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STELLINGEN 
                                                                                                   
1. De 8-13 jaar survival resultaten van een gecementeerde Exeter heup-prothese in 

combinatie met de bone impaction grafting techniek voor revisie van een gefaalde 
primaire heup zijn uitstekend (dit proefschrift). 

 
2. De maat van de bone graft partikels heeft een grotere invloed op initiële 

acetabulaire cupstabiliteit dan het spoelen van bone grafts (dit proefschrift). 
 
3. Zowel in onbelaste als belaste diermodellen voor het bestuderen van bot herstel is 

osteoconductiviteit van keramische TCP-HA korrels aangetoond (dit proefschrift). 
 
4. Het gebruik van biomaterialen in het orthopaedische werkveld is vaak een 

zoektocht naar het vinden van de optimale balans tussen mechanische stabiliteit en 
biologische activiteit. 

 
5. Voor het reconstrueren van belaste defecten in revisie totale heup vervanging met 

de bone impaction grafting techniek is een 50%-50% volume mix van bone grafts 
en TCP-HA korrels vanuit een mechanisch als biologisch standpunt toepasbaar (dit 
proefschrift). 

 
6. Gezien het overweldigende aanbod van nieuwe bot vervangende materialen zijn 

gestandaardiseerde testmodellen noodzakelijk om tot een betrouwbaar vergelijk te 
komen. 

 
7. "Medical statistics are a little bit like a bikini: what they reveal is suggestive, but 

what they conceal is vital." (Irving R. Levine). 
 
8. “Exposure” binnen het orthopaedische werkveld is niet alleen van belang in de 

operatiekamer. 
 
9. De toename van het aantal proefdier experimenten in Nederland kan ook een 

reflectie zijn van betere en meer innovatieve ideeën van de onderzoekers.  
 
10. "Medicine, the only profession that labours incessantly to destroy the reason for its 

own existence." (James Bryce).  
 
11. Een adequate back-up van onderzoeksgegevens op meerdere plaatsen is van 

essentieel belang tijdens een promotietraject. 
 
12. In plaats van het produceren van TV spots, kunnen tegen proefdiergebruik 

agerende organisaties hun budget beter besteden aan onderzoek naar alternatieven 
voor dierproeven. 

 
13. “The long term implications of drugs/procedures must be fully considered: 

Because over the past few years, more money has been spent on breast implants 
and Viagra than is spent on Alzheimer’s Disease research, it is believed that by the 
year 2030 there will be a large number of people wandering around with huge 
breasts and erections who can’t remember what to do with them.” (James Munroe). 
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Introduction and aims of  the thesis. 
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Total Hip Arthroplasty 
Total hip arthroplasty (THA) is an effective treatment of osteoarthritis of the hip joint. Each year, 

more than 16,000 THA’s are performed in the Netherlands [54]. THA has been proven to im-

prove both hip function and quality of life while decreasing patients pain. It is one of the most 

successful medical procedures [31]. Initially, the THA procedure was only intended to reduce pain 

for older patients with osteoarthritis. However, improvements in prosthesis design, surgical tech-

niques, prophylactic antibiotics [22] and fixation methods improved the patient outcome and sub-

sequently widened the indication for THA in the last decades to patients with congenital hip dis-

ease [5,82] and rheumatoid arthritis [34,49,50,62,75,76,83]. Now it is even used to treat os-

teoarthritis of the hip in younger patients [20]. Due to these developments and an aging popula-

tion the number of THA procedures is still increasing in the Netherlands [54]. The clinical results 

of primary THA procedures are very satisfying; however the longevity of THA implants is not 

indefinite. When primary THA implants loosen, fail to provide joint stability or lead to continuous 

pain for the patient, the primary THA has to be revised. The number of THA revisions is also 

rapidly increasing in the Netherlands [54]. Although more failure scenarios are proposed [81], the 

most common reason for primary THA failure is aseptic loosening of the implant components 

[31]. Wear particles that originate from the implant surfaces play an important role in this particu-

lar scenario. These wear particles can induce a granulomateous aseptic inflammation resulting in 

peri-prosthetic bone loss and loosening of the implant [2]. This failure mechanism can occur on 

the femoral side (stem), the acetabular side (cup), or both. Also septic loosening, implant related 

problems (such as inferior implant designs) or a traumatic injury (such as a fracture after mechani-

cal trauma) can lead to failure of primary THA implants [31]. The clinical situation present during 

a revision THA surgery is much more challenging as compared to a primary THA. First of all, 

there is the burden of a re-operation on a usually older patient population with all sorts of addi-

tional medical problems. Secondly, before a new implant can be placed, the primary THA compo-

nents need to be removed. The removal of these failed implants can be technically demanding and 

may extend the already existing bone loss. The aim of a revision THA procedure is to obtain a 

stable implant fixation on the short and long term and also to restore bone stock loss, normal hip 

mechanics and anatomy. This implies that all bone defects need to be restored and stabilized. 

Both on the femoral and acetabular side numerous techniques have been described. The remain-

der of this thesis will focus primarily on the acetabular situation. 

 

Acetabular bone defect classifications  
A number of classification methods for acetabular bone loss have been presented in literature. 

The classification of the American Academy of Orthopaedic Surgeons (AAOS) is used most 

frequently [13]. This classification distinguishes between cavitary, segmental and combined 

cavitary-segmental defects as well as defects with a pelvic discontinuity and even arthrodesis. 

Furthermore, Chandler and Penenberg [10] proposed a comprehensive system based on 

acetabular bone loss, Paprosky et al. [58] proposed a classification based on available 
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reconstructive techniques and Gross and colleagues [26] proposed a classification method based 

on the type of bone graft needed for the acetabular reconstruction. In the remainder of this thesis, 

only the AAOS classification is used. 

 

Options to reconstruct acetabular bone defects 
Currently, several reconstruction methods for acetabular defects are being used in clinical practice. 

Among others they impose the use of cemented or cementless cups [55,69], jumbo cups to restore 

large defects [37] or acetabular cups with modified shapes [9,12]. Besides these methods also the 

application of cages in extensive defects is popular. Sometimes, when the life expectancy of 

patients is short, extensive cement application can be a quick and safe reconstruction method to 

fill the bone defect. In cases with severe cavitary or combined defects, reconstruction with the 

bone impaction grafting technique and a cemented cup can also be used.  
 

The technique of  bone impaction grafting 
The acetabular bone impaction grafting technique offers a biological solution for coping with 

bone stock loss during revision THA and was first described by Slooff and colleagues for the 

acetabular side [70]. The bone impaction grafting technique has three main characteristics (Figure 

1). First of all, the closure of all segmental bone defects with metal meshes (secured with bone 

screws) in order to contain these defects. Secondly, restoration of bone stock by filling the bone 

defect with vigorously impacted morselized cancellous bone grafts (MCB) using various shaped 

impactors and a metal hammer. Next, bone cement is introduced in the reconstruction and pres-

surized to force it into the bone graft layer. Finally, a new acetabular cup is implanted in the re-

construction to complete the technique.  

The short-term results of the bone impaction grafting technique with cemented implants for the 

femoral side was first reported by Gie and colleagues [24]. Schreurs et al. used a realistic model in 

the goat to study the biological aspects of the femoral bone impaction grafting technique [65].  

Figure 1. 

 

Acetabular bone impaction grafting. (A) Segmental defects are reconstructed with metal meshes in 
order to contain the defects. (B) Morselized cancellous bone grafts are inserted into the defect and 
vigorously impacted using metal impactors and a hammer to augment bone stock loss and restore 
the anatomy. (C) A cemented cup is placed after reconstruction of the defect. 

A B C 
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Based on the favorable outcomes of clinical results on the acetabular side and the animal experi-

ments on the femoral side, femoral bone impaction grafting was also clinically implemented in our 

institution. After removal of the initial prosthesis and the cement or soft tissue interfaces, the first 

step in the femoral bone impaction grafting technique (Figure 2) is to cover any defect in the 

femoral cortex with metal meshes (secured with cerclage wires) in order to contain the defect [24]. 

Then the femoral canal is filled, starting most distally, with impacted MCB on top of a bone plug. 

The impaction procedure creates a “neomedullary canal” by using an oversized femoral compo-

nent. This component forces the impacted MCB firmly against the wall of the femoral canal. The 

stem is then withdrawn and more bone grafts are introduced and impacted and the oversized 

femoral stem is again introduced and hammered down into the bone graft layer. This procedure is 

repeated several times until the femoral canal has been filled to its proximal end with impacted 

MCB. Subsequently, bone cement is introduced in a retrograde manner and under pressure in the 

femoral canal. The bone cement is pressurized to force the cement into the graft layer. Then, the 

new femoral stem is inserted.  

Although the bone impaction grafting technique is considered a difficult technique, it has pre-

sented good long-term results on both the acetabular and femoral sides [3,8,24,26,27,28,51,56,66-

68]. From a mechanical point of view adequate initial cup stability can be obtained with the bone 

impaction grafting technique [39,56]. 

Figure 2. 

 

Femoral bone impaction grafting. (A) Any defect in the femoral cortex is contained by metal meshes 
(secured with cerclage wires). Then the femoral canal is filled, starting most distally, with impacted 
MCB on top of a bone plug. (B) The impaction procedure creates a “neomedullary canal” by using 
an oversized femoral component. (C) The stem is then withdrawn and more bone grafts are intro-
duced and impacted. (D) When the femoral canal has been filled and also the MCB on the proximal 
end is impacted, bone cement is introduced in a retrograde manner with a cement gun. (E) When 
the cavity is completely filled, it is sealed and pressurized to force the cement into the graft layer and 
subsequently a new femoral implant is inserted. 

A B C D E 
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Biology of bone impaction grafting 
Biologically, the incorporation process of allografts has been investigated in various animal models 

[43,48,64,65]. The bone graft incorporation process is a sequence involving inflammation, revas-

cularization, graft resorption and osteogenesis (the formation of new bone in stroma tissue and on 

the remnants of the bone graft). After the incorporation process bone remodeling starts (the adap-

tation of bone to the local mechanical loading conditions) to form a mechanically efficient struc-

ture. The inflammatory response is probably caused by the surgical intervention and by the utiliza-

tion of the bone grafts itself. Consequently, revascularization of the bone grafts takes place and 

the host supplies viable progenitor cells [71]. Protein mediators and growth factors produced by 

various inflammatory cells and released from the matrix of the impacted bone grafts, induce mi-

gration of mesenchymal stem cells (MSC) of the host tissue into the graft [78]. Osteoclasts 

(activated by the growth factors and other signaling molecules) resorb the bone graft material. 

When the MSC differentiate into osteoblasts, they start to produce extracellular matrix, which is 

mineralized in time. The osteoblasts initially form a woven bone matrix against the unresorbed 

bone graft remnants and in the fibrous stromal tissue. During the bone remodeling process, 

woven bone is remodeled into lamellar bone. The regulation of the bone incorporation and re-

modeling process are still unclear, but there are distinct similarities to the process of fracture heal-

ing since necrotic bone has to be removed and new bone is formed. In fracture healing this proc-

ess is regulated by various growth factors [4,52]. Upregulation of genes for growth factors may be 

a more general aspect of bone repair [63] since also during distraction osteogenesis bone morpho-

genetic proteins (BMPs) are expressed [59]. 

Animal studies have shown almost complete incorporation of impacted morselized bone grafts 

[43,48,64,65]. Furthermore, incorporation of the bone grafts was reported without gradual weak-

ening of the graft due to resorption [64]. To determine whether bone graft incorporation in the 

human situation was comparable to the observations in animal studies, histological analysis was 

also performed on human bone biopsies [7,17,29,46,47]. All these studies showed rapid revascu-

larization of the graft. New bone was formed on bone graft remnants, on fibrin accumulations or 

in the fibrous stromal tissue that had invaded the graft [17]. Thereafter, the mixture of graft, 

woven bone, and fibrin was remodeled completely into a new trabecular structure, with normal 

lamellar bone and only scarce remnants of graft material. Localized areas of non-incorporated 

bone graft surrounded by fibrous tissue remained, irrespective of the follow-up period. Large non-

incorporated fragments of cartilage were also found, particularly in cases in which bone chips were 

produced from femoral heads by a bone mill [17]. The reason was that the complete femoral head 

was milled with the cartilage of the femoral head still attached or incompletely removed. In gen-

eral, impacted trabecular bone chips in humans incorporate by a mechanism that is similar as pre-

viously observed in animal studies [17]. It is not unlikely that the clinical outcome of bone impac-

tion grafting may further improve by adaptation of the bone graft materials themselves. There is 

still no consensus on the optimal size of the bone graft to be used for acetabular and femoral re-

constructions [77]. Additionally, it has also been suggested that washing of the bone graft prior to 
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impaction may improve stability [32,77]. Furthermore, washing would also improve the incorpora-

tion process [18]. More recently, the availability of bone morphogenetic proteins (BMPs) provides 

a new challenge. These BMPs may be attractive in combination with bone grafts by possibly im-

proving the osteoinductive properties of the bone grafts and the clinical outcome of bone impac-

tion grafting. 

 

Ceramics 
Due to a large increase in the number of THA revisions a limited donor bone availability is ex-

pected in the near future. Also, there is still a small risk of viral disease transmission when using 

bone allografts. In addition, some religions do not allow the use of allograft materials. For these 

reasons, the interest in bone graft substitutes has strongly increased in recent years [44]. Particu-

larly synthetic ceramic calcium phosphate based materials, such as -tri-calcium phosphate ( -

TCP), hydroxyapatite (HA), and biphasic mixtures of these two components, are considered to be 

usable as bone graft substitutes [6,38,72-74]. However, it is unclear whether these ceramic TCP-

HA materials can be used for reconstruction of load bearing acetabular defects with the impaction 

grafting technique.  

Ceramic calcium phosphate ceramics were introduced in the early 20th century as bone 

substitutes. The most commonly used ceramic calcium phosphates are -TCP [Ca3(PO4)2] and 

HA [Ca10(PO4)6(OH)2]. In 1920 Albee et al. [1] reported the first successful application of a cal-

cium phosphate reagent for the repair of a bone defect in a human patient. In 1975 Nery et al. [53] 

reported the clinical use of TCP ceramics for surgically created periodontal defects in animals.  

During the late 1970’s and early 1980’s research was focussed on the further development and 

commercialization of ceramic calcium phosphate materials for bone repair, bone substitution and 

bone augmentation [25,35,36,40]. Synthetic -TCP and HA materials became commercially avail-

able as bone substitute materials for medical applications. At the moment, they are being used as 

bone graft substitutes, for bone repair and for bone augmentation, for maxillofacial surgery and 

orthopaedic and spinal fusion surgery [44]. Commercially available ceramic calcium phosphate 

materials vary in composition (among others there are -TCP, HA, TTCP, DCP (Appendix 1)), 

physical form (granules, blocks, cements, coatings on implants or composites with polymers) and 

in physicochemical properties. Ideally, ceramic calcium phosphate materials should have opti-

mized biological properties such as similarity in composition to bone mineral, bioactivity, osteo-

conductivity (ability to provide a scaffold for new bone formation), osteoinductivity (ability to 

support tissue ingrowth, osteoprogenitor cell growth and development for bone formation to oc-

cur [78,79]), ability to form a direct interface with bone and the ability to promote cellular func-

tion and expression [11,14-16,25,36,44,45,53,55,57]. Next to these biological properties they 

should also possess mechanical properties to maintain strength over time when being applied in 

loaded situations. Bioactivity of ceramic calcium phosphate materials is defined as the property of 

the material to develop a direct, adherent, and strong bond with the surrounding bone tissue 

[30,57].  
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In general, TCP is easily resorbed by osteoclasts [19]. The dissolution characteristics of ceramic 

materials depend on composition, particle size, porosity, surface area and crystallinity [44,55]. In 

contrast to TCP, HA is more chemical stable which restricts the dissolution in vivo and also the 

resorption speed [19,25]. It was reported that solely surface chemistry of the material is not 

enough to guarantee high bone bioactivity of ceramic calcium phosphate materials [45] i.e. bioac-

tivity can also be influenced by the structure (porosity) of the materials. The ideal bioceramic po-

rosity approximates that of normal trabecular bone. It has been demonstrated that micro porosity 

(diameter <10 mm) allows body fluids circulation whereas macro porosity (diameter >100 mm) 

provides a scaffold for bone cell colonization [21,33,61]. Hence, the porosity size range, the extent 

of the porosity, and interconnectivity of the pores are crucial factors affecting diffusion of nutri-

ents, cell attachment, migration and expression, and tissue ingrowth in calcium phosphate ceram-

ics necessary for bone formation, bone repair and bone regeneration [41,44]. Klawitter [41] ad-

vised  pore sizes larger than 50 mm to allow blood vessel ingrowth and 200 mm for osseous in-

growth to occur.  

Osteoconductivity was first described by Urist et al. [78-80] as the ability to provide a scaffold for 

new bone formation. In the case of ceramic calcium phosphate materials important features of 

osteoconductivity are an appropriate chemical composition and architectural geometry. It is gener-

ally accepted that calcium phosphate materials are osteoconductive but not osteoinductive. How-

ever, it might be possible to use ceramic calcium phosphate materials as carriers for bone growth 

factors (such as BMPs) [ 42,60,61]. 

Biphasic calcium phosphates ceramics, in contrast to pure -TCP or HA materials, consist of a 

mixture of both -TCP and HA and they are available in various -TCP/HA ratios [45]. These 

materials can be obtained when a synthetic or biologic calcium-deficient apatite is sintered at tem-

peratures above 700 degrees Celsius. A wide variation exists in the physicochemical properties of 

these two synthetic calcium phosphates, resulting from dissimilar density and crystalline struc-

tures, which in turn are the result of differences in processing methods. It is most likely that the 

preparation method [23], pore size and percentage porosity will affect the mechanical properties 

of the calcium phosphate materials [6]. This may be of importance in case the materials should be 

applied in load bearing situations. Commercial ceramic calcium phosphate materials have been 

mainly used as a filler material in non-load bearing defects in reconstructive surgery (small bone 

defects) and dental applications [15,16,36,45] and the ceramic calcium phosphate materials have 

not been used in load bearing applications because of their low fracture strength [23,34]. When 

one intends to use ceramic calcium phosphate materials for “bone” impaction grafting procedures 

many questions remain. On the mechanical side it remains to be seen if these brittle materials can 

endure the forces applied during impaction grafting. It is possible that these materials will be 

crushed and loose all structural integrity. When these materials are able to endure the impaction 

forces, questions remain whether their handling properties are sufficient for the reconstruction of 

the bone defects prior to implant placement. Additionally, when the acetabular cup is cemented, 

what will happen to the cement layer? Will the cement penetration reach far into the reconstruc-
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tive layer or not? A high cement penetration is expected to generate high stability but it might also 

hamper revascularization and incorporation of the bone graft material. How these reconstructions 

with ceramic calcium phosphate materials will function under compressive or shear loading is still 

a question. Next, to all these mechanical questions, from a biological standpoint it remains to be 

assessed if it is safe to use these ceramic calcium phosphate materials for bone impaction grafting 

procedures for they might induce wear of THA implants. One also has to prove that these materi-

als will integrate with new bone in load bearing defects. Additional questions that need to be an-

swered are: What will happen to the osteoconductive properties of ceramic calcium phosphate 

materials in a loaded environment? Will the ceramic calcium phosphate materials induce third 

body wear of THA implants? From a clinical perspective, we also need to investigate whether the 

application of calcium phosphate materials in bone impaction grafting procedures implies that 

changes are needed in the operation technique. Before a clinical trial on the application of ceramic 

calcium phosphate materials for bone impaction grafting procedures can be started, these ques-

tions need to be answered.  

 
Structure and aims of  this thesis 
In this thesis, we first report on the clinical and radiological results of patients who underwent a 

femoral revision THA procedure with the bone impaction grafting technique to provide insight 

into the long-term survival. The second part of this thesis aims at the improvement of the clinical 

outcome of bone impaction grafting by adaptation of the preparation method of the bone grafts 

themselves and by the addition of growth factors to the bone grafts. In the third part of this thesis 

the possible use of biphasic ceramic calcium phosphate materials for acetabular reconstruction 

during revision THA procedures with the bone impaction grafting technique was studied from a 

mechanical and biological perspective. 

 
Three main research goals were formulated: 
 

1. To report the clinical and radiological results of patients who underwent a femoral 
revision THA procedure with the bone impaction grafting technique in order to pro-
vide insight into the long-term survival of this surgical intervention. 

 

2. To assess whether the bone impaction grafting technique results could be further 
improved by adaptation of the bone grafts or the addition of growth factors to the 
bone grafts. 

A. To assess the influence of bone graft size and washing of bone grafts on 
in tial cup stability of acetabular reconstructions in a synthetic pre-clinical

 acetabular test model.  
  To evaluate which factors play a key-role in initial acetabular cup stability. 

 

i
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B. To assess in a clinical realistic and loaded animal THA model if the biologi-
 cal incorporation and remodeling of impacted morselized cancellous bone
 grafts can be improved by mixing them with bone morphogenetic protein 7
 (BMP-7=OP-1). 
 

3. To test the usability of ceramic calcium phosphate materials for acetabular recon
 struction during revision THA with the bone impaction grafting technique? 
 A. To assess the effect of shear forces on acetabular reconstructions with ceramic 

 calcium phosphate materials in a synthetic pre-clinical acetabular test model. 
B.  To explore methods for optimization of the initial cup stability of acetabular
 reconstructions with ceramic calcium phosphate materials in a synthetic pre-
 clinical acetabular test model. 
C. To test the biological activity of ceramic calcium phosphate materials as an 

 alternative for human morselized cancellous bone allografts in an unloaded 
 animal model. 

D. To test in a clinical realistic and loaded animal THA model the biological ac
 tivity of  a ceramic calcium phosphate material as an alternative for human 
 morselized cancellous bone allografts. 
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Abstract 
Background: The purpose of this study was to evaluate the clinical and radiological outcome of 

femoral component revision hip arthroplasty using an impaction bone-grafting technique and a 

cemented polished stem. 

 
Methods: Thirty-three consecutive femoral reconstructions that were performed between No-

vember 1991 and February 1996 using the X-Change Femoral Revision System, fresh frozen 

morsellized allograft, and a cemented polished Exeter stem were followed prospectively. Femoral 

bone stock defects were classified according to the Endoklinik classification. The average age of 

the patients, at the time of femoral component revision, was sixty-three years. No patient was lost 

to follow-up, which was performed at a minimum of eight years, but eight patients had died. 

None of these deaths was related to the surgery.    

 
Results: No femoral reconstruction has been re-revised at a mean follow-up of 10.4 years. There 

was one not recognized intra-operative fracture, which was treated non-operatively and healed. 

There were three post-operative femoral fractures (at 3, 6 and 22 months), all through a cortical 

defect at the level of the tip of the prostheses. All fractures healed after plating, and all femoral 

implants were left in situ. The average subsidence of the stem within the cement mantle was three 

mm; seven stems migrated five mm or more. The average Harris hip score improved from 49 

prior to surgery to 85 at review (68-100). Subsidence did not affect the Harris hip score.  Ra-

diologically, there were no failures. With an endpoint of femoral revision for any reason, the Kap-

lan Meier survival rate was one hundred per cent (one-sided 95% C.I. 100-91.3 %).  

 
Conclusions: Femoral revision using impaction bone grafting with fresh frozen bone grafts and a 

cemented polished stem showed an excellent survival at eight to thirteen years follow-up. The ma-

jor problem that occurred was a femoral fracture in four cases. One intra-operatively not recog-

nized fracture was treated and healed without re-operation. Three post-operative femoral fractures 

occurred, all at the level of the tip of the prosthesis and all healed after plating.  
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Introduction 
Impaction bone-grafting with a cemented cup has been used since 1979 [1,2]. Based on the favor-

able short-term results on the acetabular side, we began to use this technique for femoral revisions 

in the 1980’s. Before large scale clinical introduction of this method, we performed animal experi-

ments to optimize the technique for the femur [3-5]. The Exeter group was the first to use this 

femoral bone impaction reconstruction method clinically on a regular basis [6]. They used large 

femoral stems to impact the bone grafts, but noted a high prevalence of varus malposition of the 

femoral components. After their initial clinical experience, the Exeter group and we in association 

with Howmedica International developed the X-Change Revision® system in 1991. 

The purpose of this study was to report our eight to thirteen years experience with this impaction 

bone-grafting technique in combination with a cemented polished stem in the first thirty-three 

consecutive patients. 

 

Materials and Methods 
Patients 
From March 1991 to February 1996, we performed thirty-three consecutive femoral revisions in 

thirty-three patients. All patients were prospectively followed. The mean age at surgery of the 

twenty-four women and nine men was sixty-three years (range 33-82 years). The average height of 

the patients at surgery was 166 cm (153 to 190 cm) and the average weight was seventy-one kg (50 

to 102 kg), the average B.M.I. was 25.59 (19.28- 39.55). The indication for the index total hip ar-

throplasty was ideopathic osteoarthritis in fourteen hips; osteoarthritis secondary to avascular ne-

croses in two hips, congenital hip dysplasia in six hips, trauma in four hips, epiphysiolyses in two 

hips, rheumatoid arthritis in three hips and miscellaneous in two hips. The indication for the revi-

sion of the femoral component was aseptic loosening in twenty-six hips and septic loosening in 

seven hips. Twenty-nine of the index arthroplasties had cemented femoral components and four 

were non-cemented. In fourteen patients this was the first femoral revision, in eighteen patients 

the second and in one patient the third revision. In thirty-one of the thirty-three patients the 

acetabular component was also revised, in thirty of them an acetabular reconstruction with impac-

tion bone-grafting and a cemented cup was used and one cup was recemented. Six of the seven 

septic loosenings were treated with a two-stage procedure. However, in one patient, based on the 

bacterial cultures we had to conclude retrospectively that we performed a one stage revision in a 

septic loosening. All infected patients were treated by systemic antibiotics appropriate to the in-

fecting bacteria, for a period of at least six weeks prior to reimplantation. Five surgeons partici-

pated in this study; two of them performed twelve reconstructions each. This study was approved 

by our Institutional Review Board. 

 

Surgical technique 

A posterolateral approach without trochanteric osteotomy was used in all hips. After removal of 
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the components cultures and frozen sections were obtained to exclude infection. If an infection 

was suspected on the frozen section, a two-stage revision procedure was performed. After remov-

ing all debris and cement, and prior to impaction grafting, femoral segmental bone defects were 

reconstructed with metal mesh and cerclage wires. In twelve hips, the calcar region was reinforced 

with metal mesh and cerclage wires; seven of these femurs also had a distal segmental defect aug-

mented by a metal mesh. In another 7 hips, only cerclage wires were used to support the weak-

ened proximal cortical bone and prevent fracture during the impaction process.  
Fresh frozen femoral head allografts were obtained from a local bone bank. After thawing, the 

cartilage was removed and the heads were milled using the Novio Magus bone mill (Spierings 

Medical Technique, Nijmegen, the Netherlands). This mill produces bone chips with a diameter of 

2-5 mm. In all hips we used the X-Change Revision® system (Stryker Howmedica, Newbury, 

U.K.) (Figure 1A-C). First, an intramedullary plug is placed on which a guide wire is screwed. 

