
Defining Multi-user Web Applications

with iTasks

Rinus Plasmeijer, Peter Achten, Bas Lijnse, and Steffen Michels

Institute for Computing and Information Sciences
Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{rinus,p.achten,b.lijnse}@cs.ru.nl, s.michels@science.ru.nl

Abstract. In these lecture notes we explain how multi-user web applica-
tions can be developed in a programming style that favors tasks as main
building block for the construction of such systems. A task is work that
has to be performed by human-beings and computers working together
on the internet. This concept has been implemented in the iTask frame-
work as a monadic combinator library that is embedded in the pure and
lazy functional programming language Clean. These lecture notes con-
sist of many examples and exercises, and also discusses the foundation
of both the iTask system and task-oriented programming.

1 Introduction

In these CEFP lecture notes we explain how multi-user web applications can be
defined in the iTask system [16]. An iTask program is focussed on the notion of
tasks: work that has to be performed by human-beings and computers working
together on the internet. One describes the tasks people collaborating with each
other using the internet have to do, and the resulting iTask application creates,
coordinates and monitors the work accordingly.

Workflow Management Systems (WFMS) are also software systems intended
to coordinate work (examples are Business Process Manager, COSA Workflow,
FLOWer, i-Flow 6.0, Staffware, Websphere MQ Workflow, BPEL, and YAWL).
The iTask system, however, is not a WFMS application, but a toolbox which can
also be used to create WFMS applications. It distinguishes itself from traditional
WFMSs in many ways:

– The iTask system is a monadic [22] combinator library in the pure and lazy
functional programming language Clean. The constructed WFMS applica-
tion is embedded in Clean where the combinators are used to define how
tasks are composed. Tasks are defined by higher-order functions which are
pure and self contained.

– Most WFMSs take a workflow description specified in a workflow description
language (WDL) and generate a partial workflow application that still re-
quires substantial coding effort. An iTask specification on the other hand de-
notes a full-fledged, web-based, multi-user workflow application. It strongly
supports the view that a WDL should be considered as a complete
specification language rather than a partial description language.

V. Zsók, Z. Horváth, and R. Plasmeijer (Eds.): CEFP 2011, LNCS 7241, pp. 46–92, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Defining Multi-user Web Applications with iTasks 47

– Despite the fact that an iTask specification denotes a complete workflow
application, the workflow engineer is not confronted with boilerplate pro-
gramming (data storage and retrieval, GUI rendering, form interaction, and
so on) because this is all dealt with using generic programming techniques
under the hood.

– The structure of an iTask workflow evolves dynamically, depending on user-
input and results of subtasks.

– In addition to the host language features, the iTask system adds first-class
tasks (workflow units that create and accept other workflow units) and re-
cursion to the modelling repertoire of workflow engineers.

– In contrast with the large catalogue of common workflow patterns [1], iTask
workflows are captured by means of a small number of core combinator
functions.

The original iTask system [16] focussed on the concept of a typed task: a unit
of work, which, when it finishes, delivers the result of the task, a value of type
Task T. The result can be passed, in a monadic way, to the next task. Several
papers on applying and improving the iTasks system have appeared since then.

– The iTask system has been used to describe complex workflows such as the
Search and Rescue activities as undertaken by the Dutch coast guard [12].

– Client side evaluation of tasks [10,18] has been made possible by compiling
Clean code to Javascript [5] making use of a SAPL interpreter [9]. SAPL,
Simple Application Programming Language, is a core intermediate language
that uses only (higher-order) functions. It comes with an interpreter that
has competitive performance when compared with other functional language
interpreters such as Hugs, Helium, GHCi, and Amanda.

– Workflows being executed can be changed while the work is going on [17].
– Tasks can become web applications including GUI elements like buttons,

dialogues, windows and menus [15].
– The semantics of iTask combinators has been formally described [11,17].

One may conclude that the iTask system is growing into a huge and complex
system. Still, even more functionality is needed. For instance, when a task is
delegated, someone might want to monitor its progress. In the old system the
delegator gets this information and she also obtains the power to change the
properties of the delegated task, such as its priority, or, she can move the task to
the desk of someone else. This is often useful, but is not always what is wanted.
Perhaps one would like to inform other people involved as well. One also would
like to define what kind of information is shown to a particular person and define
what a manager can do with the tasks she is viewing. In the new iTask system,
one can define such management tasks as well [19]. The view on and handling
of tasks is not hard-wired in the system, but can defined as desired, just as any
other task.

Adding all these extensions to the iTask system could easily have lead to a
huge system. This leads to high maintenance costs and hampers formal reason-
ing. We therefore, once again, redesigned and re-implemented the iTask system

48 R. Plasmeijer et al.

(version 3). We managed to build the iTask system on only a very few core
functions.

An important class of basic tasks in the iTask system are the editors. Editors
are tasks demanding input from end-users. The iTask system offers many differ-
ent flavors of editors (see Section 2, Section 4, and Section 5), which all have in
common that the type of the task is used to render the demanded interactive
view. All different editors are constructed with only one Swiss-Army-Knife core
editor function (see Section 10).

Tasks are compositional. The iTask system offers several convenient combi-
nators for combining task. However, the iTask system is based on only two core
combinators (see Section 10). There is one combinator, a monadic bind (see Sec-
tion 3), to express that two tasks have to be executed sequentially. With the
parallel combinator (see Section 8 and Section 9) one can create a set of parallel
tasks which can be dynamically extended. New in the iTask system is that tasks
may share information, which can be used to communicate the state of affairs
between tasks while the tasks are being performed.

With these few core functions, the simplicity of the iTask system can be
retained and the maintainability can be improved. On top of these core functions
we have defined a library with useful editors and combinators to facilitate the
creation of workflows in a declarative, understandable style.

In this paper we introduce the new iTask system by giving several examples
and exercises. Section by section we introduce more functionality. In Section
2 we start with the unit of user-interaction, the editor tasks. In Section 3 we
show how results of tasks can be passed to one another by means of sequential
composition and recursion, thus creating more complex applications. In Section
4 we extend tasks with actions, which moves the generated applications more
towards GUI applications that deploy menus. In Section 5 we make applications
aware of their context and each other by introducing shared data. In Section
6 we show how editor tasks can be enhanced with a model-view abstraction,
thereby customizing the user-experience with these tasks. In Section 7 we take
the step to distributed systems, and show how users can be assigned to tasks.
Related to task distribution is parallel execution. We first show how to deal with
parallel execution of fixed numbers of tasks in Section 8, and extend it with a
dynamic number of tasks in Section 9. This concludes the part in which the iTask
system is discussed from an external point of view. In Section 10 we proceed from
an internal point of view and explain how all of the discussed elements can be
defined in terms of an extremely small core of basic combinators and concepts.
Finally, we discuss related work in Section 11 and conclude in Section 12.

Finally, here are a number of organizational remarks about the remainder of
these lecture notes.

– Although iTask system is heavily making use of generic programming tech-
niques, one does not need these skills here. We do assume that you have some
experience with functional programming, preferably in Clean or Haskell, and
that you are comfortable in working with recursive (higher-order) functions,
algebraic data types and record types, and lists.

Defining Multi-user Web Applications with iTasks 49

– For readability, all type signatures in these lecture notes omit strictness
annotations (!) and uniqueness attribute variables (u: and .).

– Library types and function signatures are displayed as code fragments and are
displayed in a frame. Example code fragments are numbered.

– All examples that are shown in these lecture notes are present in the iTask
distribution under the directory Examples / CEFP2011. For each section n,
a subdirectory with similar name has been created that contains a module
Sectionn.dcl and Sectionn.icl. Each such module defines a function flowsn
that exports the example workflows in these lecture notes. The main module
CEFP.icl of the CEFP.prj project imports all section modules and their example
workflows and integrates them in a single workflow application.

– These lecture notes have been written to encourage you to experiment with
the system. For this reason, there are many small exercises to demonstrate
parts of the system. However, it is still possible to comprehend the system
when deciding to skip the exercises. The iTask system can be downloaded
from http://wiki.clean.cs.ru.nl/ITasks.

2 Generic Editors

The iTask system is a generic toolkit. The simplest function that illustrates this
is the task that displays information to the user (see module InteractionTasks.dcl):

viewInformation :: d [LocalViewOn m] m → Task m | descr d & iTask m

The parameters of type d and m are not polymorphic, but they are constrained.
The type class descr is used to generate simple string information to users (in
most cases, we use a String value). The iTask system pivots upon the generic type
class iTask: it contains the entire generic machinery to serialize, deserialize, ren-
der, update, and store values of arbitrary first order type. The second argument
of viewInformation can be used to define an alternative view, and can be used to
influence how the value is presented to the end user. It does not concern us right
now, the standard view is fine, and we will therefore keep the alternative view
empty ([]) for the time being. The third argument is the value to be rendered.

Let us start with the ubiquitous “Hello world” example:

Example 1. Hello world in iTask

1module Section2

2

3import iTasks

4

5Start :: *World → *World

6Start world = startEngine myTask World

7

8myTask = viewInformation "Press Ok to terminate" [] "Hello world!"

http://wiki.clean.cs.ru.nl/ITasks

50 R. Plasmeijer et al.

Fig. 1. A screenshot of Example 1: “Hello World.”

The code shown in Example 1 is complete and generates a working iTask web
server application after compilation (see Figure 1). In the module one has to
import the iTask library (line 3) and define a Start rule (lines 5-6) that starts
the task to do, which is myTask in this case (line 8).

To run this example separately, the code has to be stored in a file with the
same name as the module, Section2.icl in this case. When you compile it, you
need to make a project first (settings are stored in Section2.prj), and select the
iTask environment in the IDE. After compilation and linking, an executable
application is generated, called Section2.exe. When this application is started,
it will include a web server. Visit http://localhost/ with your browser and
you will see what has been generated. For more detailed information, look at
directions included in the iTask-CEFP distribution.

The iTask system always starts with the execution of one specific task, but
this one can be a very complicated one. In Section 7 we show how several tasks
can be started interactively and how tasks can be handled by multiple users.
In the CEFP distribution we used this method to collect and test all examples
given in this lecture notes in one iTask application. See also Section 1.

Exercise 1. More basic types
Alter the String value "Hello world!" of Example 1 to the Int value 42. Recompile
and launch the application. What is changed? Do the same for the other basic
types Bool, Real, and Char.

Note: do not forget to terminate the previously running instance, or you are
likely to encounter the following linker-error message:

Linker error: could not create ’. . ..exe’

In that case, close the instance and then bring the application up-to-date. �

The key advantage of the generic foundation is that an instance of the generic
functions can be generated automatically for any value of any first order type.
The only thing required of you, the programmer, is that you need to ask the
compiler to derive these instances using the derive class keywords.

http://localhost/

Defining Multi-user Web Applications with iTasks 51

Example 2. Custom types
We add Person and Gender as custom types to Example 1 and request the avail-
ability of their generic instances at line 8:

1:: Person = { firstName :: String

2, surName :: String

3, dateOfBirth :: Date

4, gender :: Gender

5}
6:: Gender = Male | Female

7

8derive class iTask Person, Gender

Alter the String value "Hello world!" of Example 1 to an arbitrary Person value,
say yourself. If we recompile and run this new application, we obtain a new view
of this value.

