
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/103388

Please be advised that this information was generated on 2019-03-24 and may be subject to

change.

http://hdl.handle.net/2066/103388

A framework for development, teaching and deployment
of inference algorithms
Sander Evers, Peter J.F. Lucas

Institute for Computer and Information Sciences
Radboud University Nijmegen

s.evers@cs.ru.nl, peterl@cs.ru.nl

Abstract
We present symfer, a software framework for probabilistic inference algorithms. Each inference
algorithm (like variable elimination, junction tree propagation, recursive conditioning) is repre-
sented as a symbolic manipulation of factor algebra expressions. In combination with the readabil-
ity and terseness of Python code, this uniform representation makes the framework very suitable
for teaching, as well as for explorative research: using the interactive Python interpreter, one can
combine features of different algorithms and examine their effect. Numeric evaluation happens in
a separate stage, implemented in Java/C for efficient execution and high portability. We exploit
the latter feature in an application that performs inference on a smartphone.

1 Introduction

In popular software tools for inference in probabilis-
tic graphical models such as Hugin, GeNIe/SMILE,
SamIam and the MATLAB Bayes Net Toolbox, an
inference algorithm (such as variable elimination
(Zhang and Poole, 1996), junction tree propaga-
tion (Shenoy and Shafer, 1988), Kalman filtering
(Kalman, 1960)) is a mostly opaque process. The
user supplies a model, a query and evidence and
calls the algorithm; the algorithm runs and returns
a probability distribution. Processes such as deter-
mining a graph triangulation, elimination order or
junction tree often remain hidden, and options for
influencing this process are limited.

Of course, this is exactly what many users ex-
pect from these tools; the decisions made in said
processes form a layer of complexity from which
they want to be shielded. On the other hand, re-
searchers and teachers of probabilistic inference
methods have contrary requirements: what they de-
sire from software is easy inspection and full control
of these processes.

The software framework symfer that we present
in this article caters to these needs using a novel
architecture: it splits up the inference process into
a symbolic and a numeric stage. The symbolic
stage contains high-level inference algorithms; it is

programmed in Python, which represents the algo-
rithms in a uniform way which is readable (close
to the pseudocode usually found in scientific liter-
ature) and easy to adapt. Moreover, the Python in-
terpreter provides an interactive interface suited to
explorative research similar to MATLAB.

The second stage performs the actual ‘number
grinding’. It has very few dependencies on exter-
nal libraries, which makes it easily portable to other
platforms. We have exploited this ourselves by in-
cluding it in a telemedicine application on an An-
droid phone (van der Heijden et al., 2011), which
performs inference in a medical probabilistic model.
We expect that this easy portability will also interest
other software developers.

2 Architecture

Figure 1 shows the basic architecture of our soft-
ware. Almost everything of interest happens in the
first stage. It consists of a Python library with an
API for creating and manipulating factor algebra
expressions (defined in section 3). These can be
based on externally created models (currently we
support only the Hugin format) or constructed from
scratch in Python. The latter option might be of in-
terest if the model has a repetitive structure, or needs
to be generated from a higher level description.

Sixth European Workshop on Probabilistic Graphical Models, Granada, Spain, 2012

99

Python API GraphViz

evaluate
(Java)

generate C
& execute

evaluate
(NumPy)

probabilities

sym
bolic

stage
num

eric
stage

model
query

evidence

factor algebra expression
additional
evidence

Figure 1: The two-stage architecture of symfer.

The purpose of this symbolic stage is to construct
a factor algebra expression, which defines how to
perform inference for a specific model, query and
evidence combination. For this, the library includes
several inference algorithms, of which the source
code is meant for easy inspection and adaptation.
The user can also use the API to write their own
inference algorithms.

Subsequently, there are alternative ways to pro-
ceed. To obtain the resulting probabilities, the fac-
tor algebra expression (constructed in Python mem-
ory) can be evaluated either using Java, Python or
C. For the first option, the expression is serialized
to YAML (a human-readable textual format sim-
ilar to JSON) and interpreted by a Java module,
which evaluates it numerically. Optionally, the user
can supply additional evidence E=e to this mod-
ule: an index operation [E=e] is then inserted at
the appropriate leaves, and the summation opera-
tion ΣE is removed (we refer to section 3 for ex-
planation of the operations). This option is practi-
cal for scenarios where the same query is repeated
several times with different (maybe cumulative) ev-
idence; in these cases, the first stage only needs to
be applied once. The Java module is easily ported
to other platforms; its only external dependency is
the YAML parser.