Next, the appropriate distal and proximal impactors are selected. After washing the canal, bone 

chips are first impacted distally layer by layer using the distal impactors and a sliding hammer. Af-

ter completing the distal impaction, the surgeon starts to use selected proximal impactor, which is 

also used over the guide wire and which are oversized phantoms of the stem which has to be im-

planted. Special block impactors are available to impact the graft very tight around the proximal 

impactor. Surgical Simplex® bone cement with 0.5 gms erythromycin and 3 million units of 

colistin per 41 gram packets of cement (Stryker Howmedica, Newbury, U.K.) was injected retro-

grade using a special cement syringe with a long but small diameter nozzle (inner diameter 5 mm, 

outer diameter 7 mm; X-Change® femoral revision syringe, Stryker Howmedica, Newbury, U.K.). 

The use of the small nozzle is essential, because the reconstructed neo-medullary canal is very nar-

row distally. Cement must be injected earlier then in a regular primary hip, the viscosity of the ce-

ment must be low to get is out of this small nozzle. After pressurizing the bone cement a standard 

Exeter stem with a centralizer on the tip was inserted. 

All but two acetabular cups were also revised. Acetabular defects were classified according to the 

Hip Committee of the AAOS in type 1 in 0 cases, type 2 in 4 cases and type 3 in 27 cases. 

Acetabular meshes were used in 27 hips. One cup was recemented, 30 had a reconstruction with 

impaction bone-grafting and a cemented polyethylene cup. In all acetabular reconstructions bone 

chips of 7 to 10 mm were used. Post-operative treatment included systemic antibiotics (cefazolin, 

3 doses of 1 gram i.v.) for one day, indomethacin for seven days to prevent heterotopic ossifica-

tions and oral anticoagulation therapy (coumadin) for three months. In the first 23 reconstruc-

tions, we maintained patients at bed rest for six weeks. After that we began to mobilize patients 

after two weeks of bed rest. Patients were on crutches for twelve weeks, touch weight bearing for 

the first six weeks and then load was gradually increased. 

 

Follow-up protocol 
At review (February 2004), no patient was excluded or lost to follow-up. After surgery all patients 

were seen at six weeks, three months, six months, twelve months and then annually or bi-annually. 
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Eight patients died during the follow-up period; none of the deaths was related to the surgery. Of 

the living twenty-five patients twenty-two were seen for review at our institution, one was seen by 

another orthopaedic surgeon and two had been institutionalized with severe dementia and were 

unable to come. Neither of these two patients has had a re-operation.  

Clinical follow-up 
The Harris hip score was used to evaluate function and pain both pre- and post-operatively, how-

ever pre-operative scores were only available in fourteen patients. Of the surviving patients the 

Harris hip scores at final follow-up were available in twenty-two of the twenty-five patients. 

 

Radiological follow-up 
The loss of bone stock was determined on pre-operative radiographs and intra operative findings. 

Figure 1. 

 

The X-Change® revision femoral impaction system (Stryker-Howmedica, Newbury, U.K.). 
(A) After removal of the failed implant, femoral cortical wall defects are augmented with mesh and 
cerclage wires. In case of cortical defect at the level of the tip of the prostheses, this defect should 
either be bypassed with a longer stem, or strut grafts or a plate should be used. Next an intrame-
dullary plug is inserted on which a guide wire is screwed. To facilitate insertion of the plug a plug 
introducer sleeve is used. After removal of the introducer sleeve, over the guide wire the appropri-
ate proximal phantom is choosen as well as the sizes of the distal impactors which can used in the 
selected case. After washing the canal, bone chips are first impacted distally layer by layer using 
the distal impactors and a sliding hammer. (B) During the progress of the impaction process the 
surgeon starts to use the selected proximal impactor, which are also used over the guide wire and 
which is an oversized phantom of the stem which has to be implanted. When starting impaction 
with the proximal impactors, it is important to control the anteversion of the proximal impactor as 
this will establish the correct anteversion of the neo-medullary canal. During the proximal impac-
tion process, a trial reduction with the proximal impactor in situ can be performed to check the 
stability of the hip and the correct anteversion. After this check, the proximal impaction can be 
completed. (C) Special attention is needed to impact the proximal grafts very tightly. Small block 
or half moon impactors can be used, very tight compression of the grafts in the calcar region is 
mandatory. In the proximal femur, use of compacted larger bone chips is helpful in obtaining opti-
mal stem stability. After final impaction with the slide hammer, the proximal impactor should be 
very stable for both axial and torsional load. Just before cementation the phantom is removed, next 
cement is inserted within the reconstructed neo-medullary canal using a syringe with a small noz-
zle. Cement must be injected earlier then in a regular primary hip, the viscosity of the cement must 
be low to get is out of this small nozzle. Bone cement is pressurized into the canal, as is done in 
standard primary cement hips using a cement seal. 

A B C 
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Defects were classified using the classification system of the Endoklinik [7] (Figure 2). Bone stock 

defects were scored as grade 1 in 3 hips, grade 2 in 14 hips, grade 3 in 12 hips and grade 4 in 4 

hips. At final follow-up, radiographs were complete in 24 of the 25 living patients. All radiographs 

were scored by consensus among three of the authors. AP and lateral radiographs were reviewed 

to determine the migration of the stem, the incorporation of the graft, and radiolucent lines. All 

thirty-three reconstructions were analyzed for migration up to death or last follow-up. At final 

review, radiological follow-up was complete in twenty-four of the twenty-five living patients. Sub-

sidence of the stem was determined using the method of Fowler et al. [8], radiolucent lines be-

tween the cement and the bone were scored using the Gruen classification [9]. Radiological failure 

was defined as a circumferential radiolucent line in all seven Gruen zone on an AP view. The in-

corporation and trabecular bone formation in the grafts was studied using the criteria of Conn et 

al. [10]. Heterotopic ossification was assessed by the classification of Brooker et al. [11]. 

 

Statistical analyses 

We performed Kaplan-Meier survivorship analyses using as endpoints femoral re-revision for any 

reason, femoral re-operation for any reason or subsidence 5 mm or more at the 95% confidence 

interval. 

 

Results 
Clinical results  
At a minimal follow up of eight years, none of the stems has been re-revised (Figure 3-A). Eight 

patients died with their reconstruction in situ, none had had a re-operation. The twenty-five pa-

tients (twenty-five hips) who were alive had a mean follow-up of 10.4 years (range 8 – 13 years). 

The post-operative Harris hip score was available for twenty-two patients. The average Harris hip 

score improved from a mean of 49 (21-75) to 85 (63-100). Most patients had no pain or slight 

pain; one patient had mild pain. Two patients were living in nursing homes and were severely lim-

ited in their mobility, but these were not hip related and they had no pain in the region of the hip. 

One other patient was severely limited due to rheumatoid arthritis. Six patients had no limp, 

twelve had a slight limp and four had a moderate limp. Ten patients did not use a support, seven 

patients used a cane during long walks, one used a cane full-time, three used a crutch and one two 

canes. Thirteen of the patients were able to walk more than six blocks.  

 

Technique related complications 
There were three intra-operative surgical complications related to the technique. In one hip a 

femoral fracture of a large proximal medial wall bone fragment occurred, probably caused by the 

impaction technique (type I segmental proximal medial defect according to the AAOS classifica-

tion) [12]. Unfortunately, this fracture was not recognized at surgery. This fracture was treated 
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non-operatively and healed. The other complication, which occurred twice, was that the tip of the 

stem perforated the bone graft reconstruction at the site of a distal segmental bone defect that had 

not been reconstructed by a metal mesh. These perforations were only recognized on postopera-

tive X-rays. No further reconstruction was performed in these two patients and they recovered 

uneventfully.  

In four other hips a re-operation on the femoral side was performed. Three femoral fractures oc-

curred three, six and twenty-two months post-op, respectively. In one femur the fracture was 

spontaneous; in the other two, the fractures occurred after a fall. In all three, the fractures oc-

curred at the tip of the stem at the location of a segmental bone defect that was present at surgery. 

In one femur the defect had been reinforced by metal mesh; in the other two, no reconstruction 

of the cortical defect had been performed. All three fractures were treated by plating and healed. 

All femoral reconstructions and implants were left intact. One additional re-operation was per-

formed on the femoral side. This femur developed a lytic lesion in the major trochanter eight 

years after surgery; a biopsy was performed to exclude a neoplasm or infection. No pathologic 

abnormalities could be detected. Five years after this biopsy clinically her situation resembles the 

situation of a fibrous non-union after a trochanteric non-union. 

Radiographic analysis 

In the immediate postoperative AP views, the stem position was in neutral position in twenty-five 

of the thirty-three hips. Three stems were in < 4° of valgus and five were in < 4° of varus. One 

hip was in six degree of varus. None of the thirty-three stems migrated with the cement mantle 

relative to the bone, but migration of the stem within the cement was seen. At final review, the 

average migration of the stems within the cement mantle was three mm (range 0-14).  

Figure 2. 

 

The Endo-Klinik classification of femoral bone stock loss. Grade 1: Radiolucent lines limited to the 
upper half of the cement mantle in combination with clinical signs of loosening. Grade 2: Complete 
radiolucent lines around the cement mantle with endosteal erosion around the proximal part of the 
cement mantle resulting in widening of the medullary cavity. Grade 3: Widening of the medullary 
cavity around the loose implant due to endosteal erosion and expansion of the femur. Grade 4: 
Gross destruction of the upper third of the femur with involvement of the middle third, precluding 
the insertion of even a long-stemmed prostheses. 
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Eleven stems did not migrate. Seven of the thirty-three stems migrated five mm or more. Most 

migration was seen within the first six months after surgery. Of the seven stems that migrated 

more than five mm, five of the procedures had been performed during the first two years of our 

experience with the technique. The two other femoral components that subsided more than five 

mm and were implanted after our first two years of experience were both related to technical 

problems: in one case there was a distal perforation of the stem through a cortical window at the 

level of the tip of the prostheses; in the other there was an un-recognized femoral fracture of the 

proximal medial wall. 

Two of the seven stems migrated more than ten mm. The greatest migration was seen in the pa-

tient with the un-recognized proximal femoral fracture of the medial cortical wall; this stem sub-

sided thirteen mm within one year after surgery and then stabilized. On the last available radio-

graph five years after surgery made just before the patient died the stem had subsided one addi-

tional mm subsidence over four years.  Subsidence of 11 mm was seen in a patient who sustained 

a fracture at the tip of the prostheses at the level of a previous bone window twenty-two months 

after surgery. However, after treatment of the femoral fracture with a plate, the stem was stable 

for the last five years. We also analyzed the time interval between the surgery and the first time a 

Figure 3. 

 

(A) Kaplan-Meier survival curve of the femoral reconstruction with endpoint re-revision of the stem 
for any reason. The 95 per cent one-sided confidence interval was 100- 91.3 per cent. (B) Kaplan-
Meier survival curve (and 95% confidence intervals) with endpoint re-operation on the femoral side 
for any reason. (C) Kaplan-Meier curve (and 95% confidence intervals) with endpoint subsidence of 
the stem in the cement of 5 mm or more. There were no cases of subsidence of the stem subsiding 
with the cement mantle. 

A B 

C 
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radiologically observed migration of the stem of 5 mm was seen (Figure 3C).  The four cases who 

reached the 5 mm level within two years were all associated with technical problems. In the other 

three hips five mm migration was first observed after seven, ten and thirteen years. The average 

Harris hip score of the seven stems who migrated five mm or more was 85 (71-98). Six hips 

showed femoral radiolucent lines in one (3 hips) or two Gruen zones (3 hips), these lines were in 

three cases progressive. None of the hips was a radiological failure with radiolucent lines all 

around. Most hips showed a stable radiological appearance (Figure 4 AC). Signs of trabecular in-

corporation and cortical bone remodeling were seen frequently, but quantification was not possi-

ble as metal mesh obscured these interfaces too often. 

 

Other Complications 
According to the Brooker classification seventeen hips had no calcifications, a grade I was seen in 

seven hips, a grade II in six hips and a grade III in two hips. One patient died before the minimal 

follow-up of 6 months required to score the heterotopic ossifications. There were no hip disloca-

tions or infections. On the acetabular side, three re-operations were performed. One of the two 

non-revised cups was revised at 6.7 years after femoral revision. Of the 30 cups revised at the in-

dex surgery with impaction bone-grafting and a cemented cup, none had a re-operation or re-

revision within ten years. However, two cups were re-revised for aseptic loosening during follow-

up at 11.0 and 11.6 years after the acetabular revision. One additional cup was radiologically loose 

at 12.4 years after surgery. 

Figure 4. 

 

(A) Pre-operative radiograph with the failed implant is in situ and osteolysis about the mid and 
distal stem. There is subsidence of the stem with the cement, distally an old cortical window after 
previous surgery can be seen. (B) Post-operative radiograph after bone impaction grafting of both 
the acetabulum and the femur. Distal femoral window was reinforced by metal mesh. We would 
now bypass this defect by a strut graft or by a metal plate, or use long-stemmed prostheses. (C) 
Radiograph 9 years after reconstruction. Stable implant with incorporation of the bone graft on the 
acetabular and femoral side and femoral cortical healing. Some resorption of the minor trochanter. 

A B C 
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Outcomes 
Using as an endpoint re-revision of the femoral component for any reason, the survival rate of the 

femoral component was 100 per cent at a mean follow-up of 10.4 years. The 95 per cent one-

sided confidence interval was 100- 91.3 per cent (Figure 3A). The survival of the femoral 

reconstruction at 9 years after surgery using as endpoint femoral re-operation for any reason was 

85% (95% confidence interval, 72 - 99%) (Figure 3B). Re-operations were performed for three 

femoral fractures and one biopsy of a lytic area in the greater trochanter. The survival of the 

femoral stem at 9 years after surgery using as endpoint subsidence of the stem of five mm or more 

was 83 % (95% confidence interval, 69 - 97) (Figure 3C).  

 

Discussion 
During the last decade, only six studies have been reported with a minimal or mean follow-up of 

at least five years after femoral bone impaction grafting (Table 1) [13-18]. The Exeter group re-

ported the outcome of 226 hips in a mixed group of instrumented and non-instrumented femoral 

impaction bone-grafting procedures at 5 to 13 years [17]. All but one of these six studies was per-

formed with a polished tapered cemented stem.  

The outcome with an endpoint of aseptic loosening of the stem was uniformly good in all series. 

As in this study, the most frequent complications in these series were post-operative fracture and 

subsidence. The percentage of post-operative fractures was between four and eleven percent, and 

in nearly all post-operative fractures, the fractures could be treated without revising the stem. 

Most fractures were seen at the level of the tip of the prostheses.  

Subsidence of the stem within the cement mantle also was seen in the series using polished stems. 

The percentage of stems subsiding more than five mm was between four and thirty-three percent. 

In most cases, there was no relation between the observed subsidence and the clinical outcome.  

In our series with a minimum 8 years follow up, none of the thirty-three patients required a re-

revision for any reason. This finding is in agreement with others who reported excellent outcome 

for this endpoint [17,18].  

In our study, most subsidence was seen in the cases, which were reconstructed in the first two 

years after we started this technique indicating a learning curve with this technique. After these 

first two years we had only two cases which migrated five mm or more, both were related to tech-

nical problems. We could not find a relation between subsidence and clinical outcome in our 

study, this lack of correlation between subsidence and clinical outcome was observed before 

[13,14,17]. We agree with others that a subsidence of the stem of more than five mm is rare after 

well-performed impaction bone-grafting [17,18]. However, in some of the cases of our study, the 

five mm subsidence point was only reached after seven, ten or thirteen years. The meaning of this 

very slow migration is unknown. This very slow ongoing subsidence up to five mm after five years 

was also seen in a recent roentgenstereophotogrammatric study [19]. Clinical outcome seems not 

be influenced by this very slow migration. 
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The most devastating complication with this technique in the previously reported series is post-

operative femoral fracture (Table 1).  

In our study, the prevalence rate of post-operative femoral fractures in three of the thirty-three 

stems (nine per cent); all femurs with a post-operative fracture had a segmental bone defect at the 

level of the tip of the prostheses. In one case, the fracture was clearly technique related and oc-

curred at the level of the tip of the prostheses at which location a bone window was made for ce-

ment removal. Although a metal mesh was used to reconstruct this defect, this could not prevent 

the fracture. Two patients sustained fractures after a fall, one at six months and the other at 

twenty-two months after revision. Both had a distal cortical window from previous hip surgeries, 

these defects were not reconstructed at the revision surgery. The site of the femoral fracture was 

in both cases at the site of the distal cortical window. We learned that a metal mesh reconstruction 

of a cortical wall defect at this location is not able to prevent fracture.  

With further experience, we begin to treat these bone defects prophylactically with a strut graft or 

a plate, or bypassed the defect with a longer stem [17,20,21]. To reduce the fracture rate after 

femoral bone impaction grafting, we currently avoid making a distal cortical window for cement 

removal, using ultrasonic devices for distal cement removal. If a cortical defect at the level of the 

tip of the prostheses exists, we now use the longer Exeter stems, which became available in 1997. 

If it is not possible to bridge the defect with a longer stem, we use an onlay graft or a plate.   

We agree with the Exeter group and others [18,22] that successful use of this method requires 

adherence to proper technique. Vigorous packing of the cancellous graft is essential, using forceful 

and repetitive impacts with the slap hammer; yet, vigorous impaction in a femur with extensive 

bone stock loss can result in intra-operative fractures. When vigorous impaction may result in a 

Table 1. 

 

Authors  Type of pros-
theses  

No of hips/ 
No of pts  

Follow-up  Survival with 
endpoint  
femoral frac-
ture  

Survival with 
Subsidence 5 
mm or more  

Survival with 
endpoint 
aseptic 
loosening  

Mikhail et 
Al, 199912  

Polished, 
tapered  

43 (40 pts)  5-7 years  95% at 5-7 
years 

19 % more 
than 5 mm  

100 % at 5-7 
years  

Van Biezen 
et al, 200013  

Polished, 
tapered  

21 (21 pts)  3-7 years  90 % at 5 
years  

33 % 5 mm or 
more  

100 % at 5 
years  

Kligman 
et al, 200214  

Polished, 
tapered  

50 (50 pts)  3-7 years  N.A.  22 %  more 
than 5  

95 % at 5.1 
years  

Ullmark et al, 
200215  

Non-polished, 
not tapered  

57 (56 pts)  4-7 years  93 % at 5.3 
years  

0 % more 
than 5 mm  

96 % at 5.3 
years  

Halliday et al, 
200316  

Polished, 
tapered  

226 (207 pts)  5-13 years  96 % at 11 
years  

14 % more 
than 5 mm  

99 % at 11 
years  

Cabanela et al, 
200317  

Polished, 
tapered  

57 (54 pts)  3-9 years  89 % at 6.3 
years  

4 % between 4 
and 6 mm  

100 % at 6.3 
years  

This study  Polished, 
tapered  

33 (33 pts)  8-13 years  91 % at 9 
years  

15 % more 
than 5 mm  

100 % at 9 
years  

Published reports on femoral bone impaction grafting with a mean or a minimal follow-up of five 
or more years. 
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femoral fracture in compromised bone, the femur should be supported. These defects are fre-

quently seen in the calcar area and without repair of this region the stability of the stem within the 

graft reconstruction is at risk. Use of preventive cerclage wires, mesh or plates may partly over-

come this problem. In an animal experiment, repair of these proximal segmental bone defects by 

either mesh or a bone strut improved stem stability, but the stability of the stem was more repro-

ducible after reconstruction with mesh [23]. A study in goats using the same defect model found 

that the short-term incorporation of impacted bone graft was compromised underneath a strut 

graft reconstruction [24]. Therefore, we believe the most attractive technique for proximal recon-

struction in the calcar region is the use of metal mesh.   

Controversy exists whether the femoral impaction bone-grafting technique is best used with a ta-

pered and polished stem. Unfortunately, only one study in which a non-polished cemented stem 

was used has been reported at a minimal follow-up of five years [16]. Femoral component subsi-

dence in the cement of five mm or more was not seen but five stems subsided three to four mm 

with the surrounding cement mantle. The survival of the non-polished stem with an endpoint of 

aseptic loosening or post-operative femoral fracture was not different from the other series.  

From a theoretical standpoint a polished stem seems to be more attractive to accommodate the 

visco-elastic deformation of the graft [25]. Also, non-polished cemented stems in combination 

with impaction grafting are more likely to subside with their cement mantle, which may compro-

mise for the long-term outcome 16,26]. Longer follow-up of the prospective and randomized 

study by van Doorn et al. [27] comparing the outcomes of impaction bone-grafting with a tapered 

and polished stem and a non-polished stem with a collar with roentgenstereophotometry may clar-

ify this issue.   

In conclusion, instrumented femoral revision with the X-Change Femoral Revision System using 

impaction bone grafting with fresh frozen bone grafts and a cemented polished stem showed an 

excellent survival at eight to thirteen years follow-up. However, four femoral fractures occurred. 

One intra-operative femoral fracture was not recognized during surgery and was treated non-

operatively. During follow-up three femoral fractures occurred at the level of the tip of the pros-

thesis postoperative (all healed after plating). Seven stems migrated five mm or more, however 

this interfered not with the clinical outcome. 
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Abstract 
Background: Bone defects after failed THA can be reconstructed with impacted morselized bone 

grafts and a cemented cup. On the acetabular side, the effects on initial cup stability of both wash-

ing bone grafts prior to impaction and bone graft size remains unclear. Related to these variables, 

cement penetration and inter-particle shear resistance have been suggested as critical factors for 

initial cup stability after bone impaction grafting.  

 

Materials and Methods: Mechanical experiments were used to study the effects of washing bone 

grafts prior to impaction and bone graft size on initial cemented cup stability in a synthetic 

acetabular model. In addition, the cement penetration properties were measured using CT-scans. 

 

Results: The reconstructions with large and washed bone grafts provided the highest stability 

during mechanical compression and in a lever-out situation. Washing the bone grafts had a posi-

tive effect on initial cup stability, but the size of the bone grafts appeared to be the more impor-

tant factor. Cement penetration was affected by bone graft size but not by washing. 

 

Interpretation: From a mechanical perspective, large bone grafts that are washed prior to impac-

tion may be advisable to obtain an optimal cup stability using the bone impaction grafting tech-

nique.  
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Introduction 
The loosening process of a failed total hip arthroplasty (THA) revision often results in massive 

bone stock loss. The bone defects observed during hip revision surgery can be reconstructed with 

impacted morselized bone grafts [14]. The bone impaction grafting technique utilizes vigorous 

impaction of morselized bone grafts in contained defects. This technique has provided good long-

term clinical results on the acetabular side [8,11-13,18]. Initial stability of the surgical reconstruc-

tion is essential for long-term survival and can be assessed with pre-clinical in-vitro testing. Recon-

structive failure is mainly caused by either excessive shear or compressive stress or a combination 

of both [1,4]. Acetabular tilting of the cup can be regarded as an example of failure due to shear 

forces. Excessive axial migration of the acetabular cup can be considered failure under merely 

compressive loading.  

Mechanical tests of impacted bone grafts have been reported [3,4,7,10,15,16]. They were 

performed in relatively simple models, which possibly obscured the interaction of all major factors 

playing a role in the initial stability of these reconstructions. This might explain why different 

factors such as cement penetration properties, bone graft grading and inter-particle shear resis-

tance have independently been suggested as critical factors for initial cup stability after bone im-

paction grafting [2,3,7,15,16]. These factors, in turn, can be influenced by several variables such as 

bone graft size and bone graft preparation.  

The aim of this study was to determine the effects of bone graft washing and bone graft size on 

initial acetabular cup stability. We hypothesized that washing would remove bone marrow and fat 

thereby resulting in a higher cup stability due to better particle interlock and a higher cement 

penetration. Another aim of this study was to assess which underlying mechanisms are related to 

acetabular reconstruction stability. Mechanical compression tests and lever-out tests (for testing 

under shear loading) were used to address these research questions.  

 

Materials and methods 
The in-vitro tests were performed in cylindrical synthetic acetabular models [1,2] produced by 

Sawbones (Sawbones Europe, Malmo, Sweden). The models contained a cortical wall and a 

spongious core with a thickness of 3 mm and 68 mm, respectively. The spongiosa porosity of 22-

23% resembles the appearance of cancellous bone. With a 60 mm acetabular reamer, a central 

cavitary defect was created in all acetabular models. Next, a segmental defect was created using a 

template. This segmental defect involved about 25% of the acetabular wall and was contained us-

ing a flat X-change metal mesh (Stryker Orthopaedics, Limerick, Ireland) and four A.O. cortical 

bone screws (Figure 1). The combined defects we created in these models were comparable to 

AAOS type 3 defects observed in revision surgery.  

For RSA measurements, four tantalum roentgen markers were press-fit inserted and glued into 

standardized placed drill holes in the acetabular model, while eight other tantalum markers were 

press-fit inserted and glued into standardized drill holes in the acetabular cup. To reconstruct the 
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defects using the impaction bone grafting technique, forty freshly frozen human femoral heads 

were bisected. From all femoral head parts, large morselized cancellous bone grafts (8-12 mm) 

were harvested (nibbled with a rongeur) and all these bone grafts were collected in a single pool of 

bone grafts to compensate for bone graft variability. Thereafter, this pool was dived in two seg-

ments. One for large grafts (8-12 mm) and one for small grafts. Small bone grafts were prepared 

by downsizing the large bone grafts with the finest rasping blade of a bone mill (Noviomagus 

bone mill, Spierings Medical Technologies, Nijmegen, the Netherlands). Afterwards, these down-

sized bone grafts were pooled and sieved to produce uniform sized grafts. The size of these small 

bone grafts varied from 2-4 mm. Subsequently, in the group of large grafts and the group of small 

grafts, 50% of the bone grafts were washed. In this way, four test groups (each 5 models) were 

created (Table 1) to reconstruct our synthetic acetabular model. 

To wash the grafts, they were placed in a sieve and rinsed with two liters of saline directly before 

the experiment. In this experiment we used the Surgilav Puls lavage set (Stryker Orthopaedics, 

Limerick, Ireland). The bone grafts were first impacted against the mesh and subsequently into the 

Figure 1. 

 
Synthetic acetabular model with a reconstructed combined defect. 

Table 1. 

 

The test group properties. 

Model code (n)  Bone graft size (mm)  Additional preparation  

LW  (n=5)  Large  (8-12 mm)  Pulse lavage washing  

LU  (n=5)  Large  (8-12 mm)  None  

SW (n=5)  Small  (2-4 mm)  Pulse lavage washing  

SU   (n=5)  Small  (2-4 mm)  None  
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entire defect using metal acetabular impactors (Ø 46mm, 48 mm, 50 mm) and a metal hammer. At 

the end of the reconstruction procedure, a standardized impaction was applied by dropping a 

weight of 1.5 kg ten times, from a height of 35 cm, on a 46 mm diameter impactor. The entire 

process created a graft layer of 4 mm inferior and 10 mm superolaterally. After impaction, the 

Simplex-P bone cement (Stryker Orthopaedics, Limerick, Ireland) was prepared. Four minutes 

after mixing the powder and the monomer, the cement was inserted in the reconstructed defect. 

