
Ann Reg Sci (2011) 47:619–639
DOI 10.1007/s00168-010-0398-0

SPECIAL ISSUE PAPER

W-based versus latent variables spatial autoregressive
models: evidence from Monte Carlo simulations

An Liu · Henk Folmer · Johan H. L. Oud

Received: 7 July 2009 / Accepted: 1 April 2010 / Published online: 23 June 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In this paper, we compare by means of Monte Carlo simulations two
approaches to take spatial autocorrelation into account: the classical spatial autore-
gressive model and the structural equations model with latent variables. The former
accounts for spatial dependence and spillover effects in georeferenced data by means
of a spatial weights matrix W. The latter represents spatial dependence and spillover
effects by means of a latent variable in the structural (regression) model while the
observed spatially lagged variables are related to the latent spatial dependence vari-
able in the measurement model. The simulation results based on Anselin’s Columbus,
Ohio, crime data set show that the misspecified latent variables approach slightly trails
the correctly specified classical approach in terms of bias and root mean squared error
of the coefficient estimators.
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620 A. Liu et al.

1 Introduction

When it comes to applying econometric models to analyze georeferenced data,
researchers are well aware of the fact that ignoring spatial dependencies leads to
inefficient and biased estimators. A substantial theoretical and simulation literature
on efficient and consistent estimators for spatial dependence models has developed. A
major issue concerns the specification of the structure of spatial dependence including
the type of spatial weights to be incorporated into the model. This paper focuses on the
evaluation of two approaches that explicitly model spatial dependence: the classical
W-based regression model and the recently proposed latent variables approach.1

In the spatial econometrics literature the W-based spatial regression approach has
been dominant and is most commonly used. The approach is based on a spatial weights
matrix, usually denoted W, that accounts for spatial dependence or spill-over effects
among the spatial units of observation. The selection of a spatial weights matrix is a
crucial step in spatial modelling because it a priori imposes a model structure which
affects estimates (Bhattacharjee and Jensen-Butler 2006; Anselin 2002; Fingleton
2003) and the substantive interpretation of the research findings (Hepple 1995).

Several types of spatial weights matrices can be used to represent spatial depen-
dence. Most common are the contiguity-based matrices. Two regions are said to be
first-order contiguous if they share a common border (rook) or vertex (bishop) or both
(queen). The concept of spatial contiguity can be extended to higher orders. Another
common type of weights matrix is distance based, such as inverse distance or inverse
distance squared, or a fixed distance band.

Much progress has been made with respect to the the construction and comparison
of spatial weights matrices including estimation of spatial weights matrices that are
consistent with an observed pattern of spatial dependence rather than assuming a priori
the nature of spatial interaction dependence (Hepple 1995; Aldstadt and Getis 2004,
2006). In spite of all these developments the most common procedure in applied
research is still to assume a priori first-order contiguity, as expressed by a spatial
weights matrix W with diagonal elements equal to zero and off-diagonal elements
equal to one if two regions are first-order contiguous and zero elsewhere.

The alternative under consideration here, the latent variables approach was intro-
duced by Folmer and Oud (2008). It proceeds on the basis of a structural equations
model (SEM). SEM allows simultaneous handling of observed and latent variables
within one model framework. Latent variables refer to those phenomena that are
supposed to exist but cannot be observed directly. An example of a latent variable is
socio-economic status. This concept refers to an individual’s standing in society which
cannot be observed or measured directly. However, it can be measured via observable
indicators like educational attainment, income, occupational status, etc. In a similar
vein, the latent variable regional welfare can be measured by observable indicators

1 Another approach to dealing with spatial autocorrelation is spatial filtering. It comes down to the removal
of spatial dependence in a spatially autocorrelated variable by partioning it into a filtered, nonspatial variable
and a residual spatial variable such that conventional regression techniques can be applied to the filtered
data (see amongst others Getis and Griffith 2002; Tiefelsdorf and Griffith 2007). Spatial filtering is not
considered in this paper.
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W-based versus latent variables spatial autoregressive models 621

like GDP per capita, features of the income distribution, labour market opportunities,
indicators of the healthcare system, environment quality and so on.