Evaluation using C is different: dedicated C
source code is generated for each operation in the
factor algebra expression. This code can then be
compiled and executed. The C code is faster, more
predictable (‘manual’ garbage collection), and even

more portable than the Java evaluator, but introduc-
ing additional evidence is impossible. The third
option, evaluating directly from Python (using ar-
ray processing library NumPy), is easiest to use but
not recommended for memory-intensive queries, as
garbage collection seems to be inefficient.

To aid in teaching and exploration, the expression
can also exported to GraphViz (more specifically,
dot) in order to show it as a tree (as in Figure 5).

3 Background: factor algebra

The symbolic expressions created using symfer
consist of operations on factors. These operations
are widely used in inference algorithms, e.g. see
(Zhang and Poole, 1996) and (Koller and Friedman,
2009), but their symbolic use, although going back
at least to (Shachter et al., 1990), is not widespread.

A factor is much like a mathematical func-
tion with multiple arguments, but refers to these
arguments by name instead of by position, i.e.
f (X=x,Y=y) instead of f (x, y). Thus, the order does
not matter: f (X=x,Y=y) is the same expression as
f (Y=y, X=x). In the scope of this article, a name
like X refers to a probabilistic variable with a fi-
nite domain, written dom(X). Formally, a factor
is defined as a single-argument function on instan-
tiations; an instantiation v = {V1=v1, . . . ,Vn=vn}
is a function mapping each variable Vi to a value
vi ∈ dom(Vi).

A factor defines a specific set of variables V for
which the instantiation must provide values; with a
little abuse of terminology this set is called the fac-
tor’s domain and written as dom(f) = V. Values
of a factor are written f (v) or f (V1=v1, . . . ,Vn=vn),
where set braces are omitted for legibility, and are
often probabilities. In symfer’s numeric stage, a
factor is implemented as an array of all its function
values, with size

∏
Vi∈dom(f)|dom(Vi)|.

Factor algebra provides the tools for manipulat-
ing factors:

• Multiplication: f ⊗ g is a factor with domain
dom(f)∪dom(g) and values (f ⊗g)(v) = f (v) ·
g(v).

• Summation: ΣW f , with W ⊆ dom(f), is a fac-
tor with domain U = dom(f) \W and values
(ΣW f)(u) =

∑
w∈dom(W)

f (u,W=w).

Sander Evers, Peter J.F. Lucas

100

• Indexing: f [W=w], with W ⊆ dom(f), is a
factor with domain U = dom(f)\W and values
f [W=w](u) = f (u,W=w).

In the literature, the notations f ↓U for summation
and f |W=w for indexing are often encountered. Fur-
thermore, we use the notation 1 for the unit of factor
multiplication; factor 1 has domain ∅ and value 1.

Why not use conventional algebra?
Factor algebra is constructed in such a way that its
denotational semantics are very close to conven-
tional algebra expressions. For example, consider
three factors f , g and h, with

dom(f) = {A} dom(A) = {a1, a2, a3}
dom(g) = {A, B} dom(B) = {b1, b2, b3, b4}
dom(h) = {B,C} dom(C) = {c1, c2, c3, c4, c5}

Then the result of the factor algebra expression

ΣA(f ⊗ ΣB(g ⊗ ΣCh)) (1)

is the same number as the conventional expression∑
a∈dom(A)

f (a)
∑

b∈dom(B)

g(a, b)
∑

c∈dom(C)

h(b, c). (2)

However, now consider the operational semantics
of expr. (2). First, the outermost summation is ex-
panded, replacing its formal variable a in the rest of
the expression by concrete values a1, a2 and a3:

f (a1)
∑

b∈dom(B)

g(a1, b)
∑

c∈dom(C)

h(b, c)

+ f (a2)
∑

b∈dom(B)

g(a2, b)
∑

c∈dom(C)

h(b, c)

+ f (a3)
∑

b∈dom(B)

g(a3, b)
∑

c∈dom(C)

h(b, c)

Then, each of the 3 b-summations are expanded into
4 terms; finally, each of the 3 · 4 c-summations are
expanded into 5 terms. This leaves us with an ex-
pression with 3 + 3 ·4 multiplications and 3 ·4 ·5−1
additions; running time is exponential in the nesting
depth. Redundant calculations are made: the sum-
mation over C is performed for each of the 3 values
for a, although its value does not depend on a.