The cement was pressurized for 2 minutes with a 65 mm diameter acetabular seal (DePuy Interna-

tional Ltd, Blackpool, England). Next, the acetabular cup (Stryker Contemporary cup, outer di-

ameter 40 mm, inner diameter 28 mm) was inserted under displacement controlled conditions, 

using an MTS loading device (MTS Systems Corporation, Minneapolis, Minnesota, USA). In this 

way the cups were placed at the exact same position in all models. Afterwards, the reconstructed 

models were wrapped in saline soaked cloths, and stored in the refrigerator at 6° Celsius for 24 

hours to allow the cement to polymerize. 
 

Mechanical compression test 
For the mechanical compression tests, the acetabular cups were oriented under 45 degrees abduc-

tion and loaded using an MTS machine. Dynamic loads (frequency 1 Hz) of 0-1500 N and 0-3000 

N, combined with a constant rotation torque (applied to the rim of the cup around its axis of sym-

metry) of 3 Nm [17] were applied for 15 minutes at each level (Figure 2). After loading, the grafts 

were unloaded for 15 minutes to allow for visco-elastic recovery. RSA was used at each loading 

step to measure 3-D cup migration relative to the acetabular model. The RSA measurement error 

was calculated with repeated measurement examination. The accuracy was 0.01-0.03 mm for 

translation and 0.01-0.08 degrees for rotation. Translations and rotations around the X-axis 

(medial-lateral), Y-axis (cranial-caudal) and Z-axis (dorsal-ventral) were calculated and composed 

into one cup displacement value (mm) to quantify cup migration.  

 
Lever-out test: 
After the mechanical compression test, the reconstructions were exposed to a lever-out test, 

which was designed to primarily study the stability of the reconstruction under shear loading con-

ditions. During the lever-out test, the acetabular models were fixed at 8 degrees relative to an up-

right position (Figure 3).  

A metal rod was connected to the inner surface of the cup. Subsequently, a force was applied per-

pendicular to the rod axis at a height of 150 mm by means of a wire connected to the MTS (MTS 

Systems Corporation, Minneapolis, Minnesota, USA) machine by a pulley (Figure 3).   

The lever-out test was displacement controlled (16º/minute) and the required force was moni-

tored. We defined a sharp reduction in measured force defined failure of the reconstruction.  The 

force was transformed to a lever-out moment in Newton meters (Nm). 
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Cement penetration 
All the lever-out tests resulted in a loosened acetabular cup. All cups, with their intact bone 

cement layer, were cleaned from adherent bone graft and immersed in a 30% potassium chloride 

(KOH) solution for 6 hours at 55°C to dissolve all bone remnants. Subsequently, the cups were 

scanned using a CT scanner (Siemens Somatom Volume Zone, Siemens Erlangen, Germany) with 

slice thickness 1.0 mm and an image distance of 0.5 mm. A custom-made software program was 

developed to quantify the roughness profile of the cement layer based on a 3-D CT reconstruction 

[5]. The assumption was made that roughness is a good indicator of cement penetration. Hence, 

the rougher the cement mantle, the more cement penetration in the graft layer. To quantify the 

roughness, the outer surface of the cement was first 3-D reconstructed and then 50 sections 

Figure 2. 

 

Loading schedule during mechanical compression test. Three 15 minutes periods of 0-1500 N load, 
0-3000 N load and a recovery period respectively. The markers indicate the time points at which 
RSA-photos were taken. 
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Schematic overview of the lever-out test facility. The acetabulum model is confined in the holder. A 
metal rod is fixated in the acetabular cup and connected to the MTS machine (arrow) by a pulley. 
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through the axis of symmetry were used (each spaced at 3.6 degrees; Figure 4). On each section 

the roughness was calculated and finally an average value was obtained from the 50 slices. 

Statistics 
A linear mixed model with repeated measurements was used to analyze differences in the mean 

level of cup displacements during mechanical compression. Displacement (mm) was the 

dependent variable. Random variation was allowed between the acetabular models (i.e. random 

intercept). The independent class variables were size of the bone grafts (two levels: large and 

small), washing condition (two levels: washed and unwashed) and loading condition (six levels: 

start 1500 N, 1500 N after 15 minutes, start 3000 N, 3000N after 15 minutes, start 0 N and 0 N 

after 15 minutes). The interaction term between size and loading was included in the model, as 

this was the only significant first order interaction term. The estimated mean levels of  

displacement (with 95% confidence intervals) were calculated by model and by each loading 

condition Post-hoc, the appropriate adjusted Tukey-Kramer contrast test was used to determine 

differences in mean levels.  

Two-way analysis of variance (ANOVA) was used to analyze differences in the mean level of 

lever-out (Nm) and cement penetration (mm), separately.  

The independent class variables were again bone graft size and bone graft washing condition. 

Post-hoc, the Tukey-Kramer contrast test was used to determine differences in mean levels. SPSS 

statistical software version 9.0 was used for statistical analysis. 

 

Results 
During testing a technical error occurred in two specimens. Unfortunately, both errors involved 

reconstructions with small and unwashed bone grafts. We refrained from using these models in 

the lever-out test.  

Average cup displacement values due to the mechanical loading test were 0.9 mm and 1.85 mm at 

loading levels of 1500 N and 3000 N, respectively (Figure 5). Large washed bone grafts showed 

Figure 4. 

 

Two dimensional presentation (CT-scan slice) of the acetabular cup with cement layer on top. 
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significantly less migration during loading, compared to all other groups. Statistic analysis of the 

linear mixed model showed systematic differences for factors size (p=0.0178) and washing 

(p=0.0829), indicating that a significantly smaller cup migration was obtained with large and 

washed bone grafts.  

The lever-out test showed that reconstructions with large washed bone grafts provided an average 

lever-out resistance moment of 11.45 Nm (Table 2). This was significantly higher compared to all 

other groups (p<0.05). Washing the bone grafts had a positive effect for both bone graft sizes that 

was only significant for the large bone grafts (p=0.045 and p=0.06 for large and small bone grafts, 

respectively).  

In summary, for the small grafts, we could find no statistical significant evidence that washing had 

a positive effect on initial cup stability either in the mechanical compression or the lever-out test. 

For the larger bone grafts, washing did show a significant improvement on initial cup stability in 

both tests. 

Analysis of the CT images showed that all groups possessed an average cement layer thickness of 

approximately 0.45 cm (SD=0.12 cm) around the cup. Cement penetration depth, however, 

Figure 5. 

 

Mean cup displacement (mm) during loading and subsequent unloading, using linear mixed 
model analysis. SW=small, washed bone grafts; SU=small, unwashed bone grafts; LU=large, un-
washed bone grafts; LW=large, washed bone grafts. 

Table 2. 

 

Mean lever-out moment values (Nm) at model failure and cement penetration depths (mm). 

Group  LW  LU  SW  SU  

Moment (Nm)  11.45  (SD:±7.42)  4.13  (SD:±2.65)  2.39  (SD:±0.52)  1.8  (SD:±0.53)  

Cement penetration 
(mm)  

1.408  (SD:±0.33)  1.391  (SD:±0.32)  0.981  (SD:±0.20)  0.924 ( SD:±0.18)  
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depended on bone graft chip size (Table 2). We quantified average cement penetration depths of 

1.4 mm and 0.9 mm for the large and small bone graft groups respectively that proved to be 

statistically significantly different (p<0.001). Washing did not significantly increase cement 

penetration depths for both small and large bone graft sizes (p=0.143 and p=0.119 for the small 

and large bone grafts respectively).  

 

Discussion 
Loading of THA implants generally is a combination of shear and compression both on the 

acetabular and the femoral side. With the mechanical compression test in this study, we primarily 

studied compressive stress although also a 3 Nm rotational loading component was applied gener-

ating shear stresses. In the lever-out test we mainly studied the reconstructive stability under shear 

loading conditions. Both the mechanical compression test and the lever-out test showed that the 

acetabular defects reconstructed with large, washed human bone grafts provided the best stability.  

The artificial models in this study represent a simplified human acetabulum. These models are 

suitable to simulate clinical conditions as demonstrated by Bolder et al. [2], even though they may 

deform differently as compared to the human pelvic bone and do not include a bleeding bone 

bed. Artificial models have the advantage of producing highly reproducible results, so the number 

of specimens in a test group can be limited. Despite the use of this reproducible model, a rather 

large standard variation for lever-out moment values is found in the groups containing large bone 

grafts. This high variance was, most likely, caused by cement penetration up to the metal mesh in 

a few specimens. In these cases, a higher lever-out force was obtained. This could be a important 

clinical finding supporting the usage of large bone grafts for acetabular bone impaction 

procedures. However, clinically, this excessive cement penetration is a potential risk factor, 

because it could hamper revascularization of the graft layer [1]. Despite these differences among 

the specimens, the authors believe that the results from this study are important insights in the 

mechanisms contributing to initial cup stability. 

The initial cup stability of cemented cups after acetabular bone impaction grafting is affected by 

many parameters because failure of a cemented cup can occur either at the bone graft-host bone 

interface, the bone graft-cement interface or in the bone graft layer itself. Based on the residual 

materials in the model and on the cemented cup, we believe that failure occurs in the bone graft 

layer. Cement penetration and inter-particle shear resistance are important factors in cemented 

cup stability and they can be influenced by both bone graft size and bone graft washing. This re-

search identified bone graft size as the more influential factor. Our test results confirm the find-

ings of Ullmark [15], who concluded from experiments in simplified models that larger sized bone 

grafts would lead to a more stable graft bed. Previously, Bolder et al. [2] reported more stable 

acetabular reconstructions when they were performed with large bone grafts. The findings are also 

supported by the long-term clinical results [12,13 18], using the bone impaction grafting method 

on the acetabular side with large bone grafts. 
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In this study, we found a positive effect of bone graft washing on the initial cup stability. Al-

though, these findings proved only to be significant for the large sized bone grafts. Washing did 

improve the stability without increasing the cement penetration, suggesting that inter-particle 

shear resistance may be a more important factor than cement penetration for reconstructive stabil-

ity. In addition to other studies, which reported advantageous mechanical effects of bone graft 

washing [15,16], Dunlop et al. [7] also reported enhanced mechanical strength of reconstructions 

with washed bone grafts and explained this by the increased friction characteristics between bone 

graft particles. This increase was thought to be due to the removal of fat and marrow, allowing 

tighter impaction. Next to these mechanical advantages, biological advantages of washing such as 

reducing the chance of bacterial infection [9] and promotion of bone graft incorporation [6,10] 

have been reported and hence washing may be clinically advisable.  

In conclusion, we found that inter-particle shear resistance was positively influenced by both 

washing the bone grafts and using large sized bone grafts. Cement penetration was hardly affected 

by washing the bone grafts. On the contrary, cement penetration is primarily influenced by bone 

graft size. Hence, large bone grafts probably facilitate a high lever-out force by allowing a higher 

inter-particle shear resistance and a deeper cement penetration and can therefore be critical in 

initial cup stability. Based on the fact that failure occurs in the bone graft layer, it is likely that 

initial acetabular cup stability is primarily determined by inter-particle shear resistance whereas 

cement penetration may not be as important. From a mechanical perspective, we advocate using 

large bone grafts, washed prior to impaction, to obtain optimal cup stability when using the bone 

impaction grafting technique.  
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Abstract 
Bone morphogenetic proteins (BMPs) accelerate bone repair in a variety of experimental and clini-

cal conditions. In this study we reconstructed a large loaded defect in the acetabulum of goats 

with impacted morsellized bone grafts (MCB) mixed with bone morphogenetic protein 7 (BMP-

7=OP-1®). The main question addressed was if OP-1 could accelerate the incorporation of MCB. 

The second question was if OP-1® has any effect on the formation of a soft tissue interface be-

tween cement and bone after complete incorporation of the MCB. Evaluation took place after 6 

and 15 weeks.  

After 6 weeks the main difference of the OP-1® group with the controls was the formation of 

enchondral bone, which was particularly located on the periosteal anterior and superior rim of the 

acetabulum. Scarce areas of enchondral formed bone were also present in the reconstructive layer 

of the OP-1® group. The bony periosteal reaction at the medial wall of the acetabulum was more 

pronounced and thicker in the OP-1® group. No differences were seen in the revascularization 

process of the MCB and in the number of osteoclasts resorbing the MCB. In both groups the new 

woven bone was remodeled into lamellar bone.  

After 15 weeks, most of the MCB was replaced by new bone, and no new enchondral bone for-

mation took place or was found in the reconstructive layer. The quality and density of the incor-

porated bone was similar in the OP-1® and in the MCB control group. A fibrous interface of vari-

able thickness was found at many locations between incorporated bone and cement, but quantita-

tion did not reveal a significant difference between the OP-1® and MCB groups. The mesh was 

always separated from the bone by a (thin) soft tissue interface.    
Thus, in this animal model, the OP-1® did not seem to accelerate MCB incorporation noticeably. 

Neither did it have any effect on the balance between bone resorbtive and bone forming activity 

and on the formation of a soft tissue interface. We speculate that during or directly after impac-

tion most of the OP-1® is released from the carrier having an effect outside the reconstructive 

layer at the periosteal side of the acetabulum. We therefore hypothesized that a carrier is needed to 

which the OP-1® is strongly bound and from which the release is induced by the revascularization 

and incorporation process. In this way the reactive cells for the OP-1® are always in the vicinity 

and lower amounts of OP-1® may have a significant stimulatory effect on MCB incorporation.   
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Introduction 
Aseptic loosening is the main reason for failure of components of total hip arthroplasty (THA) 

and is often accompanied by progressive bone stock loss around the THA components [21]. Find-

ing a proper way to cope with the bone stock loss and create a stable cup reconstruction remains a 

major challenge in revision surgery of failed acetabular implants. The bone impaction grafting util-

izes vigorously impacted morsellized cancellous bone grafts (MCB) in combination with a ce-

mented cup to restore defects during revision hip surgery [49]. The survival of acetabular recon-

structions is very satisfying, even after a follow-up of 15 to 20 years [17,36,45]. 

Animal experiments showed that MCB incorporates into a new vital bony structure [44,46,59]. 

Directly after revascularization, the MCB is resorbed by osteoclasts, where after new bone is 

formed on the remnants of MCB and in the interstitial fibrous tissue. In a large animal model in 

the goat, in which MCB was used for acetabular reconstruction, it was shown that after complete 

incorporation a soft tissue interface was formed between new bone and cement that progressed in 

thickness and led to failure of the reconstructions after longer follow up periods [44].  

In patients, MCB incorporates generally into a new bone structure [9]. However, in some cases the 

incorporation is less complete even in clinically well functioning cases [19,32,56]. Even after more 

than five years non-incorporated bone graft was still present in acetabular reconstructions [56]. 

Particularly follow-up on the femoral side, more non-incorporated bone graft, or bone graft that 

had been completely replaced by fibrous tissue at the interface between the reconstruction and 

cement, was observed [32]. Therefore, the most likely failure scenario on the longer term with this 

technique seems incomplete incorporation of MCB, which will lead to insufficient mechanical 

stability, subsidence and soft tissue interface formation at the cement bone interface. 

Bone morphogenetic proteins (BMP) are capable of inducing bone formation in a variety of loca-

tions if present in the appropriate concentration [6,31,50]. Most studies are performed with BMP-

2 or BMP-7; the latter is also called osteoprogenitor protein-7 (BMP-7=OP-1®). Most (pre) clini-

cal studies are related to clinical problems such as stimulation of fracture repair [13], the repair of 

critical sized segmental bone defects [11,16,42], bone healing after non-united fractures [15], spine 

fusion [55] and sinus lifting in oral facial reconstruction [33]. 

With respect to hip replacement (revision) surgery, it has been demonstrated that OP-1® could 

stimulate a better fixation and bone formation in dogs in a gap-healing model [31]. Barrack et al. 

[2] showed that OP-1® filled defects in combinations with non-cemented cups in dogs showed 

superior bone healing in comparison with allografts or empty defects. The potential beneficial role 

of BMPs in the incorporation of bone after impaction grafting has not yet been demonstrated. 

Tagil and Aspenberg [51] showed that strongly impacted grafts incorporate at a slower rate and 

that OP-1® could be used to accelerate the incorporation of such strongly impacted grafts.[52]  

However, in a loaded rabbit model Tagil et al. did not found any effect of OP-1® combined with 

impacted allograft bone on bone formation, but it was speculated that this could have been related 

to the mode of application of the OP-1® [53]. On the other hand, in a study on sheep, it was 
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found that OP-1® stimulated bone formation, but also increased the soft tissue interface forma-

tion between incorporated bone and graft in thickness. However, the numbers in this study were 

too small to base definite conclusions on [34]. 

One of the major concerns of the use of OP-1® in impaction bone grafting is a potential adverse 

effect on osteoclast stimulation and interface formation. In vitro studies showed that recombinant 

human OP-1® could stimulate the formation of tartrate-resistant acid phosphatase (TRAP)-

positive multinucleated cells from rat bone marrow in a dose-dependent manner [20]. In a dog gap 

model, OP-1® stimulated bone formation but also bone allograft resorption [22]. On the other 

hand Bostrom showed that fibrous tissue formation could be prevented with BMP-2 in a micro-

motion model [8].  

Therefore the first aim of this study was to investigate the effect of adding OP-1® to MCB in a 

clinical relevant large animal defect model. We hypothesized that adding OP-1® to the MCB 

would lead to a quicker incorporation. The second aim of this study was to investigate the effects 

of OP-1® on soft tissue interface formation in a large load bearing critical defect model in goats.  

We hypothesized that OP-1® could stimulate soft tissue interface formation at the bone cement 

interface after complete incorporation of the graft by an extra stimulation of osteoclastic resorp-

tion. Analysis was performed after 6 weeks for the early events during MCB incorporation and 

after 15 weeks for the longer-term effects of OP-1® on MCB incorporation and interface forma-

tion. 

 

Materials and methods 
Animal model 
The study was performed on 38 (30 for the operations, eight for the donor bone) adult female 

Dutch milk goats (Capra Hircus Sana). All animals were skeletally mature and weighed between 54 

and 67 kg (mean 59.71 SD 3.08). The goal was to have at least 7 specimens available for histology 

in each group. The ethical committee of the University of Nijmegen approved all procedures. 

 

Materials 
Fresh allograft bone was harvested under sterile conditions from the sternum of eight donor 

goats. The allograft was cut into 3-5 mm sized morsels with a rongeur. After rinsing with a physio-

logical saline solution the bone grafts were stored at -80°C [58]. Microbiological control of all 

bone graft batches was performed. To improve the reproducibility, two pools of the harvested 

bone grafts, each of four goats, were made.  

Stryker Biotech (Hopkinton, MA 01748, USA) supplied commercially available vials of OP-1® 

with a bovine collagen carrier. The rhOP-1® is combined with one gram of the collagen carrier by 

dissolving the protein in 1 ml of 50% acetonitril/0.1% trifluoroacetic acid and combining it with 

the appropriate amount of carrier. The final preparation is freeze dried and sterilized by gamma 

irradiation. The collagen carrier is obtained from demineralised bovine bone powder, which is 
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inactivated by 4 mol/L guanidine hydrochloride followed by extensive washing. The collagen car-

rier does not have cartilage or bone inductive properties in itself [10]. Carboxylmethylcellulose 

(230 mg) is added to the OP-1® device to achieve a putty consistency after hydration. For this 

study each commercial vial of OP-1® was split into three vials in a clean room facility (EMCN, 

Nijmegen, the Netherlands) that contained exactly one third of the original vial (1.15 mg OP-1® 

with 0.33 g bovine collagen). Directly before the reconstruction the dry content of such vial was 

mixed with 15 grams of washed defrosted morsellized MCB.  

 

Surgical procedure 
Pre-operatively, an antibiotic injection (Baytril 0.2 ml/kg; Bayer, Division Animal Health, Mi-

jdrecht, the Netherlands) was administered intra-muscularly. Pre-operative pain management con-

sisted of intra-muscular administration of both buprenorphine hydrochloride (Temgesic 5µg/kg; 

Renckitt Benkiser Healthcare, Hull, United Kingdom) and a non-steroidal anti-inflammatory drug, 

fluxin meglumine (Finadyne 1mg/kg; Schering-Plough Animal Health, Brussels, Belgium). Surgery 

was performed with the animals lying on their left side using isoflurane anesthesia (2.5% isoflu-

rane on an oxygen/nitro-oxygen mixture). The incision site was shaved and thoroughly cleaned 

with betadine. Thereafter, a C-shaped incision was used to approach the right hip from the ante-

rior side. The gluteal muscles were partially loosened from the femur and retracted. The capsule 

was opened with a T-shaped incision and thereafter the femoral head was dislocated. Next, a 

femoral neck osteotomy was performed. Soft tissue and cartilage was removed from the acetabu-

lar cavity and a central cavitary defect (Ø 32 mm) was reamed into the acetabulum. Two K-wires 

were placed on top of the superolateral rim to protect the sciatic nerve. Using a high power speed 

drill, the superolateral rim was removed to simulate a segmental defect as observed during revision 

THA procedures. This type 3 AAOS segmental defect [12] was between 28-32 mm in length and 

8-12 mm in width. The defect was reconstructed with a metal mesh (X-Change metal mesh, 

Stryker Orthopedics, Newbury, United Kingdom). Four AO bone screws (diameter 3.5 mm; 

length of 10 or 20 mm; Synthes, Switzerland) were used to secure the metal mesh. Small burr 

holes (2 mm) were made in the dense bone areas of the acetabulum wall to facilitate vasculariza-

tion to the reconstructive material layer. After a trial testing of the cup, the defect was recon-

structed with either 100% MCB or MCB mixed with one third of an OP-1® vial. About 15 grams 

of bone were needed for the total reconstruction. Several dome shaped impactors varying in size 

from 26 mm to 32 mm and similar to the Acetabular X-change revision set (Stryker Orthopedics, 

Newbury, United Kingdom) were used for impaction. After reconstruction of the defect, the cen-

tral cavitary defect measured 32 mm in diameter.  

Next, bone cement (Surgical Simplex-P, Stryker Orthopedics, Newbury, United Kingdom) was 

introduced into the defect 4 minutes after mixing the powder with the monomer and thereafter 

pressurized for two minutes. A custom made Exeter sheep polyethylene cup (inner diameter 22.2 

mm, outer diameter 29 mm) was inserted 6 minutes after mixing. In most cases, the anti-luxation 

rim of the cup had to be downsized manually to accommodate the defect. Next, the femoral shaft 
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was opened and cleared with broaches. The femoral canal was lavaged and bone cement was in-

jected retrograde 3.5 minutes after mixing the bone cement components. A double-tapered pol-

ished V40 Exeter sheep stem (Stryker, Benoist Girard, France) was inserted 5 minutes after mix-

ing the bone cement. After setting of the cement, the hip was reduced and excessive bone cement 

was removed. The soft tissues were closed in layers and a control X-ray was made of the hip re-

gion. Intra-operatively, the pain suppression was maintained further by an intra-venous injection 

of sodiumpentobarbital (Nembutal 30 mg/kg; Ceva Sante Animale, Maassluis, the Netherlands). 

Postoperatively, the animals were placed in a hammock for two weeks. They received ampicilline 

antibiotics (Albipen LA 15 mg/kg; Intervet, Boxmeer, the Netherlands) for another 48 hours and 

also intramuscular injections of Finadyne (4 days) and Temgesic (2 days) for pain suppression. 

Afterwards, the goats were housed separately with ample space to walk around. Each goat re-

ceived a subcutaneous injection of calcein green solution (25 mg/kg) at 8 and 1 days before kill-

ing. The goats were killed 6 or 15 weeks postoperatively, with an overdose of barbiturate 

(Nembutal 60 mg/kg). Standard roentgen photographs were taken from the implant sites to verify 

the implant position and to exclude fractures and dislocations. Both the femur and the recon-

structed acetabulum were harvested, cleaned from all soft tissue and fixed in a 4% buffered for-

maldehyde solution at 4ºC for at least ten days. 

 

Histology 
After making contact X-ray photos of the retrieved hip components, the reconstructed acetabular 

defects were macroscopically dissected into two halves. The dissection was made through the mid-

dle of the reconstruction in the transversal direction with a water-cooled diamond coated saw. Of 

these two halves, two medially thick slices (6 mm) were made. One slice was decalcified with 25% 

Ethylene Dinitrilo Tetra-acetic Acid (EDTA) in 0.1 M phosphate buffer (pH 7.4), dehydrated and 

embedded in polymethylmethacrylate (PMMA). After thin sectioning (Leica RM 2155, Heidelberg, 

Germany), 7 µm sections were stained with Haematoxilin and Eosin (HE), Saffranin O for the 

localization of cartilage matrix and with Tartrate Resistant Acid Phosphatase (TRAP). The second 

thick slice was embedded non-decalcified in PMMA. Serial sections of 30µm (Leica SP1600 saw-

microtome, Heidelberg, Germany) were HE-stained or left unstained for the visualization of cal-

cein fluorescence. All sections were observed under ordinary and polarized light.  

All defects in both groups were assessed by two reviewers (PB, JA) and the extent of graft incor-

poration with new bone and remodeling in the graft site was graded at two locations under the 

mesh with an adapted grading system of McGee et al. [34] (Table 1). The first location was deep in 

the defect, the second more superficial close to the cement layer (see Figure 1 for schematic repre-

sentation). Secondly, in one section of every specimen the thickness of the interface was measured 

at five locations at equal distance from each other (Figure 1).  

To determine the location where measurements were carried out a tangent was drawn along the 

acetabulum. From the center of the cup five lines at equal corners (30 degrees) were drawn and at 

the intersections with the soft tissue interface measurements were carried out.    
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Figure 1. 
Cross-section of a reconstructed acetabulum with the location of the interface thickness measure-
ments. (S=superficial location, D=deep location, M=metal mesh)  
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Table 1. 

 

Histological grading system to describe extent of graft and biomaterial incorporation with new 
bone and remodeling (Modification of McGee et al. 2004). 

Bone-graft incorporation and new bone formation  Grade 

Adverse tissue response  

All of intramedullary region occupied by fibrous tissue and evidence of cortical resorption/adverse 
remodeling of cortex  

-2 

Thick band of fibrous tissue at interface apposed by a border of rapidly remodeling bone (sclerotic 
border)  

-1 

All or most bone graft visible   

Graft material present, no incorporation, and no new bone formation  0 

Graft material present, some incorporation with new-bone formation, and small amount of new bone  1 

Graft material present, some incorporation with new-bone formation, and moderate amount of new 
bone  

2 

Decreasing graft, increasing new bone   

Graft present, some incorporation with new-bone formation continuous with host bone  3 

Decreased amount of graft (compared with grade 3), and ample new bone at early stages of formation 
or dense fibrovascular tissue  

4 

Decreased amount of graft (compared with grade 4),good graft incorporation, and ample new calcified 
tissue  

5 

Less amount of graft still visible (compared with grade 5), good incorporation of graft and new bone 
with host and ample new bone within a fibrous marrow  

6 

Less amount of graft still visible (compared with grade 5), good incorporation of graft and new bone 
with host and ample new bone within a combined fibrous and fatty marrow  

7 

Less amount of graft still visible (compared with grade 5), good incorporation of graft and new bone 
with host and ample new bone within a fatty marrow  

8 

Remodeling   

Advanced remodeling of new bone with graft (if present) into trabecular-like framework within a fatty 
marrow, difficult to differentiate graft from new bone where graft has been resorbed, excellent incor-
poration.  