Moving your mouse over the little icons attached to each form field informs
you about their status. A blue icon means that the field has not been filled in
yet. If you point on it, it tells you what kind of value is expected. A red icon
indicates that you typed in something unexpected. A green icon indicates that
the value typed in is of expected type. It is mandatory to fill in all fields because
undefined values can not be displayed. If you want an optional field, you can
use the type Maybe, which is defined as: :: Maybe a = Just a | Nothing. The value
Nothing can be used to indicate that no value has been defined yet.

Although Date is not a basic Clean type, you do not have to request the generation
of instances of the generic functions for values of this type. The iTask system
uses specialization for this purpose: with specialization, you can overrule the
generic instance for a type that would normally be generated, and instead define
your preferred instance.

Exercise 2. Specialized types
The iTask system has specialized the iTask class functions for quite a few types.
Some of them can be found in the SystemTypes.dcl module. Change, in a similar
way as in Example 2, the displayed value to a value of type Currency, Time, Note,
Choice, and MultipleChoice respectively, and observe the changes in the resulting
application. (Note that in SystemTypes.dcl a number of functions are defined to
easily create Choice and MultipleChoice values.) �

The viewInformation function displays information to the user. In order to ob-
tain information from the user, iTask provides a number of functions. Before
discussing all of them, we start with two dual functions of viewInformation:

updateInformation :: d [LocalViewOn m] m → Task m | descr d & iTask m

enterInformation :: d [LocalViewOn m] → Task m | descr d & iTask m

52 R. Plasmeijer et al.

Although the signature of updateInformation is identical to that of viewInformation,
its behavior is radically different: in addition to showing its third parameter
to the user, it allows her to update the value and change it to a new value of
the same type (see also Figure 2). The update functions expect an initial value

Fig. 2. Entering or updating a value of type Person

that the user can work on. Sometimes it makes more sense not to provide an
initial value, and instead expect the user just to enter one. When the function
enterInformation is used, a blanc form to be filled in is offered to the user. The
only difference is that an initial value is missing. Because of this, the type of
the value you want to obtain from the user, must be clear from the context, or
otherwise your program won’t compile. In such cases you probably get a compile
time error such as:

Overloading error [location]: internal overloading of "f " could not be solved

In general, it is sufficient to add a type signature to the (local) function definition.

Exercise 3. Updating values
Replace viewInformation in Example 1 with updateInformation and replace once
more the third parameter with suitable values of the basic types of Exercise 1,
the custom types of Example 2, and the specialized types of Exercise 2.

Exercise 4. Entering values
Same as Exercise 3, but replace updateInformation with enterInformation. Instead
of offering a value of the requested type, add the desired type signature of myTask.

Exercise 5. Entering list values
Same as Exercise 4. Use enterInformation, and change the desired type signature
of myTask in lists. Test the application with [Int], [Bool], [Note], [Person]. �

Besides updateInformation, iTask offers four functions (update(Multiple)Choice and
enter(Multiple)Choice) to choose values, without further editing. Before delving
into their types, we first discuss a simplified version of enterChoice and
enterMultipleChoice:

enterChoice :: d [LocalViewOn o] [o] → Task o | descr d & iTask o

enterMultipleChoice :: d [LocalViewOn o] [o] → Task [o] | descr d & iTask o

Defining Multi-user Web Applications with iTasks 53

Fig. 3. A screenshot of Exercise 5: Entering A List of Persons

Here, [o] in the argument list is a list to choose from. The editor enterChoice

returns the chosen item, while enterMultipleChoice returns a list of chosen items.
An example of their use is:

Example 3. Choice and Multiple Choice

chooseNumber :: Task Int

chooseNumber = enterChoice "Choose a number" [] [0..10]

pizzaWith :: Task [String]
pizzaWith = enterMultipleChoice "What do you like on your pizza ?" []

["Cheese" ,"Tomato" ,"Ansjofish","Salami"]

The function chooseNumber lets the user select a number. The function pizzaWith

Fig. 4. A screenshot of Example 3: View on MultipleChoice

54 R. Plasmeijer et al.

lets the user select what she wants on her pizza. Notice that editors such as
updateChoice and enterMultipleChoice not only work for basic types, but allow you
to make choices for any (first order) type.

Exercise 6. Choose from user defined types
Change the function pizzaWith such that it returns a task of type Task [Pizza-
Ingredient], where PizzaIngredient is a user defined algebraic datatype with well
chosen alternatives. �

The actual types of updateChoice, and its friends enterChoice, updateMultipleChoice,
and enterMultipleChoice as defined in the iTask library, are more general than
shown above. The reason is that they allow fine tuning by the programmer who
can specify how the options to choose from are presented to the user.

Table 1. Customizing editor tasks

:: ChoiceType = AutoChoiceView

| ChooseFromRadioButtons

| ChooseFromComboBox

| ChooseFromTable

| ChooseFromTree

:: MultiChoiceType = AutoMultiChoiceView

| ChooseFromCheckBoxes

:: ChoiceView choiceType o =∃v: ChoiceContext v & iTask v

|∃v: ChoiceView (choiceType, (o → v)) & iTask v

updateChoice :: d [ChoiceView ChoiceType o] (c o) o → Task o

| descr d & iTask o & iTask (c o) & OptionContainer c

enterChoice :: d [ChoiceView ChoiceType o] (c o) → Task o

| descr d & iTask o & iTask (c o) & OptionContainer c

updateMultipleChoice :: d [ChoiceView MultiChoiceType o] (c o) [o] → Task [o]
| descr d & iTask o & iTask (c o) & OptionContainer c

enterMultipleChoice :: d [ChoiceView MultiChoiceType o] (c o) → Task [o]
| descr d & iTask o & iTask (c o) & OptionContainer c

The function signatures in Table 1 clearly demonstrate that overloading is
used intensively to make the functions more general. It allows the programmer
not only to make a choice from a list [o] as is the case in the simplified version,
but from other container types c of kind * → * to hold values of type o as well
(c o). Furthermore, one can influence the view on this type, i.e. how the options
to choose from are presented to the end user. This is indicated by the second
parameter of the choice functions. By default, when the view is just an empty
list, some suitable representation is chosen (AutoChoiceView). For example, if one
offers a short list to chooseNumber it may offer the choice via radio buttons, in
other cases it may use a pull-down menu.

Defining Multi-user Web Applications with iTasks 55

When desired, one can influence the representation, indicated by ChoiceView

ChoiceType o. Choices can be offered via radio buttons (ChooseFromRadioButtons), a
pull-down menu (ChooseFromComboBox), a table (ChooseFromTable) or a tree (Choose-
FromTree) to choose from, or one can present checkboxes (ChooseFromCheckBoxes,
multiple choice only). The overloading mechanism enables adding other repre-
sentations later on if needed.

To give an example of an application, look at chooseNumber2.

Example 4. Choosing from a tree

chooseNumber2 :: Task Int

chooseNumber2= enterChoice "Choose a number"

[ChoiceView (ChooseFromTree, (<+++) "choose ")] [0..10]

It presents the choices in a tree structure, with each option i labeled as "choose i".

Exercise 7. Google maps
Make the following further changes to Example 1: add the line import GoogleMaps,
and alter the type of myTask to Task GoogleMap. What is changed in the resulting
application? Click on the picture and see what happens. �

Fig. 5. A screenshot of Exercise 7: A Google Map

When creating an editor for a value, you do not always want to allow the
end-user to have access to the entire value. In iTask, a couple of types have been
specialized for this purpose (see module SystemTypes.dcl).

56 R. Plasmeijer et al.

Table 2. Creating partial access to values

:: VisualizationHint a = VHEditable a | VHDisplay a | VHHidden a

:: Editable a = Editable a

:: Display a = Display a

:: Hidden a = Hidden a

fromVisualizationHint :: (VisualizationHint a) → a

toVisualizationHint :: a → VisualizationHint a

fromEditable :: (Editable a) → a

toEditable :: a → Editable a

fromDisplay :: (Display a) → a

toDisplay :: a → Display a

fromHidden :: (Hidden a) → a

toHidden :: a → Hidden a

In Table 2, the type VisualizationHint and its data constructors are intro-
duced that are useful when manipulating (parts of) values that can be edited
(VHEditable), or only displayed (VHDisplay), or even not shown at all (VHHidden). For
each of these cases, separate type and data constructors exist (Editable, Display,
and Hidden), as well as conversion functions.

Exercise 8. Editable, Display, and Hidden values
Same as Exercise 4, but now edit values of type (Editable Person), (Display Person),
and (Hidden Person). �

3 Combinators

In the previous section we have shown how to display information of arbitrary
type to the user and how to obtain information of arbitrary type from the user.
However, in order to do something useful with this information, you need to
pass the result of one task to another. For this purpose, the usual monadic
combinators are used (see module CoreCombinators.dcl):

(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask a & iTask b

return :: a → Task a | iTask a

(>>|) infixl 1 :: (Task a) (Task b) → Task b | iTask a & iTask b

The (t >>= λx → tf x) task is a composite task that first executes task t. When
t has finished it returns a value that is bound to variable x of some type a. If tf
:: a → Task b, then (tf x) computes a new task of type (Task b). This new task is
then executed. Its return value, of type b, is also the return value of the composite

Defining Multi-user Web Applications with iTasks 57

task. The (t >>| u) task is a composite task that first executes task t and then
task u, while ignoring the result of task t. Hence, >>| is a derived combinator
which can be expressed in terms of the bind operator >>=. The (return x) task is
a basic task that immediately terminates with value x. You use it typically as
the last task in a composition of tasks to return the correct value.

As an example, we create a slightly more interesting hello world example that
combines enterInformation and viewInformation to first ask the user her name, and
then welcome her:

Example 5. Hello world in iTask

1hello :: Task String

2hello

3= enterInformation "Please enter your name" []
4>>= λname → viewInformation ("Hello " +++ name +++ "!") [] name

The hello task first executes the enterInformation task on line 3. Because it is
clear from the context that a String value is required (+++ :: String String →
String), we know that the entered value name is of type String. The task then
executes viewInformation and greets the user with the entered name.

Exercise 9. Sequence
Write a workflow that asks the user to first enter her first name, then her sur-
name, then her date of birth (a value of predefined type Date), and her gender
(the custom type Gender). The workflow must return the result as a Person value.
Person and Gender were defined in Example 2. �

iTask is embedded in Clean. This implies that you can use normal choice (if and
case expressions) and recursion to create composite tasks. As a simple example,
we define a workflow that allows the user to enter positive numbers, whose sum
is returned as soon as the user enters a non-positive number.

