Measurement of the photon+b-jet production differential cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

We present measurements of the differential cross section \(d\sigma/dp_T^\gamma\) for the inclusive production of a photon in association with a b-quark jet for photons with rapidities \(|y| < 1.0\) and \(30 < p_T^\gamma < 300\) GeV, as well as for photons with \(1.5 < |y| < 2.5\) and \(30 < p_T^\gamma < 200\) GeV, where \(p_T^\gamma\) is the photon transverse momentum. The b-quark jets are required to have \(p_T > 15\) GeV and rapidity \(|y| < 1.5\). The results are based on data corresponding to an integrated luminosity of 8.7 fb\(^{-1}\), recorded with the D0 detector at the Fermilab Tevatron \(p\bar{p}\) Collider at \(\sqrt{s} = 1.96\) TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the \(k_T\)-factorization QCD approach, and those from the SHERPA and PYTHIA Monte Carlo event generators.

PACS numbers: 13.85.Qk, 12.38.Bx, 12.38.Qk

In hadron-hadron collisions, high-energy photons (\(\gamma\)) emerge unaltered from the hard scattering process of two partons and therefore provide a clean probe of the parton level dynamics. Study of such photons (called prompt or direct) produced in association with a b-quark also provides information about the b-quark and gluon (\(g\)) parton distribution functions (PDFs) of the incoming hadrons. Such events are produced in Quantum Chromodynamics (QCD) primarily through the Compton-like scattering process \(gb \rightarrow \gamma b\), which dominates up to photon transverse momenta \((p_T^\gamma)\) of \(\approx 70\) GeV, and through quark-antiquark annihilation \(q\bar{q} \rightarrow \gamma g \rightarrow \gamma bb\), which dominates at high \(p_T^\gamma\). The inclusive \(\gamma + b\) production may also originate from partonic processes like \(gg \rightarrow bb\) or \(bg \rightarrow bg\), where the final state b-quark or gluon fragments into a photon. However, photon isolation requirements substantially reduce the contributions from this process. The measurements of the differential cross section as a function of \(p_T^\gamma\) and the photon (and/or b-jet) rapidity can be used to test the \(\gamma + b\) production mechanism and the underlying dynamics of QCD hard-scattering subprocesses with different momentum transfer scales \(Q\) and parton momentum fraction \(x\). Measurements involving \(\gamma/Z\)-boson and b-quark final states have previously been performed by the D0 and CDF collaborations. In comparison to the previous \(\gamma + b\) measurement, we now consider not only the leading (in \(p_T\)) b-jet, but all b-jets in the event. To increase statistics in \(p_T^\gamma\) bins, we have also extended the \(|y|\) region which results in a larger contribution from the annihilation process. The large integrated luminosity recorded with the D0 detector in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV at the Fermilab...
Tevatron Collider and more advanced photon and b-jet identification tools enable us to perform more precise measurements and to extend them in kinematic regions previously unexplored.

In this Letter, we present measurements of the inclusive $\gamma + b$-jet production cross sections using data collected from June 2006 to September 2011. The cross sections are measured as a function of p_T^γ in the photon rapidity regions, $|y^\gamma| < 1.0$ (central) and $1.5 < |y^\gamma| < 2.5$ (forward). The rapidity, y, is related to the polar scattering angle θ with respect to the proton beam axis by

$$y = \frac{1}{2} \ln \left[\frac{1 + \beta \cos \theta}{1 - \beta \cos \theta} \right],$$