9 

Minimal to no evidence of previous grafting, extensive remodeling  10 
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Results  
Clinical observations and complications 
Limping was similar in all groups. During the first two weeks after release from the hammock all 

goats limped but thereafter it improved to almost normal walking in most animals.  

At sacrifice it appeared that three reconstructions had completely failed with loose cups at manual 

testing: two cups were completely dislocated, in one reconstruction the mesh had torn (Table 2).  

All other cups were well fixed and looked normal. However, histology showed two clearly infected 

specimens, with numerous polymorphonuclear lymphocytes, resorption of the bone graft and a 

thick interface.  These were excluded from further analysis. In one case in the OP-1® 15-weeks 

group, more then normal numbers of (polymorphonuclear) lymphocytes were present in the inter-

stitial tissue, particularly close to the cement layer. However, despite this suspicion on infection, 

the MCB was nicely incorporated into new bone that normally interfaced with the cement and this 

case was included in the analysis. In four specimens, the thin sclerotic medial wall of the acetabu-

lum was fractured, which resulted in MCB that was partially pushed through the medial wall. 

However, since the periosteum had remained intact and the MCB showed normal incorporation 

patterns, these specimens were included in the study. This resulted in 6 specimens in all groups 

that were available for further detailed histological analysis (Table 2).  

Histological analysis 
Resorption process of MCB 
Irrespective to the group, after 6 weeks the MCB was partly resorbed by an intense osteoclastic 

activity (Figure 2A-B). The number of resorbing osteoclasts was similar in both groups. Towards 

the cement layer more non-incorporated bone graft remained and in many locations the cement 

was still in contact with totally avascular non-incorporated MCB. Between the layer of new bone 

formation and the resorption front, a layer of fibrous tissue of variable thickness was present 

(Figure 2B). The thickness of this layer was not dependent on the presence of OP-1® (Table 3). 

Table 2. 

 

Early (direct postoperative) and late (observed after killing the goats) complications.  

Group  Follow-up time  Goats operated  Complications  Complication 
observed at 
histology  

Analyzed  
histological  

100% MCB  15 weeks  8 1 dislocation 
1 tear of mesh  

1 MW fracture  6 

100% MCB  6 weeks 7  1 infection 
1 MW fracture  

6 

OP-1/MCB  15 weeks  8  1 infection  6 

OP-1/MCB  6 weeks 7 1 dislocation 1 mild infected 
case 
2 MW fracture  

6 
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New bone formation at six weeks 
In the 6-week groups, bone formation was found in the impacted bone graft layer (Figure 2C), 

periosteally (Figure 2D) and in the holes of the mesh (Figure 2E). In the bone graft layer, new 

bone was formed on sparse non-resorbed remnants of the MCB and free in the stroma tissue 

Figure 2. 

 

(A and B) TRAP stained sections showing numerous osteoclasts (Red arrows) at the revasculariza-
tion front invading the bone graft (BG) and close to the cement layer (C) in a control (A x30) and 
OP-1 specimen (B x60). (C) Saffranin O stained section with spots of cartilage (CA) embedded in 
bone x60. (D) Medial wall (MW) of acetabulum (OP-1) with considerable periosteal newly formed 
bone (PB) x5. (E) Mesh (M) for containment of the impacted MCB with new bone (NB) formation 
in the holes of the mesh x5. (F) New bone (NB) formation on remnants of bone graft (BG) x30. 
Fibrous tissue (FT). 
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(Figure 2F). Most bone that was formed was of the woven type but deeper in the reconstruction 

close to the original host tissue remodeling into lamellar bone occurred. Small areas of enchondral 

bone were only found in the OP-1® reconstructions (Figure 2C). These regions were characterized 

by a pale staining in HE sections (see also Figure 3A) and an intense Saffranin O staining, which is 

indicative for proteoglycans (Figure 2C, 3B). Most of the marrow of the newly formed bone was 

fibrous (Figure 2F). No clear quantitative difference was found in the amount and quality of bone 

formed in the OP-1® and MCB groups (Table 4).  

 

Particularly in the OP-1® goats, more periosteal woven bone on the medial wall of the acetabulum 

was found as compared to the MCB-goats (Figure. 2D). In-between the holes of the mesh bone 

was formed in four out of six OP-1® specimens, which was never observed in the controls (Figure 

2E). In these cases bone had penetrated in the gaps in-between the mesh to the outer side of the 

mesh. Most of the bone that was formed in the gaps in the mesh was also of the woven type. Par-

ticularly at the posterior and anterior rims of the acetabulum, more bone was found in the OP-1® 

goats and this bone was mainly of the enchondral type (Figure 3A-B).  

Small islands of cartilage-like tissue, with matrix that stained pale in the HE and deep red with the 

Saffranin O staining, were embedded in later formed lamellar bone, and were particularly located 

close to the location of the periosteum at the time of operation.  

 

Table 3. 

 

Thickness of interface measured at five different locations in each goat. 

Group  Follow up period  Thickness of interface 
 (µm ± SD)  

MCB 6 weeks  415 ± 301  

MCB 15 weeks  690 ± 347  

MCB plus OP-1 6 weeks  400 ± 301  

MCB plus OP-1 15 weeks  390 ± 279  

Table 4. 

 

Scores for bone quality in a deep location (close to the host bone but in the reconstructed area) and 
superficial under the cement layer. 

Group  Follow-up period  Deep location  Superficial location  

MCB 6 weeks  7.6 ± 0.89  4.0 ± 0.7  

MCB 15 weeks  7.75 ± 0.5  7.0 ± 0.81  

MCB plus OP-1 6 weeks  7.25 ± 0.5  3.0 ± 2.9  

MCB plus OP-1 15 weeks  8.0 ± 0.0  6.4 ± 2.2  
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Bone remodeling at 15 weeks 
Irrespective of the group, at 15 weeks post-op, most of the impacted MCB was replaced by new 

vital bone (Figure 3C-D). The overall organization of the newly formed bone resembled that of 

intact bone, but it was slightly more irregular (Figure 3C). After 15 weeks the amount of en-

chondral formed bone in the OP-1® group was comparable to that after 6 weeks.  

Figure 3. 

 

(A) HE stained section showing periosteal bone in 6-weeks OP-1 group, which is a mixture of 
chondral bone and new bone x60. (B) Saffranin O stained section of 6-weeks OP-1 group with nu-
merous cartilage like areas (arrows) in new bone (NB) x60. (C) New cancellous bone (NB) (control 
group 15 weeks) with fatty marrow (FM). C is the cement layer. x15. (D) Higher magnification 
showing inactive osteoclasts (arrows) on the new bone x60. (E) Fibrous tissue around mesh (M) in 
15-week control specimen x15. (F) Interface between cement and bone in 15-week OP-1 specimen 
x15.  
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Remnants of bone graft were present that were incorporated into new trabecular bone. Particu-

larly closer to the host bone, the remodeling activity was less intense with lower numbers of osteo-

clasts and a transition of fibrous medullar tissue into fat marrow (Figure 3C-D). This transition 

was also associated with a decreasing number of osteoclasts that were also flatter and looked less 

active in their resorption activity (Figure 3D). Quantitation of the quality of the incorporated bone 

was similar in the OP-1® and in the MCB group (Table 4). The number of osteoclasts did not 

seem to differ in the two groups. The periosteal bone apposition activity was no longer very ac-

tive.  

 

Fibrous tissue formation 
Irrespective to the time point or group, the mesh was always surrounded by a layer of fibrous tis-

sue and never in direct contact with bone (Figure 2E, 3E). In the OP-1 group, this layer was thin 

since bone was found in the holes of the mesh. In the controls, all holes were filled with fibrous 

tissue. The thickness of the fibrous interface between cement layer and new bone was not differ-

ent in thickness or in cellular content (Figure 3F). Quantitation did not reveal a difference be-

tween the OP-1® and MCB groups at 15 weeks follow up (Table 3).  

 

Discussion 
 
So far, studies on the effect of BMPs on bone impaction grafting were mainly performed in bone 

chambers [23,29], in small animal models [53] or, if performed in larger animals, the numbers in 

the groups were extremely small [34]. In our model, a large defect was created and a wall defect 

was reconstructed with a mesh. The defect is loaded with a comparable load as in humans [3]. The 

model was previously used to study the incorporation of pure MCB, but then with an intact super-

olateral rim [44]. As in this study, the MCB was almost completely resorbed by osteoclasts during 

the process of revascularization and only scarce MCB remnants were incorporated into the new 

bone. In all studies, a soft tissue interface developed at the bone cement interface that slowly pro-

gressed in thickness at longer follow up periods. The model can therefore be considered as highly 

critical. 
In light of the large sized nature of the defect, the number of complications was acceptable. The 

torn mesh was probably an isolated case of insufficient initial fixation of the mesh. Fracture of the 

medial wall, a frequently observed complication induced at surgery in this experiment (four cases), 

is clearly related to the goat model. After creation of the defects, the medial wall is extremely thin 

and sclerotic. In the light of the hard, but brittle, goat bone, it is not surprising that in a number of 

goats a medial wall was fractured. However, this did not hamper the incorporation of the MCB 

and the interfaces in these animals were quite similar to those in the normal specimens. In hu-

mans, in any doubt, a mesh will be applied to protect the medial wall [45].  

The carrier of the OP-1® device itself is not osteoinductive, and it may even induce a mild inflam-

matory reaction [4]. However, the large number of macrophages and lymphocytes that are present 



 59 

during the revascularization and resorption process of the MCB will have obscured this mild in-

flammatory effect of the OP-1® carrier, if present. The most important effect of OP-1® in this 

study was enchondral ossification in the periosteum and to a lesser extent in the reconstructive 

layer and bone formation near the periosteum of the medial wall. The potency of BMPs in general 

to induce bone by an enchondral pathway has been well known for many years [1,34,54,60]. How-

ever, in a large number of experimental studies it was shown that BMPs are also capable of induc-

ing bone by direct intra-membranous ossification without a cartilage stage[29]. Why in some ex-

perimental conditions enchondral bone is formed and in others direct intra-membranous bone, is 

not known and may be related to the location, the presence and differentiation status of progeni-

tor cells, the local loading conditions and the carrier used [54]. Particularly bone harvested from 

bone chambers is formed under non-loaded conditions [57]. In most bone chamber studies, bone 

is formed instead of cartilage [29,57]. In a more dynamic location such as a healing fracture, en-

chondral bone formation dominates, particularly in the early stages of healing. This would suggest 

that load is one of the main determinants of the effect of BMPs on progenitor cells. 

The concentration used in this study (1.15 mg OP-1® in 15 grams of bone) was similar to that 

used in a previous study in sheep [34]. However, in most prior animal studies, a higher dose was 

used. In many studies, the pure OP-1® devise is used [16]. The OP-1® device contains 3.5 mg of 

OP-1® with 1 g bovine bone carrier and 230 mg CMC, which has a volume after reconstitution 

with physiological saline of ca 3 cm3. In a large number of other studies in which OP-1® was com-

bined with allograft or ceramic bone graft replacement materials, the concentration was also much 

higher [53]. In this study the dose was determined based on the intended final use of OP-1® in 

impaction bone grafting in patients, in which procedures large quantities of bone are used. More 

than one femoral head is no exception. One femoral head contains ca 45-60 grams of cancellous 

bone. The final intended concentration in humans would be one vial of OP-1® per femoral head. 

Based on this we mixed one third of a vial with ca 15 grams of goat bone to have a similar con-

centration as in the human situation.  

More explanations are possible for the lack of any stimulatory effect of OP-1® on MCB incorpo-

ration. The most likely reasons are related to the lack of reactive cells, the use of rinsed allograft 

bone, the concentration of OP-1® that may be potentially too low, the carrier may not be optimal 

for use in bone impaction grafting or the production of growth factors by the repair tissue itself is 

up-regulated during the incorporation process. 
It is well known that BMPs, in general, play an important role in the stimulation of progenitors in 

early embryonic development [24]. Indeed, it was shown that OP-1® is a potent inducer of differ-

entiation of pluripotent human mesenchymal C2C12 cells into osteoblastic cells [63] and OP-1® 

stimulated in vitro a chondrogenic and osteogenic differentiation of more dedicated progenitors 

isolated from the periosteum of young calves [18]. It is not known if vital cells are present in the 

reconstructed layer. Some cells will probably have survived the freezing and thawing cycle [62], 

but their number is probably rather low, and moreover, by the impaction process remaining viable 

cells will probably die immediately or if they survive they will die shortly after implantation in the 
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initial avascular environment in the animal. This means that an effect of OP-1® on the incorpora-

tion speed of the MCB could only have taken place after some weeks when the new vessels and 

associate progenitors reached the bone graft layer [44], which would have taken between 3 and 6 

weeks. At that time it is very unlikely that much OP-1® is still attached to the carrier. 

A number of studies showed that if OP-1® is combined with autologous bone grafts, no effect of 

OP-1® on bone formation was found [40,55]. Apparently the bone inducing properties of autolo-

gous bone itself is already quite optimized [27] which means that OP-1® cannot speed up the in-

corporation any further. Probably the endogenous growth factors (BM-2, 4, TGF-beta1, IGF-1) 

are partly responsible for this [27]. Generally, allograft is known for its less effective osseous-

induction as compared to autograft bone [14,25]. Particularly bone from commercial bone banks 

may have variable osteoinductive properties [47]. This might be related to a decreased content of 

BMP-2 and BMP-4 in such commercial bone graft [30]. On the other hand, considerable amounts 

of BMPs and other growth factors were demonstrated in commercially prepared allograft bone 

[5]. If endogenous growth factors are that important, adding growth factors might be an attractive 

way to guarantee the biological activity of bone bank grafts [30,48]. With respect to this study, it 

was demonstrated that rinsing goat bone after impaction does not lead to the release of BMPs 

form the matrix (unpublished results) and this rinsed allograft bone was as effective to induce new 

bone in bone chambers as autograft bone [58]. Thus it might be speculated that the situation in 

the reconstructive layer is already quite optimal in this model for MCB incorporation, even with 

allograft. Moreover, in fracture repair and distraction ontogenesis, various genes are up-regulated, 

which results in the endogenous production of various growth factors amongst which are also 

BMPs [7,26,35,37,43]. Since the process of MCB incorporation closely resembles fracture repair in 

a sense that necrotic bone has to be removed and that new bone is formed, it could be speculated 

that endogenous growth factors are also up-regulated in this process of MCB incorporation.  

The standard delivery system for OP-1® is the carrier of processed cow bone and CMC. Based on 

our results in which we observe a significant difference in bone formation between OP-1® treated 

animals and controls, particularly in locations where OP-1 was not applied, it should be assumed 

that a considerable amount of OP-1 was released from the carrier by the process of impaction. 

The amount of early release may be dependent on the carrier system used [54]. This makes it in-

teresting to compare the results of this study with for instance the study in which the BMP was 

combined with the graft without a carrier system [53]. They also did not find any effect on the 

incorporation but did not mention the formation of enchondral formed bone. 

In the light of the early release of OP-1® from the carrier, it is not surprising that a number of 

alternative carriers are advocated in literature. Since BMPs are used in a wide range of applica-

tions, a carrier that works well in one area may be a poor choice for use in another. A combination 

of BMPs with popular ceramics for use as bone graft substitutes is attractive because of the re-

duced incorporation potential of biomaterials compared to bone grafts [61]. Adding BMP might 

counteract this [28,38,39,41], but it can be doubted if the release characteristics of OP-1® from 

these carriers will be quite different [54]. 



 61 

A major concern in using OP-1® in impaction bone grafting is the unwanted further stimulation 

of osteoclastic bone resorption. Recombinant human OP-1® stimulated the formation of tartrate-

resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) significantly and in a 

dose-dependent manner in rat bone marrow cell culture [20]. Especially when using BMP-7 with 

bone impaction grafting during THA, a fast resorption of bone grafts could result in implant in-

stability and even failure. During the process of MCB incorporation osteoclastic activity is height. 

That was also observed in this study. However, this study did not show any effect of the OP-1® 

on osteoclast recruitment and/or activity but this might be explained by the low concentration of 

OP-1®. Also no differences were found between the thicknesses of the interface, which would 

have been expected with a large stimulation of OP-1® on osteoclasts.  

 

Conclusion 
In conclusion, in this study OP-1® did not have a stimulatory effect on bone graft incorporation; 

neither did it seem to have an effect on the recruitment or activity of osteoclasts. Rinsed allograft 

might already be quite optimal. Moreover, OP-1® is probably partially released from the carrier 

and has an effect outside the reconstructive layer at the periosteal side of the acetabulum. A more 

controlled release system, in which OP-1® is released into the reconstructive layer over a longer 

period, may be helpful for a better stimulatory effect of OP-1® on bone graft incorporation. 
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Abstract 
Bone defects after failed THA can be reconstructed with impacted morselized bone grafts and a 

cemented cup. In the near future the amount of bone grafts available for surgical purposes will be 

insufficient. Ceramic calcium phosphates, (Tri-calcium Phosphate and Hydroxy-apatite) have been 

widely considered as potential bone graft substitutes or bone graft extenders. In the past, me-

chanical experiments have been performed to determine implant stability of bone grafts and ce-

ramic TCP-HA granules mixes under a compressive load. However, in-vivo migration studies sug-

gest that shear loading may be equally important. This in-vitro study investigated the initial stabil-

ity of cups reconstructed with various mixes of bone grafts and ceramic TCP-HA granules in a 

lever-out situation, where shearing is the predominant loading mode. It was found that the cups 

reconstructed with mixes of bone graft and TCP-HA granules exhibited greater mechanical stabil-

ity as compared to the cups reconstructed with bone grafts only. We conclude that from a me-

chanical standpoint, when considering shear force resistance, 50-50% volume mix and 25-75% 

volume mix of MCB and TCP-HA granules both provide adequate initial cup stability and can be 

used for acetabular reconstructions with the bone impaction grafting technique.  
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Introduction 
In total hip revision the bone impaction grafting technique can be used to reconstruct bone 

defects with vigorous impaction of morselized cancellous bone grafts (MCB). This technique, 

described by Slooff et al. for acetabular revisions [1] and Gie et al. [2] for femoral revisions, has 

provided satisfactory long-term clinical results on both the acetabular side [3, 4, 5, 6] and the 

femoral side [7, 8]. However, in the near future, the amount of bone graft available for surgical 

purposes will be insufficient. Therefore, interest in bone substitutes has strongly increased in 

recent years [9]. Ceramic calcium phosphates, such as tri-calcium phosphate (TCP) and 

hydroxyapatite (HA), are widely considered as promising bone graft substitutes or bone graft 

extenders. Before such materials can be used for the reconstruction of loaded bone defects around 

THA implants, proof of their mechanical integrity is required.  

Implant stability, essential for the long-term survival of the implant components, is affected by 

many parameters. Two important factors in acetabular cup stability are the stability of the bone 

graft layer itself [10, 11] and the amount of cement penetration in the bone graft layer [10, 12]. 

Stability of the graft layer has been studied in a variety of models and it is known that it can be 

improved by using large bone graft sizes [10, 12, 13, 14], by grading the bone grafts [11], by using 

a high impaction force [13] and by washing the bone graft [10, 15]. Cement penetration in the  

bone graft layer is mainly influenced by bone graft size [10]. A better penetration of cement spikes 

within the reconstructive material layer will lead to a rougher interface between the bone cement 

and the reconstructive materials. This rougher interface will enhance acetabular cup stability.  

In-vitro tests with ceramic biomaterials were already performed in a clinically realistic acetabular 

revision surgery model [16, 17]. Under compressive loading, reconstructions with pure TCP-HA 

granules (BoneSave®; Stryker Orthopaedics) showed a high stability of the acetabular cups, but 

this was probably due to a large amount of cement penetration near the host bone. Although 

attractive from a mechanical point of view, from a biological perspective, this embodiment of 

biomaterial granules by bone cement will hamper revascularization of the reconstructive layer. 

This phenomenon also probably increases the risk on mid-term failure of the reconstruction. 

From a mechanical point of view, mixes of MCB/TCP-HA granules are more attractive as they 

possess adequate stability and are effective in limiting the amount of cement penetration.  

In case of femoral reconstructions with the bone impaction grafting technique, favourable results 

on stem subsidence were reported, when adding ceramic TCP-HA bone graft extenders to MCB. 

Blom et al. [18] demonstrated that mixtures of bone allograft and TCP-HA granules exhibited 

much better mechanical stability and reproducibility than pure bone allograft.  

So, in both acetabular and femoral mechanical studies MCB/TCP-HA mixes behave in a 

mechanically adequate manner. However, the loading conditions in these earlier tests had always a 

relatively large compressive stress component in the graft layer. It is not surprising that sintered 

TCP-HA granules with porosity values up to 50% will function well under mechanical 

compression.  
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When contemplating that shear force resistance not combined with a compressive stress 

component is an important factor of initial cup stability [10], questions remain about the stability 

of these MCB/TCP-HA mixes in a lever-out situation. The forces generated during a lever-out 

study, clinically comparable to cup impingement, differ fundamentally from mechanical 

compression studies of an impacted bone graft layer. 

Therefore, the first aim of this study was to quantify acetabular cup stability under shear loading 

conditions when using several MCB/TCP-HA mixes. We assessed whether changes of the MCB 

and/or TCP-HA percentage influenced acetabular cup stability. We further evaluated whether or 

not MCB and/or TCP-HA percentage variation would produce a difference in cement 

penetration. Two MCB/TCP-HA mixes were tested and compared with the current gold standard 

for acetabular bone impaction grafting, which is 100% MCB.  

Secondly, we hypothesised that cement penetration could be limited by using a sticky HA-based 

compound (Ostim, Osartis, Oberburg, Germany) to close inter-particle spaces of the impacted 

reconstructive material layer. We evaluated the cement penetration properties of all groups to 

assess whether or not this biomaterial was able to limit the cement penetration. Additionally, we 

determined to what extent combining Ostim with the MCB/TCP-HA mix would affect initial cup 

stability. A third reason to include Ostim in this study was to assess if this material could improve 

the handling characteristics of the MCB/TCP-HA mixes.  

 

Materials and methods 
Acetabular test model 
The in-vitro tests were performed in cylindrical synthetic acetabular models produced by 

Sawbones (Sawbones Europe, Malmö, Sweden) [12]. In these models, a central cavity (60 mm 

diameter) was created. In addition to this cavitary defect, a segmental defect, involving 25% of the 

acetabular wall was created. The defects in these models were comparable to AAOS type 3 defects 

as frequently observed in revision surgery. The segmental wall defect was reconstructed with a flat 

X-Change® metal mesh (Stryker Orthopaedics) and four cortical bone screws. 

 

Reconstructive materials 
MCB: Large morselized cancellous bone grafts (Ø 8-12 mm) were nibbled from 25 freshly frozen 

human femoral heads using a rongeur. Prior to testing, these bone grafts were pooled to 

compensate for bone graft variability and divided into four equal portions.  

p 
BoneSave®: BoneSave (Stryker Orthopaedics) is a biphasic ceramic material consisting of 80% 

TCP and 20% HA. The TCP-HA granules have a non-interconnected macro-porosity of 50% and 

an average pore size of 300-500 µm. In this study, we used large TCP-HA granules (Ø 4-8 mm). 

g 
Ostim®: Ostim is a non-sintered hydroxy apatite [Ca10(PO4)6(OH)2] paste with crystalline nano-

particulate characteristics. The crystal’s main size is 18 nm. The Ca/P ratio of the material 1,67.  
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Four test groups were defined and each test group consisted of 8 synthetic acetabular models. The 

synthetic models of each test group were reconstructed with different (volume based)   

biomaterial compositions for use as a reconstructive material. They were: 

1. 100% MCB (BG100) 

2. 50% MCB and 50% TCP-HA granules volume mix (BG50) 

3. 25% MCB and 75% TCP-HA granules volume mix (BG25) 

4. 67% (25% MCB/75% TCP-HA) and 33% Ostim (OSTIM) 

 

Reconstructive technique 
The reconstructive biomaterial mixes were introduced into the model and first impacted against 

the metal mesh. Subsequently, the reconstructive mixes were introduced into the entire defect.  

Metal acetabular X-Change® impactors (Ø 46 mm, 48 mm, 50 mm) and a metal hammer were 

used to reconstruct the defects by creating a graft layer of 12 mm against the metal mesh and 4 

mm opposite of the metal mesh (Figure 1).  

At the end of the reconstruction procedure, a standardized impaction was applied by dropping a 

weight of 1.5 kg ten times, from a height of 35 cm, on a 46 mm diameter impactor. After the 

standardized impaction sequence, Simplex-P bone cement (Stryker Orthopaedics, Limerick, 

Ireland) was prepared. Four minutes after mixing the powder and the monomer, the cement was 

inserted into the reconstructed defect. The cement was pressurized for 2 minutes with a 65 mm 

diameter acetabular seal (DePuy International Ltd, Blackpool, England). Next, the acetabular PE 

cup (Stryker Orthopaedics, Exeter Contemporary cup, effective outer Ø 40mm, inner Ø 28 mm) 

was inserted under displacement controlled conditions, using an MTS loading device (MTS 

Systems Corporation, Minneapolis, Minnesota, USA). In this way, the cups were placed at the 

Figure 1. 

 

Example of a reconstructed acetabular defect, in this case of the BG50 group, prior to cementation 
and cup insertion. Particularly note the differences in reconstructive layer thickness against (12 
mm) and opposite (4 mm) the metal mesh. 
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exact same position in all models. Afterwards, the reconstructed models were wrapped in saline 

soaked cloths, and stored in a refrigerator at 6° C for 24 hours to allow the cement to polymerize.  

 

Lever-out test 
 During the lever-out test the acetabular models were fixed at 8 degrees relative to an upright 

position (Figure 2). A metal rod was connected to the inner surface of the cup. Subsequently, a 

force was applied perpendicular to the rod axis at a height of 150 mm by means of a wire 

connected to the MTS machine (MTS Systems Corporation, Minneapolis, USA) by a pulley. The 

lever-out test was displacement controlled (16º/minute), while the required displacement force 

was monitored. We defined a sharp reduction in measured force as failure of the reconstruction. 

The force was transformed to a lever-out moment in newton meters (N m) by multiplying the 

force with the 0.15 meter lever arm. 

Cement penetration 
Ultimately, all lever-out tests resulted in a loosened acetabular cup due to failure in the 

reconstructive layer. All the cups, with their intact bone cement layer, were removed from the 

acetabular model. Subsequently, the bone cement layer was cleaned from adherent reconstructive 

materials. Afterwards all the cups were immersed in a 30% potassium hydroxide (KOH) solution 

for 6 hours at 55°C to dissolve all bone remnants and all ceramic biomaterials granules. The 

surface of the cement layer was visually inspected to estimate the cement penetration.  
 

Statistics 
The Kruskal-Wallis One-way Analysis of Variance on Ranks (ANOVA) was used to analyze 

differences of the lever-out moments (N m) between the BG100, BG50 and BG25 groups. Post-

hoc, the test of Tukey was used to determine differences in mean levels.  

 

Figure 2. 