Example 6. Choice and recursion in iTask

1numbers :: Task Int

2numbers = viewInformation "number entered:" [] (numbers‘ 0)
3where
4numbers‘ :: Int → Task Int

5numbers‘ sum

6= enterInformation "Please enter a positive number" []
7>>= λn → if (n > 0) (numbers‘ (sum + n)) (return sum)

Here, numbers‘ is a recursive task. Its integer argument accumulates the sum
of the entered positive numbers. In line 6, the user is asked to enter a positive
number. With if it is decided whether to continue recursively (in case the en-
tered number is positive), or whether to terminate the recursive task and return
the accumulated sum.

58 R. Plasmeijer et al.

Exercise 10. Persons recursively
Write a workflow in which the user can enter a number of Person values. The
result of this workflow must be of type [Person].

Exercise 11. Persons as a list
Write a workflow in which the user can enter a [Person] value. Compare this to
Exercise 10. �

In iTask, tasks are first-class citizens, i.e. tasks can be arguments as well as
results of task functions. This is extremely useful to capture common workflow
patterns. We start with a simple example:

Example 7. A simple first-class task function

1view :: (Task a) → Task a | iTask a

2view t

3= t

4>>= λresult → viewInformation "The result is:" [] result

(view t) is a function that takes an arbitrary task t of type Task a as argument
which is executed first (line 3). Whenever t terminates, its result value of type
a is displayed to the user (line 4).

For completeness, we show two alternative ways to define the same function
below. The first, view2, uses η-conversion to eliminate the need to write down
the intermediate result. The second, view3, uses the standard flip function to
move the task argument to the back, and thus apply η-conversion one more time
and obtain a point-free version of view. Because in Clean the arity of functions
is explicit in their type, view3 has a different function type than view2 and view.

view2 :: (Task a) → Task a | iTask a

view2 t = t >>= viewInformation "The result is:" []

view3 :: ((Task a) → Task a) | iTask a

view3 = flip (>>=) (viewInformation "The result is:" [])

Here is an example of first-class tasks as a result.

Example 8. Working with first-class task results

1personList :: Task [Person]
2personList

3= enterInformation "Please fill in the form" []
4>>= λp → enterChoice "One more ? " []
5[("Yes" ,Hidden (personList >>= λps → return [p:ps]))
6,("No" , Hidden (return [p]))
7]
8>>= λ(_,Hidden continuation) → continuation

In Example 8, the user enters a Person value on line 3, the value of which is
bound to variable p (line 4), and then decides whether she wants to add more

Defining Multi-user Web Applications with iTasks 59

persons (line 5) or whether she is done (line 6). The choices not only contain the
possible answers (the strings "Yes" and "No"), but also the task that should be
continued with as a Hidden value. In case the answer is "Yes", then more persons
ps are entered, and p and ps are returned (line 5). In case the answer is "No", then
only p is returned (line 6).

Another, more classical approach would be to leave out the continuation in
the enterChoice editor as probably is chosen in Exercise 10. In that case one needs
to make a case distinction to find out whether "Yes" or "No" has been chosen. For
every possible choice a case alternative has to be defined with the proper task to
do next. The advantage of the continuation style approach shown in Example 8
is that the choice and the task to do when the choice is made are combined. If
a case distinction is used these two are separated which can more easily lead to
a programming error.

The iTask system defines many first-class task combinator functions. You can
find quite a number of them in module CommonCombinators.

Table 3. Some predefined first-class task combinator functions

(>>̂) infixl 1 :: (Task a) (Task b) → Task a | iTask a & iTask b

(>>?) infixl 1 :: (Task (Maybe a))
(a → Task (Maybe b)) → Task (Maybe b) | iTask a & iTask b

(<!) infixl 6 :: (Task a) (a → Bool) → Task a | iTask a

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a

(||-) infixr 3 :: (Task a) (Task b) → Task b | iTask a & iTask b

(-||) infixl 3 :: (Task a) (Task b) → Task a | iTask a & iTask b

Exercise 12. Gathering behavior from types
It is instructive to guess the likely behavior of the combinators from Table 3.
Try this yourself. You can check your answers below. �

– (t >>̂ u) first executes t and then u, and yields the result of t.
– (t >>? tf) first executes t. Only if that task returns a (Just x) value, then

the second task (tf x) is computed, executed, and its result returned.
– (t <! p) executes t at least once. Each time predicate p yields false, t is

executed again, and its new result is tested. The composite task terminates
as soon as p yields true.

– (t -||- u) executes both t and u and terminates as soon as either task
finishes and returns that result.

– (t ||- u) and (u -|| t) are similar and return the result of task u as soon
as it terminates.

60 R. Plasmeijer et al.

One can imagine many more useful combinators. In Section 10, we explain that
such combinators like the ones displayed in Table 3, are actually derived combi-
nators. As iTask programmer, you can define your own combinators to capture
often occurring working patterns. Here is an example of a custom combinator
that repeats a task as long as the current user is not satisfied with its result:

Example 9. A first-class task pattern

1repeatUntilApproved :: (Task a) → Task a | iTask a

2repeatUntilApproved t

3= t

4>>= λv → enterChoice "Approve result: " [About v]
5[("Yes" ,Hidden (return v))
6,("No" , Hidden (repeatUntilApproved t))
7]
8>>= λ(_,Hidden c) → c

The same continuation technique is used as in Example 8. A new aspect in this
example is the [About v] option that has been added to enterChoice. With this
option, you can display any additional type that is a generic iTask class instance.
Here it is used to display the return value of t.

Exercise 13. While pattern
Write a workflow pattern while that has the following signature:

while :: (a → Bool) (a → Task a) a → Task a | iTask a

with the following meaning: (while c t a) repeats a task t as long as the predicate
c is valid for the initial value a and subsequent values produced by applying t.
Test this workflow pattern with:

positive :: Task Int

positive = while ((≥) 0) (updateInformation "Please enter a positive number" []) 0

�

4 Enriching Tasks with GUI

Editors, created with enterInformation and updateInformation, are tasks that create
an interface to the end user to enter or update a value of first order type. In this
section we extend these tasks with actions. An action is a value of type Action

(defined in module SystemTypes).

Defining Multi-user Web Applications with iTasks 61

Table 4. Actions

:: Action = Action ActionName | ActionFinish | ActionClose

| ActionOk | ActionContinue | ActionHelp

| ActionCancel | ActionNew | ActionAbout

| ActionYes | ActionOpen | ActionFind

| ActionNo | ActionSave | ActionDelete

| ActionNext | ActionSaveAs | ActionEdit

| ActionPrevious | ActionQuit

:: ActionName :== String

Except for the very first, all data constructors in Table 4 have a default ap-
pearance in iTask. With (Action name), an action with name name is created.
By default, an action is rendered as a button. However, if name is shaped as
"m/s1/. . . /sn/c" (n ≥ 0), then m is rendered as a menu, the si are rendered
as hierarchical sub menus, and c as the final menu command. Actions with
identical prefixes are mapped to identical menu structures. Actions are most
useful in combination with the following multi-bind combinator (see module
CommonCombinators.dcl.

Table 5. The multi-bind combinator

(>?*) infixl 1 :: (Task a) [(Action,TaskContinuation a b)] → Task b | iTask a

& iTask b

:: TaskContinuation a b = Always (Task b)
| IfValid (a → Task b)
| Sometimes ((InformationState a) → Maybe (Task b))

:: InformationState a = { modelValue :: a

, localValid :: Bool

}

The composition (t >?* [(a1 ,c1). . . (an ,cn)]) (n ≥ 0) performs task t. If t is an
editor task (one of the enter- and update- combinators introduced in Section 2),
then its current value x is inspected by >?* using the continuation criteria ci. If
ci = Always t’, then action ai is always enabled and can be selected by the user,
in which case task t’ is continued with. If ci = IfValid ft, then action ai is only
enabled if x is valid. Selecting ai causes continuation of the task computed by
(ft x). Finally, if ci = Sometimes ft, then the select state of action ai is determined
by ft. The function is given value x as well as a boolean v telling whether x is
valid in the record value st = {modelValue = x, localValid = v}. If (ft st) yields
Nothing, then action ai is not enabled; if it yields Just t’, then t’ is the task that
is continued with if the user selects action ai. If t is not an editor task, then its
return value x is inspected exactly once.

62 R. Plasmeijer et al.

Example 10. Using multi-bind to add actions

1absolute :: Task Int

2absolute = enterInformation "Enter a number" []
3>?* [(Action "Always" , Always (return 42))
4,(Action "If valid" , IfValid (λx → return (abs x)))
5,(Action "Sometimes" , Sometimes (onlyIf (λx → x ≥ 0) return))
6]
7

8onlyIf :: (a → Bool) (a → Task b) (InformationState a) → Maybe (Task b)
9onlyIf pred taskf s

10| s.localValid && pred s.modelValue = Just (taskf s.modelValue)
11| otherwise = Nothing

This task enhances the enterInformation task on line 2 with three actions:

1. The action labeled "Always" is continuously available to the user. Selecting it
causes absolute to return value 42.

2. The action labeled "If valid" is only available if the user has edited a legal Int
value. Initially, the editor is empty, and hence this task is disabled. Whenever
a number is entered, the action becomes enabled. If selected, it returns the
absolute entered value.

3. The action labeled "Sometimes" is enabled only if the user has entered a posi-
tive number, which is also the return value of the action that is chosen. The
function onlyIf is a handy utility function which checks whether a valid value
has been typed in obeying a given predicate.

Fig. 6. A screenshot of Example 10: Conditional Selectable Action Buttons

As another example, consider this variation of Example 8:

Example 11. Using multi-bind to enter Persons

1personList :: Task [Person]
2personList

3= enterInformation "Please fill in the form" []
4>?* [(Action "Add one", IfValid (λp → personList >>= λps → return [p:ps]))
5,(Action "Done" , IfValid (λp → return [p]))
6,(ActionQuit, Always (return []))
7]

Defining Multi-user Web Applications with iTasks 63

Fig. 7. Screenshot of Example 11: Different Ways to Continue Work

Exercise 14. Repeat until approved revisited
Change the repeatUntilApproved combinator from Example 9 such that it uses
actions instead of the choice-construct with hidden continuation tasks.

Exercise 15. Palindrome
Use >?* to enhance a String editor task with three actions:

1. an action labeled "No text" that is enabled only if no text has been entered;
2. an action labeled "Palindrome!" that is enabled only if text has been entered

and is a palindrome;
3. conversely, an action labeled "Nope!" that is enabled only if text has been

entered and is not a palindrome.

�

5 Shared Data

In any workflow management system it is vital to keep track of time in order
to enforce deadlines and coordinate work. Earlier, we have seen that Date is a
predefined type in iTask. Similarly, Time and DateTime are predefined. You can
obtain the current date and time as follows:

Example 12. A task to obtain the current date and time

1getDateAndTime :: Task DateTime

2getDateAndTime= get currentDateTime

In a similar way, get currentDate and get currentTime return the current date and
time individually.