On the other hand, expression (1) is evaluated
from the inside out:

1. sum out C from h: 4 · (5 − 1) additions
2. multiply with g: 3 · 4 multiplications
3. sum out B: 3 · (4 − 1) additions
4. multiply with f : 3 multiplications
5. sum out A: 3 − 1 additions

What matters here are not the precise numbers of
additions or multiplications, but the fact that they do
not depend exponentially on the expression’s nest-
ing depth, but rather on the maximum domain size
(here: 2) of the intermediate factors produced in
steps 1–5. Also, no redundant calculations are made
this time. The difference between expr. (1) and (2)
responsible for this is that in the latter, the concrete
elements of dom(A) are mentioned in the outermost
summation, scoping over the complete expression
and duplicating operations where such concrete el-
ements are not needed. In expr. (1), all information
about concrete domain elements comes from the in-
side, i.e. from factors f , g and h themselves.

The downside of evaluating factor algebra is that
it requires more space. At each evaluation step, all
the participating factors are completely present in
memory. Thus, the required space is exponential in
the maximum intermediate domain size as well.

To conclude: in factor algebra, rewriting the ex-
pression matters—expression (1) has a totally dif-
ferent performance than ΣABC(f ⊗ g ⊗ h)—while in
conventional algebra, expression (2) has the same
nesting depth as

∑
a
∑

b
∑

c f (a)g(a, b)h(b, c). With
factor algebra as its basis, symfer enables the opti-
mization of inference by rewriting expressions.

Factor algebra expressions as trees
Factor algebra expressions can be visualized as
trees, like the example in Figure 2(a). The factors at
the leaves of the tree are usually conditional prob-
ability tables that make up a Bayesian network; the
branches are formed by ⊗, Σ and [E=e] operations.
The arrows in the tree illustrate the data flow when
evaluating the expression; to evaluate a node, we
first need to evaluate its children (in any order). The
nodes in the tree can be annotated with properties
like its factor domain and corresponding array size,
to help understand the cost of evaluation.

The output of any of symfer’s symbolic infer-
ence algorithms is such a tree; in fact, Figure 2 is
the output of variable elimination in the order [A, B]

PGM’12: A framework for development, teaching and deployment of inference algorithms

101

fA fAB

⊗

ΣA

⊗

ΣB

fBC

(a)

Multinom([{’A’:..}],..)

Multinom([{’A’:..},

{’B’:..}],..)

SumProd([’A’],[•,•])

SumProd([’B’],[•,•])

Multinom([{’B’:..},

{’C’:..}],..)

(b)

Figure 2: (a) Tree representation of factor algebra
expression ΣB((ΣA(fA ⊗ fAB)) ⊗ fBC). (b) Python
representation of this expression (also as tree; fill in
the children at the • positions to obtain the flat text).

(given that the factor domains are dom(fA) = {A},
dom(fAB) = {A, B} and dom(fBC) = {B,C}).
4 Representation of factors in Python

In the Python module, a factor expression is rep-
resented as a Python object. Its class corresponds
to the top-level operation in the expression, and the
object contains references to the arguments of this
operation (themselves also objects representing fac-
tor expressions).

The leaves of the expression are factors rep-
resenting conditional probability tables (or, in a
Markov network, potentials), and are instances of
the class Multinom. To construct such an instance,
the user has to provide the factor’s domain and a list
of probabilities. The factor domain is a list with el-
ements such as {’Sprinkler’:[’off’,’on’]}, i.e. a
variable name and a variable domain (list of possi-
ble values). For example, two tables representing
P(Weather) and P(Sprinkler|Weather) can be cre-
ated as follows:
weather = {’Weather’:[’sunny’,’rainy’]}
weather_cpd = Multinom([weather],[0.8,0.2])
sprinkler_cpd = Multinom(

[{’Sprinkler’:[’off’,’on’]}, weather],
[0.6,0.4,0.99,0.01])

The tables are now stored as weather_cpd and
sprinkler_cpd. We used an auxiliary Python vari-
able weather to avoid repeating the definition of
this domain. Not only does this save typing,

but the Python semantics also cause the domain
to be shared in memory among weather_cpd and
sprinkler_cpd; i.e. both contain a pointer to the
same object.