 

Schematic overview of the lever-out test facility. The acetabulum model is confined in the holder. A 
metal rod is fixated in the acetabular cup and connected to the MTS machine (arrow) by a pulley. 
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Results 
Mixing Ostim with MCB/TCP-HA mixes considerably improved the handling. Building up the 

graft layer against the mesh was much easier as compared to the MCB/TCP-HA mixes and also 

easier in comparison with the BG100 mix, mainly due to the sticky characteristics of the Ostim 

paste.  

All the reconstructions failed during the lever-out test. The results of the lever-out test showed 

that the BG100 group, the BG50 group, the BG25 group and the OSTIM group provided average 

lever-out resistance moments of 11.18 N m, 14.07 N m, 18.02 N m and 1.77 N m, respectively 
(Figure 3). Hence, although the Ostim mix improved handling, it resulted in inferior initial cup 

stability. The Kruskal-Wallis One Way Analysis of Variance on Ranks showed that the mean 

values between the BG100, the BG50 and the BG25 were statistically significant different 

(p=0.003). The post-hoc Tukey test showed a statistically significant difference between the 

BG100 group and the BG25 group (p=0.002). No significant differences were found between the 

BG100 group and the BG50 group (p=0.234). Also, between the BG50 group and the BG25 

group no statistically significant difference could be detected, although there was a clear trend 

(p=0.077). The power of the Kruskal-Wallis test ( =0.05) was 0.90.  

Visual evaluation of the cement layer roughness revealed that the BG100 cups showed the highest 

roughness profiles with individual cement spikes all over the cup surface (Figure 4.A). The BG50 

cups (Figure 4.B) and the BG25 cups (Figure 4.C) showed fewer dominant spikes, both in height 

and occurrence. Additionally, the dome of the cup was very smooth when compared to the 

BG100 cups. This was probably due to the crushing of TCP-HA granules caused by the high 

impaction forces in the center of the dome. The BG50 and BG25 cups showed very similar 

cement mantles. The Ostim cups showed overall smooth surfaces along the entire cup. They were 

substantially different from the other three groups. Only waved cement ridges of small height 

lined across the entire cup surface (Figure 4.D). 

Figure 3. 

 

Moment values (Nm) with standard deviation (bars) at reconstructive failure during the lever-out 
test. (n=8/group) 
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Discussion 
In previous studies, ceramic TCP-HA granules have been analyzed whether they could act as bone 

graft substitute material in revision THA on both the femoral [18, 19] and the acetabular side [16, 

17]. Besides substituting for the bone loss, the main function of these ceramic materials is to 

provide initial stability of the implants after revision THA. All these tests were performed under 

mechanical compression conditions only. We believe that in addition to initial cup stability under 

mechanical compression, testing of initial implant stability under shear loading is also warranted. 

The loading mode generated in this lever-out test is substantially different from mechanical 

compression and clinically comparable to acetabular cup impingement 

The acetabular models used in this study represent a simplified human acetabulum and they have 

been validated against human pelvic bones [12].  These artificial models allow standardization of 

the defect size, the reconstruction technique, the applied impaction force and cup placement. 

Hence, they are highly capable to isolate the mechanical properties of reconstructive material. 

Another major advantage of these models is their ability to establish interactions between bone 

cement and the reconstructive material. This is even more important during lever-out testing than 

during mechanical compression testing. Furthermore, they are easier to obtain compared to 

cadaver bones. Obviously, the down side of these synthetic models is that they do not capture the 

natural variability and only mimic a small part of the human anatomy. Nevertheless, we believe 

Figure 4. 

 

Roughness profiles of the cement mantles, surrounding the acetabular cups, after the lever-out test. 
A; BG100, B; BG50, C; BG25 and D; Ostim. 

A B 

C D 
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that these models are very suitable to address research questions such as the ones posed in this 

study. 

In this study, we found that reconstructions with MCB/TCP-HA mixes could withstand higher 

shear forces as compared to reconstructions with MCB alone. The acetabular defects 

reconstructed with 25% MCB and 75% TCP-HA granules provided the highest lever-out 

resistance. However, no significant difference for shear resistance was found between 50% and 

75% TCP-HA granules in the reconstructive mix. The Ostim group showed poor results for cup 

stability. We believe that the Ostim ratio used, although chosen according to the manufactures 

instructions, was too high and resulted in inferior initial cup stability. This does not make the mix 

clinically usable at the moment. Further investigation on initial cup stability with MCB/TCP-HA 

mixes and Ostim concentrations in a lower dose should be performed.  

A 100% BoneSave group was not considered due to the results of Bolder et al, who demonstrated 

the occurrence of excessive cement penetration when using only ceramic materials [16]. However, 

they primarily considered solid TCP-HA granules, which do not crush as easily as the 50% porous 

TCP-HA granules that were used in this study. The fact that no significant difference for shear 

resistance was found between 50% and 75% TCP-HA granules in the reconstructive mix is very 

important. From a clinical point of view, this means that more bone can be replaced by TCP-HA 

granules during acetabular cup revision surgery with the bone impaction grafting technique 

without significantly reducing lever-out resistance. However, the consequences of increasing the 

TCP-HA ratio in the reconstructive mixes for cement penetration properties are not to be 

neglected. We found a larger smooth area underneath the dome of the cup when increasing the 

percentage of TCP-HA granules in the reconstructive mix. In this area, the TCP-HA granules 

probably are crushed during impaction. This may lead to an intensive biological reaction. It 

remains unclear if this will influence cup survival.  

The cement roughness profiles were described qualitatively. The apparent difference in cement 

roughness profile between the BG100 cups and the BG50 and BG25 cups can be explained. 

When MCB alone is used cement will fill the inter-particle bone graft spaces. During impaction of 

MCB and TCP-HA granule mixes, the ceramic materials are fractured and the resulting small 

granules are pressured into the inter-particle spaces of the bone grafts. This makes cement 

penetration less feasible. In general a rougher cement layer would enhance the resistance to lever-

out. However, the mixtures of MCB and TCP-HA granules produced higher lever-out values than 

the reconstructions with allograft bone alone, even though the cement layer of the cups with 

allograft alone appeared rougher. There appears to be an interaction between cement penetration 

and inter-particle shear resistance and the failure mechanism of the cemented cups. In cases with 

very limited cement penetration, such as the Ostim group in this study, reconstructive failure is 

likely to occur at the interface between bone cement and reconstructive material. With cement 

penetration properties as observed in the other groups in this study, reconstructive failure does 

not occur at the bone-cement interface but rather in the reconstructive layer itself. Hence, we 
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believe that in general inter-particle shear resistance is the more important factor in initial cup 

stability rather than cement penetration in a lever-out situation as performed in this study.  

We agree with previous reported statements that firm impaction of bone grafts is needed to 

ensure adequate acetabular cup stability [13]. When MCB/TCP-HA mixes are used, additional 

complications may arise. First of all, the handling characteristics are not optimal. Building up an 

acetabular wall with these mixes is not as easy as compared to using MCB alone because the 

MCB/TCP-HA mixes are not as adhesive. In this study, Ostim did fulfil parts of its promise by 

improving the handling characteristics of the MCB/TCP-HA mix.  

Furthermore, when these MCB/TCP-HA mixes are used, a highly controlled grade of impaction 

is needed. For the femoral side, it seems advisable to lower the impaction grade as compared to 

bone graft in order to avoid fissures and potentially femoral fractures [19].  

Clinically, other potential complications need to be mentioned. When TCP-HA granules are used 

for acetabular reconstruction with the bone impaction grafting technique, they do not mimic the 

visco-elastic behaviour of normal impacted bone [20]. During the impaction process the TCP-HA 

granules, because they are brittle, may be crushed into splintered fragments. These fragments 

could migrate to the joint space if metal meshes with rather large holes are used. Potentially, this 

may evoke clinical problems and should be prevented by thoroughly cleaning the reconstruction 

side.  

At the moment, we recommend further research before applying MCB/TCP-HA mixes for 

acetabular revision surgery with the bone impaction grafting technique. Modifications of the bone 

impaction grafting technique, when using MCB/TCP-HA mixes, should only be undertaken after 

careful consideration of both in-vitro and in-vivo study results. Utilizing the bone impaction 

grafting technique for the acetabulum as originally advocated by Slooff et al. [1] still has our pre-

ference. From a mechanical standpoint, based on the current study, it does not matter if a 50-50% 

volume mix or a 25-75% volume mix of MCB and TCP-HA granules is used for acetabular 

reconstructions with the bone impaction grafting technique. They both lead to adequate initial cup 

stability against a shearing loading mode. However, whether stability is maintained for a longer 

period needs to be assessed in animal models.  
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Abstract 
Calcium phosphates such as TCP-HA granules are considered promising bone graft substitutes. In 

the future they may completely replace allograft bone for impaction grafting procedures. Mechani-

cally, acetabular reconstructions with TCP-HA granules show high stability, however this is partly 

caused by excessive cement penetration, which is unfavourable from a biological perspective. It 
has been hypothesized that mixtures of morselized cancellous bone grafts (MCB) and/or TCP-

HA granules with a nano-crystalline hydroxyapatite paste (Ostim®) may reduce cement penetra-

tion while maintaining adequate implant stability and biocompatibility of the graft mixture. To 

investigate this hypothesis, destructive lever-out tests and in-vivo animal test were performed with 

various combinations of materials. Mechanically, the addition of 10% Ostim to mixtures of MCB 

and/or TCP-HA granules reduced cement penetration and resulted in a mechanical stability com-

parable to pure allograft (the current gold standard). Biologically, the application of Ostim with 

MCB or TCP-HA granules did not hamper the biocompatibility of the materials. Ostim was 

mostly osseous-integrated with MCB or TCP-HA granules after 8 weeks. Also non osseous-

integrated Ostim remnants were observed. In tartrate resistant acid phosphatase stained sections, 

these few non-osseous integrated Ostim remnants were actively being resorbed by osteoclasts. In 

conclusion, Ostim HA-paste could be a valuable addition when TCP-HA ceramic granules are 

being used for acetabular bone impaction grafting procedures. 
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Introduction 
In total hip revision surgery, bone defects can be reconstructed with vigorous impacted 

morselized cancellous bone grafts (MCB). This technique, was initially described by Slooff and 

colleagues [1] for the acetabulum in combination with a cemented cup and has provided excellent 

clinical results [2-5].  

Due to the expected shortage of bone grafts for surgical procedures in the future and the risk of 

virus transfer when using allograft bone, there has been an increased interest in bone substitutes 

[6]. From a biological point of view ceramic calcium phosphates, such as tri-calcium phosphate 

(TCP) and hydroxyapatite (HA) are widely considered as promising bone graft substitutes.  

Mixtures of MCB and TCP-HA granules combined with the bone impaction grafting technique 

have been mechanically studied in both acetabular and femoral in-vitro models. In general, the 

implant stability on both the acetabular [7-9] and femoral [10-11] side improved relative to 

reconstructions with pure allograft bone. In a synthetic acetabular model, reconstructions were 

also performed by using solely TCP-HA granules in combination with bone impaction grafting 

and a cemented cup [8]. The approach of using solely TCP-HA granules has the advantage of 

being purely synthetic, excluding the need of bone grafts and its associated drawbacks such as 

virus transfer and donor site morbidity. A very high cup stability was found during mechanical 

loading, however this was most likely caused by excessive cement penetration into the 

reconstructive layer [8]. This is considered unfavourable from a biological perspective, because it 

hampers revascularization and incorporation of the reconstructive layer [9]. Additionally, it 

appeared that the handling characteristics of pure TCP-HA granules were inadequate and needed 

to be improved before purely synthetic reconstructions could be applied clinically. It was 

hypothesised that the handling characteristics can be improved and the excessive cement 

penetration in the reconstructions with solely TCP-HA granules or mixtures of MCB and TCP-

HA granules can be reduced by combining the materials with a hydroxyapatite (HA) paste 

(Ostim®; Osartis, Obernburg, Germany) as the paste will adhere the TCP-HA granules together 

and have a sealing effect on the graft layer against cement penetration.  

Ostim is a nano-crystalline precipitated hydroxyapatite that contains about 40% of water [12]. 

Advantages of such a material are the easy handling, the close contact with surrounding tissue and 

the quick resorption characteristics. In dental applications Ostim has been used for treatment of 

tooth perforations [13] and jaw cysts [14-15]. However, these are unloaded locations which are 

very different from the situation with reconstructed acetabular defects. In addition, the combined 

application of Ostim with TCP-HA granules is unknown relative to its mechanical and biological 

performance. In an earlier mechanical pilot experiment [7], the Ostim HA-paste was already used 

with a mixture of MCB and TCP-HA granules. During this study a very low cement penetration 

and also an improvement of the handling characteristics was observed when 33% Ostim was 

applied. However, this 33% volume dosage of Ostim was found to be too high as the cup stability 

reduced below clinically acceptable values [7].  
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In the current study, several different mixtures containing combinations of  MCB and/or TCP-

HA granules and/or Ostim were used. It was hypothesised that the initial cup stability could be 

improved by either applying less Ostim in the mixtures, or by increasing the TCP-HA percentage 

in the mixtures or a combination of the two. The improved mechanical conditions should be 

obtained without compromising the handling characteristics. Furthermore, it was hypothesised 

that lowering the Ostim percentage in the reconstructions would result in intermediate cement 

penetration as compared to mixtures with 33% Ostim or solely allograft. From a biological per-

spective, it was hypothesized that the resorption characteristics and the osteoconductive proper-

ties of Ostim are not changed when combining Ostim with TCP-HA granules in an well estab-

lished unloaded defect model in the femoral condyle of rabbits [16]. To test these hypotheses, in-

vitro mechanical and in-vivo biological studies were performed with various combinations of materi-

als. 

 

Materials and methods  
Reconstructive materials 
MCB for the in-vitro mechanical experiment: Fresh cancellous allograft bone grafts (Ø 8-12 mm) 

were nibbled from 25 frozen human femoral heads (from the local bone bank) using a rongeur. 

Prior to testing, these bone grafts were pooled to compensate for bone graft variability and 

divided into equal portions.  

 

MCB for the in-vivo biological experiment: Fresh cancellous allograft bone was harvested from the 

distal part of the femur of four donor rabbits and nibbled to approximately 2 mm size with a 

rongeur. After rinsing with a physiological saline solution, the bone grafts were pooled and stored 

at -80ºC for at least two weeks. Microbiological control of all bone batches was performed.  

 

TCP-HA granules: (BoneSave®; Stryker Orthopaedics, Limerick, Ireland) is a biphasic ceramic 

material consisting of 80% TCP [Ca3 (PO4)2] and 20% HA [Ca10(PO4)6(OH)2]. The TCP-HA 

granules contain a non-interconnected macro-porosity of 50% with an average pore size of 300-

500 µm. The granules are also micro-porous. In the in-vitro mechanical experiment large TCP-HA 

granules (Ø 4-6 mm) were used. In the in-vivo biological experiment small TCP-HA granules (Ø, 

1.5- 2.0 mm) were used.  

 

Ostim®: Ostim (Osartis GmbH & Co. KG, Obernburg, Germany) is a fully synthetic nano-

crystalline hydroxyapatite [Ca10(PO4)6(OH)2] paste (Figure 1). The paste consists of a suspension 

of pure hydroxyapatite in water prepared by a wet chemical reaction. After completion of the 

paste, the HA content is 35%. The crystallite size is about 18 nm. The Ca/P ratio of the material is 

1.67. 
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In-vitro mechanical experiment 
In cylindrical synthetic acetabular models (Sawbones Europe, Malmö, Sweden), a combined 

cavitary and segmental defect, clinically comparable to AAOS type three defects, was created [7-9]. 

The defects were reconstructed with five different material compositions based on volume (Table 

1).  

Reconstructive technique 
The segmental wall defect was reconstructed with a flat X-change metal mesh (Stryker 

Orthopaedics) and four cortical bone screws. The reconstructive mixes were introduced into the 

model and first impacted against the metal mesh. Subsequently, the entire defect was 

reconstructed using acetabular impactors (Ø 46 mm, 48 mm, 50 mm) and a metal hammer. At the 

end of the reconstruction procedure, a standard impaction protocol was applied by dropping a 

weight of 1.5 kg, from a height of 35 cm, on a 46 mm impactor for ten times. Afterwards, Surgical 

Simplex-P bone cement (Stryker Orthopaedics, Limerick, Ireland) was prepared and inserted into 

the defect four minutes after mixing the powder and the monomer. The cement was pressurised 

Figure 1. 

 

Transmission Electron Microscopy (TEM) image showing precipitated Ostim nano-crystallite ag-
glomerates. 

Table 1. 

 

Test groups composition based on volume during the in-vitro lever-out test. 

Group  Material composition  Defects  

MCB100  100% allograft  8 

MIX 10  25% MCB / 75% TCP-HA mixed with 10% Ostim  8 

MIX 33  25% MCB / 75% TCP-HA mixed with 33% Ostim  8 

BS10  TCP-HA granules mixed with 10% Ostim  8 

BS33  TCP-HA granules mixed with 33% Ostim  8 
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for two minutes with a 65 mm acetabular seal (DePuy International Ltd, Blackpool, England). 

Next, the acetabular PE cup (Stryker Orthopaedics, Contemporary cup, effective outer Ø 40mm, 

inner Ø 28 mm) was inserted under displacement controlled conditions, using an MTS loading 

device (MTS Systems Corporation, Minneapolis, Minnesota, USA). In this way, the cups were 

placed at the exact same position in all models. Afterwards, the cement was allowed to polymerise 

for 24 hours.  

 

Mechanical testing 
After the cement was allowed to polymerise, the models were subjected to a lever-out test. This 

lever-out this is specifically designed to apply shear loading on the reconstructive layer [7]. During 

the lever-out test the load was applied by means of a wire connected to the MTS machine (MTS 

Systems Corporation, Minneapolis, USA) by a pulley (Figure 2). The lever-out test was 

displacement controlled (16º/minute), while the required displacement force was monitored and 

continued until reconstructive failure.  

Analysis of cement penetration 
After the lever-out test, all cups, with their intact bone cement layer, were cleaned from adherent 

reconstructive materials and immersed in a 30% potassium hydroxide solution for six hours at 55°

C to remove all reaming bone graft material. After this procedure and cleaning the cups again with 

a small brush, the cups were completely free of all bone graft remnants and ceramic material. The 

surface of the cement layer was visually inspected in all cases. The total number of cement spikes 

and the height of the individual cement spikes were graded as an indication of cement penetration. 

The roughness of the cement layer of all cups was graded by comparing them to the cups of the 

MCB100 control group.  

 

In-vivo biological experiment 
Animal model 

Figure 2. 

 

Schematic overview of the lever-out test facility. The acetabulum model is confined in the holder. A 
metal rod is fixated in the acetabular cup and connected to the MTS machine (arrow) by a pulley. 

MTS 

FIXATOR CUP 

CEMENT 

ACETABULUM 

HOLDER 
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16 Adult female New Zealand White rabbits were used. All animals were older than six months 

and skeletal mature. The rabbits weighed between 3100 and 4000 grams (Mean 3580 ±280 gram).  

The rabbits had access to water and rabbit chow ad libitum. The ethical committee of the Univer-

sity of Nijmegen approved all procedures.  

 
Surgical technique 
Pre-operatively, the animals received an antibiotic injection (Ampicilline 15mg/kg; Alfason, Woer-

den, the Netherlands) and an injection of fentanyl and fluanisone (Hypnorm 0.5ml/kg; Janssen 

Pharmaceuticals, Beerse, the Netherlands). One day prior to surgery the MCB was taken from the 

-80°C  storage and placed into a refrigerator (6°C ). Four hours prior to surgery the MCB was 

placed in room temperature. Surgery was performed with the animals under isoflurane anaesthesia 

(2.0% isoflurane on a nitro-oxygen/oxygen mixture). The incision site was shaved and thoroughly 

cleaned with betadine. After locating the knee joint space, a 2-3 cm lateral skin incision was made 

and the distal femur was exposed. A 2 mm diameter hole was drilled 4 mm deep in the lateral 

condyle. A guide pin was inserted and, using a custom made drill, a final drill hole with a diameter 

of 5.5 mm and a depth of 8 mm was created. Care was taken not to damage the lateral collateral 

ligament. The defect was cleaned using a sharp spoon and thorough irrigation with a saline solu-

tion. Four experimental groups were defined (Table 2).  

All groups were prepared by placing particles of MCB and/or TCP-HA in the required volume 

ratio (determined by placing in a standardized size syringe) into a 5.0 mm inner diameter stainless 

steel impactor tube. This impactor tube was designed to allow controlled compression of the re-

constructive mixes while forming an impacted construct to fit into the drilled defect. A standard-

ized pressure of 6.73 MPa was applied to the construct for two minutes. This pressure was also 

used in previous impaction experiments [16]. After the compression period of two minutes, the 

tube was removed from the compression device and the bottom cap was unscrewed. The tube 

was placed on the defect and the sample was inserted press-fit into the defect using a plunger. A 

standardized depth of the defect was filled and afterwards a polyethylene (PE) plug was press-

fitted on top of the implanted material to seal the defect. Thereafter, the area surrounding the de-

fect was irrigated with a saline solution to remove any remaining bone or biomaterial debris and 

the soft tissues were closed in layers. Subsequently, the procedure was performed on the contra-

Table 2. 

 

Test group composition based on volume during the in-vivo experiment. 

Group  Material composition  Defects  

ED Empty defect  8 

MCB100  100% allograft  8 

MCBOS  MCB mixed with 33% Ostim  8 

BSOS  TCP-HA granules mixed with 33% Ostim  8 
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lateral limb. Postoperatively, the animals were allowed to walk freely. Each rabbit received a sub-

cutaneous injection of calcein green solution (25 mg/kg) eight days and one day before killing. 

The rabbits were killed eight weeks postoperatively, with an overdose of 1ml/kg barbiturate 

(Nembutal 1 ml/kg; Ceva Sante Animale, Maassluis, the Netherlands). Standard roentgen photo-

graphs were taken from the implant sites to verify position and to exclude fractures. The distal 

femurs were harvested, cleaned from all soft tissue and fixed in a 4% buffered formaldehyde solu-

tion at 4ºC for at least ten days. 

 

Histology 
After localizing the PE plug, the defect with an additional 2 mm surrounding tissue was dissected 

from the host bone with a diamond coated saw. The biopsy was split 3 mm underneath the plug 

through the transverse axis. The upper part, directly underneath the PE plug, was decalcified with 

Ethylene Dinitrilo Tetraacetic Acid (EDTA), dehydrated and embedded in polymethylmetha-

acrylate (PMMA) and thin sectioned (7µm; Leica RM 2155, Leica Instruments GmbH, Nussloch, 

Germany). Sections were stained with Haematoxilin and Eosin (HE) or for the localization of os-

teoclasts and macrophages with Tartrate Resistant Acid Phosphatase (TRAP) and Acid Phos-

phatase (AP), respectively. The lower biopsy part was not decalcified and dehydrated and embed-

ded with PMMA. Serial slices of 30µm (Leica SP1600 saw-microtome, Leica Instruments GmbH, 

Nussloch, Germany) were made, which were used for a surface HE-stain or left unstained for the 

visualization of calcein fluorescence.  

Bone volume fractions within the defects after eight weeks were quantified. Transversal sections 

of undecalcified specimens were used for this histomorphometry quantification. Interactive  com-

puter controlled image analysis (AnalySIS; Soft Imaging System GmbH, Munster, Germany) was 

used to determine the cross-sectional areas of newly formed trabecular bone. All measurements 

were performed within a region of interest (Ø 5.5 mm) in three sections of each defect. A filter 

was used to differentiate between materials.  

 

Statistics 
One-way Analysis of Variance (ANOVA) was used to analyse differences of lever-out force (Nm) 

between the test groups. Post-hoc, the test of Tukey was used to determine differences in mean 

levels.  

ANOVA with the appropriate post-hoc Tukey test was used to determine the new bone forma-

tion differences between groups. Post-hoc, an unpaired T-test was used to demonstrate the critical 

sized nature of the defect by determining the difference between the empty defect group and the 

BG100 control group. 

 
 
 



 87 

Results 
In-vitro mechanical experiment 
Applying less Ostim (10% instead of 33%) in mixtures with TCP-HA and MCB granules or solely 

TCP-HA granules resulted on average in a six-fold increase of initial cup stability (Figure 3). Using 

pure TCP-HA in the mixture with Ostim also positively influenced initial cup stability, however 

the effect was less profound. Statistically, the ANOVA analysis showed that the differences in 

mean values between all treatment groups were significantly different. The power of the ANOVA 

test ( =0.05) was 0.889. Post-hoc, the Tukey test showed a statistical difference between the BS10 

group and all other groups (p=<0.001) and between the MIX33 group and all other groups 

p<0.001 (p=0.006 for the BS33 group). Also, statistical significant differences were found 

between the BS33 group and the MCB100 group and the MIX10 group (p<0.001). No significant 

difference was found between the MIX10 group and the MCB100 group (p=0.497).  

The cups reconstructed with a lower amount of Ostim (MIX10 and BS10) showed intermediate 

cement penetration values as compared to the control group (MCB100) and the cups 

reconstructed with the high amount of Ostim (Figure 4). The cement penetration was reduced 

compared to the MCB100 cups, but the cement penetration was higher when compared to high 

dose Ostim cups. The MCB100 cups showed the highest cement penetration (roughness) with 

individual cement spikes all over the cup surface (Figure 4). The reconstructions with a high 

amount of Ostim (MIX33 and BS33) showed very low cement penetration and both groups were 

visually indistinguishable from another. Differentiation between the reconstructions with a 

mixture of MCB and TCP-HA granules and 10% Ostim (MIX10) and solely TCP-HA granules 

with 10% Ostim (BS10) was possible by visual inspection. The main difference constituted the 

number of individual cement spikes, which was far greater when the mixture consisted only of 

TCP-HA granules and Ostim paste, whereas the height of the individual cement spikes did not 

seem to vary.  

Figure 3. 

 

Mean lever-out values (Nm) at model failure during the lever-out test. Bars indicate SD. 
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In-vivo biological experiment 
No intra-operative complications were observed and all animals were able to walk within 48 hours 

after surgery. The post-operative radiographs showed no plug displacement or loosening. No 

femoral fractures or fractures at the implant site were found. 

 The empty defects showed limited new bone formation, particularly located at the periphery of 

the defect. Newly formed medullar tissue with fat cells or fibrous tissue was found in the centre of 

the defect (Figure 5A). Rarely, some sparse bone trabeculae, mainly of the lamellar bone type with 

some local areas of woven bone, were present. Based on the number of osteoblasts and osteo-

clasts and the calcein fluorescence labels, bone remodeling activity was not very high. 

Figure 4. 

 

Acetabular cups with cement mantle after the lever-out test and cleaning of material remnants. (A) 
Unused cup without cement mantle. (B) MCB100. (C) MIX10. (D) BS10. (E) MIX33. (F) BS33.  
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The defects filled with 100% MCB were completely filled with new bone. Scarce necrotic MCB 

remnants were observed (Figure 5B). Most of the newly formed bone was woven bone. Remode-

ling into lamellar bone occurred predominantly on the surface and the observed remodeling activ-

ity was still rather high. Sometimes, areas of fibrous tissue or fat marrow were found. Local accu-

mulations of lymphocytes were observed in the medullar tissue of the new bone. Macrophages 

were scarce. The defects filled with 100% MCB were completely filled with new bone. Scarce ne-

crotic MCB remnants were observed (Figure 5B). Most of the newly formed bone was woven 

bone. Remodeling into lamellar bone occurred predominantly on the surface and the observed 

Figure 5. 