A SEM is made up of two submodels: (1) the structural model representing the
causal relationships among the latent variables and (2) the measurement model repre-
senting the relationships between the latent variables and their observable indicators
(Oud and Folmer 2008). The latent variables approach accounts for spatial dependence
with the spatially lagged variables represented by latent variables in the structural
model and models the relationship between latent spatially lagged variables and their
observed indicators in the measurement model. Since one latent variable can be mea-
sured by several indicators, this approach allows for the straightforward inclusion of
various kinds of spatial dependence in the model, e.g. spatial dependence due to the
impact of the nearest neighbours and distance-weighted impact from hotspots. It is
also capable of including different types of contiguity, including nonspatial contigu-
ity, for instance, a dependent relationship between regions due to economic, social
or demographic similarity (see Case et al. 1993) rather than e.g. conventional spatial
dependence such as first-order contiguity.2 Moreover, several types of spatial depen-
dences can be included in a given model by using different latent variables in the
structural model with corresponding sets of indicators in the measurement model, e.g.
one latent variable for conventional spatial contiguity and another for socio-economic
dependency. Another important feature of the latent variable approach is that it allows
testing of the relationship of a latent variable and its indicators, e.g. whether or not the
next nearest neighbour contributes to the latent dependence variable.

Folmer and Oud (2008) show that the latent variables approach can produce esti-
mates that are virtually identical to those obtained by the W-based approach but also
that it is more general than the latter. They argue, however, that further comparison is
needed to draw up the pros and cons of each approach. To gain more insight into the
quality of the estimators produced by both approaches, we carry out Monte Carlo sim-
ulations. The simulations are performed on the basis of Anselin’s (1988) Columbus,
Ohio, crime data set which was also used by Folmer and Oud (2008) for illustrative
purposes. The performance of the approaches will be analyzed in terms of bias and root
mean squared error (RMSE) for various values of spatial autocorrelation and kinds of
weight matrices.

The remainder of the paper is organized as follows. Section 2 summarizes the
W-based spatial regression approach and the latent variables approach and specifies
their model structures. A description of the experimental design is given in Sect. 3. In
Sect. 4 we present the simulation results while Sect. 5 concludes.

2 Non-spatial contiguity can also be handled by conventional W methods. However, if both spatial and
non-spatial contiguity are taken into account in a conventional model, more than one W matrix is required,
particularly one corresponding to the former and one to the latter type of dependence.
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2 Model specifications

2.1 The W-based autoregressive model

There are two types of W-based spatial models that are most commonly used in applied
research: the spatial lag model and the spatial error model. Here, we restrict ourselves
to the former. The lag model assumes that the dependent variable in a given region,
say i, is a function of exogenous variables in i and of the dependent variable in other
regions, different from i. Particularly, the classical W-based spatial lag or autoregres-
sive model reads:

y = ρW y + Xβ + ε (1)

ε ∼ N
(
0, σ 2 In

)
(2)

where y is an n × 1 vector of observations on the dependent variable, X is an n × k
data matrix of explanatory variables with associated coefficient vector β, ε is an n ×1
vector of error terms. W is the n × n spatial weights matrix with diagonal elements
equal to zero and off-diagonal elements unequal to zero, if the regions corresponding
to that element meet the adopted spatial dependence definition. The parameter ρ is
the spatial autoregressive or spatial lag parameter.

The log-likelihood function for model (1) reads Anselin’s (1988):

L =− N

2
ln π− N

2
ln σ 2+ln |A|− 1

2σ 2 (Ay−Xβ)′(Ay−Xβ) with A= I − ρW.

(3)

Since the likelihood function contains a Jacobian term ln |A| and the matrix A is of
dimension equal to the number of observations, its presence in the function to be opti-
mized makes the numerical analysis considerably complex. Ord (1975) has derived a
simplification of determinants such as |A| in terms of its eigenvalues. Specifically:

ln |I − ρW | = ln �i (1 − ρwi ) = �i ln(1 − ρwi ) (4)

where the wi are the eigenvalues of W .

2.2 The latent variables spatial autoregressive model

Before going into detail, we observe that a SEM is usually specified in terms of vari-
ables in contrast to spatial regression models like model (1) which are specified in
terms of units of observation. Below we adopt the SEM convention. When we refer
to a SEM in terms of units of observation we use a tilde (∼).