During execution of a workflow, time progresses. This is illustrated by turning
Example 12 into a repetitive workflow:

64 R. Plasmeijer et al.

Example 13. A repetitive task to illustrate progress of time

1repeatDateAndTime :: Task DateTime

2repeatDateAndTime= repeatUntilApproved (show getDateAndTime)

As long as the user does not approve of the current result, she will see new
date and time values.

The values currentDate, currentTime, and currentDateTime are examples of read-
only shared data. In iTask, a shared data is a reference to a value with a typed
read -interface and typed write-interface.

Table 6. The shared data API

:: RWShared r w

:: Shared a :==RWShared a a

:: ROShared a :==RWShared a Void

get :: (RWShared r w) → Task r | iTask r

set :: w (RWShared r w) → Task w | iTask w

update :: (r → w) (RWShared r w) → Task w | iTask r & iTask w

Table 6 enumerates the types and tasks that can be found in module CoreTasks.
A shared data of type (RWShared r w) can be read with the get function, which
returns of value of type r, and it can be overwritten with the set function, which
takes a value of type w. Reading and writing can be done atomically with the
function update f, when f :: r → w. A read-only shared data is a shared data in
which the write-interface has type Void. Symmetric shared data have identical
read-write interface types (see module CoreTasks).

Shared data is useful for two reasons: it can be used to serve as unstructured
many-to-many communication between tasks that are evaluated in parallel, and
for storing data persistently. The unstructured nature of shared data impedes
reasoning. For this reason it has been ‘tamed’ when working with parallel tasks,
as will be discussed in Section 8. In the remainder of this section, we discuss
only its application for storing purposes. We do this by means of an example.

Example 14. A persistent ‘to-do list’

1:: ToDo = { name :: String, deadline :: Date, remark :: Maybe Note, done :: Bool }
2derive class iTask ToDo

3

4toDoList :: Shared [ToDo]
5toDoList = sharedStore "My to-do list" []
6

7updateToDoList :: Task [ToDo]
8updateToDoList= get toDoList

9>>= λoldList → updateInformation "Your to-do list" [] oldList

10>>= λnewList → set newList toDoList

Defining Multi-user Web Applications with iTasks 65

First of all, we design a data type, ToDo, that contains a description of something
to do (line 1) and generate a generic instance of the iTask class (line 2). Second,
we need a reference to the store, which is created by the function sharedStore (line
5). In order to allow the user to update her to-do list, the task updateToDoList

first reads the current content of the shared data (line 8), allow her to edit the
list (line 9), and finally write it to persistent store (line 10).

Exercise 16. Enhancing the to-do list
Enhance the updateInformation task in Example 14 with the following actions:

1. sort the to-do list by name or deadline;
2. remove all to-do items which deadline has passed;
3. remove all to-do items that have been done.

�
In Section 2 we have presented the basic editor tasks to show, enter, and update
values generically. For each of these basic editors, a basic shared editor task exists.

Table 7. The basic shared editor tasks

viewSharedInformation

:: d [ViewOn l r w] (RWShared r w) l → Task (r,l)
| descr d & iTask l & iTask r & iTask w

updateSharedInformation

:: d [ViewOn l r w] (RWShared r w) l → Task (r,l)
| descr d & iTask l & iTask r & iTask w

enterSharedInformation

:: d [ViewOn l r w] (RWShared r w) → Task (r,l)
| descr d & iTask l & iTask r & iTask w

updateSharedChoice

:: d [ChoiceView ChoiceType o] (RWShared (c o) w) o → Task o

| descr d & iTask o & iTask w & iTask (c o) & OptionContainer c

enterSharedChoice

:: d [ChoiceView ChoiceType o] (RWShared (c o) w) → Task o

| descr d & iTask o & iTask w & iTask (c o) & OptionContainer c

updateSharedMultipleChoice

:: d [ChoiceView MultiChoiceType o] (c o) [o] → Task [o]
| descr d & iTask o & iTask (c o) & OptionContainer c

enterSharedMultipleChoice

:: d [ChoiceView MultiChoiceType o] (c o) → Task [o]
| descr d & iTask o & iTask (c o) & OptionContainer c

The main difference between editor tasks and shared editor tasks is that the
latter operate on shared data in addition to a local value. Shared editor tasks
can be enhanced with the >?* operator in the same way as editor tasks can
(Section 4). As a consequence, the updateToDoList function in Example 14 can
also be implemented with a one-liner:

66 R. Plasmeijer et al.

Example 15. A shared editor for a persistent ‘to-do list’

updateSharedToDoList :: Task ([ToDo] ,Void)
updateSharedToDoList= updateSharedInformation "Your to-do list" [] toDoList Void

viewSharedToDoList :: Task ([ToDo] ,Void)
viewSharedToDoList= viewSharedInformation "Your to-do list" [] toDoList Void

Because no local data is required we use value Void of type Void.

Fig. 8. Screenshot of Example 15: An Editor on a Shared ToDo List

It is important to notice that there is a big difference in behaviour between
the two approaches. In updateToDoList a copy of the list is made first. This copy
is edited by the end user. When the end user is happy with the changes made,
the editing task is finished, and the result is written back to the shared state.
In updateSharedToDoList no copy is made. Every change is applied directly to the
shared to-do list, and therefore is also directly visible by any other task looking
at the same to-do list (!). Hence, when one is working on a task, one can use
shared data to communicate information with other tasks.

For example, if task viewSharedToDoList would be executed in parallel with
updateSharedToDoList (see Section 8), any modification made in the todo-list with
the editor is directly visible for someone viewing this to-do list at the same time.
One can also imagine that several workers are working at the same time on
the same shared to-do list. The iTask system will automatically report editing
conflicts to the workers when they occur.

Defining Multi-user Web Applications with iTasks 67

Fig. 9. Screenshot of Example 15: A View on the Shared ToDo List

6 Views on Local and Shared Data

The view parameter of the editors has been ignored so far. It makes it possible to
present the information in the editor model in a desired format. Hence an editor
is an instance of the model-view paradigm: the model is defined by the task
type returned by an editor while the view is what is shown to the end-user. By
default, when the view is defined as an empty list, model and view are identical.
If one wants a different view, one has to think about what the format of the
view has to be, which types can be used to express this, and one has to define
a bidirectional transformation (bimap) between the view values and the model
data the editor is actually applied on.

For example, an editor such as updateInformation allows the end user to modify
data (of some type l) which is only locally available for the particular editor.
When the editing task is finished, the final value is made public and passed to the
next tasks to do. An editor such as updateSharedInformation allows to modify both
local data and shared data. When shared data is being modified, the changes are
automatically made visible to all other end users who are looking at the same
shared data as well.

updateSharedInformation :: d [ViewOn l r w] (RWShared r w) l → Task (r,l)
| descr d & iTask l & iTask r & iTask w

updateInformation :: d [LocalViewOn l] l → Task l

| descr d & iTask l

:: LocalViewOn a :== ViewOn a Void Void

By default, model and view are the same. In the case of updateInformation, by de-
fault an editable form is created for type l. In the case of updateSharedInformation,
by default an additional editable form is created for the shared type r as well.
Hence, in that case two editable forms are shown to the end user.

However, in particular when shared data is involved, this default view may
not be very suitable. Let’s have a look at the following example.

68 R. Plasmeijer et al.

Example 16. Twitter with an ill-chosen view

1:: Tweet :== (User,String)
2

3twitterCEFP = get currentUser >>= join

4where
5name = "CEFP"

6tweets = sharedStore ("Twitter with " +++ name) []
7

8join :: User → Task Void

9join user

10= updateSharedInformation ("Tweets of " +++ name) view tweets ""

11>?* [(ActionQuit, Always (return Void))
12, (ActionOk, IfValid (λ(_,message) → commit (user, message)))
13]
14where
15view = []
16

17commit :: Tweet → Task Void

18commit tweet = update (append tweet) tweets >>| join user

19

20append x xs = xs ++ [x]

The function join (line 9) allows a user to follow messages (tweets) which are
posted by someone or which are focussed on a certain topic area. In this case
the topic is the "CEFP" summer school. Tweets are of type [(User, String)] which
are stored in a shared store, tweets (line 6), that is initially empty.

In join a shared editor is created (updateSharedInformation, line 10) for the
shared tweets as well as for entering a string. The idea is that the end user can
see the tweets passing by which are being committed while she can type in a
reaction as well. When the OK button is pressed (line 12), the entered message
is committed, and the tweet store is updated by appending this message (line
18), after which this whole process is repeated by a recursive call of join. When
a user no longer wants to follow the discussion, she can simply quit (line 11).

The updateSharedInformation editor, by default, provides an editor with which
one can update both the shared value and the local value. In this case, this
is not what we want (see Fig. 10). The shared value here are the tweets (of
type [(User, String)]) being committed, which one actually only wants to see
as text passing by, and one does not want to alter it at all. For entering a
reaction, one would rather like to use a text box, as is being generated for type
:: Note = Note String.

Example 17. A proper view for Twitter

1view = [DisplayView (GetShared id)
2, EnterView (SetLocal (λ(Note reaction) _ _ → reaction))
3]

Defining Multi-user Web Applications with iTasks 69

Fig. 10. Screenshot of Example 16: The Ill-Chosen View

Fig. 11. Screenshot of Example 17: A Well-Chosen View

A proper representation (see Fig. 11) can be obtained by defining a dedicated
view instead of the default view ([]) which states that the tweets have to be
shown as text only (line 1 of view) while an editable textbox is created, which,
when changed, will be copied back to the local string (line 2 of view). While
looking at the screen or entering a reaction, the list of tweets being displayed
will be updated constantly showing the new tweets committed by others.

:: ViewOn l r w =∃v: About v & iTask v

|∃v: EnterView (SetFunc l r w v) & iTask v

|∃v: UpdateView (GetFunc l r v, SetFunc l r w v) & iTask v

|∃v: DisplayView (GetFunc l r v) & iTask v

| UpdateTrigger String (UpdateFunc l r w)
:: GetFunc l r v = GetLocal (l → v)

| GetShared (r → v)
| GetCombined (l r → v)

:: SetFunc l r w v = SetLocal (v l r → l)
| SetShared (v l r → w)
| SetCombined (v l r → (Maybe l, Maybe w))

:: UpdateFunc l r w = UpdateLocal (l → l)
| UpdateShared (r → w)
| UpdateCombined (l r → (Maybe l, Maybe w))

70 R. Plasmeijer et al.

The algebraic data type ViewOn defines how views can be defined on the data
model of interaction tasks. Zero or more of these views can be defined as element
in a list. If no views are defined (view = []) the identity is taken, and view and
model will be the same. Each view presents a mapping ViewOn l r w between the
local data of type l, the shared data of type r which can be read, and shared
data of type w which can be written. A view can be of arbitrary type v, and is
therefore existentially quantified (∃v) to allow these different view types v to be
collected in a list.