 

Histology results. (A) Section of an empty defect after 8 weeks. The defect borders are denoted by 
the circle (Ø represents 5.5 mm). (B) New bone formation (NB) on a bone graft remnant (BG) with 
osteoblasts lining the bone graft (arrows). (C) Areas of non-resorbed Ostim (O) integrated in new 
bone (NB). (D) Osteoclasts (arrows) against islands of Ostim (O). (E) TRAP staining confirmed 
the presence of osteoclasts (arrows) on Ostim (O). (F) New bone (NB) osseous-integrated with 
Ostim (O) and TCP-HA granules (BS). Bar scale B-F 0.1 mm.  
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remodeling activity was still rather high. Sometimes, areas of fibrous tissue or fat marrow were 

found. Local accumulations of lymphocytes were observed in the medullar tissue of the new bone. 

Macrophages were scarce. 

Defects filled with Ostim and MCB showed a higher, but non-significant, amount of new bone 

formation as compared to the other groups (Figure 6). Bone graft remnants and numerous small 

island of non-resorbed Ostim were incorporated and osseous integrated into the new bone 

(Figure 5C). Resorption cells could be distinguished on the surface of the Ostim (Figure 5D).  

In TRAP positive sections, the few remaining necrotic bone graft and some non-osseous inte-

grated Ostim remnants were actively being resorbed by osteoclasts (Figure 5E). In defects where 

Ostim was mixed with TCP-HA granules, the amount of newly formed bone was less than in the 

100% MCB control group and the MCBOS group, however the difference was not statistically 

significant (Figure 6). New bone was osseous-integrated with the TCP-HA granules and Ostim 

(Figure 5F). Larger areas with non-incorporated Ostim, as compared with the MCBOS group, 

were present. In all sections containing TCP-HA granules osteoclasts, macrophages and giant 

cells, faintly stained by TRAP and AP, were present in the medullar tissue in-between the new 

bone and particularly the crushed TCP-HA granules. Since most of the larger TCP-HA granules 

were osseous integrated, the number of osteoclasts on the surface of the TCP-HA granules was 

low. Occasionally very shallow resorption lacunae were present underneath an osteoclast on the 

surface of  TCP-HA granule. Osteoclasts were observed in greater numbers on the Ostim.  

Irrespective to the type of mixture in the EDTA stained sections, voids between Ostim and the 

newly formed bone were observed. They are believed to be an artefact related to dehydration dur-

ing the embedding procedures. 

Using interactive computer controlled image analysis, the surface area of newly formed bone 

showed  a significant difference (ANOVA) between the empty defect group and the MCBOS 

group (p=0.004) (Figure 6). Power of the ANOVA was 0.78. No significant differences were 

found between the surface areas of bone % in the MCB100 group, the MCBOS group or the 

Figure 6. 

 

Calculated surface area of newly formed bone % in the defects after 8 weeks. Bars indicate SD. 
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BSOS group. With the two-tailed Student T-test, only significant differences were found between 

the empty defect group and the MCB100 group (p =0.027) and the MCBOS group (p=0.004). 

 
Discussion 
In the current study a hydroxyapatite paste (Ostim) was mixed with mixtures of MCB and TCP-

HA granules or pure TCP-HA granules. The application of Ostim with either mixture limited the 

cement penetration properties. Furthermore, when 10% Ostim was applied in both mixtures, the 

mechanical cup stability was higher compared to pure allograft. Ostim also improved the handling 

of the mixtures during the reconstruction of the defects in the synthetic acetabular models. When 

combining Ostim with either MCB or TCP-HA granules in an unloaded femoral defect in the rab-

bit, no adverse effects for new bone formation or incorporation was observed after eight weeks 

follow-up.  

The acetabular model used in this study has been validated against reconstructions with human 

pelvic bones [17]. The defect size, the reconstruction technique, the applied impaction force and 

cup placement are standardised and the model is very suitable to address the research questions 

posed in this study [7,17], although this constitutes a major simplification of human anatomy. 

Using the bone impaction grafting technique, several in-vitro studies have shown that both 

acetabular and femoral implant stability can be improved by adding TCP-HA granules to MCB [7, 

9-11]. However, on the acetabular side excessive cement penetration associated with the high 

implant stability was observed, especially when the TCP-HA granules were used as a stand-alone 

material [9]. This is likely to limit the revascularization of the graft layer. Hence, it was judged 

unfavourable from a biological perspective. Therefore a in a former study, using the same 

synthetic acetabular defect model, it was assessed if the addition of an hydroxyapatite paste 

(Ostim) might limit the cement penetration [7]. The results indicated that 33% Ostim HA-paste 

mixed with mixtures of MCB and/or TCP-HA granules, could indeed limit excessive cement 

penetration while simultaneously improving the handling characteristics of the reconstructive 

material [7]. However, the cup stability was reduced below clinical acceptable values when 

compared to the gold standard, being a reconstruction with pure allograft. In the current study, 

the acetabular defects reconstructed with 10% Ostim resulted in higher cup stability when 

compared with pure allograft, however this was only significantly for the BS10 group. Also using 

10% Ostim instead of 33% Ostim, in mixtures with MCB and/or TCP-HA granules resulted, on 

average, in an six-fold increase of acetabular cup stability. The improved implant stability most 

likely occurred by a combined effect of more cement penetration and better inter-particle locking.  

Ostim is a nano-crystalline precipitated hydroxyapatite paste that contains about 40% of water. 

Ostim has already been used for several dental applications [13-15]. In orthopaedic surgery, Ostim 

has been used as a void filler combined with plating for various types of metaphyseal fractures 

such as the calcaneus and tibia. Ostim resorbs quickly [12], thereby stimulating cell infiltration im-

mediately after revascularization of the implant site [18]. In earlier studies, Ostim was applied into 
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critical sized bone defects in rabbits and or sheep [18]. Within 7 to 10 days after implantation of 

Ostim in bone defects capillaries start to infiltrate the material and osteoid formation started al-

ready after two weeks, reaching a maximum within 3 to 4 weeks. Within this time the Ostim be-

came surrounded by newly formed lamellar bone. In short, Ostim and bone tissue bonded and 

stimulated bone healing in critical sized animal defects [18]. When Ostim was combined with fac-

tor XIII, an improved angiogenesis was observed [19]. In this study, when initially mixed with 

MCB, Ostim was mostly integrated with new bone after eight weeks in the rabbit defects. Direct 

bone-Ostim contact without any fibrous tissue in between was observed in all specimens. These 

results are in accordance with earlier studies when Ostim was applied into cancellous bone defects 

into rabbits or sheep [18, 20]. In our study, more Ostim remnats, surrounded by bone were found 

in comparison with previous studies. Possibly, this can be explained by the fact that the resorption 

rate of MCB is higher compared to Ostim. This will result in a quick bone remodeling around is-

lands of osteoconductive Ostim. The incorporated Ostim will probably be remodeled over time. 

Also some large areas of non-osseous integrated Ostim were observed in both groups. Further-

more, in this study Ostim was evidently being resorbed by positive TRAP stained cells which were 

identified as osteoclasts. Resorption by sparse multinucleated giant cells and macrophages was also 

observed. This concurs with the reported results of Kilian et al. [21-22]. After eight weeks in an 

unloaded rabbit model, Ostim combined with MCB resulted in a higher, though not statistically 

significant, amount of new bone formation when compared to defects with solely MCB and de-

fects filled with a mixture of Ostim and TCP-HA granules . This supports the previously reported 

findings by Thorwarth et al. [23]. This tendency of a higher amount of bone formation might be 

explained by an improved angiogenesis [20], possibly induced by the Ostim. Another explanation 

might be the faster resorption rate of MCB when compared to TCP-HA granules. Ostim tended 

to fill the inter-particle spaces and also the pores of the TCP-HA granules. It may be that, since 

both materials are osteoconductive, further remodeling and incorporation is hampered by bone 

apposition on the surface of these composite constructs. For future clinical practice, choices have 

to be made with respect to the Ostim concentration to be used in acetabular reconstructions. Pre-

viously we demonstrated that high doses of Ostim, as recommended by the manufacturer, seri-

ously compromised the initial mechanical stability of the reconstruction [7]. A lower dose, as used 

in this study, has no significant effect on bone ingrowth and on initial mechanical stability but has 

a very positive effect on the limitation of cement penetration and on the handling. Thus this dose 

seems quite optimal for further assessment in a load-bearing model.  
 

Conclusions 
In conclusion, this study shows that 10% Ostim HA-paste in the mixtures with MCB and TCP-

HA granules improves handling of the mixtures, limits cement penetration, results in cup stability 

comparable to pure allograft and it does not lead to adverse biological reactivity. Therefore, it may 

be a valuable addition when TCP-HA ceramics are used for acetabular bone impaction grafting 

procedures. However, the final evaluation should be undertaken in a loaded animal model. 
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Abstract 
To evaluate in vivo performance of hydroxyapatite cement (HAC) as a porous bone graft substi-

tute, HAC was mixed (1:1 ratio) with either porous calcium phosphate granules (80% tricalcium-

phosphate, 20% hydroxyapatite) or defatted morsellized cancellous bone (MCB) allograft and im-

planted bilaterally in cylindrical drill holes in distal femurs of rabbits. Groups with empty defects 

and impacted MCB were used for reference. After eight weeks, one femur from each pair was ex-

amined histologically. All contralateral specimens and Time-0 specimens were used for mechanical 

indentation tests.  

 

Histology showed that some empty defects were filled with newly formed osteopenic bone after 

eight weeks. The impacted MCB showed remodelling into new vital bone. Incorporation of the 

HAC/MCB composite was incomplete, whereas minimal new bone ingrowth was found in the 

HAC/granule composites. Though not different from each other, both composites were signifi-

cantly stronger than empty defects, incorporated impacted MCB, and intact cancellous bone. At 

Time-0, the mechanical behaviour of impacted MCB was similar to both HAC composites.  

 

In conclusion, composites of HAC and porous biomaterials can maintain relatively high strength 

over eight weeks in vivo, but their incorporation into a new bony structure is slower than impacted 

MCB. The HAC/MCB composite showed favourable incorporation behaviour. 
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Introduction 
Due to the relatively high incidence of donor site complications with autografts, alternative bone 

grafting techniques are of great interest [1]. Allograft bone has the advantage of greater availability 

in quantity and size and shape of graft material compared to autograft [2]. However, bulk allograft 

does not incorporate quickly [3] and runs a slight risk of disease transmission. Morsellized 

cancellous bone (MCB) allograft, on the other hand, can completely incorporate into new bone 

structure [4-8], but the initial mechanical stability of MCB is strongly dependent on the type of 

reconstruction [9]. In hip arthroplasty, if used in combination with bone cement, the initial 

stability will be adequate, both at the acetabular and femoral sides [10-17]. Unfortunately, in many 

other applications where it is used as an uncontained or “stand-alone” material, the mechanical 

stability is far from optimal [18-25]. In other words, it is not generally applicable as a load bearing 

bone graft material.  

The ideal bone graft or osseous reconstructive material should possess the following 

characteristics: it should be implantable through a minimal surgical exposure; it should be 

mouldable to conform to and fill irregular defects; it should be as rigid and strong as intact bone 

for immediate load bearing capability; it should promote new bone formation and incorporation 

by the host; and finally it should be fully synthetic. Ceramic materials (i.e., hydroxyapatite and tri-

calcium phosphate blocks or cylinders) have been widely studied as potential bone graft 

substitutes. These compounds are gradually incorporated into host bone, while eliciting only 

minimal immunologic reactions [1]. A major limitation of these prefabricated ceramic compounds 

is that they are difficult to contour to the host bone in bulk form. This disadvantage is addressed 

by using particles or pellets [26], but then load bearing is not possible without stabilizing 

instrumentation and animals or patients must remain non-weight bearing until the ceramic is 

incorporated into the host bone. Thus in this form, the various synthetic calcium phosphate 

particles function mechanically like morsellized bone graft but are slower to incorporate. In the 

proper environment they are osteoconductive and, over time, can become mechanically stable and 

infiltrated with new bone in the interparticle spaces [26-28].An alternative to prefabricated ceramic 

compounds is the family of calcium phosphate cements (usually hydroxyapatite cement or HAC) 

[29-40]. HAC is principally comprised of tetracalcium phosphate and dicalcium phosphate 

anhydrous. These compounds undergo a chemical reaction when placed in an aqueous 

environment to form hydroxyapatite, which becomes adherent to the hydroxyapatite component 

of the host bone [29,32,41]. Therefore, they have the potential to offer the same advantages as 

ceramic compounds, but also provide more rapid stability due to adherence (mechanical interlock) 

to host bone with an improved contoured fit to the graft site. Because the cement can be readily 

contoured to fit the site for graft material insertion, it is similar to calcium phosphate in particle 

form or MCB. But unlike particles, cements can harden in place and provide immediate load 

bearing capability with stiffness similar to that of intact bone [42-45]. There are many interesting 

clinical applications already under investigation for these materials [2]. Unfortunately, they do not 
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incorporate and become remodelled into living host bone as readily as either calcium phosphate 

particles or MCB allograft. The challenge with these types of biomaterials is to find a balance 

between initial biomechanical properties and biologic incorporation. When the material is made 

fully dense to provide maximum strength, it suffers from slow incorporation [29,46]. When the 

material is made porous to facilitate incorporation, it is significantly weakened [46,47]. 

We hypothesised a strategy to help improve the biologic incorporation properties of HAC while 

maintaining sufficient strength for early load bearing. HAC was mixed with either defatted MCB 

allograft or porous calcium phosphate granules composed mainly of tricalcium phosphate (TCP). 

Similar to the objectives of other investigators [47-49] both of our HAC/particle composites were 

intended to increase the total porosity of the implanted cement material in order to facilitate 

earlier bone ingrowth, resorption, and incorporation. By mixing HAC with porous particles that 

have inherent strength, the belief was that overall strength would be preserved throughout the 

short and intermediate terms. We developed a modified version of an established rabbit distal 

femur model for this investigation [28,46,50,51]. 

 

Materials and Methods 

Twenty-four rabbits weighing an average of 3040 g (range: 2300 to 4200 g) were used. The 

university ethical committee approved all experimental procedures. The rabbits were acclimatized 

to their environment for a minimum of four weeks prior to surgery. The animals were housed in 

small groups of five or six animals in a controlled environment with normal light-dark cycles and a 

constant temperature maintained between 23-26ºC. The rabbits were provided water and rabbit 

chow ad libitum. Bilateral cancellous bone defects were created in the distal femora in rabbits and 

used for both mechanical and histological evaluation [52,46,50]. The defects were cylindrical holes 

drilled from the lateral direction approximately 10 mm deep and 5.5 mm in diameter (Figure 1).  

 

Figure 1. 

 
Drilled defect with plastic ring assembly. 
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Three materials were used in various combinations to fill the defects. They were HAC 

(BoneSource Classic, Stryker Leibinger, Dallas, TX), porous synthetic calcium phosphate granules 

(BoneSave, Stryker Howmedica Osteonics, Limerick, Ireland), and defatted morselized cancellous 

bone allograft (MCB; Figure 2A).  

The MCB was obtained from the proximal and distal femurs of four donor rabbits and prepared 

by nibbling with a rongeur to approximately 2 mm particle size and then rinsed with pulsed saline 

lavage until they were completely free of fat, blood and marrow. After soaking in sterile isotonic 

saline solution, the MCB allograft was pooled and stored frozen at -80ºC.  

HAC is a commercially available product currently approved for maxillofacial use. It is an 

equimolar combination of tetra calcium phosphate [Ca4O(PO4)2 ] (TTCP) and dicalcium 

phosphate anhydrous [CaHPO4] (DCPA). The particle size of the TTCP is approximately 15 µm 

while the particle size of the DCPA is approximately 1.5 µm. The size of the particles of the two 

components is important, in both the absolute sense and relative to each other, in producing the 

desired setting reaction. These components react in an aqueous environment to form 

hydroxyapatite [Ca10(PO4)6(OH)2] which is the source of the strength of the set cement. A setting 

time of approximately five minutes can be achieved by mixing the cement powder with a 0.25 

mol/L solution of Na2HPO4 [29].  

BoneSave granules are a commercially available product that is made up of 80% TCP [Ca3(PO4)2 ] 

and 20% HA [Ca10(PO4)6(OH)2]. The particles used in this study were sorted with a pair of sieves 

to produce particles between 1.5-2.5 mm  in diameter. The particles have a surface porosity of 

50% (BoneSave; Figure 2B).  

 

The four groups, based on the material used to fill the defect were: empty defect control 

(EMPTY), impacted MCB allograft (MCB), HAC mixed with MCB allograft in an approximate 1:1 

ratio by weight (HAC/MCB), HAC mixed with porous BoneSave granules in an approximate 1:1 

ratio by weight (HAC/GRANULES). Five femurs in each group were designated for histological 

Figure 2. 

 

Rinsed morsellized bone graft (A) and TCP-HA (BoneSave) granules (B). Bar is 2 mm.  

A B 
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examination. Five contralateral femurs from each group were to be used for mechanical 

indentation testing of the graft sample in situ. At random, the left or right femurs were used for 

histology or mechanical testing. 

 

Surgical procedure 
During surgery the three different graft materials used to fill the defect were prepared under sterile 

conditions. The impacted MCB allograft was prepared by placing thawed and rinsed pieces of 

MCB into a 5.0 mm inner diameter stainless steel impactor tube designed to allow controlled 

compression and forming of an impacted graft sample to fit into the drilled defect. A standardized 

pressure of 6.73 MPa was applied to the sample and more graft was added to the tube until a 

compressed sample of 8.0 to 10.0 mm length was formed. The tube was then removed from the 

compression device and the sample was pushed into the defect using a plunger. Next, the sample 

was further impacted into the defect with several light blows on the plunger and the plastic plug 

was placed in the threaded ring to seal the sample in the defect. To create the samples of HAC 

mixed with either MCB allograft or porous granules of BoneSave, the cement powder was placed 

in a mixing bowl followed by the appropriate amount of liquid solution.  As the cement was mixed 

with a spatula, particles were added to the mixture. Approximately 0.2 ml of the resulting mixture 

of cement and particles was manually packed into the end of a 1 ml syringe that had been 

modified by cutting the end off so that it was open at its full diameter and could be fit directly into 

the threaded plastic ring. In this way, the sample was injected into the defect through the plastic 

ring and compressed and sealed by placement of the plastic plug. 

For three consecutive days prior to sacrifice at eight weeks post-operatively, each rabbit was given 

a subcutaneous injection of calcein green (25 mg/kg) for fluorescence labelling of new bone 

formation. We did not applied double labels of fluorochromes for quantitative measurements. For 

quantitation of fluorochromes (bone apposition rate, active bone forming surfaces) thin (7 µm)  

sections are needed (because of over-projection of fluorochromes in thicker sections) and the 

preparation of such thin section is technically not possible with the BoneSave TCP/HA granules. 

The rabbits were then euthanized with a lethal dose of barbiturate (pentobarbital) (1 g/kg) and the 

femurs were harvested en bloc.  

Femurs assigned for histology were placed immediately in 4% 0.1 M phosphate buffered (pH 7.4) 

paraformaldehyde solution for one week at 4ºC. Femurs assigned for mechanical testing were 

wrapped in saline soaked gauze sponges and stored at -80ºC. 

 

Mechanical testing 
After removal of the soft tissue, the femur was cut transversely proximal to the patello-femoral 

joint cartilage and the plastic plug was removed from the threaded polyethylene ring. The 

polyethylene ring was used for positioning, alignment and fixation on a custom-loading pillar used 

as a base of support for the mechanical indentation tests (Figure 3).  
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The loading pillar consisted of a single stainless steel part made up of three cylindrical sections of 

5.5, 40.0 and 9.0 mm diameter and 10.0, 5.0 and 10.0 mm length, respectively. The ring and distal 

femur were pressed onto the 5.5 mm end of the test pillar to the level of the outer surface of the 

graft sample. Next the test pillar and femur were placed in a mold for fixation in plaster. After the 

plaster hardened, the plaster and femur as well as the pillar were removed from the mold and the 

pillar was then separated from the embedded femur. Each of the mechanical test specimens were 

then stored over night in a refrigerator at 4ºC in 100% humidity. Besides the implant groups the 

intact cancellous bone was tested proximal and distal of the growth plate.  

Immediately prior to testing, each plaster embedded specimen was placed in a lathe and the 

surface plaster removed as well as the medial aspect of the femur to reveal the distal femoral 

cancellous bone of the specimen and the included graft material. The surface was removed such 

that the distance between the exposed surface and the top of the load pillar was 5.0 mm after the 

pillar was replaced for support during the indentation test. The supported sample was placed in a 

servohydraulic load frame for the indentation test. The cylindrical indenter was 1.5 mm in 

diameter and fixed on the MTS actuator.  

The specimen was supported by a 2kN capacity load cell operating in the 1kN range (Model 3173, 

Eaton Corp., Troy, MI, USA) The indenter was pressed into the exposed surface of the graft 

material at a rate of 0.1 mm/s to a distance of 2 mm. The maximum load and maximum stiffness 

were determined. The area under the load-displacement curve was also calculated as a measure of 

the total energy applied to the test sample. It should be noted that the indentation testing 

technique measures local compressive strength of a material that is essentially confined. It does 

not measure tensile or bending strength. Similar tests were performed to determine the initial 

mechanical properties of the various graft materials. Five tests were done on each of the graft 

materials in excised rabbit femurs obtained from an unrelated project.  

 

 

Figure 3. 

 

The surface of the plaster and the medial part of the femur were removed to reveal the graft mate-
rial. An indentation test was performed using a 1.5 mm diameter indenter tip at a displacement rate 
of 0.1 mm/s to a distance of 2 mm. 
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Histology 
The specimens were cut along the long axis of the cylindrical graft sample using a custom high 

speed diamond saw. Half of each specimen was prepared for undecalcified histology and the other 

half decalcified in EDTA. The undecalcified specimens were embedded in 

polymethylmethacrylate, and sectioned using a diamond blade-sectioning saw (Leica SP1600, 

Heidelberg, Germany) to a thickness of approximately 20 m. Contiguous sections were stained 

with haematoxylin and eosin (HE) or left unstained for fluorescence microscopy. Thin (7 m) 

sections of decalcified materials were stained with HE and trap staining to visualize osteoclasts. 

Specimens were examined qualitatively (HE stained sections) and quantitatively (sawed sections) 

for the extent of ingrowth of trabecular bone and the presence of residual ceramic carrier or bone 

graft. A total of four specimens were available for histology in the EMPTY group, four specimens 

in the impacted MCB group, five specimens in the HAC/MCB group, and five specimens in the 

HAC/GRANULE group. 

Histomorphometry was performed using the following technique. A rectangular area within the 

grafted region was identified. The length of the rectangle was 6 mm from the bottom of the 

plastic plug to a depth of 6 mm within the grafted region. The distance of 6 mm was used to 

eliminate the effect of irregularities at the bottom of the drilled hole and of possible local 

autografting from unremoved bone remnants. The width of the rectangle was set equal to the 

section thickness as determined from the maximum diameter of the plastic ring in the plane of the 

section. All area calculations of the different materials of interest were made using digital image 

analysis software (AnalySIS, Olympus Europe, Amsterdam). Bone was easily distinguished from 

synthetic material in the undecalcified HE sections because the grey levels for each were different. 

Moreover the new bone could be identified on the basis of the fluorescence by calcein green. The 

two synthetic materials (HAC and porous granules of BoneSave) were distinguished from each 

other using both HE stained and unstained undecalcified sections. The total area of each type of 

material (bone, HAC, BoneSave) was divided by the rectangular area to determine a percentage 

area of each material. 

 

Statistics 
Statistical analyses were performed as ANOVA followed by post-hoc t-tests (Tukey) to determine 

any statistically significant differences between groups for both mechanical strength and 

quantitative histology measures.  

 

Results 
Mechanical testing 
The indentation strength testing results (Figure 4) showed that the combinations of HAC/

GRANULES and HAC/MCB allograft were stronger than intact cancellous bone both initially 

and after eight weeks in vivo (p<0.05). There were no differences between the two HAC 
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combinations in indentation strength. The HAC combinations were significantly stronger than the 

empty defect and the impaction grafting groups at eight weeks (p<0.05). Initially, the impaction-

grafting group was much stronger than the same group that had been in vivo for eight weeks 

(p<0.05).  

The impaction-grafting group after eight weeks in vivo was not significantly different from intact 

cancellous bone. The difference between the proximal and distal intact cancellous bone groups 

was due to the structural difference between the cancellous bone proximal to the growth plate 

compared to the bone distal to the growth plate. The epiphyseal bone had a much denser 

trabecular structure than the more proximal bone. The stiffness data (Figure 5) show a trend 

similar to the strength data with the following exceptions. The initial stiffness of the HAC/

GRANULE group was relatively higher and the initial stiffness of the MCB group was relatively 

lower.  

There was a lot of variation in the stiffness results of the mixtures of HAC because of the 

sensitivity of the stiffness to the exact location of the indentation test. When a particle (either 

MCB or BoneSave) was directly under the indenter, the result would not be expected to be the 

same as when the indenter came into direct contact with bulk HAC.  

The low stiffness relative to strength of the impacted MCB is because cancellous bone particles in 

a confined space compress substantially which allows the density of bone under the indenter to 

increase gradually. The result is a strong but not stiff material in confined indentation. The higher 

stiffness combination of HAC/GRANULES is because of the stiff yet brittle behaviour of the 

BoneSave. 

 

Figure 4. 

 

Indentation test results showing maximum indenter force for different samples over time. 
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Histology 
Histology showed that the empty defect was completely healed after eight weeks, but with only 

sparse trabeculae at the margins of the defect (Figure 6A). The impaction-grafting group (MCB 

group) also showed complete incorporation and remodelling to a new trabecular structure with 

organization resembling that of the intact bone (Figure 6B). The combination of HAC and MCB 

allograft (HAC/MCB group) showed extensive incorporation and remodelling of the regions 

originally occupied by the bone particles (Figure 6C-D). The cement was also partially resorbed 

with osteoclasts active adjacent to the HAC where there was actively incorporating MCB (Figure 

7A-C). The surface of the HAC was osteoconductive and had new bone attached to it along its 

surface where it was in contact with the original defect margin. Also in the defect, HAC was in 

many locations totally encapsulated in new bone (Figure 7D). There were large areas of active 

bone remodelling and new trabecular bone formation. The HAC/BoneSave combination (HAC/

GRANULE group) showed little resorption or remodelling activity (Figure 7E-F). There was a 

small amount of bone ingrowth as observed on fluorescence microscopy, but in general the 

HAC/GRANULE cylinders remained intact. There was excellent bone attachment to the surface 

of the HAC cylinder along the periphery of the original defect. Also, when there were porous 

granules in contact with this original outer surface or when cracking of the HAC occurred, some 

bone ingrowth and granule resorption did occur. The results of the quantitative histology are 

summarized in Table 1. There were no significant differences between groups because of the 

amount of variation within each group. Two of the empty defects healed quite well, while two of 

them remained empty. Similarly, two of the HAC/GRANULE specimens showed substantial 

bone ingrowth and remodelling, while the other three did not. 