where β is defined as the ratio between momentum and energy $\beta = |\vec{p}|/E$. The photons are required to have $30 < p_T^\gamma < 300$ GeV in the central rapidity region and $30 < p_T^\gamma < 200$ GeV in the forward region. The b-jets are required to be within $|y^{b\ell}| < 1.5$ and to have transverse momentum $p_T^b > 15$ GeV. This allows us to probe the dynamics of the production process in a wide kinematic range, not studied before in other measurements of a vector boson + b-jet final state. The measurement covers parton momentum fractions in the range $0.007 \lesssim x \lesssim 0.4$. Figure 1 shows the fractional contributions of the $gb \to \gamma b$ subprocesses to the total cross section of $\gamma + b$ production with photons in the central and forward photon rapidity regions as a function of p_T^γ. The curves are obtained using signal processes $gb \to \gamma b$ and $q\bar{q} \to \gamma bb$ simulated with the PYTHIA event generator. It can be seen that the Compton-like contribution is large at small p_T^γ and decreases with growing p_T^γ, with the annihilation process contribution having the opposite behavior.

![Fractional contribution of the $gb \to \gamma b$ subprocess to the associated production of direct photon and b-jet as a function of p_T^γ in the events with photons in the central and forward rapidity regions. The fractions are calculated using PYTHIA 6.4 and the cteq6.1l parton distribution functions.](image)

The D0 detector is a general purpose detector discussed in detail elsewhere. The subdetectors most relevant to this analysis are the central tracking system, composed of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT) embedded in a 1.9 T solenoidal magnetic field, the central preshower detector (CPS), and the calorimeter. The CPS is located immediately before the inner layer of the central calorimeter and is formed of approximately one radiation length of lead absorber followed by three layers of scintillating strips. The calorimeter consists of a central section with coverage in pseudorapidity of $|\eta_{det}| < 1.1$, and two end calorimeters covering up to $|\eta_{det}| \approx 4.2$. The electromagnetic (EM) section of the calorimeter is segmented longitudinally into four layers (EM_i, $i = 1 - 4$), with transverse segmentation into cells of size $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ except EM3 (near the EM shower maximum), where it is 0.05×0.05. The calorimeter allows for a precise measurement of the energy and direction of electrons and photons, providing an energy resolution of approximately 4% (3%) at an energy of 30 (100) GeV, and an angular resolution of 0.01 radians. The energy response of the calorimeter to photons is calibrated using electrons from Z boson decays. Since electrons and photons shower differently in matter, additional energy corrections as a function of y^γ are derived using a detailed GEANT-based simulation of the D0 detector response. These corrections are largest, $\approx 2\%$, at photon energies of about 30 GeV. The data used in this analysis satisfy D0 data quality requirements and are collected using a combination of triggers requiring a cluster of energy in the electromagnetic (EM) calorimeter with loose shower shape requirements, and correspond to an integrated luminosity of 8.7 ± 0.5 fb$^{-1}$. The trigger efficiency is $\approx 96\%$ for photon candidates with $p_T^\gamma \sim 30$ GeV and $\approx 100\%$ for $p_T^\gamma > 40$ GeV.

Offline event selection requires a reconstructed pp interaction vertex within 60 cm of the center of the detector along the beam axis. The efficiency of the vertex requirement is $\approx (96 - 98)\%$, depending on p_T^γ. The missing transverse momentum in the event is required to be less than $0.7p_T^\gamma$ to suppress background from $W \to e\nu$ decays. Such a requirement is highly efficient for signal events, with an efficiency $\geq 98\%$ even for events with semi-leptonic heavy-flavor quark decays.

To reconstruct photon candidates, projective towers of calorimeter cells with large deposits of energy are used as seeds to create clusters of energy in the EM calorimeter in a cone of radius $R = 0.4$, where $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$. Once an EM energy cluster is formed, the final energy (E_{EM}) is obtained summing the energies of all the calorimeter cells in a smaller cone of $R = 0.2$. Photon candidates are required to have: (i) $> 97\%$ of their energy in the EM section; (ii) calorimeter isolation $I = \left[E_{tot}(0.4) - E_{EM}(0.2)\right]/E_{EM}(0.2) < 0.07$, where $E_{tot}(R)$ and $E_{EM}(R)$ is the total [EM only] energy in a cone of radius R; (iii) scalar sum of p_T less than 1.5 GeV, calculated from all tracks with $p_T > 0.5$ GeV originating...
from the $p\bar{p}$ primary interaction point in an annulus of $0.05 < R < 0.4$ around the EM cluster; and (iv) energy-weighted EM shower width consistent with that expected for an electromagnetic shower. To suppress electrons misidentified as photons, the EM clusters are required to be not spatially matched to significant tracker activity, either a reconstructed track or, in the central rapidity region, a density of hits in the SMT and CFT consistent with that of an electron 17. In the following, this requirement is referred to as the “track-match veto.”