Although it is possible to enter a probabilistic
model in Python as shown above, we expect that
most users will rather do this using a separate graph-
ical editor. Therefore, Multinom instances can also
automatically be read from Hugin files.

A compound factor algebra expression can be ob-
tained constructing objects of classes SumProd and
Index. The former represents a combination of the
operations ⊗ and Σ: the expression on the right hand
side of the statement

sprinkler_marg = SumProd([’Weather’],
[weather_cpd,sprinkler_cpd])

multiplies the two tables, then sums out the variable
’Weather’. Of course, it is possible to represent only
a product (by using an empty list of variables) or a
summation (by using a singleton list of factors).

The result is assigned to Python variable
sprinkler_marg. More accurately, the name
sprinkler_marg in the local namespace is bound to
the newly created SumProd object. This object just
holds references to the two Multinom objects. Noth-
ing is evaluated yet, but when this will eventually be
the case, the SumProd object stipulates that the two
factors are to be multiplied, and the ’Weather’ vari-
able is to be summed out. In this way, the SumProd

object is a symbolic representation of the factor al-
gebra expression. The correspondence is illustrated
in Figure 2.

The Python objects that represent factors, such as
SumProd and Multinom instances, are designed to be
immutable: once they are constructed, their ‘state’
never changes. In this aspect, they are just like
mathematical expressions. This design makes it
possible to safely share subexpressions. For exam-
ple, one could define:

joint= SumProd([],[weather_cpd,sprinkler_cpd])
sprinkler_marg = SumProd([’Weather’],joint)
weather_marg = SumProd([’Sprinkler’],joint)

where the product of weather_cpd and
sprinkler_cpd is shared among the two ex-
pressions that represent the marginals. This product
joint represents the joint probability distribution
over ’Weather’ and ’Sprinkler’, an immutable

Sander Evers, Peter J.F. Lucas

102

1 def ve_order(facs,order):
2 for rv in order:
3 rv_sum = SumProd([rv],[f for f in facs if rv in f.domtypes])
4 other_facs = [f for f in facs if rv not in f.domtypes]
5 facs = [rv_sum] + other_facs
6 return I().product(*facs)

Figure 3: Variable elimination with predefined order. In line 6, the expression I().product(*facs) calls a
convenience function that returns SumProd([],facs), except when facs contains only one factor, in which
case that factor is returned.

mathematical entity. This stands in contrast to
designs where objects represent a current belief
over a certain set of variables, as commonly found
in software implementations of e.g. the junction
tree algorithm.

Indexing (setting probabilistic variables to cer-
tain values) is done by creating an instance of
class Index. For example, the part of the
joint probability distribution where the weather is
sunny, P(Sprinkler, Weather=sunny), is obtained us-
ing Index({’Weather’:’sunny’},joint). This is a
factor over the single variable ’Sprinkler’. Alter-
natively, we could have defined
evidence = {’Weather’:’sunny’}
weather_sunny = Index(evidence,weather_cpd)
sprinkler_sunny= Index(evidence,sprinkler_cpd)
joint_sunny = SumProd([],

[weather_sunny,sprinkler_sunny])

which results in a different factor expression
joint_sunny for the same distribution. The
difference lies in the fact that in the for-
mer expression, the whole joint distribution is
calculated (requiring, for example, the multi-
plication of P(Sprinkler=off|Weather=rainy) and
P(Weather=rainy)), whereas in joint_sunny only the
(conditional) probabilities consistent with the evi-
dence are considered.