Figure 5. 

 

Indentation test results showing maximum stiffness for different samples over time. 
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Discussion 
In this investigation, both combinations of HAC and porous particles were able to maintain 

strength and stiffness while improving the incorporation process. This was especially true in the 

HAC/MCB group. By eight weeks, nearly all of the MCB was replaced by living bone, yet the 

indentation strength and stiffness did not decrease. The HAC and the MCB formed continuous 

bonds with the original margins of the drilled defect, thus it can be assumed that as the 

remodelling process continues the material will become stronger in other loading modes such as 

tension, shear, and bending. There was evidence of direct osteoclast resorption of the HAC 

Table 1. 

 

Quantitative Histology Showing the Percentage Area Occupied by Material: Mean (SEM).  

Group  % Bone  % HAC  % Porous Granules  

Empty   (n=4) 11.6 (5.1) - - 

MCB   (n=4) 23.2 (5.0)  - - 

HAC/MCB  (n=5) 21.8 (1.8) 46.4 (6.2) - 

HAC/Granules  (n=5)  13.4 (5.9)  41.7 (9.0)  29.5 (5.4)  

Figure 6. 

 

(A) Empty defect. In the left side of the micrograph the location of the plug that closed the defect is 
visible. (B) Same location but defect filled with morsellized bone graft (MCB). Notice complete 
incorporation and formation of new bone (NB). (C) Defect filled with mixture of hydroxylapatite 
cement (HAC) and MCB, which is partially replaced by new bone. (D) Fibrous tissue (FT) invad-
ing HAC/MCB through osteoclastic resorption of the MCB. A-C x10, D x100. 

A B 

D C 

NB 

HAC 
NB 

MCB 

HAC 

FT 
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followed by deposition of new bone. The HAC/GRANULE group was also osteoconductive and 

showed some signs of new bone formation in some of the pores and cracks, but overall it was not 

very active.  

In a study of different formulations of calcium phosphate cements in the cancellous bone of 

goats, Ooms et al. [43] found that bone covered the surface of pores in contact with outer margin 

of the defect at eight weeks. Also, as the HAC cracks and allows osteoconduction to occur along 

Figure 7. 

 

(A) Fibrous tissue (FT) with many macrophages and osteoclasts invade and erode the MCB and 
HAC. X10. (B, C) Tartrate resistant acid phosphatase positive osteoclasts in contact with MCB (B) 
and HAC (C). x250. (D) Islands of HAC completely encapsulated in new bone. (E, F). Mixture of 
HAC and HA/TCP granules. X8. F Enlargement of E. New bone formation is not present. X30. 
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its surfaces, bone begins to fill in the voids in the material. This result is similar to the results 

reported by Boyde et al. [54] in which bulk hydroxyapatite ceramic was used in a diaphyseal defect 

in sheep. The HAC is sufficiently osteoconductive to allow rapid filling of cracks and exposed 

pores with new bone. In the HAC/GRANULE group, there was evidence of direct osteoclast 

resorption of the HAC followed by deposition of new bone. In addition, during the eight weeks in 

vivo, the HAC/GRANULE material maintained its compressive strength as measured by 

indentation.  

The impacted MCB group produced the expected result of full incorporation after eight weeks. As 

has been reported with the clinical technique of impaction grafting, the material is stable in 

compression in a confined space and remodels to form a normal trabecular structure. The 

remodelled trabecular bone of the MCB group had indentation strengths similar to that of normal 

bone. As a secondary control group, this result was in contrast to the EMPTY group in which 

there was filling of the defect with osteopenic bone having very low indentation strength at eight 

weeks. One of the most interesting observations from this study was the difference between the 

two HAC groups. Though the numbers of groups studied were small, there was essentially the 

same distribution of HAC and porous particles in the HAC/MCB and HAC/GRANULE groups. 

There were two fundamental differences between the groups. First, the MCB particles were 

organic compared to the synthetic BoneSave granules. Second, the pores of the MCB particles 

were more extensive and interconnected compared to the BoneSave particles. Excellent 

osteoconduction was observed in all three materials; HAC, MCB, and BoneSave. MCB however, 

was much more rapidly resorbed and replaced by living bone than either of the two synthetic 

materials. The organic nature of the MCB undoubtedly was most responsible for this effect. 

Nevertheless, it is interesting to consider the nature of the porosity of the two particles studied 

here for the augmentation of the HAC. Isolated, non-interconnected pores appear to have little 

beneficial effect on the incorporation process except when a porous surface is exposed to 

invading host bone cells through mechanical degradation (cracking) or resorption.  

The large, cavernous pores of the MCB allowed rapid infiltration of the filled defect by host cells 

so that the incorporation of the MCB remnant appeared to occur throughout the defect 

simultaneously. 

 

Conclusions 
The combination of MCB allograft with HAC in an approximately 1:1 ratio by weight is a simple 

and effective way to accelerate the incorporation of an injectable cement without compromising 

its compressive load bearing capacity. 
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Abstract 
Reconstruction of bone defects with impacted morsellized cancellous bone grafts (MCB) is a 

popular method. Because of a shortage of human bone, mixing with biomaterials may be attrac-

tive. Ceramics may be used as bone graft extenders. The biological properties of such mixtures are 

unknown. In this study, various volume mixtures of biphasic tri-calciumphosphate/hydroxyl-

apatite (TCP-HA) granules (1.5-2 mm) with MCB were examined in a non-loaded defect model in 

rabbits.  

 

Direct post-operatively, many 10-150 micron TCP-HA particles were present due to impaction. 

Irrespective to the group, after 8 weeks, the MCB was mostly resorbed and most TCP-HA gran-

ules were osseous-integrated into newly formed bone. The cross-sectional areas of TCP-HA after 

8 weeks was generally smaller if compared to direct post-operatively and the number of small (10-

150 µm) TCP-HA particles was reduced. Macrophages and giant cells were sparse after 8 weeks.  

 

In conclusion, the osteoconductivity of various mixtures of MCB and TCP-HA granules is not 

dependent on the ratio of TCP-HA over MCB. The reduced number of the 10-150 µm TCP-HA 

particles after 8 weeks, may suggest that a cellular mediated resorption process took place during 

incorporation into bone. Based on these favorable biological findings subsequent in-vivo experi-

ments are warranted in load-bearing conditions to investigate whether these findings hold for joint 

reconstruction purposes. 
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Introduction 
Aseptic loosening is the main reason for failure of total hip arthroplasty (THA) [1-3]. Loosening is 

often accompanied by progressive bone stock loss around the THA components [1]. Various 

techniques are available for revision THA with these large bony defects. Both cemented and non-

cemented revision techniques can be used [4-8].  

Particularly, the technique in which defects are restored with morsels of trabecular bone, which 

are vigorously impacted into the defects, in combination with a standard implant, gained 

popularity in recent years, both on the femoral and acetabular sides. The impacted bone morsels 

almost completely incorporate into new viable bone in various animal models [9-11] and in 

patients [12]. Clinical long-term results are very promising on both the acetabular and femoral 

sides [13-17]. 

There is limited donor bone availability and there is a risk of viral disease transmission when using 

bone allografts. In addition some religions do not support the use of allograft materials. For these 

reasons, the interest in substitutes for morsellized cancellous bone grafts (MCB) has strongly 

increased in recent years [18]. Particularly synthetic ceramic calcium phosphate based materials, 

such as beta tri-calcium phosphate ( -TCP), hydroxyapatite (HA), and biphasic mixtures of these 

two components, are considered to be very promising materials for this application [18-23]. Their 

unlimited availability and the possibility to produce granules of every desired size and porosity are 

strong advantages. Furthermore, these ceramic materials are proven biocompatible, elicit minimal 

inflammatory reactions, and possess osteoconductive potential [20,24-27].  

In the past, ceramics based on ß-TCP, either combined with MCB or not, have already been 

studied for application in spinal fusions or in correction osteotomies. In general, the outcomes 

proved that TCP materials could be a valuable alternative to allografts [28-31]. Before large-scale 

implementation of such materials in THA patients, research on the mechanical integrity and 

biological activity of these materials is needed. With respect to initial mechanical stability, in-vitro 

tests were performed in a realistic acetabular revision model [32]. Cavitary and segmental defects 

were reconstructed with biphasic TCP-HA granules mixed with human MCB in combination with 

a cemented cup. Particularly, the reconstructions with solely TCP-HA granules were very stable, 

but this was induced by excessive cement penetration in the inter particle space [32]. From a 

biological point of view, this is considered undesirable since excessive cement penetration will 

hamper the revascularization of the TCP/HA layer with increased risk on mid-term failure of the 

reconstruction. Mixes of TCP/HA granules with MCB maintained clinically acceptable cup 

stability and were effective to limit the amount of cement penetration [32]. The biological activity 

of a 50-50 volume mixture of TCP/HA (BoneSave) materials combined with MCB and different 

TCP and HA ratios and TCP-HA particle sizes has previously been assessed in an ovine 

metaphyseal defect model [33]. Based on the results, the TCP80-HA20 granules performed 

slightly better relative to the TCP20-HA80 granules. It was also suggested to limit the number of 

particles size ranges to three instead of eight.  
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In this study the objectives were to evaluate and compare the biological activity, the 

osteoconductive properties and the resorption rate of different volume mixes of TCP-HA 

granules with MCB in a well-accepted defect model in rabbits. Cross-sectional areas of TCP-HA 

and bone were determined directly post-operatively and after 8 weeks. Empty defects, defects 

filled with pure allograft or solely TCP-HA granules were the controls. 

  

Materials and methods 
Animal model 
45 Adult female New Zealand White rabbits were used (10 for donor bone, 15 for direct post-

operative analysis, 20 for the 8-week study). All animals were skeletally mature and weighed 

between 2900 and 4100 grams (Mean ± SD: 3600 ± 275 gram). The rabbits were acclimatized to 

their environment for at least four weeks prior to surgery and housed in groups of maximal six 

animals in a controlled environment with a normal light-dark cycle and a temperature between 23-

26ºC.  The rabbits had access to water and rabbit chow ad libitum. The ethical committee of our 

University approved all procedures.  

 

Filling materials 
Fresh cancellous allograft bone was harvested under sterile conditions from the distal part of the 

femur of 10 donor animals. Subsequently, the trabecular bone particles were adjusted to a size of 

2-3 mm with a rongeur. A pool of the harvested bone grafts was made and thereafter divided into 

six equal portions based on weight. After rinsing with a physiological saline solution the bone 

grafts were stored at -80°C for at least two weeks. Microbiological control of all bone graft 

batches was performed.      

TCP-HA granules (BoneSave®; Stryker Orthopaedics, Limerick, Ireland) are composed of 80% -

TCP [Ca3 (PO4)2] and 20% HA [Ca10(PO4)6(OH)2]. Granules with a diameter of 1.5-2 mm 

Figure 1. 

 

SEM micrographs of a TCP-HA granule at low (A) and high (B) magnification showing the macro-
porous (A) and the microporous structure (B).  

A B 
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were used. The granules had a non-interconnected macro-porosity of 50%, which is produced by 

adding a carbonaceous filler during sintering. The particles were also micro-porous (Figure 1).  

 

Surgical procedure 
Pre-operatively, animals, which were to be assessed after 8 weeks, received an antibiotic injection 

(Ampicilline 15mg/kg; Alfason, Woerden, the Netherlands). All animals were anaesthetized with 

an injection of fentanyl and fluanisone (Hypnorm 0.5ml/kg; Janssen Pharmaceuticals, Beerse, the 

Netherlands). One day prior to surgery the MCB was taken from the -80°C storage and placed 

into a refrigerator (6°C). Four hours prior to surgery the MCB was placed in room temperature. 

Surgery was performed with the animals under isoflurane anesthesia (2.0% isoflurane on a nitro-

oxygen/oxygen mixture). The incision site was shaved and thoroughly cleaned with betadine. 

After locating the knee joint space, a 2-3 cm lateral skin incision was made and the distal femur 

was exposed. A 2 mm diameter hole was drilled 4 mm deep in the lateral condyle. A guide pin was 

inserted and, using a custom made drill, a final drill hole with a diameter of 5.5 mm and a depth of 

10 mm was created. Care was taken not to damage the lateral collateral ligament. The defect was 

cleaned using a sharp spoon and thorough irrigation with a saline solution. Five experimental 

groups were defined (Table 1).  

The mixtures were based on volumes of MCB and TCP/HA prior to impaction. Materials were 

randomly appointed to each rabbit, but excluding implantation of two similar specimens in one 

rabbit. All groups were prepared by placing pieces of MCB and/or TCP-HA in the required 

volume ratio (measured in a syringe) into a 5.0 mm inner diameter stainless steel impactor tube. 

This impactor tube was designed to allow controlled compression of the reconstructive mixes 

while forming an impacted construct to fit into the drilled defect. A standardized pressure of 6.73 

MPa was applied to the construct for two minutes. This pressure was also used in previous 

impaction experiments [34]. After the compression period of two minutes, the tube was removed 

from the compression device and the bottom cap was unscrewed. 

The tube was placed on the defect and the sample was inserted into the defect using a plunger. A 

standardized depth of the defect was filled and afterwards a polyethylene (PE) plug with a 

diameter of 5.55 mm and a thickness 2 mm was press- fitted on top of the implanted material to 

Table 1. 

 

Material composition of all test groups. 

Group  Material composition  Defects  

ED  Empty defect  n=7 

BS0  100% MCB  n=8 

BS50  50% MCB and 50% TCP-HA granules  n=8 

BS75  25% MCB and 75% TCP-HA granules  n=8 

BS100  100% TCP-HA granules  n=7 
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seal the defect. Thereafter, the area surrounding the defect was irrigated with a saline solution to 

remove any remaining bone or biomaterial debris. Soft tissues were closed in layers and the 

procedure was repeated on the contra-lateral limb. Post-operatively, the animals were allowed to 

walk freely. Each rabbit received a subcutaneous injection of calcein green solution (25 mg/kg) 8 

days and 1 day before killing. 15 rabbits (5 in each of the 3 TCP-HA groups) were killed 

immediately post-operatively with an overdose of 1ml/kg barbiturate (Pentobarbital). The initial 

filling of all the defects containing TCP-HA granules was quantified. The remaining 20 rabbits 

were killed 8 weeks post-operatively, with an overdose of 1ml/kg barbiturate (Pentobarbital). 

Standard roentgen photographs were taken from the implant sites to verify the implant position 

and to exclude fractures. The distal femurs were harvested, cleaned from all soft tissue and fixed in 

a 4% buffered formaldehyde solution at 4ºC for at least ten days. 

 

Histology and histomorphometry 
After localizing the PE plug, the defect with an additional 2 mm surrounding tissue was dissected 

from the host bone with a diamond coated saw. All sections (of the decalcified and non-

decalcified part) were cut in a plane perpendicular to the long axis of the specimen. The specimen 

was split 3 mm underneath the plug, also perpendicular to the long axis of the specimen. The 

superior part, directly underneath the PE plug, was decalcified with EDTA, dehydrated and 

embedded in polymethylmethacrylate (PMMA) and thin sectioned (7µm; Leica RM 2155). Sections 

were stained with Haematoxilin and Eosin (HE) or for the localization of osteoclasts and 

macrophages with tartrate resistant acid phosphatase (TRAP) and acid phosphatase respectively. 

The lower biopsy part was dehydrated and embedded with PMMA.  

Serial slices of roughly 30µm (Leica SP1600 saw-microtome) were made, which were used for 

surface HE-staining or left unstained for the visualization of calcein fluorescence. Sections were 

observed under ordinary and polarized light.  

The cross-sectional areas of bone and TCP-HA within the defects were quantified at time zero for 

the defects containing mixtures of TCP-HA granules with bone (5 specimens/group) and after 8 

weeks for all groups (8 specimens/group). Undecalcified slices were used for quantification. 

Interactive computer controlled image analysis (AnalySIS; Soft Imaging System Gmbh, Munster, 

Germany) was used to determine the cross-sectional areas of newly formed trabecular bone and 

TCP-HA granules. All measurements were performed within a region of interest (Ø 5.5 mm, 

determined by a circle with the same diameter as the original defect which was fitted over the 

defect) in three sections of each specimen. A filter was used to differentiate between materials.  

 

Micro-Computed Tomography (µ-CT) and scanning electron microscopy (SEM) 
In order to obtain visual insight in material distribution within the defects and the spatial 

organization of the relationships of bone with the TCP-HA granules, we scanned the last operated 

specimen from each test group with µ-CT (µ-CT 20, Scanco Medical AG, Zurich, Switzerland), 

using an 12 µm voxel size. 
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SEM images were made of coated saw sections of every last operated specimen from each test 

group. Each histology sample was mounted on a stub and sputtered with an ultra thin layer of 

carbon in a Polaron E5100 SEM coating system (Quorum Technologies, New Haven, United 

Kingdom). The samples were studied with a JEOL JSM-6310 SEM apparatus (JEOL Europe, 

Schiphol-Rijk, the Netherlands) operating at 15 kV. Energy Dispersive Spectrometry (EDS) was 

used to identify intracellular micro-particles of TCP-HA. 

 

Statistical analysis 
One Way analysis of variance (ANOVA) with the appropriate post-hoc Tukey test was used to 

determine statistical significant differences between groups. 

 

Results 
There were no intra-operative complications and all animals were able to walk within 48 hours 

after surgery. One rabbit was excluded due to a massive Pasteurella Multocida induced knee joint 

inflammation at 4 weeks. All radiographs showed closed implant sites without plug displacement 

or plug loosening. No femoral fractures or fractures at the implant site were found. 

Time zero constructs with TCP-HA granules showed densely filled defects. Furthermore, it was 

evident that the original volume mixes changed by the impaction process. In the BS50 group, the 

original 50% area of MCB was reduced to 20% after impaction. In the BS75 group, the area of 

MCB was reduced from 25 to fewer than 10%. The TCP-HA granules were also influenced by the 

compression force resulting in large amount of 10-150 micron TCP-HA particles apparently due 

to the powdering of the TCP-HA granules. Larger particles were still present but the interparticle 

space was then filled by the smaller micron ranged (10-150 micron) particles (Figure 2A-B).  

Homogeneous mixing of the materials was not achieved in all cases. Particularly in the BS75 

group, the MCB tended to cluster together. Statistical significant differences for bone area (Figure 

3A) were found between BS100 and both BS50 and BS75 (p<0.05). No statistical difference was 

found for bone area between BS50 and BS75 (p = 0.078). Concerning the TCP-HA area statistical 

significant differences were found between BS50 and both BS75 and BS100 (p<0.001) but not 

between BS75 and BS100 (p = 0.093). 

After 8 weeks, the empty defects showed limited new bone formation at the circumferential defect 

periphery (Figure 2C). In the center of the defect, newly formed medullar tissue with fat cells or 

fibrous tissue was found. Rarely, some sparse bone trabeculae, mainly of the lamellar bone type 

with some local areas woven bone, were seen. The BS0 defects were completely filled with new 

trabecular bone (Figure 2D). The MCB was almost completely resorbed by osteoclasts, leaving 

scarce necrotic bone graft remnants (Figure 4A). No areas with non-incorporated MCB were left. 

Most of the bone was of the woven type with a surface remodeled into lamellar bone. The overall 

organization of the newly formed bone resembled that of cancellous bone but it was more 

irregular. 
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The variability in the amount of new bone formed was considerable: in some of the defects, areas 

of fibrous tissue or fat marrow were found. Local accumulations of lymphocytes were observed in 

the medullar tissue of the new bone. Macrophages were scarce. In all TCP-HA groups, the 

Figure 2. 

 

Saw sections. (A-B) Time zero section showing 10-150 micron TCP-HA particles in between the 
larger TCP-HA granules. The circle denotes the defect borders. (C-D) Low magnification sections 
of an empty defect (C) and a BS0 defect (D) after 8 weeks. The circle denotes the defect borders. 
(E-F) Low magnification section of a BS50 defect (E) and a detailed image of osseous integrated 
TCP-HA granules (F) after 8 weeks. (G-H) Irregular filling observed in this BS50 defect (G) and 
BS100 defect (H) after 8 weeks. Bars are 2 mm (ACDEGH) and 0.05 mm (BF) respectively 
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amount and nature of newly formed bone resembled that of the BS0 control group and the new 

bone was osseous-integrated with the TCP-HA granules into a bony structure (Figure 2E-F).  

However, in contrast to the post-operatively (time zero) defects, the number of 10-150 micron 

TCP-HA granules in between the larger TCP-HA granules seemed strongly reduced.  The inter-

particles space was partly filled with newly formed bone and also with both fibrous and fatty 

marrow. The bone surrounding the TCP-HA granules had even formed bridges between 

individual granules. In the HE stained sections, bone was found completely surrounding almost all 

TCP-HA granules (Figure 4B). This was confirmed with µ-CT imaging (Figure 5). Similar as in the 

T0 specimens, irregular filling of the defect with TCP-HA granules was occasionally observed 

(Figure 2G). However, in most defects a homogeneous distribution of TCP-HA granules was 

found particularly in the BS100 (Figure 2H) and BS75 groups. 

In the cases of irregular filling, the amount of new bone was also less as compared to the regions 

that were well-filled with TCP-HA granules. In all sections, clusters of loosely packed acid 

phosphatase positive macrophages were present in the medullar tissue in-between the new bone 

and the TCP-HA granules. They had engulfed (1-10 micron range) TCP-HA granules (Figure 6). 

EDS analysis (energy dispersive spectrometry) confirmed the presence of materials with a similar 

spectrum as TCP/HA in these macrophages. Since most of the TCP-HA granules were osseous 

integrated, the number of osteoclasts on the surface of the TCP-HA granules was low. Only in 

Figure 3. 

 

Histomorphometry results of Bone area (%) and TCP-HA area (%) in the defects at time zero (A) 
and respectively Bone area (%) (B) and TCP-HA area (%) (C) in the defects after 8 weeks. 
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regions where fibrous tissue was in direct contact with the larger (> 10 µm) TCP-HA granules, 

TRAP positive multinuclear cells were found. However only very shallow resorption pits were 

present on the surface of these TCP-HA granules (Figures 4 and 6). Based on the calcein green 

labeling and the number of osteoblasts and osteoclasts, bone remodeling was not very active any 

more in the empty defects and the BS0 groups. In all other BS groups the surface remodeling of 

the newly formed bone was still rather high. 

After 8 weeks, a statistical difference for the cross-sectional area of bone was found between the 

empty defect group (ED) and all other groups (ANOVA p<0.05) (Figure 3B). However, no 

statistical significant differences were found between the cross-sectional areas of bone in the BS0 

group and the bone in the BS50-, BS75- and BS100-groups (ANOVA p=0.868). Also, the amount 

of bone formed in the different TCP-HA granules groups did not differ significantly from each 

other (ANOVA, p=0.785). In contrast to the time zero findings, there were no statistical 

differences found between the cross-sectional areas of the TCP-HA (Figure 3D) in the BS50-, 

BS75- and BS100-groups (ANOVA p=0.129). Additionally a significant difference in cross-

sectional bone area was found between the ED group and the BS0 control group (with a unpaired 

T-test, p < 0.01). 

Figure 4. 

 

(A-C) HE stained sections. (A) Magnification of a BS0 defect section, showing a bone graft rem-
nant (BG) surrounded by new bone (NB). (B) Detail of BS75 defect, showing osseous-integrated 
TCP-HA granules and a giant cell (arrow) in close contact with a TCP-HA granule (BS). (C) 
Macrophage and osteoclast activity between new bone and a TCP-HA granule in a BS75 defect. 
(D) TRAP staining confirming the presence of osteoclast cells (red) on the TCP-HA granule bor-
ders. Bars are 0.1mm (ABC) and 0.05 mm (D) respectively. 
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Figure 5. 

 

µ-CT image of a BS50 defect showing the interface between new bone and TCP-HA granules. A 
single TCP-HA granule is apparently consistently surrounded by bone. The crosshairs denote the 
same TCP-HA granule from different angles.  

Figure 6. 

 

(A) Detail of a BS100 defect showing macrophages (arrows) in the medullar tissue. (B) Acid Phos-
phatase stain showing that completely filled macrophages do not colourize in contrast with less filled 
macrophages. (C) SEM image showing the bone and TCP-HA granule interface. Clusters of macro-
phages filled with numerous 1-10 micron particles are present in the marrow. (D) Magnification of 
the region of interest. Bars are 0.05 mm (AB). 
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Discussion  

This study examined the biological activity of various MCB and TCP-HA mixes versus pure MCB 

and pure TCP-HA granules in a well accepted defect model in the femoral condyle of rabbits 

[35,36]. The major limitation of this model might be the variability in density of the surrounding 

bone [35], which is probably related to the location of the defect in the femoral condyle. To 

minimize effects on bone ingrowth, a careful localization of the defects in relation to anatomical 

landmarks, as done in this study, is of importance. In the empty defects, bone formation was 

found only in the periphery, but the center of the defect remained completely devoid of bone 

after 8 weeks indicating that at this follow up period the defect can be considered as critical sized.  

In general the variability in this study was rather large. This might have been related to some 

extend to inhomogeneous mixing of MCB with the TCP-HA. Islands of clustered MCB particles 

were particularly found in the BS75 T0 group. This also might have induced the irregular and 

occasionally incomplete filling of defects with TCP-HA in the 8-week groups.  

The time zero groups showed more significant differences between surface area of bone and 

TCP-HA as compared to 8 week follow-up groups. In the BS50 defects, the TCP-HA area 

percentage at time zero was comparable to the TCP-HA percentage after 8 weeks, but particularly 

in the BS75 defects and the BS100 defects the TCP-HA area percentage was lower after 8 weeks 

compared to the starting values.  

Inhomogeneous mixing of the mixes in the defects is probably not the most important factor 

involved in this discrepancy, since three sections of each specimen were measured. A second 

explanation for the difference between time zero results and the results after 8 weeks may be that 

some of the smaller TCP-HA particles (1-10 microns) were phagocytosed by macrophages or the 

larger particles (10-150 microns) might have been resorbed by osteoclastic activity. SEM analysis 

indeed provided evidence for phagocytosis of the smaller TCP-HA particles by macrophages.  

After 8 weeks, the BS0 group showed extensive incorporation and remodeling into a new 

trabecular structure. The organization resembled that of intact bone. This concurs with the earlier 

reported findings at the same location [34] and with studies in which the incorporation of MCB 

was studied in various other loaded and non-loaded locations [9,11,37]. In these models, it was 

also found that the presence or absence of load does not interfere with the incorporation process 

itself [37].   

Bone formation in all TCP-HA granule groups was comparable to the BS0 control group. 

Moreover, the µ-CT scans showed direct bone-TCP-HA contact all over the surface of most 

TCP-HA granules. Increasing the TCP-HA granules concentration within the MCB/TCP-HA mix 

from 50%, 75% to 100% did not significantly influence the new bone formation within the defect. 