With About additional information can be presented independent from the data
model being used. With UpdateView one defines how to turn the model into a view,
and one defines what the consequences are for the model when view values are
modified. For turning a model into a view one can look at the current value of
the local data (GetLocal), the global data (GetShared), or both (GetCombined). Any
change made may have consequences for the local data (SetLocal), the global
data (SetShared), or both (SetCombined). With DisplayView a view is created from the
model which cannot be updated by the end-user. With EnterView an editable view
is created independent from the current model, and any change made is mapped
back into the data model. The UpdateTrigger introduces a trigger (typically a
button) which, when pressed, is used to update the data model.

The twitter Example 16 with the adjusted view works nicely. To demonstrate
what one can and cannot do with a view, we present an alternative definition of
join which is given in join2.

Example 18. Alternative definition for join, twittering too much

1join2 :: User → Task Void

2join2 user

3= updateSharedInformation ("Enter tweet for " +++ name) view tweets ""

4>?* [(ActionQuit,Always (return Void))
5]
6where
7view = [UpdateView

8(GetCombined (λtxt tweets

9→ (Display tweets, Note txt))
10, SetShared (λ(_,Note reaction) _ tweets

11→ append (user,reaction) tweets)
12)
13]

Even though the OK button is removed, and the definition is no longer recursive,
tweets are added constantly. An UpdateView is defined which maps the model, the
local value of type String and shared data of type [Tweet] into the desired view
of type (Display [Tweet] , Note) using GetCombined. The view is mapped back using
SetShared which appends the entered text to the tweet store.

Defining Multi-user Web Applications with iTasks 71

Although the view looks fine, the behaviour is unexpected: whenever a change
is encountered, either in the shared data or in a view, the model is updated after
which a new view is calculated and shown. As a result, while entering a string,
parts of it are taken away and moved into the tweet store, even though the user
has finished typing. This is clearly not what is wanted. So, when writing views
one must be aware that mapping from model to view and backwards is hap-
pening regularly when changes are being made by someone in the underlying
models.

Example 19. Alternative definition for join

1join3 :: User → Task Void

2join3 user

3= updateSharedInformation ("Enter tweet for " +++ name) view tweets ""

4>?* [(ActionQuit, Always (return Void))
5]
6where
7view = [DisplayView (GetShared id)
8, UpdateView (GetLocal Note

9,SetLocal (λ(Note reaction) _ _ → reaction)
10)
11, UpdateTrigger "Commit"

12(UpdateData (λreaction tweets →
13(Just ""

14,Just (append (user,reaction) tweets)
15)
16))
17]

A non-recursive version of join that exposes the desired behavior is given in
Example 19 (join3). Here, to show the latest tweets, the shared tweet model is
constantly displayed (DisplayView, line 7) while the local model of type String is
constantly mapped (UpdateView, line 8-10) to and from a textbox of type Note.
Only when the "Commit" button is hit, the reaction stored in the local model is
added as tweet to the tweets store and this local store is reset to the empty
string to allow a new reaction to be entered (UpdateTrigger, line 11-16).

7 Task Distribution

So far we have ignored the fact that tasks are typically distributed over several
users working together on the internet. In this section we explain how tasks can
be distributed over a number of workers.

72 R. Plasmeijer et al.

Example 20. Managing Multi-User Tasks

1module Section7

2

3import iTasks

4derive bimap (,) , Maybe

5

6Start :: *World → *World

7Start world = startEngine (manageWorkflows myWorkFlows) world

8

9myWorkFlows = [workflow "view all users" "view users" viewAllUserNames

10, workflow "edit to-do list" "edit to-do" updateSharedToDoList

11, workflow "view to-do list" "view to-do" viewSharedToDoList

12]

Clearly, if we want to do this, we need a different web interface. So far, an
end user only had to handle one task. Now we need a web interface where every
worker can work on several tasks and new tasks can be started and distributed to
any other iTask worker working on the internet. Such a more fancy web interface
can be defined “just” as an iTask task in the iTask system. It can be user defined
as desired, but for doing so one needs more knowledge about the iTask system
than we have explained so far, therefore we do not define such an iTask task
here on this spot.

Instead, we simply make use of a task we have predefined for you. It is “just”
an iTask task called manageWorkflows, which takes a list of tasks that can interac-
tively be started by the end-user (see Example 20). For each task in the list a
description is added which explains what the purpose of the task is.

In Fig. 12 this predefined task manager is shown with all CEFP exercises
included. In the left-upper task pane all tasks which can be started are displayed
in a tree structure. If one clicks on one of these tasks, it is displayed left-below
what the purpose of that task is. The tasks to do are displayed in the right-upper
pane, much alike incoming emails in an email application. These are task which
the end-user either started herself or tasks to-do which are given to the end-user
by someone else. The end-user can work on several tasks at the same time in the
right-below pane, by choosing one of the tabs.

Before you enter the task manager, you have to login. In the beginning there
is only one user administrated, the administrator named root. Before we start,
you need to ‘employ’ a number of workers.

Exercise 17. Setting up your user-base
When logged in as root, you can start the Admin/Users task in the task pane
which is only visible for the administrator. With this administrative task, you
can add users to your workflow management system. This is needed for the re-
maining exercises of these lecture notes. Add a positive number of users to your
workflow management system. �

Defining Multi-user Web Applications with iTasks 73

Fig. 12. The Predefined iTask Task Manager Task Showing All CEFP Examples

Once users are registered, you can access them with a number of operations.
Just like date and time, as explained in Section 5, this is done via shared data.

Table 8. Accessing the user base

users :: ROShared [User]
usersWithRole :: Role → ROShared [User]
currentUser :: ROShared User

userDetails :: User → Shared UserDetails

currentUserDetails :: ROShared (Maybe UserDetails)

:: UserDetails = { userName :: UserId

, password :: Password

, displayName :: String

, emailAddress :: EmailAddress

, roles :: Maybe [Role]
}

:: UserId :== String

:: Password = Password String

:: EmailAddress = EmailAddress String

:: Role :== String

Table 8 enumerates the functions with which (a subset of) the current users
can be retrieved. For the purpose of the lecture notes, the User data type is not
very interesting, but the UserDetails record is. It contains the information that
you have entered in Exercise 17. Because you do not have to be logged in to use

74 R. Plasmeijer et al.

the iTask system, the function currentUserDetails returns a Maybe value. Due to
their special status, Password and EmailAddress are defined as new types. Because
access is done via shared data, it is straightforward to select one or more users,
or display all user names (the function displayName extracts the corresponding
field from the details record):

Example 21. Tasks to access the user-base

1selectUser :: Task User

2selectUser = enterSharedChoice "Select a user:" [] users

3

4selectUsers :: Task [User]
5selectUsers = enterSharedMultipleChoice "Select users:" [] users

6

7viewAllUserNames :: Task [String]
8viewAllUserNames= get users

9>>= λus → let names = map displayName us in
10viewInformation "The current users are: " [] names

Exercise 18. Reading your user-base
Add the viewAllUserNames task as a workflow to your system and run it. This
should display the names of the users that you have entered in Exercise 17. �

With the @: operator, a task can be assigned to a user:

(@:) infix 3 :: User (Task a) → Task a | iTask a

As an example, consider the delegate workflow:

Example 22. A delegate task pattern to distribute work

1delegate :: (Task a) → Task a | iTask a

2delegate task

3= selectUser

4>>= λuser → user @: task

5>>= λresult → updateInformation "Check result" result

Exercise 19. Question user
Create a workflow that first selects an arbitrary user, then edits a question, and
finally asks the selected user to answer the entered question. The answer must
be displayed to the user who asked the question.

Exercise 20. A 2-person number guessing game
Use delegate to write a workflow that first asks the current user to enter a secret
number, then to select two other users who are going to try and guess the secret
number. The user who guesses the number first wins. Use one of the combinators
of Table 3 to distribute the work in parallel.

Defining Multi-user Web Applications with iTasks 75

Exercise 21. A 2-person dialogue
Write a workflow in which the current user contacts another user, and initi-
ates a dialogue with that user. In turn, each user enters a line of text. The
history of the conversation must be displayed, but should not be editable. The
conversation is terminated as soon as either user enters an empty line of text.
The result of the workflow must be a value of type [(User,String)] that collects
the entire conversation, with the most recent line of text at the head of the list. �

8 Parallel Tasks I: A Fixed Number of Tasks

So far all examples involved at most two registered workflow users. Naturally,
one wants to generalize over the number of users. The iTask system provides
a single, swiss army knife combinator for this purpose, called parallel. In this
section we explain how to use this versatile combinator for an arbitrary, yet
constant, number of users. In Section 9 we continue our discussion and show
how it can be used to accommodate a dynamic number of users.

The signature of parallel is:

parallel :: d s (ResultFun s a) [TaskContainer s] → Task a | iTask s & iTask a

& descr d

We briefly discuss its parameters first. The first parameter is the usual descrip-
tion argument that we have encountered many times so far. It plays the same role
here: a description to the user to inform her about the purpose of this particular
parallel task in the workflow.

The second argument is the initial value of the state of the parallel task: the
state is a shared data (as discussed in Section 5) that can be inspected and
altered only by the tasks that belong to this parallel task.

The third argument is a function of type:

:: ResultFun s a :==TerminationStatus s → a

:: TerminationStatus= AllRunToCompletion | Stopped

The purpose of the ResultFun function is to turn the value of the state of the
parallel task at termination into the final value of the parallel task itself. They
need not have the same type, so the state is converted to the final value when the
parallel task is finished. The parallel combinator can terminate in two different
ways. It can be the case that all subtasks are finished (AllRunToCompletion). But, as
we will see later, a subtask can also explicitly kill the whole parallel construction
(Stopped). This information can be used to create a proper final value of parallel.

Finally, the fourth argument is the initial list of task (container)s that con-
stitute the parallel task. A task container consists of two parts: a task type
representation (ParallelTaskType) defining how the subtask relates to its super-
task, and the subtask itself (defined on shared state s) to be run in parallel with
the others (ParallelTask s):

76 R. Plasmeijer et al.

:: TaskContainer s :== (ParallelTaskType, ParallelTask s)
:: ParallelTaskType= Embedded

| Detached ManagementMeta

The ParallelTaskType is either one of the following:

– Embedded basically ‘inlines’ the task in the current task.
– Detached meta displays the task computed by the function as a distinct new

task for the user identified in the worker field of meta. ManagementMeta is a
straightforward record type that enumerates the required information:

:: ManagementMeta=
{ worker :: Maybe User

, role :: Maybe Role

, startAt :: Maybe DateTime

, completeBefore :: Maybe DateTime

, notifyAt :: Maybe DateTime

, priority :: TaskPriority

}
:: TaskPriority = HighPriority | NormalPriority | LowPriority

It should be noted that the u @: combinator is simply expressed as a parallel

combination of two tasks. One of type Detached with the worker set, and an-
other of type Embedded that displays progress information.

