be present in each selected event. Jets are reconstructed using the D0 Run II algorithm [19] with a cone radius of $\mathcal{R} = 0.5$. The jet acceptance with respect to the p_T^γ and $|y^{\text{jet}}|$ kinematic cuts varies between 88% and 100% in different photon p_T bins. The uncertainties on the acceptance due to the jet energy scale, jet energy resolution, and difference in energy scale correction between light flavor and b-jets vary between 1% and 7%, increasing for smaller p_T^γ. The jet is required to have at least two associated tracks with $p_T > 0.5$ GeV with at least one hit in the SMT. The track with the highest p_T must have $p_T > 1.0$ GeV. These criteria ensure that there is sufficient information to classify the jet as a heavy-flavor candidate and have a typical efficiency of about 90%. Light jets (caused by light quarks or gluons) are suppressed using a dedicated artificial neural network (b-NN) [9] that employs the longer lifetimes of heavy-flavor hadrons relative to their lighter counterparts. The inputs to the b-NN combine several characteristic quantities of the jet and associated tracks to provide a continuous output value that tends towards one for b-jets and zero for the light jets. The b-NN input variables providing most of the discrimination are the number of reconstructed secondary vertices (SV) in the jet, the invariant mass of charged particle tracks associated with the SV (M_{SV}), the number of tracks used to reconstruct the SV, the two-dimensional decay length significance of the SV in the plane transverse to the beam, a weighted combination of the tracks’ transverse impact parameter significances, and the probability that the tracks associated with the jet originate from the $p\bar{p}$ interaction vertex. The jet is required to have a b-NN output > 0.3. Depending on p_T^γ, this selection is (40–52)% efficient for b-jets with systematic uncertainties of (6–23)% for the $\gamma + b$ events with $|y^\gamma| < 1.0$ and of (7–11)% for those with $1.5 < |y^\gamma| < 2.5$, both increasing as a function of p_T^γ. Only 0.2–0.4% of light jets are misidentified as heavy-flavor jets, comprising 7% to 10% of the final sample.

After all selection requirements, 199,515 (139,710) events remain in the data samples with the central (forward) photons. In addition to events with light-flavor jets a second source of background is represented by multi-jet events in which one jet is misidentified as a photon. To estimate the photon purity, the γ-NN distribution in data is fitted to a linear combination of templates for photons and jets obtained from simulated γ + jet and dijet samples, respectively. An independent fit is performed in each p_T^γ bin, yielding photon purities between 62% and 99% for the events with the central photons and between 40% and 55% for the events with the forward photons. The obtained photon fractions are shown in Fig. 2. The p_T^γ dependence of the purity is fitted in each region using a two-parameter function $P = 1 - \exp(a + bp_T^\gamma)$. The systematic uncertainties on the fit are estimated using two alternative fitting functions. These photon purities differ at most by 7% when compared with those obtained for inclusive events, i.e., without the requirement of a heavy-flavor jet. An additional systematic uncertainty in the photon fractions due to the fragmentation model implemented in PYTHIA is also taken into account [20]. This uncertainty is estimated by varying the production rate of π^0 and η mesons by $\pm 50\%$ with respect to their central values [21]. It is found to be about 6% at $p_T^\gamma \simeq 30$ GeV, 2% at $p_T^\gamma \simeq 50$ GeV, and $\leq 1\%$ at $p_T^\gamma \gtrsim 70$ GeV.

![Fig. 2. Photon purity as a function of p_T^γ in the selected data sample in the central rapidity region ($|y^\gamma| < 1.0$ (a) and the forward rapidity region $1.5 < |y^\gamma| < 2.5$ (b).](image-url)
The fractions of b-jets are determined by fitting M_{SV} templates for b, c, and light jets to the data. Jets from b-quarks tend to have larger values of M_{SV}, in contrast to light jets. For b- and c-jets, the templates are obtained from simulation, while the light jet template is derived from a data sample, enriched in light jets, referred to as negatively tagged data (NT data). The NT data comprises the jets that have negative values for some of the inputs to the b-NN algorithm (such as negative decay length and negative impact parameter significance) which are caused by detector resolution effects [9]. After correcting the NT data for the small contamination from heavy-flavor jets, we have verified that the M_{SV} template shapes in NT data and light jets in the MC simulation agree well.

The result of a maximum likelihood fit to M_{SV} templates, normalized to the number of events in data, is shown in Fig. 3 for central photons with $50 < p_T^\gamma < 60$ GeV, as an example. As shown in Fig. 4, the estimated fraction of b-jets grows with p_T^γ from about 35% to about 42%. The corresponding relative uncertainties range between 4%-24%, increasing at higher p_T^γ and are dominated by the limited data statistics. The data corrected for the photon and jet acceptance, for reconstruction efficiencies, for the contribution of background events, and for bin-migration effects, are presented at the particle level, as defined in Ref. [17].