To further suppress jets misidentified as photons, an artificial neural network (γ-NN) discriminant is defined 8. It relies on differences between photons and jets in tracker activity, energy deposits in the calorimeter, and in the CPS for the central photons/jets. This γ-NN is trained using PYTHIA 10 Monte Carlo (MC) samples of photon and jet production, which are processed through a GEANT-based 14 simulation of the detector geometry and response. In order to accurately model the effects of multiple $p\bar{p}$ interactions and detector noise, events from random $p\bar{p}$ crossings with a similar instantaneous luminosity spectrum as in data are overlaid on the MC events. These MC events are then processed using the same reconstruction code as for the data. The γ-NN performance is verified using a data sample consisting of photons radiated from leptons in Z boson decays ($Z \rightarrow \ell^{+}\ell^{-}\gamma$, $\ell = e, \mu$) 18. The γ-NN output O_{NN} distributions for photons in data and MC are in good agreement and exhibit a significant separation from the distribution for misidentified jets $^{7, 8}$. Photon candidates are required to have $O_{NN} > 0.3$, which is $\approx 98\%$ efficient for photons.

We calculate corrections to the observed number of candidate events to account for the photon detection efficiency and for the acceptance of the selection using simulated samples of $\gamma + b$-jet events. In these samples, the photon is required to be isolated at particle level by $E_{T}^{iso} = E_{T}^\gamma < 0.4 - E_{T}^{\gamma} < 2.5$ GeV, where E_{T}^{iso} is the total transverse energy of particles within a cone of radius $R = 0.4$ centered on the photon, and E_{T}^{γ} is the photon transverse energy. Here, the particle level includes all stable particles as defined in Ref. 19. Signal events are generated using the SHERPA 20 and PYTHIA event generators, processed through a GEANT-based 14 simulation and events reconstruction as described above. The acceptance is driven by the selection requirements in q_{det} (applied to avoid edge effects in the calorimeter regions used for the measurement) and q_{jet} in the central rapidity region (to avoid periodic calorimeter module boundaries 12 that bias the EM cluster energy and position measurements), photon rapidity y^{γ} and energy, and bin-to-bin migration effects due to the finite energy and angular resolution of the EM calorimeter. The acceptance varies within ($82 - 90\%$) with a relative systematic uncertainty of ($2 - 5\%$). The EM clusters reconstructed in the acceptance region are required to pass the photon identification criteria listed in the previous paragraph. Average correction factors to account for differences between data and simulations are obtained with the SHERPA events, while the difference from the corrections obtained with PYTHIA is used as systematic uncertainty. Small differences between data and MC in the photon selection efficiencies are corrected for with suitable scale factors derived using control samples of electrons from Z boson decays, as well as photons from the radiative Z boson decays 18. The total efficiency of the above photon selection criteria is ($68 - 85\%$), depending on the p_{T}^{γ} and rapidity region. The systematic uncertainties on these values are 3% for $|y^{\gamma}| < 1.0$ and 7.3% for $1.5 < |y^{\gamma}| < 2.5$ and are mainly due to uncertainties caused by the track-match veto, isolation, and the γ-NN requirements. The contamination from $Z(\rightarrow e^{+}e^{-})+\text{jet}$ and $W(\rightarrow e\nu)+\text{jet}$ events is estimated from the simulation and is found to be negligible ($\lesssim 1\%$) for both photon rapidity regions.