:: ParallelTask s :== (TaskList s) → Task ParallelControl

:: TaskList s

:: ParallelControl = Stop | Continue

The task creation function takes as argument an abstract type, TaskList s, where
s is the type of the data the subtasks share. Every subtask has to yield a task
of type ParallelControl to tell the system, when the subtask is finished, whether
the parallel task as a whole is also finished (by yielding Stop) or not (by yielding
Continue.)

As will be explained in Section 9, the number of subtasks in the task list can
change dynamically. One can enquire its status, using the following functions on
the abstract type TaskList s:

taskListState :: (TaskList s) → Shared s | TC s

taskListProperties :: (TaskList s) → Shared [ParallelTaskInfo]

With the function taskListState one can retrieve the data shared between the
tasks of the parallel combinator. As discussed in Section 5, you can use get,
set, and update to access its value. There is another function, taskListProperties,
which can be used to retrieve detailed information about the current status of
the parallel tasks created. This can be used to control the tasks, and is explained
in more detail in the next section.

Defining Multi-user Web Applications with iTasks 77

We first illustrate the static use of parallel by a number of examples. In the
first example, we create a variant of Exercise 19.

Example 23. Question N users

1questions :: Task [(User,String)]
2questions

3= updateInformation "Pose a question" [] "...?"

4>>= λquestion → selectUsers

5>>= λusers → parallel "parallel" [] (λ_ s → s)
6[(DetachedTask (normalTask u) , answer u question)
7\\ u←users

8]
9where
10answer u question tasks

11= updateInformation question [] "...!"

12>>= λa → update (λanswers → [(u,a):answers]) (taskListState tasks)
13>>| return Continue

14

15normalTask :: User → ManagerProperties

16normalTask u = { worker = u

17, priority = NormalPriority

18, deadline = Nothing

19, status = Active

20}

Example 23 first asks the current user to enter a question (line 3), and then
make a selection of the current set of registered users (line 4). For each user (line
7), a detached task is created (line 6) that asks the user to answer the question
(line 10). This task simply adds the given answer to the shared data of the par-
allel construct (line 12) and returns Continue. The parallel construction therefore
will end when all subtasks are finished in this way (yielding AllRunToCompletion).
The function normalTask is a useful convenience function. Notice that an update

of shared data is performed in one atomic action, such that no concurrency
problems can occur when multiple subtasks are finishing up.

Finally, we develop a chat example in which an arbitrary number of people
communicate with each other.

Example 24. Chat infrastructure

1:: ChatState :== [String]
2

3initChatState :: ChatState

4initChatState = []
5

6addLine :: User String ChatState → ChatState

7addLine me line s = s ++ [me +++> ": " +++ line]

78 R. Plasmeijer et al.

The conversation is to be stored as a simple list of strings (of type ChatState),
and there are two trivial access function to create an initial value, and to add a
new line of text to the conversation. (The operators +++>and <+++ are convenient
to convert the first and second argument respectively to text and concatenate it
with their String argument.)

Example 25. A naive parallel chat example without menus

1naive_chat :: Task ChatState

2naive_chat

3= get currentUser

4>>= λme → selectUsers

5>>= λothers → let chatters = [me : others]
6in parallel "Naive chat" initChatState (λ_ chats → chats)
7[(DetachedTask (normalTask who) , chat who chatters)
8\\ who←chatters

9]
10where
11chat :: User [User] (TaskList ChatState) → Task ParallelControl

12chat me chatters tasks

13= forever (get chatState

14>>= λxs → updateInformation header [] (Display xs, Note "")
15>>= λ(_,Note n) → update (addLine me n) chatState

16)
17>>| return Stop

18where
19chatState = taskListState tasks

20header = "Chat with " +++ join "," (map toString chatters)

The chat example first selects a number of users (lines 3-4), and continues with
the parallel creation of tasks (lines 6-9). These are created as menu-less detached
chat tasks (normalTask was defined in Example 23). The chat task is an infinite
task (using the forever combinator) that reads the current conversation (line 13),
allows the current user to enter a new line of text (line 14), and that adds the
new line of text to the current conversation (line 15). The forever constructor
is followed by the task return Stop to ensure that the definition of chat is type
correct yielding a value of type Task ParallelControl, even though it is known
that this return will never be reached. The join function concatenates a list of
strings, using an infix string given as first argument (it is actually overloaded,
see Text.dcl).

Exercise 22. Naive chat
Run the naive chat Example 25, and test it with several users. Does the example
run as you would expect? Adapt the example in such a way that the chat task is
inlined for the me user, and displayed as detached task for the others users. What
is changed in the interface? �

Defining Multi-user Web Applications with iTasks 79

Running the naive chat example demonstrates that the shared state is only up-
dated after a user has entered text. For a chat example, this does not make much
sense: you want to monitor the shared value in order to be informed of changes
to that value. In iTask, this can be achieved with the viewSharedInformation inter-
action task combinator:

viewSharedInformation :: d [ViewOn l r w] (RWShared r w) l → Task (r,l)
| descr d & iTask l & iTask r & iTask w

We can use this in the task below to create a more realistic chat example.

Example 26. A monitoring parallel chat example without menus

1monitor_chat :: Task ChatState

2monitor_chat

3= ...same body as naive chat ...

4where
5chat :: User [User](TaskList ChatState) → Task ParallelControl

6chat me chatters tasks

7= viewSharedInformation headerMonitor [] chatState Void

8||-

9forever enterLine

10>>| return Continue

11where
12headerEditor = "Chat with " +++ join "," (map toString chatters)
13headerMonitor = "Conversation of " +++ join "," (map toString chatters)
14enterLine = enterInformation headerEditor []
15>>= λ(Note n) → update (addLine me n) chatState

16

17chatState = taskListState tasks

The difference with the naive chat example is that we use the viewSharedInformation
task combinator to display the current content of the conversation (line 10), and
an infinite task for each user to enter text lines (lines 9 and 14-15).

9 Parallel Tasks II: A Dynamic Number of Tasks

Parallel tasks can inspect each other’s status by applying the function taskList-
Meta to the TaskList. It returns a shared data of type [ParallelTaskMeta]. This can
be used to read the status (via a get), but also to change the properties (via a
set or update) of the subtasks running in parallel.

80 R. Plasmeijer et al.

Table 9. Parallel task meta-information

taskListMeta :: (TaskList s) → Shared [ParallelTaskMeta]

:: ParallelTaskMeta= { index :: Int

, taskId :: TaskId

, taskMeta :: TaskMeta

, progressMeta :: Maybe ProgressMeta

, managementMeta :: Maybe ManagementMeta

}

:: ProgressMeta = { issuedAt :: DateTime

, issuedBy :: User

, status :: TaskStatus

, firstEvent :: Maybe DateTime

, latestEvent :: Maybe DateTime

}
:: TaskStatus = Running | Finished | Excepted

In Table 9, ParallelTaskMeta is shared data which can be inspected by all tasks in
the parallel construction to get meta-information of all tasks. This is comparable
to a process table in an operating system, except that only the subtasks are
shown which belong to this particular parallel combinator. This shared data
structure provides useful information to monitor the running tasks, but also to
change them. For example, the meta-data of a task, such as the ManagementMeta

can be altered on-the-fly using a set. We will not pursue this further in these
lecture notes.

In this section it is shown how the taskList can be used to dynamically alter
the number of subtasks running in parallel. The following operations are offered
to the programmer.

appendTask :: (TaskContainer s) (TaskList s) → Task Int | TC s

removeTask :: Int (TaskList s) → Task Void | TC s

Tasks can be appended to the list of tasks running under this parallel construc-
tion using appendTask. In a similar way, removeTask terminates the indicated task
from the list of tasks, even if it has not run to completion.

Defining Multi-user Web Applications with iTasks 81

Example 27. A Petition Campaign

1:: Petition = { titlePetition :: String

2, deadlineSubmission :: DateTime

3, description :: Note

4}
5:: Signer = { name :: String

6, profession :: Maybe String

7, emailAddress :: String

8, comments :: Maybe Note

9}
10derive class iTask Petition, Signer

11

12myPetition :: Task (Petition, [Signer])
13myPetition = enterInformation "Describe the petition" []
14>>= λp → campaign p p.titlePetition p.deadlineSubmission

15>>= viewInformation "The petition has been signed by:" []

To illustrate their use, we show as example a workflow for coordinating a petition
campaign. In myPetition a concrete description (of type Petition) of the petition
has to be given by the end user first (line 13). Then, the petition campaign is
started (line 14). The idea of this campaign is to get the petition signed by
as many people as possible before the specified deadline has been reached (see
Figure 13).

When the campaign is finished, it is shown by whom the petition has been
signed (line 17). To sign the petition, a supporter has to fill in a form, in this
particular case of type Signer. All signed petitions are collected in a list which is
returned by the campaign task, together with the petition itself.

1campaign :: pet String DateTime → Task (pet, [signed]) | iTask pet & iTask signed

2campaign pet title deadline

3= enterSharedMultipleChoice "Invite people to sign" [] users

4>>= λsigners → parallel ("Sign Petition: " +++ title) []
5(λ_ signed → (pet,signed))
6[(Embedded, waitForDeadline deadline)
7: [(Detached (normalTask signer) ,sign pet)
8\\ signer←signers

9]
10]

Notice that the campaign task can be used for any kind of petition as well as for
any kind of form to be signed by the supporters. The campaign starts by letting
the organizer select an initial set of users (line 3) who all in parallel will be
asked to sign the petition (lines 7-9). The signed petitions are collected in the
shared state of parallel, which is of type [Signed]. In addition also a hidden task
is started to watch the deadline (line 6). When the parallel construct is finished,
either because the deadline has been passed or all users who have been asked
have finished signing, the signed petitions together with the petition itself is
returned (line 5).

82 R. Plasmeijer et al.

Fig. 13. A Petition Campaign

1waitForDeadline dateTime list

2= waitForDateTime dateTime

3>>| return Stop

The subtask waitForDeadline waits until the indicated date and time are passed.
It returns Stop to indicate that the entire parallel construct ends. All users who
want to sign the petition after the deadline get a message that this task is no
longer needed.

1sign :: pet (TaskList [signed]) → Task ParallelControl | iTask pet & iTask signed

2sign pet list

3= enterInformation ("Please sign the following petition:") [About pet]
4>?* [(Action "Decline", Always (return Continue))
5,(Action "Sign" , IfValid signAndAskFriends)
6]
7where
8signAndAskFriends signed

9= update (λlist → [signed:list]) (taskListState list)
10>>| viewInformation "Thanks for signing !" [] Void

11>>| enterSharedMultipleChoice "Invite other people too" [] users

12>>= askSigners

Defining Multi-user Web Applications with iTasks 83

13

14askSigners [] = return Continue

15askSigners [c:cs] = appendTask (Detached (normalTask c) , sign pet) list

16>>| askSigners cs

In task sign a user is first asked to sign the petition shown (line 3) by filling in
the presented form. She can decline (line 4) after which the subtask is ended.
She can also "Sign" the petition after filling in the presented form (line 5). After
being so supportive, she on her turn is asked to invite other people to sign as
well (line 11). For all people additionally invited in this way, askSigners appends
a new subtask for signing to the parallel construct.