A SEM in general form consists of two basic equations:

y = 	η + ε with cov(ε) = � (5)

η = Bη + ζ with cov(ζ ) =  (6)
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W-based versus latent variables spatial autoregressive models 623

Equation (5) is the measurement model where the vector y contains m observed vari-
ables. 	 contains the loadings of the observed variables (indicators) on the vector of k
latent variables η3, and � is the m × m measurement error covariance matrix. In the
structural model (6), B specifies the structural relationships among the latent variables
and  is the k×k covariance matrix of the errors in the structural model. The measure-
ment errors in ε are assumed to be uncorrelated with the latent variables in η. Observe
that directly observed variables can be included in the structural model by specifying
in the measurement model an identity relationship between a given observed variable
and the corresponding latent variable.

A SEM model is estimated by minimizing the distance between the model implied
covariance matrix (on the basis of hypotheses relating to the model structure as spec-
ified in the parameter matrices B,,	, and �) and the observed covariance matrix.
Several estimators for SEM have been developed including instrumental variables
(IV), two-stage least squares (TSLS), unweighted least squares (ULS), generalized
least squares (GLS), fully weighted (WLS) and diagonally weighted least squares
(DWLS), and maximum likelihood (ML). ML is the most commonly used estimator
and the default in the statistical packages Mx and LISREL. Below we discuss the ML
estimator. It maximizes the log-likelihood function:

l(θ |Y ) = − N

2
ln |�| − N

2
tr(S�−1) − pN

2
ln 2π (7)

where � is the theoretical covariance matrix in terms of the free and constrained
elements in the four parameter matrices. That is:

� = 	(I − B)−1(I − B ′)−1	′ + � (8)

and S is the observed covariance matrix for given data set Y .
The ML-estimator θ̂ = arg max l(θ |Y ) chooses that value of θ which maximizes

l(θ |Y ). Minimizing the fit function:

FML = ln |�| + tr(S�−1) − ln |S| − p (9)

gives the same results as maximizing the above likelihood function (Oud and Folmer
2008). The LISREL software package also contains a variety of tests and model eval-
uation statistics and gives reliable information about the identification status of the
model (see Jöreskog and Sörbom 1996 for details).

The SEM analog to model (1) is specified as follows. First, the spatially lagged
dependent variable W y is taken as a latent variable in the structural model (i.e. W y in
(1) is replaced by a latent variable η). Specifically:

y = ρη + γ ′x + ζ (10)

3 Observe that a SEM will not be identified if the latent variables have not been assigned measurement
scales. It is convenient to fix the measurement scale of a latent variable by fixing one λi , usually at 1. That
is, one often chooses λ1 = 1.
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The structural model (10) is completed by a measurement equation:

y = 	η + ε (11)4

with

y =

⎡

⎢⎢⎢
⎣

y1
y2
...

ym

⎤

⎥⎥⎥
⎦

, 	 =

⎡

⎢⎢⎢
⎣

λ1
λ2
...

λm

⎤

⎥⎥⎥
⎦

, � =

⎡

⎢⎢⎢
⎣

σ 2
ε1

0 0 0
0 σ 2

ε2
0 0

0 0
. . . 0

0 0 0 σ 2
εm

⎤

⎥⎥⎥
⎦

(12)

Observe that in (12) the latent spatial lag η is measured by more than one observed
variable. For instance, for Anselin’s crime model Folmer and Oud (2008) consider
the three, respectively, six, nearest neighbours as well as the distance from the crime
center.

The measurement model is constructed by means of selection functions or selec-
tion matrices Si which select relevant observations from the vector of observations as
follows [as indicated above, a tilde (∼) denotes (a vector of) observations]:

ỹ1 = S1ỹ,
ỹ2 = S2ỹ,

...

ỹm = Smỹ.

(13)

That is, S1 selects the values for the first indicator vector ỹ1, S2 for the second indicator
vector ỹ2, etc. For example, for the simulations based on Anselin’s crime model, S1
could select the value of crime in the nearest contiguous neighbour, S2 the crime value
in the next nearest contiguous neighbour and so on. Thus, for the measurement model
we obtain:

ỹ1 = S1ỹ = λ1η̃ + ε̃1,

ỹ2 = S2ỹ = λ2η̃ + ε̃2,
...

ỹm = Smỹ = λmη̃ + ε̃m.