At least one jet with $p_{T}^{\text{jet}} > 15$ GeV and $|y^{\text{jet}}| < 1.5$ must be present in each selected event. Jets are reconstructed using the D0 Run II algorithm 21 with a cone radius of $R = 0.5$. The jet acceptance with respect to the p_{T}^{jet} and $|y^{\text{jet}}|$ kinematic cuts varies between 88% and 100% in different photon p_{T} bins. The uncertainties on the acceptance due to the jet energy scale, jet energy resolution, and difference in energy scale correction between light flavor and b-jets vary between 1% and 7%, increasing for smaller p_{T}^{γ}. The jet is required to have at least two associated tracks with $p_{T} > 0.5$ GeV with at least one hit in the SMT. The track with the highest p_{T} must have $p_{T} > 1.0$ GeV. These criteria ensure that there is sufficient information to classify the jet as a heavy-flavor candidate and have a typical efficiency of about 90%. Light jets (caused by light quarks or gluons) are suppressed using a dedicated artificial neural network (b-NN) 9 that employs the longer lifetimes of heavy-flavor hadrons relative to their lighter counterparts. The inputs to the b-NN combine several characteristic quantities of the jet and associated tracks to provide a continuous output value that tends towards one for b-jets and zero for the light jets. The b-NN input variables providing most of the discrimination are the number of reconstructed secondary vertices (SV) in the jet, the invariant mass of charged particle tracks associated with the SV (M_{SV}), the number of tracks used to reconstruct the SV, the two-dimensional decay length significance of the SV in the plane transverse to the beam, a weighted combination of the tracks’ transverse impact parameter significances, and the probability that the tracks associated with the jet originate from the $p\bar{p}$ interaction vertex. The jet is required to have a b-NN output > 0.3. Depending on p_{T}^{γ}, this selection is ($40 - 52\%$) efficient for b-jets with systematic uncertainties of ($6 - 23\%$) for the $\gamma + b$ events with $|y^{\gamma}| < 1.0$ and of ($7 - 11\%$) for those with $1.5 < |y^{\gamma}| < 2.5$, both increasing as a function of p_{T}^{γ}. Only ($0.2 - 0.4\%$) of light jets are misidentified as
heavy-flavor jets.

After all selection requirements, 199,515 (139,710) events remain in the data samples with the central (forward) photons. In addition to events with light-flavor jets a second source of background is represented by multi-jet events in which one jet is misidentified as a photon. To estimate the photon purity, the γ-NN distribution in data is fitted to a linear combination of templates for photons and jets obtained from simulated γ + jet and dijet samples, respectively. An independent fit is performed in each p_T^γ bin, yielding photon purities between 62% and 99% for the events with the central photons and between 40% and 55% for the events with the forward photons. The obtained photon fractions are shown in Fig. 4. The p_T^γ dependence of the purity is fitted in each region using a two-parameter function $P = 1 - \exp(a + bp_T^\gamma)$. The systematic uncertainties on the fit are estimated using two alternative fitting functions. An additional systematic uncertainty in the photon fractions due to the fragmentation model implemented in PYTHIA is also taken into account. This uncertainty is estimated by varying the production rate of π^0 and η mesons by $\pm 50\%$ with respect to their central values. It is found to be about 6% at $p_T^\gamma \approx 30$ GeV, 2% at $p_T^\gamma \approx 50$ GeV, and $\leq 1\%$ at $p_T^\gamma \gtrsim 70$ GeV.

The fractions of b-jets are determined by fitting M_{SV} templates for b, c and light jets to the data. Jets from b-quarks tend to have larger values of M_{SV}, in contrast to light jets. For b- and c-jets, the templates are obtained from simulation, while the light jet template is derived from a data sample, enriched in light jets, referred to as negatively tagged data (NT data). The NT data comprises the jets that have negative values for some of the inputs to the b-NN algorithm (such as negative decay length and negative impact parameter significance) which are caused by detector resolution effects. After correcting the NT data for the small contamination from heavy-flavor jets, we have verified that the M_{SV} template shapes in NT data and light jets in the MC simulation agree well.