5 Symbolic inference in symfer

In the previous section, we manually crafted a
factor expression for P(Sprinkler, Weather=sunny)
using the Python API; thus, we were perform-
ing inference for query [’Sprinkler’], evidence
{’Weather’:’sunny’} and a model consisting of
weather_cpd and sprinkler_cpd. The symbolic in-
ference algorithms in symfer perform this process
automatically. They are defined using the same API.
For example, the most simple inference algorithm,

variable elimination with a predefined elimination
order, is given by the 6 lines in Figure 3. The func-
tion ve_order defined there is invoked as follows:

result = ve_order([weather_cpd,sprinkler_cpd],
[’Sprinkler’,’Weather’])

Note that the Python code is very close to mathe-
matical pseudocode. For example, lines 3–5 would
correspond to

rv_sum← Σrv

⊗
{ f f ∈ facs, rv ∈ dom(f) }

other_facs← { f f ∈ facs, rv < dom(f) }
facs← {rv_sum} ∪ other_facs

In ve_order, evidence is not explicitly considered.
There are two approaches for including evidence.
Either the user applies Index operations before in-
voking the function, i.e.

res_sunny = ve_order([weather_sunny,
sprinkler_sunny], [’Sprinkler’])

or the API function indextree is invoked on the
function result:

res_sunny = indextree(evidence,result)

Here, the two approaches yield the same factor
expression; however, when using an elimination
heuristic such as minweight, they might result in a
different elimination order.

The definition of variable elimination with a tri-
angulation heuristic is not much more complex;
see appendix A. Perhaps more surprisingly, junc-
tion tree propagation (in the Shenoy–Shafer variant
(Shenoy and Shafer, 1988)) can be defined very con-
cisely as well. The key insight is that the SumProd

expression produced as a result of a variable elim-
ination can function as a clique tree on which the
algorithm is based.

PGM’12: A framework for development, teaching and deployment of inference algorithms

103

fA fAB

⊗{A, B}

ΣA
{B}

⊗{B,C}

ΣB
{C}

fBC

(i) fA

⊗{A}

ΣB
{A}

fAB

⊗{A, B}

ΣC
{B}

⊗{B,C}

1
{}

fBC

(a)

fA ⊗
{A, B}

fAB

⊗{A, B}

ΣC
{B}

⊗{B,C}

1
{}

fBC

(b)

fA fAB

⊗{A, B}

ΣA
{B}

⊗{B}

1
{}

⊗
{B,C}

fBC

(c)

Figure 4: Example input (i) and output (a,b,c) of the junctiontree algorithm. Given a factor expression
tree (such as the output of a variable elimination algorithm), junctiontree produces a new tree for each leaf
(fA, fAB, fBC) of the input tree. For clarity, we indicate the roots of these trees with ⊗ here, and show the
domain for each subtree using dotted lines (these are not part of the tree). For each output tree, a root node
is created above the leaf, all the arrows on the path from this node to the original root are reversed, and sums
are updated (or added). In memory, common subtrees such as in the dotted box (but also the fA, fAB, fBC

leaves) are shared among the output trees; see Figure 5. For the algorithm itself, see Appendix A.

In our variant, the algorithm creates a factor ex-
pression for each leaf of the original tree; this ex-
pression calculates the marginal probability distri-
bution over the domain of this leaf. It does this by
traversing the path from the original root (which is
replaced by 1, or I() in Python) down to the leaf in
question, while creating a new tree in ‘reverse or-
der’ from the subtrees not on this path; see Figure 4
for an example and Appendix A for the algorithm.

The fact that a junction tree can be created from
the structure of a variable elimination procedure,
and that junction tree propagation can be interpreted
as N instances of variable elimination (one for each
marginal) is well known (Shafer, 1996); the often
cited advantage of the junction tree algorithm is that
it theoretically runs in approximately 2× the time of
variable elimination instead of N×. Traditionally,
this is accomplished by explicitly storing interme-
diate results in nodes in the data structure. In our
algorithm we achieve essentially the same results
(using the same insight) by letting the output trees
share their subtrees, as shown in Figure 5. As we
explained before, this sharing happens quite trans-
parently in Python: unless explicitly instructed, it

/

/B

A/CB,A

C,B

/

/

/

/A

Figure 5: The output trees of the junction tree ex-
ample in Figure 4, shown with explicit sharing of
subtrees, as drawn by symfer and GraphViz. The
top row lists, from left to right, the roots of (b), (a)
and (c). A node starting with a slash represents a
SumProd expression: it multiplies its children, then
sums out the variables after the slash. The other
nodes are Multinom instances. Multiplication with 1
is simplified away.