(14)

From the above it follows that spatial dependence is captured by two kinds of parame-
ters, ρ and λi , whereas in the standard lag model only the “average” effect ρW y shows
up. This means that the latent variable approach offers a much richer representation
of the spatial structure than the standard spatial econometric approaches. Moreover,
it allows testing of the relationship between indicators and the corresponding latent
variables, for instance, whether the sixth nearest neighbour is a significant indicator.

The standard SEM log-likelihood function needs correction so as to account
for the presence of the latent spatial lag variable among the explanatory variables.

4 Observe that in (10) y is a scalar while in (11) y is a vector.
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Folmer and Oud (2008) show that ln |A| needs to be added to the log-likelihood
function (7) with5

A = I − ρ

mλ1
S1 − ρ

mλ2
S2 − · · · − ρ

mλm
Sm (15)

3 Experimental design

To investigate the performances of the two modelling approaches specified in Sect. 2,
we conduct a number of Monte Carlo simulations. For that purpose we make use
of Anselin’s (1988) Columbus, Ohio, crime data set. Particularly, we use its spatial
structure, the observed values of the exogenous variables and the parameter estimates.

The first step is sample generation. For that purpose we specify equation (1) in
terms of Anselin’s crime model:

y = ρW y + β0 + x1β1 + x2β2 + ε (16)

or:

y = (I − ρW )−1(β0 + x1β1 + x2β2 + ε) (17)

Next, y is generated as follows (cf. Florax and Folmer 1992; Florax et al. 2003):

1. Fix the exogenous variables x1 (income) and x2 (housing value) at the values in
Anselin’s (1988) crime data set.

2. Choose Anselin’s (1988) estimate of the vector β6:

β0 = 45.079, β1 = −1.032, β2 = −0.266.

3. Generate values for the error term ε by randomly drawing from a normal (0,10)
distribution. The variance of ε is approximately equal to Anselin’s (1988) estimate.

4. Vary ρ over the interval [0.1, 0.9] using increments of 0.2. Observe that ρ = 0 is
the non-spatial benchmark model.

5. Compute y according to (17) on the basis of Anselin’s (1988) first-order queen
contiguity matrix, inverse distance matrix and inverse distance squared matrix,
respectively.

5 First-order and higher order contiguity models with equal number of neighbours and inverse distance
models are nested within the class of latent variables models. For the first case each λi in the measurement
model is fixed at 1/n where n is the number of neighbours. For the inverse distance model each λi is fixed
at 1/n if the observed value for each neighbour is weighted by the inverse of distance. Contiguity models
with unequal numbers of neighbours are not nested within the latent variables model.
6 The regression coefficients are chosen in line with Anselin’s estimates, since these values are known from
the literature. Other values could have been chosen, however.
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For the data set thus generated we estimate both the classical spatial lag model and
the latent model. The classical models are estimated on the basis of a first-order conti-
guity matrix, inverse distance matrix and inverse distance squared matrix for each set
of samples. For the latent model the first six nearest neighbors are taken as indicators
of the latent dependence variable.

The number of replications is 1,000. The estimates are evaluated in terms of bias and
RMSE of the spatial lag parameter ρ and the main regression coefficients of interest,
β1 and β2.

4 Simulation results

Table 1 and Fig. 1 report the biases of the estimators of ρ, β1 and β2 of the three clas-
sical models and the latent variables model based on samples generated by first-order
contiguity weights matrix. The comparison involves three types of classical models—
Ccont (estimated on the basis of the first-order contiguity matrix), Cdinv (estimated on
the basis of the inverse distance matrix), Cdinv2 (estimated on the basis of the inverse
distance squared matrix)—and one latent model—Latent6n (estimated on the basis of
the first six nearest neighbors as indicators of the latent spatial dependence variable).

• From Table 1 and Fig. 1a it follows that when ρ = 0, the ‘true’ model—Ccont—
has the smallest bias for ρ. For 0 < ρ < 0.5 this holds for Cdinv and for ρ ≥ 0.5
for Cdinv2. Latent6n is outperformed by its three alternatives forρ < 0.5. For
ρ ≥ 0.5, however, it outperforms Ccont but not the other two alternatives. For
Latent6n we observe a constantly descending trend of the bias.