To illustrate that the parallel construct can also be used to make a single user
multi-window web application, we show how a simple text editor can be defined.

Example 28. Editor Application

1:: EditorState = { mytext :: String

2, replace :: Bool

3, statistics :: Bool

4}
5initEditor text = { mytext = text

6, replace = False

7, statistics = False

8}
9updateText f = update (λs → {s & mytext = f s.mytext})
10updateReplace b = update (λs → {s & replace = b})
11updateStat b = update (λs → {s & statistics = b})
12

13noReplace s = not s.replace

14noStatistics s = not s.statistics

15

16:: FileName :== String

17readTextFile :: FileName → Task (Bool, String)
18saveTextFile :: FileName String → Task Bool

First we define some types and utility functions. In this example there are three
different windows offering three different views on the same text. In addition to
the main text editor, there are two additional, optional, windows. One can op-
tionally be opened allowing to search for substrings to be replaced. Another one
can be opened to display statistics of the current text, such as the number of char-
acters, words, and lines. The EditorState is used as shared data in which the text
being edited is stored (mytext). The state also administrates whether the replace

and statistics tasks are running. This is used to prevent the creation of mul-
tiple instances. There are utility functions for accessing (noReplace, noStatistics)
and updating the specific fields in the EditorState (updateText, updateReplace, and
updateStat). The tasks saveTextFile and readTextFile can be used for writing and
reading text to a file.

84 R. Plasmeijer et al.

Fig. 14. Screenshot of Example 28: A Simple Text Editor

1editorApplication :: Task Void

2editorApplication

3= enterInformation "Give name file to edit..." []
4>>= λfileName → readTextFile fileName

5>>= λ(_,text) → parallel "Editor" (initEditor text) (_ _ → Void)
6[(BodyTask, editor fileName)]

In the editorApplication the end user is asked for the name of the file to edit (line
3), after which its content is read from disk (line 4). In the parallel (line 5-6) the
content is stored in the shared editor state, and initially just one task is created,
the editor itself.

1editor fileName ls

2= updateSharedInformation (fileName,"Edit " +++ fileName) views myState Void

3>?* [(ActionSave, IfValid save)
4,(ActionReplace, Sometimes (onlyIf (noReplace o fst) replace))
5,(ActionStatistics, Sometimes (onlyIf (noStatistics o fst) statistics))
6,(ActionQuit, Always quit)
7]
8where
9views = [UpdateView (GetShared (λs → Note s.mytext)
10, SetShared (λ(Note text) _ s → {s & mytext = text})
11)
12]
13

14save (val,_)
15= saveTextFile fileName val.mytext

16>>| editor fileName ls

17

18replace _

19= updateReplace True myState

20>>| appendTask (Embedded

21, replaceTask {search = "", replaceBy = ""}
22) ls

23>>| editor fileName ls

24

25statistics _

26= updateStat True myState

27>>| appendTask (Embedded, statisticsTask) ls

28>>| editor fileName ls

Defining Multi-user Web Applications with iTasks 85

29

30quit

31= return Stop

32

33myState = taskListState ls

34

35ActionReplace :== Action "File/Replace"

36ActionStatistics :== Action "File/Statistics"

In the main parallel task, editor, the editing of the text stored in the shared
state is realized by the iTask editor updateSharedInformation (line 2). A value of
type Note is used as view on the shared text string and any update made by the
end-user is directly be mapped back in this shared state (lines 8-11). It provides
four options to the end user, labeled ActionSave, ActionReplace, ActionStatistics,
and ActionQuit (lines 3-7).

With ActionSave, she can choose to save the current text (line 3), after which
the text is stored to file and the editor is recursively called to allow to continue
editing (line 14-16). The update of the browser page is optimized such that such
recursive calls are not visually noticeable to the end user.

With ActionReplace, the end user can replace text (line 5). This creates a new
task, replaceTask, to run in parallel with the text editor (line 23). The option is
available only if the replaceTask task is not already running (line 5). If this is
indeed the case, the corresponding Boolean value is set in the shared state (line
21), to mark that a replacement task is created, after which this task is indeed
appended (line 21-24). After forking off this task, the editor is recursively called
to allow to continue editing.

1:: Replace = { search :: String

2, replaceBy :: String

3}
4

5replaceTask :: Replace (TaskList EditorState) → Task ParallelControl

6replaceTask replacement ls

7= updateInformation ("Replace" ,"Define replacement...") [] replacement

8>?* [(ActionOk, IfValid replace)
9,(Action "Close" , Always close)
10]
11where
12replace repl

13= updateText (replaceSubString repl.search repl.replaceBy) myState

14>>| replaceTask repl ls

15close

16= updateReplace False myState

17>>| return Continue

The replaceTask uses a local iTask editor on type Replace allowing the end user to
type in a string to search for with its replacement (line 7). When the OK button is
hit (line 8), the text in the shared state will be searched and updated (line 13),
after which replaceTask calls itself again (line 14) to allow more replacements to

86 R. Plasmeijer et al.

Fig. 15. Screenshot of Example 28: The Replace Dialogue

be made. All other tasks looking at the shared state, such as the main editor and
possibly the statistics task, immediately get the update made and change their
view accordingly. When the end user chooses Close (line 9), it is administrated
in the shared state that the task has ended (line 16), and this tasks ends (line
17).

Analogous to replacing text, ActionStatistics keeps track whether it is active
or not, and triggers the statisticsTask if not (line 6, 27-30).

1:: TextStatistics= { lines :: Int

2, words :: Int

3, characters :: Int

4}
5

6statisticsTask :: (TaskList EditorState) → Task ParallelControl

7statisticsTask ls

8= viewSharedInformation ("Statistics" ,"Statistics of your document")
9views (taskListState ls) Void

10>?* [(Action "Close" , Always close)]
11where
12views = [DisplayView (GetShared showStatistics)]
13

14showStatistics state

15= { lines = length (split "\n" state.mytext)
16, words = length (split " " (replaceSubString "\n" " " state.mytext))
17, characters = textSize state.mytext

18}
19close

20= updateStat False myState

21>>| return Continue

22

23myState = taskListState ls

The statisticsTask has a read-only view on the text stored in the shared state
(lines 8-9,13). Any change made in the shared text by the end user, either made
by using the editor, or by using the replaceTask will directly lead to an update of
the statistic information displayed. When the statistic window is closed, this is
administrated (line 20) to allow it to be opened again in the main editor.

Defining Multi-user Web Applications with iTasks 87

Fig. 16. Screenshot of Example 28: The Statistics Dialogue

Finally, with ActionQuit, the end user quits the application by Stopping the
parallel construct which closes any remaining windows.

10 The Core Pillars of iTasks

The iTask system is a special combinator library written in Clean to support the
construction of interactive applications with an emphasis on the task concept.
In these lecture notes we have focussed on an important class of basic tasks, the
iTask editors. Tasks can be composed from others using iTask combinators. Edi-
tors and combinators are two important concepts in the iTask system. Although
we have seen many different editors and many different combinators, they are
actually all variants of the same. In the core of the iTask system we have defined
one function which can take care of all editor variants. For combining tasks, we
only need two: the monadic bind for sequencing tasks and the parallel combina-
tor for creating a dynamically extensible number of parallel tasks. From these
functions all other editors and all other combinators shown can be derived. These
core functions therefore form the pillars of the iTask core system. They deserve
some special attention in this concluding section of the lecture notes.

The fact that we can express such a complicated functionality with only a
few functions illustrates the expressive power of a functional language such as
Clean. An advantage is that we need less code, errors are less likely to occur,
and the maintenance effort is reduced significantly.

10.1 The Core iTask Editor

The core iTask editor interact (see below) has many similarities with update-
SharedInformation, that we already have seen in Section 6. The main difference
with updateSharedInformation is that interact is even more general and contains
more information for the construction of views. In these lecture notes, many
different variant of editors are presented, but they can all be expressed in terms
of this core editor.

88 R. Plasmeijer et al.

Table 10. The core interaction task

interact :: d (l r Bool → [InteractionPart l w]) l (RWShared r w) → Task (l,r)
| descr d & iTask l & iTask r & iTask w

:: InteractionPart l w

=∃v: FormPart (FormView v) ((Maybe v) → (l,Maybe w)) & iTask v

|∃v: DisplayPart v & iTask v

| UpdatePart String (l,Maybe w)

:: FormView v = FormValue v

| Blank

| Unchanged (FormView v)

With interact, one can edit two different kinds of given values at the same
time: a local value, which is only accessible for this specific editor, say of type l,
and shared data, which can be accessed by other editors or systems at the same
time as well. Reading and writing to shared data can be of different type, say a
value of type r can be read, while a value of type w can be written. Different users
of an iTask system can play a different role in an organization. One therefore
needs to be able to present the information in a proper way, depending on the
role to play. As usual one can therefore define different Views On the local and
shared data. This actually means that one defines a bidirectional map between
the demanded view v and the local data l and shared data r and w.

A view is just a value of some type. The iTask system presents the value to
the browser which renders the information in such a way that the end user can
do her work and edit the information. Any change made in any view is mapped
back to a change in the local and shared data. These changes are communicated
immediately to the other users or systems looking at this data and may lead to
an update of their view. When the edit action is ended, the final values of local
and shared data are communicated to the next tasks to be done.

The views to show can be defined as follows. The interactive rendering to
create can be an editable form (FormPart), a non-editable form (DisplayPart), or it
can be a trigger such as a button (UpdatePart). For a smooth interaction it needs
to know what to do when a form is not yet filled in (Blank), changed (FormValue),
or left unchanged (Unchanged). One can define as many views as wanted, such that
certain information can be shown editable, and others not. Also the number and
kind of views can be calculated dynamically using a function yielding the list of
views to show, given the current value of local and shared state. The Boolean
value which is given as additional parameter to this function is internally set by
the iTask engine. It indicates whether the shared state has recently been altered
by someone else, which is used to trigger a recalculation of the rendering, even
though the end-user did not change anything with this editor.

Defining Multi-user Web Applications with iTasks 89

10.2 The Core iTask Combinators

We already have explained the core iTask combinators in the previous sections.
Here we summarize them once again.

(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask a & iTask b

return :: a → Task a | iTask a

The iTask library uses on the top level a monadic approach to hide the state
transformation for the iTask programmer. The monad we use is called the Task

monad. Internally, in the core implementation, however, uniqueness typing is
being used instead [2]. This gives us the best of two worlds: internally it makes
it easier to handle all the different kind of state information which has to be
maintained, while on the top level this is all hidden.