Sander Evers, Peter J.F. Lucas

104

never copies an object but always a pointer. Cru-
cially, when the factor expressions are evaluated, the
numeric stage is aware of this sharing, and evaluates
the shared subexpressions only once. The serializa-
tion language YAML can represent this expression
sharing, which is why it is used instead of JSON.

Although we have not implemented a specific al-
gorithm yet, the principle of conditioning, see e.g.
(Shachter et al., 1994) and (Darwiche, 2001), can
also easily be expressed using factor algebra. For
example, to condition on variable B in the expres-
sion in Figure 2 (suppose we have named it veAB),
one could simply do

cB = [s.indextree({’B’:b},veAB)
for b in [’b1’,’b2’,’b3’]]

resulting in a list of 3 trees just like Figure 2(a), but
without the ΣB root node and with [B=bi] expres-
sions at the leaves. The numeric stage would have
to add the 3 resulting factors together; we will in-
clude support for this in a later version.

6 Inference in a telemedicine system

Apart from inference research, we are also putting
symfer to use in a telemedicine system that we
are developing (van der Heijden et al., 2011) for
home use by COPD patients. COPD (chronic ob-
structive pulmonary disease) is a chronic lung dis-
ease, currently affecting some 210 million people
worldwide, with considerable health care related
costs. The progression of the disease can be slowed
by rapid intervention when an exacerbation (acute
worsening of the symptoms) is detected. Our sys-
tem, which consists of a smartphone and two small
physiological sensors, enables a patient to perform
simple measurements and fill in a questionnaire
about the symptoms in a home (or mobile) setting
on a daily basis.

Using a probabilistic disease model, the system
then determines whether the chance of an exacerba-
tion is high enough to warrant an intervention. It
sends its findings to an authorised physician, but
can also directly advise the patient. For the sys-
tem to work without network communication, the
probabilistic inference is performed on the Android
smartphone itself.

Until recently, we used an inference library
on the phone that required us to define the

model+query+evidence and run a complete in-
ference algorithm every time the application was
started. Currently, we use symfer, in a setup where
we provide the symbolic stage with model and
query variable and run it only once (on a separate
machine). This is possible because in our applica-
tion, the query does not change. On the smartphone,
only the numeric stage is performed. Every time
the application is run, the sensors and questionnaire
provide new evidence; as we explained in section 2,
the numeric stage can insert this evidence in the fac-
tor expression just before it evaluates it.

As it has the same structure but starts with smaller
arrays at the leaves, the expression with evidence
is guaranteed not to require more memory than the
original expression without evidence. Thus, if the
smartphone has enough memory to run the original
expression (which we need to test only once), it can
also run the inference with any combination of evi-
dence. This would not have been the case if we ran a
variable elimination heuristic each time, as this can
change the structure of the expression.

7 Conclusion and prospects

What distinguishes symfer from other inference
software is its thorough separation of inference al-
gorithms into a symbolic and numeric stage. We
have shown that at the former stage, widely taught
algorithms such as variable elimination, junction
tree propagation and conditioning can be formu-
lated in a unified manner. This is achieved through
the central role of factor algebra, combined with the
sharing semantics inherent in Python.

Furthermore, the Python language allowed us to
express the algorithms in a notation that is almost
as clear and concise as pseudocode. We expect
this to facilitate teaching and explorative research.
Here, the interactive Python interpreter (Pérez and
Granger, 2007) will also help, in the same way as
MATLAB does.

Apart from these advantages, we have found the
separation of the two stages useful for deploying
part of the software on the Android platform, where
it is part of a telemedicine application. The rea-
son for this is that the numeric stage is quite small
and easily portable. This also means that it can be
optimized separately from the rest of the software

PGM’12: A framework for development, teaching and deployment of inference algorithms

105

(for example, by data management researchers, not
needing any knowledge of probabilistic models).

We are currently working on support for recur-
sive conditioning, factor indexing (Evers and Lucas,
2011), and efficient handling of deterministic pat-
terns such as Noisy-OR; it is no problem to express
these in the factor algebra framework. A somewhat
larger challenge will be to include continuous vari-
ables, but we expect this to be possible as well.