• Table 1 and Fig. 1b also show that for β1 Cdinv2 has the smallest bias except for
ρ = 0 and ρ = 0.1 when Ccont and Cdinv have the smallest bias, respectively.
For ρ = 0.3 Latent6n has smaller bias than Ccont but is outperformed by the two
alternative classical models. The bias of Latent6n (in absolute value) follows a U
curve with minimum at ρ = 0.3.

• Table 1 and Fig. 1c show that for β2 Ccont has the smallest bias everywhere except
for ρ = 0 when Cdinv has the smallest bias and for ρ = 0.1 when this holds for
Latent6n. Moreover, Latent6n outperforms Cdinv and Cdinv2 for ρ = 0.3 and 0.9.

It follows from the above that there are several cases where the latent model has smaller
bias than one or several of the classical models. Particularly, Latent6n outperforms the
“true” or correctly specified Ccont more frequently than the other two misspecified
classical models.

The RMSEs of the estimators are shown in Table 2. It shows that there are only
very small differences between the four models for each parameter. Figure 2 presents
total RMSE, i.e., the sum of the RMSEs of all three parameters. The figure shows
that the classical models outperform the latent model. One reason for this is probably
that there are more parameters and thus bigger standard errors in the latent model
than in its alternatives. Among the classical models the “true” Ccont outperforms the
other classical models for ρ ≤ 0.5. However, Cdinv2 has the smallest RMSE when
ρ > 0.5, closely followed by Cdinv. Notice that when ρ increases, the RMSE of
Latent6n decreases somewhat more than the RMSE of Ccont.
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Fig. 1 Bias of the estimators of ρ (a), β1 (b) and β2 (c) for the classical models (Ccont, Cdinv, Cdinv2)
and the latent model (Latent6n) for samples generated by first-order contiguity matrix
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Fig. 2 Total RMSE for the four models for samples generated by first-order contiguity matrix

Taking bias and RMSE together, it follows that Ccont and Cdinv2 perform better
than Cdinv and Latent6n.

The results for samples generated by inverse distance weights matrix are summa-
rized in Tables 3 and 4 and shown in Figs. 3 and 4. From Table 3 it follows that all
the biases are negative for all four models and all parameters. Moreover, Cdinv, as the
‘correct’ model, outperforms the other classical models and the latent model most of
the time in terms of bias of all three parameters.

Figure 3a shows that for ρ Ccont has the smallest bias when ρ = 0 and Cdinv2 is
the best when ρ = 0.1. Other than that, Cdinv outperforms the other three models.
Latent6n is better than Ccont when ρ = 0.9. With regard to the bias of β1, it can be
concluded from Fig. 3b that the ‘winners’ are the same as in the case of ρ except for
ρ = 0.9 where Latent6n has the lowest bias. Moreover, Latent6n also outperforms
Ccont when ρ ≥ 0.5. From Fig. 3c it follows that Cdinv is best again and Latent6n is
outperformed by Ccont except for ρ = 0.1 when their biases are equal.

Table 4 gives the RMSEs for ρ, β1 and β2 for the four models. As in the case of
samples based on the first-order contiguity matrix, the differences between the four
models are very small. The latent model sometimes outperforms the classical models.
For instance, for ρ = 0.1, Latent6n has smaller RMSE for ρ than Cdinv and it out-
performs both Cdinv and Cdinv2 when ρ = 0. Also for values of ρ ≥ 0.7 Latent6n
outperforms Ccont for β1.

Figure 4 presents the total RMSE of all three parameters. It follows that total RMSE
is smallest for Ccont for the first three values of ρ while Cdinv leads for the next three
values of ρ, closely followed by Cdinv2. However, unlike the previous case where
samples are generated by first-order contiguity matrix, the classical models do not
uniformly outperform the latent approach. Particularly, Latent6n beats Cdinv when
ρ = 0 and outperforms Ccont when ρ = 0.9.

Considering both bias and RMSE, the “true” model Cdinv outperforms its three
alternatives most of time. Furthermore, Cdinv2 and Ccont perform about equally well.
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Fig. 3 Bias of the estimators of ρ (a), β1 (b) and β2 (c) for the classical models (Ccont, Cdinv, Cdinv2)
and the latent model (Latent6n) for samples generated by inverse distance matrix
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Fig. 4 Total RMSE for the four models for samples generated by inverse distance matrix

The latent model trails the “true” model, and, to a lesser extent, the misspecified clas-
sical models. The differences are very small, however.