The result of a maximum likelihood fit to M_{SV} templates, normalized to the number of events in data, is shown in Fig. 3 for central photons with $50 < p_T^\gamma < 60$ GeV, as an example. As shown in Fig. 3, the estimated fraction of b-jets grows with p_T^γ from about 35% to about 42%. The corresponding relative uncertainties range between (4–24)%, increasing at higher p_T^γ and are dominated by the limited data statistics.

The differential cross sections of $\gamma + b$ production are extracted in nine (six) bins of p_T^γ for central (forward) photons, and are listed in Tables I and II. The results are also shown in Fig. 5 as a function of p_T^γ for the two photon rapidity intervals. The data points are plotted at the value of p_T^γ for which the value of the smooth function describing the cross section equals the averaged cross section in the bin.
accompanied by the photon associated with a $b\bar{b}$ pair. Compared to an NLO calculation, there is an additional benefit of imposing resummation (further emissions) through the consistent combination with the PS. Matching between the ME partons and the PS jets follows the prescription given in Ref. [29]. Systematic uncertainties are estimated by varying the ME-PS matching scale by ±5 GeV around the chosen central value [30]. As a result, the SHERPA cross sections vary up to $\pm7\%$ for the central photons and up to $-25\%/+17\%$ for the forward photons, where the uncertainty is largest in the first p_T^γ bin.

All the theoretical predictions are obtained including the isolation requirement on the photons $E^{iso}_T < 2.5$ GeV. The predictions are compared to data in Fig. [4] as a function of p_T^γ. The ratios of data over the NLO QCD calculations and of different QCD predictions or MC simulation to the same NLO QCD calculations are shown in Fig. [6] as a function of p_T^γ for both central and forward photons. The ratio of NLO predictions with cteg6.6M to those with MSTW2008 [31] and ABKM09NLO [32] are also shown on the plots.

The measured cross sections are in agreement with the NLO QCD predictions within theoretical and experimental uncertainties in the region up to $p_T^\gamma \lesssim 70$ GeV, but show notable disagreement for larger p_T^γ. The cross section slopes in data significantly differ from the predicted ones in both photon rapidity regions. The results indicate a need for higher order perturbative QCD corrections in the large p_T^γ region, that is dominated by the annihilation process $q\bar{q} \rightarrow \gamma g$ ($g \rightarrow b\bar{b}$), and resummation of diagrams with additional gluon radiation. The QCD predictions from the k_T-factorization approach is in better agreement with data. The best agreement is obtained with the SHERPA MC that allows up to two extra hard partons (jets) in ME in addition to the b-quark (jet) and includes the consistent treatment of the possible contributions from the parton shower. However, correcting the SHERPA predictions by including additional higher order contributions, as is done, for instance, for $W+$jets events, would be desirable [33].

In conclusion, we have performed a measurement of the differential cross section of inclusive production of photon in association with b-jets at the Tevatron $p\bar{p}$ collider. The results cover the kinematic ranges $30 < p_T^\gamma < 300$ GeV.
with $|y| < 1.0$, and $30 < p_T^\gamma < 200$ GeV with $1.5 < |y| < 2.5$. A good description of the data can only be achieved by including higher order corrections into the NLO QCD predictions, which are currently present as additional real emissions in the SHERPA MC generator. These results can be used to improve the description of background processes in searches for the Higgs boson or for new phenomena beyond the SM at the Tevatron and the LHC in final states involving the production of vector bosons in association with b-jets.

We are grateful to the authors of the theoretical calculations, T. Stavreva, J. Owens, N. Zotov, S. Schumann and F. Siegert, for providing predictions and for many useful discussions.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

Table I: The $\gamma + b$ production cross section $d\sigma/dp_T^\gamma$ in bins of p_T^γ for $|\gamma| < 1.0$ together with statistical, δ_{stat}, and systematic, δ_{syst}, uncertainties. The last four columns show theoretical predictions obtained within NLO QCD, k_T factorization, PYTHIA and SHERPA event generators.