We make symfer available as open source (BSD-
licensed) software, except for the Android numeric
evaluator, which we plan to publish with a license
for free academic use.

References
Adnan Darwiche. 2001. Recursive conditioning. Artif.

Intell., 126(1-2):5–41.

Sander Evers and Peter J. F. Lucas. 2011. Marginaliza-
tion without summation: Exploiting determinism in
factor algebra. In Weiru Liu, editor, Symbolic and

A Python code for inference algorithms

1 def ve_minweight(facs,query):
2 remaining = set().union(
3 *[set(fac.domlist) for fac in facs])
4 remaining -= set(query)
5 while remaining:
6 cand = None,None,float(’inf’)
7 for rv in remaining:
8 rv_facs = [fac for fac in facs
9 if rv in fac.domtypes]

10 rv_prod = I().product(*rv_facs)
11 rv_weight = len(rv_prod)
12 if rv_weight < cand[2]:
13 cand = rv,rv_prod,rv_weight
14 rv,rv_prod,_ = cand
15 remaining.remove(rv)
16 rv_sum = rv_prod.sumout([rv])
17 other_facs = [fac for fac in facs
18 if rv not in fac.domtypes]
19 facs = [rv_sum] + other_facs
20 return I().product(*facs)

1 def junctiontree(tree,upfac=I()):
2 if isinstance(tree,SumProd):
3 out = []
4 for f in tree.fac:
5 prod_others = upfac.product(*[other for other in tree.fac if other is not f])
6 facres = junctiontree(f,prod_others.sumto(f.domlist))
7 out.extend(facres)
8 return out
9 elif isinstance(tree,Multinom):

10 return [upfac.product(tree)]

Quantitative Approaches to Reasoning with Uncer-
tainty - 11th European Conference, ECSQARU 2011.
Proceedings, volume 6717 of Lecture Notes in Com-
puter Science, pages 251–262. Springer.

R.E. Kalman. 1960. A new approach to linear filtering
and prediction problems. Journal of Basic Engineer-
ing, 82(1):35–45.

D. Koller and N. Friedman. 2009. Probabilistic graphi-
cal models: Principles and techniques. MIT Press.

Fernando Pérez and Brian E. Granger. 2007. IPython: a
System for Interactive Scientific Computing. Comput.
Sci. Eng., 9(3):21–29, May.

Ross D. Shachter, Bruce D’Ambrosio, and Brendan Del
Favero. 1990. Symbolic probabilistic inference in be-
lief networks. In Howard E. Shrobe, Thomas G. Diet-
terich, and William R. Swartout, editors, AAAI, pages
126–131. AAAI Press / The MIT Press.

Ross D. Shachter, Stig K. Andersen, and Peter Szolovits.
1994. Global conditioning for probabilistic inference
in belief networks. In Ramon López de Mántaras and
David Poole, editors, UAI ’94: Proceedings of the
Tenth Annual Conference on Uncertainty in Artificial
Intelligence, pages 514–522. Morgan Kaufmann.

Glenn Shafer. 1996. Probabilistic expert systems. Soci-
ety for Industrial and Applied Mathematics.

Prakash P. Shenoy and Glenn Shafer. 1988. Axioms
for probability and belief-function propagation. In
Ross D. Shachter, Tod S. Levitt, Laveen N. Kanal, and
John F. Lemmer, editors, UAI ’88: Proceedings of the
Fourth Annual Conference on Uncertainty in Artificial
Intelligence, pages 169–198. North-Holland.

Maarten van der Heijden, Bas Lijnse, Peter J. F. Lucas,
Yvonne F. Heijdra, and Tjard R. J. Schermer. 2011.
Managing COPD exacerbations with telemedicine.
In Mor Peleg, Nada Lavrac, and Carlo Combi, ed-
itors, 13th Conference on Artificial Intelligence in
Medicine, AIME 2011. Proceedings, volume 6747 of
Lecture Notes in Computer Science, pages 169–178.
Springer.

Nevin Lianwen Zhang and David Poole. 1996. Exploit-
ing causal independence in bayesian network infer-
ence. J. Artif. Intell. Res. (JAIR), 5:301–328.

Sander Evers, Peter J.F. Lucas

106