Table 5 gives the bias for samples generated by the inverse distance squared matrix.
With a few exceptions Cdinv performs best, closely followed by the ‘correct’ model
Cdinv2. Figure 5a–c show that Ccont has the lowest bias for ρ and β1 when ρ = 0
and for β2 when ρ = 0.5 and 0.7. There are several cases where Latent6n outperforms
Ccont: for ρ when ρ ≥ 0.7, for β1 when ρ ≥ 0.5 and for β2 when ρ = 0.9.

The RMSE results are shown in Table 6. As in the previous cases, for each param-
eter there are only slight differences between the models. Figure 6 which represents
the total RMSE summed over all estimators, shows that Ccont has the smallest total
RMSE for the first two values of ρ while Cdinv and Cdinv2 produce better and almost
identical results for ρ ≥ 0.3. For ρ ≥ 0.7 the total RMSE of four models strongly
converge.

Considering bias and RMSE together we conclude that Cdinv and Cdinv2 both
perform better than Ccont and Latent6n in the case samples are generated on the basis
of the inverse distance squared matrix. Latent6n trails the classical approaches, though
the differences are small.

The above results show that the “true” model tends to outperform the misspecified
alternatives. This applies especially to Latent6n. However, the differences between
Latent6n and the classical models tend to be very small. Moreover, in several cases
Latent6n performs best or is the best among the misspecified models.

5 Conclusions

This paper evaluates the performance of estimators of two types of spatial autore-
gressive models: the classical W-based spatial autoregressive model and the structural
equations model with latent variables. The former accounts for spatial dependence
and spillover effects by means of a spatial weights matrix W and the latter by means
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Fig. 5 Bias of the estimators of ρ (a), β1 (b) and β2 (c) for the classical models (Ccont, Cdinv, Cdinv2)
and the latent model (Latent6n) based on samples generated by inverse distance squared matrix
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Fig. 6 Total RMSE for the four models for samples generated by inverse distance squared matrix

of a latent variable in the structural model while the relationships between observed
spatially lagged variables and the latent spatial dependence variable(s) are given in the
measurement model. The two classes of approaches are compared by means of Monte
Carlo simulations based on Anselin’s Columbus, Ohio, crime data set in terms of bias
and RMSE of the coefficient estimators for various values of the spatial lag parameter
and different types of weight matrices. Data are generated on the basis of exogenous
variable values, parameter values and the first-order contiguity matrix, inverse distance
matrix and inverse distance squared matrix, as given by Anselin’s (1988).

The simulation results show that the “true” model, i.e. the model whose W matrix is
the same as used for data generation, tends to perform best in terms of bias and RMSE.
However, the differences between the “true” and the misspecified models including
the structural equation model, are very small. Moreover, for several combinations
of the value of spatial autoregressive parameter and the weights matrix used in data
generation the latter produces results with the smallest bias or RMSE. In other words,
the “true” models do not uniformly outperform the latent variables approach.

The fact that only the W-based model structure has been used to generate data is
strongly in favor of the W-based estimators, since it implies that in all cases the latent
model is misspecified. The reason for analyzing the performance of the latent model
on the basis of data generated by means of a W-based model is that we wanted to get
insight into the performance of the latent variables approach in the case of misspeci-
fication. Subsequent simulations will explore the behavior of both approaches under
level playing field conditions.

It should also be noted that in contrast to the classical models, not all model speci-
fication options of the latent variable approach have been fully expolited in the simu-
lations. Particularly, in order to keep the simulations simple, the number of observed
spatially lagged variables was a priori fixed at six, since in Folmer and Oud (2008) this
number gave parameter estimates virtually identical to those obtained by Anselin’s
(1988). In the practice of structural equation modelling the optimal number of indi-
cators, i.e. observed spatial lags, which may differ by e.g. type of W matrix, can be
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identified by means of tests. Another unexploited specification search is the possibility
of covariances among the error terms in the measurement model (�).

To sum up, given the small differences between the latent variables approach and
the “true” classical alternatives with respect to bias and RMSE, its unexploited speci-
fication search options, its flexibility and information content, it is worthwhile further
considering its suitability to model spatial dependence.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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