<table>
<thead>
<tr>
<th>p_T^γ bin (GeV)</th>
<th>(p_T^γ) (GeV)</th>
<th>$d\sigma/dp_T^\gamma$ (pb/GeV)</th>
<th>δ_{stat} (%)</th>
<th>δ_{syst} (%)</th>
<th>k_T fact.</th>
<th>PYTHIA</th>
<th>SHERPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 – 40</td>
<td>34.2</td>
<td>1.59×10^4</td>
<td>2</td>
<td>12</td>
<td>1.80×10^4</td>
<td>1.60×10^4</td>
<td>1.24×10^4</td>
</tr>
<tr>
<td>40 – 50</td>
<td>44.3</td>
<td>6.30×10^4</td>
<td>3</td>
<td>11</td>
<td>5.60×10^4</td>
<td>5.47×10^4</td>
<td>4.23×10^4</td>
</tr>
<tr>
<td>50 – 60</td>
<td>54.3</td>
<td>2.85×10^4</td>
<td>3</td>
<td>11</td>
<td>2.14×10^4</td>
<td>2.25×10^4</td>
<td>1.63×10^4</td>
</tr>
<tr>
<td>60 – 70</td>
<td>64.5</td>
<td>1.42×10^4</td>
<td>4</td>
<td>10</td>
<td>9.49×10^4</td>
<td>1.05×10^4</td>
<td>7.27×10^4</td>
</tr>
<tr>
<td>70 – 90</td>
<td>78.1</td>
<td>5.77×10^2</td>
<td>4</td>
<td>11</td>
<td>3.64×10^4</td>
<td>4.32×10^4</td>
<td>2.88×10^4</td>
</tr>
<tr>
<td>90 – 110</td>
<td>98.6</td>
<td>2.14×10^2</td>
<td>6</td>
<td>14</td>
<td>1.19×10^4</td>
<td>1.59×10^4</td>
<td>1.00×10^4</td>
</tr>
<tr>
<td>110 – 140</td>
<td>122.0</td>
<td>7.85×10^3</td>
<td>9</td>
<td>18</td>
<td>4.08×10^4</td>
<td>6.06×10^4</td>
<td>3.76×10^3</td>
</tr>
<tr>
<td>140 – 180</td>
<td>156.4</td>
<td>2.31×10^4</td>
<td>7</td>
<td>24</td>
<td>1.18×10^4</td>
<td>2.02×10^4</td>
<td>1.19×10^4</td>
</tr>
<tr>
<td>180 – 300</td>
<td>215.8</td>
<td>3.60×10^4</td>
<td>11</td>
<td>36</td>
<td>1.61×10^4</td>
<td>3.55×10^4</td>
<td>1.91×10^4</td>
</tr>
</tbody>
</table>

TABLE II: The $\gamma + b$ production cross section $d\sigma/dp_T^\gamma$ in bins of p_T^γ for $1.5 < |y|^\gamma < 2.5$ together with statistical, $\delta \sigma_{\text{stat}}$, and systematic, $\delta \sigma_{\text{syst}}$, uncertainties. The last four columns show theoretical predictions obtained within NLO QCD, k_T factorization, PYTHIA and SHERPA event generators.