The differential cross sections of $\gamma + b$ production are extracted in nine (six) bins of p_T^γ for central (forward) photons, and are listed in Tables 1 and 2. The results are also shown in Fig. 5 as a function of p_T^γ for the two photon rapidity intervals. The data points are plotted at the value of p_T^γ for which the value of the smooth function describing the cross section equals the averaged cross section in the bin [22]. The $\gamma + b$-jet simulated sample with SHERPA has been used to determine mean p_T^γ values.

The cross sections with the central (forward) photons fall by about four (three) orders of magnitude in the range $30 < p_T^\gamma < 300$ (200) GeV. The statistical uncertainty on the results ranges from 2% in the first p_T^γ bin to $\approx 11\%$ in the last p_T^γ bins, while the total systematic uncertainty varies between 12% and 36%. The main source of the uncertainty at low p_T^γ is due to the photon purity (up to 8%), the b-jet fraction fit (6%-7%), and the luminosity (6.1%) [14]. At higher p_T^γ, the uncertainty is dominated by the fractions of b-jets and their selection efficiencies. Systematic uncertainties are highly bin-to-bin correlated for the first three p_T^γ bins, while the total systematic uncertainty is nearly uncorrelated across the bins at $p_T^\gamma > 70$ GeV.

Next-to-leading order (NLO) perturbative QCD predictions, with the renormalization scale μ_R, factorization scale μ_F, and fragmentation scale μ_f all set to p_T, are also given in Tables 1 and 2. These predictions [1] are based on a phase space slicing method used to calculate the cross section analytically [23]. The uncertainty from the choice of scale is estimated through a simultaneous variation of all three scales by a factor of two, i.e. for $\mu_{R,F,F}$, and $2p_T^\gamma$. The predictions utilize cteq6.6M PDFs [11] and are corrected for non-perturbative effects of parton-to-hadron fragmentation and multiple parton interactions. The latter are evaluated using SHERPA and PYTHIA MC samples using their default settings [18,10]. The overall correction varies from about 0.90 at $30 < p_T^\gamma < 40$ GeV to about 0.95 at high p_T^γ, and an uncertainty of $\lesssim 2\%$ is assigned to account for the difference between the two MC generators.

The prediction based on the k_T-factorization approach [24,25] and unintegrated parton distributions [26] are also given in Tables 1 and 2. The k_T-factorization formalism contains additional contributions to the cross sections due to resummation of gluon

Fig. 3. Distribution of observed events for secondary vertex mass after all selection criteria for the representative bin $50 < p_T^\gamma < 60$ GeV ($|y^\gamma| < 1.0$). The distributions for the b-, c-, and light jet templates are shown normalized to their respective fitted fractions. Also included at the bottom is the ratio of data to the result of the fit. Fits in the other p_T^γ bins are of similar quality.

Fig. 4. The b-jet fraction (with total uncertainties) as a function of p_T^γ in the data sample after applying all selections in the central rapidity region $|y^\gamma| < 1.0$ (a) and the forward rapidity region $1.5 < |y^\gamma| < 2.5$ (b).
The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties.
The results indicate a need for higher order perturbative QCD corrections in the large $p_T^γ$ region, that is dominated by the annihilation process $q\bar{q} → γg$ ($g → b\bar{b}$), and resummation of diagrams with additional gluon radiation. The QCD predictions from the k_T-factorization approach is in better agreement with data.

In conclusion, we have performed a measurement of the differential cross sections between data and NLO QCD predictions with uncertainties for the rapidity regions $|y| < 1.0$ (a) and $1.5 < |y| < 2.5$ (b). The uncertainties on the data include both statistical (inner error bar) and full uncertainties (entire error bar). Also shown are the uncertainties on the theoretical QCD scales and the $cteq6.6M$ PDFs. The ratio of NLO predictions with $cteq6.6M$ to those with $mstw2008$ [28] and $abkmegko$ [29] are also shown.

Fig. 6. The ratio of $γ + b$ production differential cross sections between data and NLO QCD predictions with uncertainties for the rapidity regions $|y| < 1.0$ (a) and $1.5 < |y| < 2.5$ (b). The uncertainties on the data include both statistical (inner error bar) and full uncertainties (entire error bar). Also shown are the uncertainties on the theoretical QCD scales and the $cteq6.6M$ PDFs. The ratio of NLO predictions with $cteq6.6M$ to those with $mstw2008$ [28] and $abkmegko$ [29] are also shown.

Acknowledgements

We are grateful to the authors of the theoretical calculations, T. Stavreva, J.F. Owens, N. Zotov, S. Schumann and F. Siegert, for providing predictions and for many useful discussions.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

References

http://dx.doi.org/10.1007/JHEP05(2012)104.