One can define a sequence of two tasks with the monadic bind operator (>>=).
As usual, the result of the first operand (of type Task a) is passed as argument to
the second argument, a function of type a → Task b. With return any value can
be lifted to the task domain.

parallel :: d s (ResultFun s a) [TaskContainer s] → Task a

| iTask s & iTask a & descr d

:: TaskContainer s :== (ParallelTaskType, ParallelTask s)
:: ParallelTask s :== (TaskList s) → Task ParallelControl

taskListState :: (TaskList s) → Shared s | TC s

taskListProperties :: (TaskList s) → Shared [ParallelTaskInfo]

appendTask :: (TaskContainer s) (TaskList s) → Task Int | TC s

removeTask :: Int (TaskList s) → Task Void | TC s

With parallel an arbitrary number of tasks can be created to work on in parallel.
Each parallel task has two components: the task to do and a GUI container defin-
ing what the purpose of a task is, such that it can be presented to the end-user
in the proper way.

It is observed that parallel tasks can be used for different purposes. One can
use a task to take care of some computer system, device driver, web server or
application. But a parallel task can also be used to handle multiple tasks to be
performed by the same end user, or to handle some task to be performed by
someone else. For all these different purposes, a suitable GUI container can be
specified (see Section 8).

TaskList is an abstract type which manages a kind of process table adminis-
tration. It is administrated which subtasks have been created for this particular
parallel combinator. One can enquire the administration (using taskListProperties)
and ask which processes (tasks) are known and what their status is. One can get
hold of the shared state (using taskListState) the subtasks are using to commu-
nicate with each other. One can add new tasks (using appendTask) or kill existing
ones (using removeTask). Hence the iTask system behaves much like an operating

90 R. Plasmeijer et al.

system where new processes can be created or stopped as demanded. Instead
of one flat process administration as common in an operating system, the iTask
system has a hierarchical one. A new level is made when a subtask uses the
parallel combinator.

11 Related Work

The iTask system is a toolbox to create WFMS applications. These applications
are distributed, multi-user, and persistent. The iTask system deploys contempo-
rary web technology to create this as well as to generate rich content and GUI
elements for the end-user. In Section 1, we have already compared the system
with contemporary WFMS systems. The other core aspect of the iTask system,
programming rich web applications in a functional style, has not been compared
yet. This is the topic in this section. Many solutions that have been inspiring
for our work have been proposed to program web applications. We mention just
a few of them in a number of languages: the Haskell cgi library [14]; the Curry
approach [8]; writing xml applications [6] in SMLserver [7], and the WashCGI
[21], based on Haskell. In these lecture notes we have shown that programming
interactive applications in iTask is generic, allowing application developers to
focus on creating proper models of interactive programs, instead of program-
ming the visualization. This is also the key difference with the above mentioned
approaches.

Links [3] and formlets [4] were developed in roughly the same period as the
iTask system. Links compiles to JavaScript for rendering html pages, and SQL
to communicate with a back-end database. A Links program stores its session
state at the client side. In a Links program, the keywords client and server
force a top-level function to be executed at the client or server respectively.
Both systems, as well as iTask, use Ajax technology to implement the communi-
cation between client and server. The iTask system generalizes the opportunity
to perform client-side computation to arbitrary expressions of a workflow.

Finally, in the Hop [20,13] web programming language, only the GUI part is
compiled to JavaScript, whereas the other part runs natively. Hop is a strati-
fied language and maintains a strict separation between programming the user
interface and the logic of an application. The programmer is forced to express
the required functionality in the proper stratum. In contrast, in iTask there is
no such distinction, and the client is, in principle, able to perform any server-
side computation that does not rely on server-side properties such as access to
back-end databases.

12 Conclusions

In these lecture notes we have presented the iTask system. Although originally
designed to be a WFMS programming language, it has evolved gradually into a
more general approach that is based on the concept of tasks. In our view, there
are two key reasons for this development:

Defining Multi-user Web Applications with iTasks 91

– The use of a functional host programming language stimulates abstraction
and hence the creation of general purpose building blocks. In these lecture
notes we have illustrated this approach by many examples and exercises to
show how to apply well-known functional programming techniques such as
polymorphism and higher-order functions to obtain such applications.

– The use of generic programming techniques increases the degree of abstrac-
tion even further and allows the specification of interactive programs in terms
of models instead of programming views. This is illustrated extensively in
these lecture notes in the way interactive applications are constructed.

We have shown in Section 10 that the entire system is founded on three primitive
functions, viz. the interact task to handle user-system-interaction, the parallel

combinator to coordinate cooperating tasks, and the monadic >>= combinator
to sequentially compose tasks. Finally, the concept of shared state (Section 5)
abstracts from handling persistent and volatile data. In short, a task-oriented
language should liberate the programmer from these programming chores. We
think that the iTask system is a first step towards achieving this goal.

Acknowledgements. The authors thank the anonymous referees for their con-
structive comments.

References

1. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Technical Report FIT-TR-2002-02, Queensland University of Technology
(2002)

2. Barendsen, E., Smetsers, S.: Conventional and Uniqueness Typing in Graph
Rewrite Systems (Extended Abstract). In: Shyamasundar,R.K. (ed.) FSTTCS 1993.
LNCS, vol. 761, pp. 41–51. Springer, Heidelberg (1993)

3. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web Programming With-
out Tiers. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2006. LNCS, vol. 4709, pp. 266–296. Springer, Heidelberg (2007)

4. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: An idiom’s guide to formlets.
Technical report, The University of Edinburgh, UK (2007),
http://-groups.inf.ed.ac.uk/links/papers/formlets-draft2007.pdf

5. Domoszlai, L., Bruël, E., Jansen, J.M.: Implementing a non-strict purely functional
language in JavaScript. Acta Universitatis Sapientiae 3, 76–98 (2011)

6. Elsman, M., Larsen, K.F.: Typing XHTML Web Applications in ML. In: Jayara-
man, B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 224–238. Springer, Heidelberg
(2004)

7. Elsman, M., Hallenberg, N.: Web Programming with SMLserver. In: Dahl, V. (ed.)
PADL 2003. LNCS, vol. 2562, pp. 74–91. Springer, Heidelberg (2003)

8. Hanus, M.: High-Level Server Side Web Scripting in Curry. In: Ramakrishnan, I.V.
(ed.) PADL 2001. LNCS, vol. 1990, pp. 76–92. Springer, Heidelberg (2001)

9. Jansen, J.M., Koopman, P., Plasmeijer, R.: Efficient interpretation by transforming
data types and patterns to functions. In: Nilsson, H. (ed.) Proceedings of the 7th
Symposium on Trends in Functional Programming, TFP 2006, Nottingham, UK,
April 19-21, pp. 157–172 (2006) ISBN 978-1-84150-188-8

http://-groups.inf.ed.ac.uk/links/papers/formlets-draft2007.pdf

92 R. Plasmeijer et al.

10. Jansen, J.M., Plasmeijer, R., Koopman, P.: iEditors: Extending iTask with Inter-
active Plug-ins. In: Scholz, S.-B., Chitil, O. (eds.) IFL 2008. LNCS, vol. 5836,
pp. 192–211. Springer, Heidelberg (2011)

11. Koopman, P., Plasmeijer, R., Achten, P.: An Executable and Testable Semantics for
iTasks. In: Scholz, S.-B., Chitil, O. (eds.) IFL 2008. LNCS, vol. 5836, pp. 212–232.
Springer, Heidelberg (2011)

12. Lijnse, B., Jansen, J.M., Nanne, R., Plasmeijer, R.: Capturing the Netherlands
coast guard’s sar workflow with itasks. In: Mendonca, D., Dugdale, J. (eds.) Pro-
ceedings of the 8th International Conference on Information Systems for Crisis
Response and Management, ISCRAM 2011, Lisbon, Portugal. ISCRAM Associa-
tion (May 2011)

13. Loitsch, F., Serrano, M.: Hop client-side compilation. In: Proceedings of the 7th
Symposium on Trends in Functional Programming, TFP 2007, New York, NY,
USA, April 2-4, pp. 141–158. Interact (2007)

14. Meijer, E.: Server side web scripting in Haskell. Journal of Functional Program-
ming 10(1), 1–18 (2000)

15. Michels, S., Plasmeijer, R., Achten, P.: iTask as a New Paradigm for Building
GUI Applications. In: Hage, J., Morazán, M.T. (eds.) IFL 2010. LNCS, vol. 6647,
pp. 153–168. Springer, Heidelberg (2011)

16. Plasmeijer, R., Achten, P., Koopman, P.: iTasks: executable specifications of inter-
active work flow systems for the web. In: Hinze, R., Ramsey, N. (eds.) Proceedings
of the International Conference on Functional Programming, ICFP 2007, Freiburg,
Germany, pp. 141–152. ACM Press (2007)

17. Plasmeijer, R., Achten, P., Koopman, P., Lijnse, B., van Noort, T., van Gronin-
gen, J.: iTasks for a change - Type-safe run-time change in dynamically evolv-
ing workflows. In: Khoo, S.-C., Siek, J. (eds.) Proceedings of the Workshop on
Partial Evaluation and Program Manipulation, PEPM 2011, Austin, TX, USA,
pp. 151–160. ACM Press (2011)

18. Plasmeijer, R., Jansen, J.M., Koopman, P., Achten, P.: Declarative Ajax and client
side evaluation of workflows using iTasks. In: Proceedings of the 10th International
Conference on Principles and Practice of Declarative Programming, PPDP 2008,
Valencia, Spain, July 15-17, pp. 56–66 (2008)

19. Plasmeijer, R., Lijnse, B., Achten, P., Michels, S.: Getting a grip on tasks that
coordinate tasks. In: Proceedings Workshop on Language Descriptions, Tools, and
Applications (LDTA), Saarbrücken, Germany, March 26-27 (2011)

20. Serrano, M., Gallesio, E., Loitsch, F.: Hop, a language for programming the web 2.0.
In: Proceedings of the 11th International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2006, Portland, Oregon,
USA, October 22-26, pp. 975–985 (2006)

21. Thiemann, P.: WASH/CGI: Server-side Web Scripting with Sessions and Typed,
CompositionalForms. In:Krishnamurthi, S.,Ramakrishnan,C.R. (eds.)PADL2002.
LNCS, vol. 2257, pp. 192–208. Springer, Heidelberg (2002)

22. Wadler, P.: Comprehending monads. In: Proceedings of the Conference on Lisp
and Functional Programming, LFP 1990, Nice, France, pp. 61–77 (1990)

	Defining Multi-user Web Applications with iTasks
	Introduction
	Generic Editors
	Combinators
	Enriching Tasks with GUI
	Shared Data
	Views on Local and Shared Data
	Task Distribution
	Parallel Tasks I: A Fixed Number of Tasks
	Parallel Tasks II: A Dynamic Number of Tasks
	The Core Pillars of iTasks
	The Core iTask Editor
	The Core iTask Combinators

	Related Work
	Conclusions
	References