<table>
<thead>
<tr>
<th>p_T^γ bin (GeV)</th>
<th>$\langle p_T^\gamma \rangle$ (GeV)</th>
<th>σ/(p_T^γ) (pb/GeV)</th>
<th>$\delta \sigma_{\text{stat}}$(%)</th>
<th>$\delta \sigma_{\text{syst}}$(%)</th>
<th>$\delta \sigma_{\text{tot}}$(%)</th>
<th>NLO</th>
<th>k_T fact.</th>
<th>PYTHIA</th>
<th>SHERPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 – 40</td>
<td>34.2</td>
<td>9.05×10^{-2}</td>
<td>2</td>
<td>16</td>
<td>16</td>
<td>9.68×10^{-4}</td>
<td>1.04×10^{-1}</td>
<td>4.51×10^{-1}</td>
<td>7.95×10^{-1}</td>
</tr>
<tr>
<td>40 – 50</td>
<td>44.2</td>
<td>2.79×10^{-2}</td>
<td>3</td>
<td>15</td>
<td>15</td>
<td>2.74×10^{-1}</td>
<td>3.38×10^{-1}</td>
<td>1.55×10^{-1}</td>
<td>2.91×10^{-1}</td>
</tr>
<tr>
<td>50 – 70</td>
<td>57.4</td>
<td>8.30×10^{-2}</td>
<td>4</td>
<td>14</td>
<td>14</td>
<td>6.47×10^{-2}</td>
<td>8.34×10^{-2}</td>
<td>4.08×10^{-2}</td>
<td>8.06×10^{-2}</td>
</tr>
<tr>
<td>70 – 90</td>
<td>77.7</td>
<td>1.79×10^{-2}</td>
<td>6</td>
<td>16</td>
<td>17</td>
<td>1.11×10^{-2}</td>
<td>1.74×10^{-2}</td>
<td>8.26×10^{-3}</td>
<td>1.59×10^{-2}</td>
</tr>
<tr>
<td>90 – 110</td>
<td>97.8</td>
<td>4.38×10^{-3}</td>
<td>10</td>
<td>19</td>
<td>22</td>
<td>2.50×10^{-3}</td>
<td>4.75×10^{-3}</td>
<td>2.18×10^{-3}</td>
<td>3.95×10^{-3}</td>
</tr>
<tr>
<td>110 – 200</td>
<td>124.9</td>
<td>4.65×10^{-4}</td>
<td>11</td>
<td>29</td>
<td>31</td>
<td>2.12×10^{-4}</td>
<td>5.02×10^{-4}</td>
<td>2.06×10^{-4}</td>
<td>3.70×10^{-4}</td>
</tr>
</tbody>
</table>

FIG. 5: The $\gamma + b$ production differential cross sections as a function of p_T^γ in the two photon rapidity regions, $|y|^\gamma < 1.0$ and $1.5 < |y|^\gamma < 2.5$ (the latter results are multiplied by 0.3 for presentation). The uncertainties on the data points include statistical and systematic contributions added in quadrature. The measurements are compared to the NLO QCD calculations using CT10QQM PDFs [11] (solid line). The predictions from SHERPA, PYTHIA and “k_T factorization” approach [24, 25] are shown by the dash-dotted, dotted and dashed lines, respectively.

[13] The polar angle θ and the azimuthal angle ϕ are defined with respect to the positive z axis, which is along the proton beam direction. Pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$. Also, η_{det} and ϕ_{det} are the pseudorapidity and the azimuthal angle measured with respect to the center of the detector.
[16] The primary $p\bar{p}$ interaction vertex is that found to be the most likely collision point, among possibly several collisions within a specific beam crossing, from which our selected objects emanate. The algorithm for defining it can be found in [9].
[30] We choose the following ME-PS matching parameters: the energy scale $Q_0 = 15$ GeV and the spatial scale $D = 0.4$, where D is taken to be of the size of the photon isolation cone.
FIG. 6: The ratio of $\gamma + b$ production differential cross sections between data and NLO QCD predictions with uncertainties for the rapidity regions $|y^\gamma| < 1.0$ (a) and $1.5 < |y^\gamma| < 2.5$ (b). The uncertainties on the data include both statistical (inner error bar) and full uncertainties (entire error bar). Also shown are the uncertainties on the theoretical QCD scales and the cteq6.6M PDFs. The ratio of NLO predictions with cteq6.6M to those with MSTW2008 [31] and ABKM09NLO [32] are also shown.