The results of this study show that the well-known osteoconductive property of this biphasic 

ceramic TCP-HA material is not compromised by the combined application with various MCB 

volumes. The good biocompatibility is in agreement with previous reported results of TCP 

materials [28-30]. 
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The mechanisms by which such ceramics induce osseous-conduction are not completely 

understood. Some dissolution of the TCP or HA may be an initial step in the precipitation of a 

carbonated hydroxyapatite (c-HA) onto the TCP- or HA-surface [38]. Such surface 

transformation could be the first step to attract non-differentiated bone marrow stromal cells to 

the surface of the coating. Particularly scaffolds that are sintered at high temperatures, such as the 

TCP-HA granules used in this experiment, make the dissolution-precipitation explanation for the 

observed biocompatibility unlikely, since these scaffolds release only few calcium ions. In such 

scaffolds the osteoconductive properties might be explained by a favorable macro- and/or micro-

porosity.  

From the biological point of view, it seems attractive to use the TCP-HA granules for the 

reconstructions in defects in loaded areas of the body. The presence of bone around TCP-HA 

granules in areas where the bone density was extremely low might suggest that these TCP-HA 

granules also possess some osteoinductive properties. However, this remains to be proven by 

implanting the scaffold in an ectopic location.  

On the femoral side it was found that mixing MCB with TCP/HA increased resistance to 

subsidence and leads to a mechanically stable reconstruction [39]. Also, it was concluded that the 

TCP/HA granules might be useful as a bone graft extender in the reconstruction of acetabular 

bone defects [32]. However, the major remaining concern, when using these materials in 

combination with hip arthroplasty is the migration of small TCP-HA particles into the joint space, 

where it could induce third body wear.  

During in vitro studies it was found that particularly reconstructions with solely porous TCP-HA 

granules have a tendency to powder during impaction [32]. Migration of such particles into the 

joint space or the activation of macrophages by resorbed particles, could both have a negative 

influence on the long term clinical outcome due to wear. The fact that 1-10 micron TCP-HA 

particles has been observed within macrophages (as observed with SEM and EDS analysis) 

without leading to an inflammatory reaction is encouraging. 

The result of this study strongly suggests that the mixes from this study are equally suitable to be 

applied in a more clinical situation in hip or knee revision surgery. However, in such system the 

mixes are stabilized in a contained defect by the insertion of cement between reconstructive layer 

and implant. Particularly in a reconstruction with 100% BS to the penetration of cement into the 

inter-particle space is large and this may prevent the incorporation of the BS particles into bone. 

Moreover, it remains to be seen if the BS granules will not powder in the reconstruction by the 

load induced by the daily activity. A potential danger is then the generation of many small BS 

particles. If such particles are released into the joint they may generate third body wear.   

In conclusion, we have found that TCP-HA granules (BoneSave) are osteoconductive and will be 

embedded into a bony trabecular structure, irrespective to the mix in which they were applied. 

Most of the smaller (10-150 micron) TCP-HA granules may be resorbed during the incorporation 

process. Before using these biomaterials on a large-scale clinical application, the safety of the 

MCB/TCP-HA mixtures should be investigated in a loaded and clinically relevant model. 
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Abstract 
Reconstructing of large loaded bone defects with ceramic bone graft extenders is tempting consid-

ering the expected future donor bone shortage. However, if there are negative effects remains un-

known. Standardized large defects in the acetabulum of goats were created and subsequently re-

constructed with a metal mesh and impacted morsellized cancellous bone grafts (MCB) or a 50-

50% volume mixture of TCP-HA granules and MCB, while using the bone impaction grafting 

technique. Subsequently, a cemented total hip prosthesis was inserted. Clinically, no differences 

were observed between both groups. Most of the MCB has been resorbed and incorporated into 

new bone after 15 weeks. The large TCP-HA granules were osseous-integrated, the smaller 

crushed TCP-HA granules were surrounded by osteoclasts or engulfed by macrophages and giant 

cells. The cement penetration into the reconstructive layer and the quality of the bone based on a 

semi-quantitative score was similar in both groups. We found no indications of TCP-HA granules 

induced third body wear in this short-term follow-up study.  In conclusion, no negative effects 

were observed in this study,  therefore it seems attractive to use TCP-HA granules in a 50-50% 

volume mix with MCB as bone graft extender in acetabular revision surgery with the bone impac-

tion grafting technique.   
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Introduction 
Aseptic loosening is the main reason for total hip arthroplasty (THA) failure and is often 

accompanied by progressive bone stock loss around the loose THA components. A major 

challenge in failed acetabular implant revision surgery is finding a way to cope with bone stock 

loss and creating a stable cup reconstruction. The bone impaction grafting technique described by 

Slooff et al. utilizes vigorously impacted morsellized cancellous bone grafts (MCB) in combination 

with a cemented cup to restore acetabular defects during revision hip surgery [24]. The survival of 

these cemented cups after a revision with bone impaction grafting is very satisfactory, even after a 

follow-up of 15–20 years [23].   

An expected shortage of donor bone grafts and risk of viral disease transmission when using bone 

allografts have strongly increased the interest in bone graft substitutes [14]. Synthetic ceramic 

calcium phosphate-based materials such as tri-calcium phosphate (TCP), hydroxyapatite (HA), and 

biphasic mixtures of these two components are considered to be very promising materials

[5,11,14,26,29]. These materials are advantageous because of their unlimited availability and 

granule production of every size and porosity. Biphasic TCP-HA granules (BoneSave®, Stryker 

Orthopaedics, Limerick, Ireland) might be particularly useful for bone impaction grafting. 

Previously, in-vitro tests were performed in a realistic synthetic acetabular model [3,4]. Cavitary 

and segmental defects were reconstructed with volume mixtures of TCP/HA particles and human 

MCB in combination with a cemented cup. It was found that the MCB/TCP-HA granule 

mixtures were more stable mechanically than MCB alone [3,4]. This was also reported by Blom et 

al. in a comparable mechanical study in the femur [2]. In animals, mixtures of MCB with TCP-HA 

granules were implanted in a non-loaded sheep metaphyseal defect model [9,20]. The original 

MCB was resorbed and remodeled into a new bony structure while the TCP-HA granules were 

osseous-integrated into newly formed bone. However, there are concerns when using these 

ceramic materials under loaded conditions. The major concerns are a potential macrophage 

reaction if TCP-HA particles are crushed during impaction and the generation of third body wear. 

Therefore, in this study, a mixture of MCB with TCP-HA granules was used in a loaded acetabular 

defect model in the goat using the impaction bone grafting technique in combination a cemented 

total hip prosthesis. Questions that were addressed in this study were: 1) Will mixtures of MCB 

and TCP-HA granules for bone impaction grafting procedures result in a higher amount of 

clinical complications (intra-operatively and post-operatively) when compared to an allograft 

control group? 2) Will mixtures of MCB and TCP-HA granules incorporate similarly to MCB 

alone? 3) Is the biological activity (i.e osseous integration with newly formed bone) of the TCP-

HA granules compromised by the impaction process? 4) Can differences in cement penetration 

depth in the reconstructive layer and the formation and composition of a soft tissue interface 

between reconstruction and cement be observed between both groups? 5) Will TCP-HA granules 

for bone impaction grafting procedures induce more third body wear?  
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Materials and methods 
Animal model 
The study was performed using 20 adult female Dutch milk goats (Capra Hircus Sana). All animals 

were skeletally mature and weighed between 48–76 kg (mean, 62.2 kg). The goats were 

acclimatized to their environment for at least 2 weeks prior to surgery, and housed solitary in a 

controlled environment with a normal light-dark cycle and a temperature between 23-26° C. The 

ethical committee of the University of Nijmegen approved all procedures.  

 

Filling materials 
Fresh allograft bone was harvested under sterile conditions from the sternum of donor goats. The 

allografts were cut into 2–3 mm particles with a rongeur. After rinsing with a physiological saline 

solution, the bone grafts were stored at -80° C. Microbiological control of all bone graft batches 

was performed. To improve the reproducibility, a pool of harvested bone grafts of four goats was 

made.  

The TCP-HA granules are composed of 20% HA [Ca10(PO4)6(OH)2] and 80% TCP [Ca3(PO4)

2] (BoneSave®, Stryker Orthopaedics, Limerick, Ireland). Small granules with a diameter of 1.5–2 

mm were used. The TCP-HA granules have a 50% non-interconnected macro-porosity (range, 

300–600 µm), which is produced by burning sacrificial carbonaceous filler during sintering (Figure 

1A). The granules are also micro-porous (range, 5–80 µm) (Figure 1B). Porosity values are 

provided by Stryker. 

Surgical procedure 
Preoperatively, a general antibiotic (Baytril 0.2 mL/kg; Bayer, Division Animal Health, Mijdrecht, 

the Netherlands) was administered intramuscularly. Pre-operative pain management consisted of 

intra-muscular administration of both buprenorphine hydrochloride (Temgesic 5µg/kg; Reckitt 

Benkiser Healthcare, Hull, United Kingdom) and a non-steriodal anti-inflammatory drug, fluxin 

Figure 1. 

 

(A) A scanning electron micrograph at low resolution (x35) of the TCP-HA granule surface show-
ing the macro-porous structure. (B) A scanning electron micrograph at high resolution (x5000) of 
the TCP-HA granule surface showing the micro-porous structure. 

A B 
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meglumine (Finadyne 1mg/kg; Schering-Plough, Brussels, Belgium). Surgery was performed with 

the animals lying on their left side using isoflurane anesthesia (2.5% isoflurane on a oxygen/nitro-

oxygen mixture). The incision site was shaved and cleaned thoroughly with betadine. Thereafter, a 

C-shaped incision was used to approach the right hip from the anterior side. The gluteal muscles 

were partially detached from the femur and retracted. The capsule was opened with a T-shaped 

incision and the femoral head was dislocated. Next, a femoral head resection was performed 

(Figure 2A). Soft tissue and cartilage were removed from the acetabulum and a central cavitary 

defect was reamed in the acetabulum. Two K-wires were placed on top of the superolateral rim to 

protect the sciatic nerve. Using a high power speed drill, the superolateral rim was removed to 

simulate a segmental defect as observed during revision THA procedures. The segmental defects 

measured between 28-32 mm in length and 8-12 mm in width. This type 3 AAOS acetabular 

defect [7] was then reconstructed with a metal mesh (X-CHANGE® metal mesh, Stryker 

Orthopaedics, Newbury, United Kingdom) varying in length between 48-55 mm and in width 

between 18-22 mm. The larger size of the metal mesh can be explained by the fact that the mesh 

had to follow the contour of the acetabulum while also allowing a fit for the acetabular cup. Four 

AO bone screws (diameter, 3.5 mm; length, 10 or 20 mm; Synthes, Davos, Switzerland) were used 

to secure the metal mesh (Figure 2B). Small burr holes (2 mm) were made in the cortical bone 

areas of the defect to facilitate vascularization of the reconstruction. After position testing of the 

cup, the defect was reconstructed with either 100% MCB or a 50-50% MCB/TCP-HA volume 

mixture utilizing the principles of the bone impaction grafting technique (Figure 2C). Several 

dome shaped impactors varying in size from 26–32 mm and similar to the Acetabular X-

CHANGE® revision set (Stryker Orthopaedics, Newbury, United Kingdom) were used. After 

reconstruction with bone impaction grafting, the inner diameter of the reconstructed defect was 

32 mm. Bone cement (Surgical Simplex-P, Stryker Orthopaedics, Newbury, United Kingdom) was 

introduced into the defect 4 min after mixing the powder with the monomer and pressurized for 2 

min. A custom polyethylene cup (inner diameter, 22.2 mm; outer diameter, 29 mm) was inserted 6 

min after mixing. Frequently, the anti-luxation rim of the cup had to be downsized manually to 

accommodate the defect. Next, the femoral shaft was opened and widened with broaches. The 

femoral canal was lavaged, and bone cement was injected retrogradely for 3.5 min after mixing the 

bone cement components. A double-tapered polished Exeter sheep stem (Stryker Benoist Girard, 

France) was inserted 5 min after mixing the bone cement (Figure 2D).  

After setting of the cement and reduction of the hip, all debris was removed by extensive lavage. 

The soft tissues were closed in layers and a control radiograph was made of the hip region. Intra-

operatively, pain suppression was maintained further by an intra-venous administration of 

sodiumpentobarbital (Nembutal 30 mg/kg; Ceva Sante Animale, Maassluis, the Netherlands). 

Postoperatively, the animals were placed in a hammock for 2 weeks. They received ampicilline 

antibiotics (Albipen LA 15mg/kg; Intervet, Boxmeer, the Netherlands) for another 48 hours and 

also intramuscular injections of Finadyne (4 days) and Temgesic (2 days) for pain suppression. 

Afterwards, the goats were housed separately with ample space to walk around. Each goat 
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received a subcutaneous injection of calcein green solution (25 mg/kg) eight and one day before 

sacrifice. The goats were sacrificed 15 weeks postoperatively with an overdose of barbiturate 

(Nembutal 60mg/kg). Standard radiographs were taken from the implant sites to verify the 

implant position and to exclude fractures and/or dislocations. The femur and the reconstructed 

acetabulum were harvested, cleaned from all soft tissue, and fixed in a 4% buffered formaldehyde 

solution at 4º C for at least 10 days. 

Histology and histomorphometry 
After making contact radiographs of the retrieved hip components, the reconstructed acetabular 

defects were macroscopically dissected into two halves using a water cooled diamond coated saw. 

The dissection was made through the middle of the reconstruction in the transversal direction. Of 

these two halves; two medially thick slices (6 mm) were cut. One slice was decalcified with 25% 

Ethylene Dinitrilo Tetraacetic Acid (EDTA) in 0.1 M phosphate buffer (pH, 7.4), dehydrated, and 

embedded in polymethylmethacrylate (PMMA). After thin sectioning (Leica RM 2155, Heidelberg, 

Germany), 7 µm sections were stained with Haematoxilin and Eosin (HE), tartrate resistant acid 

phosphatase (TRAP) for the localization of osteoclasts, or with acid phosphatase (AP) for the 

Figure 2. 

 

(A) Resection of the femoral head is shown using a high speed oscillating saw during the surgical 
procedure. (B) Reconstruction of the acetabular superolateral wall with a metal mesh is shown. (C) 
An acetabular defect is fully reconstructed with morselized cancellous bone grafts. (D) The image 
shows total hip reconstruction before closing the defect. The femoral head on top of the Exeter 
Sheep prosthesis is positioned into the acetabular polyethylene cup. 

A B 

C D 
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localization of macrophages. The second slice was embedded non-decalcified in 

polymethylmethacrylate (PMMA). Serial sections of ca 30 µm (Leica SP1600 saw-microtome, 

Heidelberg, Germany) were HE-stained or left unstained for the visualization of calcein 

fluorescence. Sections were also observed under ordinary and polarized light.  

All defects in both groups were assessed by two reviewers (PB, JA) and the extent of graft and 

biomaterial incorporation with new bone and remodeling in the graft site was graded both under 

the mesh and in the center of the cavitary defect. The grading system described by McGee et al. 

[17], was adapted for this model. The reviewers were not blinded to the results, since ceramics 

were used in only one group. Macroscopically, we determined under a binocular microscope to 

what extent damage patterns in the polyethylene of acetabular cups were present.  

 

Scanning electron microscopy (SEM) 
Scanning Electron Microscopy (SEM; JEOL JSM-6310, JEOL (Europe) Schiphol-Rijk, the 

Netherlands, operating at 10 kV) was used to study these wear patterns in designated regions of 

interest. Each sample was sputtered with an ultra thin layer of carbon in a Polaron E5100 SEM 

coating machine (Quorum Technologies, New Haven, United Kingdom). Energy Dispersive 

Spectrometry (EDS) was used to identify debris particles in the cup. Afterwards, the same samples 

were sputtered with gold for further SEM analysis. 

 

Results 
The application of TCP-HA granules did not generate a higher amount of clinical complications in 

this study. Although there were no complications observed intra-operatively, five goats had serious 

postoperative complications and limping was frequently seen in the first week after surgery. Table 

1 presents an overview regarding the total number of operated goats, the complications observed 

in this study and the number of quantitatively and qualitatively assessed animals in each group 

(Table 1).  

Five animals had to be excluded from this study. In the BG100 group, the failures imposed a 

femoral fracture, a dislocation of the acetabular cup, one case of an infected bone graft and one 

Table 1. 

 

Clinical results showing the total number of operated goats, the complications observed during the 
study and the number of quantitatively and qualitatively assessed animals in each group. 

Group  Goats operated  Complications  Goats assessed  

100% MCB  11 1 femoral fracture 

1 dislocation 

1 fall from hammock 

1 contaminated bone batch  

7 

50-50 mix MCB/TCP-HA granules  9 1 pulmonary embolism  8 
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traumatic open fracture of the femur due to a fall of one goat from the hammock construction. 

We decided to replace the two goats which failed due to not technique related problems (femoral 

fracture and fall from hammock) The dislocation was only identified after sacrificing the goat after 

15 weeks follow-up. Remarkably, no apparent discomfort was observed in this goat 

postoperatively. Limping was observed in both groups, mainly in the initial two weeks after 

releasing the goats from the hammock. After two weeks with high limping behavior, the goats 

loaded their hips fully. At the end of the 15-week follow-up period only two goats limped 

considerably. They were evenly divided among the test groups.  

The incorporation of the MCB and the subsequent remodeling into bone occurred similar in both 

groups. The acetabular defects reconstructed with 100% MCB were in general completely healed. 

Only small areas of non-vascularised and non-incorporated MCB were found. Most MCB had 

been resorbed during the process of incorporation and remodeled into a new bone structure 

(Figure 3A). The overall organization of the newly formed bone resembled intact bone, but 

slightly more irregular. The newly formed bone was mainly lamellar bone with small areas of 

woven bone in the center of the thicker trabeculae.  

In defects reconstructed with the 50-50 volume mixture of MCB and TCP-HA granules, the MCB 

was also largely resorbed and replaced by lamellar bone as in the MCB group. Based on the HE 

sections and the calcein green label, the remodeling activity on the surface of the bone trabeculae 

was not very high anymore after 15 weeks. In nearly all defects some localized areas of fibrous 

tissue and fat marrow were found in between normal looking marrow. The scores of the 

quantitative histology did not differ significantly between both groups (Table 2, Figure 4). 

Irrespective to the group, the bone graft incorporation was mostly graded between 6 and 8, 

meaning that most of the original used bone grafts had been incorporated into new bone. Only in 

one specimen of the MCB/TCP-HA group grade 4 incorporation was found under the mesh. In 

the mixture group, the new bone was present in between the TCP-HA granules. The main 

difference was found in the structure of the marrow. In grade 6, fibrous marrow was present.  In 

most specimens a combination of fibrous marrow and fatty marrow (grade 7) was found. In a 

small number of cases solely fatty marrow (grade 8) was present in the reconstructions. 

No evidence was found that the impaction process influenced the biological activity of the TCP-

HA granules. Large TCP-HA granules located deep in the defect close to the medial wall or the 

acetabulum were generally intact, osseous-integrated, and surrounded by newly formed bone 

(Figure 3B). Some of the large TCP-HA granules were completely surrounded by new bone. In 

the superficial part of the reconstruction, many smaller fragmented TCP-HA granules were 

present.  

Most of these small TCP-HA particles were located in sheets in the soft tissue interface between 

the reconstruction and the cement layer. Careful comparison between the thicker non-decalcified 

and decalcified sections showed that the particles were engulfed in mononuclear macrophage-like 

cells. Multinuclear cells surrounded the larger fragmented TCP-HA particles; some were very large 

with numerous nuclei. On the surface of bone, multinucleated cells were intensely tartrate-
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resistant acid phosphatase (TRAP) positive (Figure 3C). Some of these cells were located in 

shallow resorption pits. Similar intensely stained multinuclear cells were found on the surface of 

the larger TCP-HA granules (Figure 3D). All the intensely stained cells did not contain TCP-HA 

granules. All other multinucleated cells that contained particles of TCP-HA were less intensely 

stained. The number of stained cells and the intensity of the staining did not differ between the 

acid phosphatase-stained and TRAP-stained sections. The staining intensity appeared to be 

inversely related with the number of particles in the cells. In giant cells containing numerous TCP-

HA particles, the TRAP staining intensity was very low or even completely lacking, as with the 

acid phosphatase staining. 

No differences in cement penetration depth in the reconstructive layer and only slight differences 

in formation and composition of the soft tissue interface between reconstruction and cement were 

observed between both groups. In both groups cement penetration into the reconstructive layer 

was seen but never reached the original host bone. In defects of both groups, direct contact 

between incorporated bone and/or TCP-HA particles with the cement layer were found (Figure 

Table 2. 

 

Histological grading system to describe extent of graft and biomaterial incorporation with new 
bone and remodeling (Modification of McGee et al. 2004). 

Bone-graft incorporation and new bone formation  Grade 

Adverse tissue response  

All of intramedullary region occupied by fibrous tissue and evidence of cortical resorption/adverse 
remodeling of cortex  

-2 

Thick band of fibrous tissue at interface apposed by a border of rapidly remodeling bone (sclerotic 
border)  

-1 

All or most bone graft visible   

Graft material present, no incorporation, and no new bone formation  0 

Graft material present, some incorporation with new-bone formation, and small amount of new bone  1 

Graft material present, some incorporation with new-bone formation, and moderate amount of new 
bone  

2 

Decreasing graft, increasing new bone   

Graft present, some incorporation with new-bone formation continuous with host bone  3 

Decreased amount of graft (compared with grade 3), and ample new bone at early stages of formation 
or dense fibrovascular tissue  

4 

Decreased amount of graft (compared with grade 4),good graft incorporation, and ample new calcified 
tissue  

5 

Less amount of graft still visible (compared with grade 5), good incorporation of graft and new bone 
with host and ample new bone within a fibrous marrow  

6 

Less amount of graft still visible (compared with grade 5), good incorporation of graft and new bone 
with host and ample new bone within a combined fibrous and fatty marrow  

7 

Less amount of graft still visible (compared with grade 5), good incorporation of graft and new bone 
with host and ample new bone within a fatty marrow  

8 

Remodeling   

Advanced remodeling of new bone with graft (if present) into trabecular-like framework within a fatty 
marrow, difficult to differentiate graft from new bone where graft has been resorbed, excellent incor-
poration.  

9 

Minimal to no evidence of previous grafting, extensive remodeling  10 



 142 

3E–F). However, at most locations a soft tissue interface of variable thickness (range, 200–1500 

µm) was found between the reconstruction and the cement layer (Figure 3G–H). The bone facing 

this interface was not actively resorbing, indicating that the cups were stable.  

Figure 3. 

 

(A) New bone formed in the 100% MCB group. A remnant of the original bone graft (BG) is com-
pletely surrounded by new bone (NB) (HE Stain, x30). (B)  Specimen from the MCB/TCP-HA group 
is shown. New bone formation (NB) in between TCP-HA granules (BS) in the deeper part of the de-
fect (HE Stain, x30). (C) Tartrate-resistant acid phosphatase stained osteoclasts (OS) resorbing 
(arrows) bone graft remnants (BG) in the 100% MCB defects (x40) are shown. (D) Bright stained os-
teoclasts (OS) (arrows) and lightly stained giant cells (GC) (arrows) on the surface of TCP-HA gran-
ules (BS) (acid phosphatase stain, x40). (E) Low magnification micrograph showing the interface be-
tween new bone (NB) and cement (C) of a specimen from the 100% MCB group. Locally, a thin soft 
tissue interface (ST) is present (HE Stain, x10). (F) Interface between incorporated TCP-HA granules 
(black) and cement (C) of a specimen from the MCB/TCP-HA group is shown. TCP-HA granules 
(BS=black) and new bone (NB) are in direct contact with cement (arrows; HE Stain, x10). (G) Low 
magnification micrograph showing polyethylene particles (arrows) within a relatively thick soft tissue 
interface (HE Stain, x40). (H) Same section, but with polarized light, showing birefringent polyethyl-
ene particles (arrows; HE Stain, x40)  
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At most places the interface thickness was 500–750 µm, and it seemed that the interface in the 

mixture reconstructions was a somewhat thicker locally and more irregularly shaped. The interface 

was composed of cell-rich fibrous tissue with fibrocytes and mononuclear or multinuclear cells 

resembling macrophages. In the interface of the TCP-HA specimens, more mononuclear and 

multinuclear cells were found as compared to that of the MCB group. In one interface of both 

groups, numerous small polyethylene particles were seen in macrophages (Figure 3G-H). 

Using TCP-HA ceramics for acetabular bone impaction grafting did not evoke third body wear. 

Non-used cups showed a circular pattern of fine grooves of the production process (Figure 5A). 

In the cups that were in situ for 15 weeks, this pattern was only recognizable at the periphery of 

the cups. In the center of the cups this circular pattern was no longer recognizable and 

polyethylene wear was observed (Figure 5B). In general, the wear pattern was more extensive in 

the center of the cup; a more peripheral transition area could be observed showing fine scratches 

with no clear orientation into a preferred orientation as well as some initial machinery markings 

(Figure 5C). Wear patterns were similar in both groups and the EDS analysis showed no calcium, 

phosphate, or metal based debris particles. 

 

 

G H 

Figure 4. 

 

Quantitative histology results using the adapted histological grading system to describe extent of 
graft and biomaterial incorporation with new bone and remodeling [17]. 
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Discussion 
Studies on the biological behavior of MCB/TCP-HA mixtures under conditions, which closely 

represent the human situation1, are needed before clinical implementation in patients can be 

considered. In this study, reconstructions with a 50-50 % volume mixture of MCB and TCP-HA 

granules versus pure MCB were examined in a loaded acetabular defect model. By creating a larger 

defect similar to an AAOS type 3 acetabular defect, which was subsequently repaired with a wire 

mesh, a previously used model by Schimmel et al. [21] was made more clinically relevant. This 

model has been developed specially to function as the final test to study if biomaterials are safe in 

a very realistic clinical setting prior to clinical implementation [6]. The difficult surgical technique 

is the major draw back of this animal model because it demands the skills of an experienced 

orthopedic surgeon intimately familiar with the bone impaction grafting technique.  

Previously, the incorporation and remodeling into new bone of MCB at various locations have 

been described in a number of earlier studies [8,12,21,22]. Only a few studies mention the 

combination of biphasic TCP/HA (BoneSave®, Stryker Orthopaedics, Limerick, Ireland) with 

Figure 5. 

 

Scanning electron micrographs at low magnification. (A x50) An unused acetabular cup shows the 
fine machinery markings from the production process. (B x100) The inner surface of an acetabular 
cup shows extensive polyethylene wear, probably from rotational friction and impingement of the 
femoral head in the center of the cup. (C x25) The transition area from a peripheral area (top) to a 
more central area (bottom) of an acetabular cup shows more extensive polyethylene damage in the 
direction of the center of the cup. Fine scratches (S) are seen with no clear orientation into a pre-
ferred orientation, as well as some initial machinery markings can be observed (M).  
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MCB. In a metaphyseal defect in sheep [9,20], the osteoconductive properties of biphasic TCP/

HA granules were excellent, and showed extensive incorporation and remodeling of the MCB.  

Morselized cancellous bone probably acts as an access channel for new bone ingrowth around the 

TCP-HA granules. We agree with Pratt et al that the well-known osteoconductive property of this 

biphasic ceramic material is not compromised by the combined application with MCB during 

impaction grafting [20]. 

The major clinical concern when applying TCP-HA granules in acetabular revision surgery with 

the bone impaction grafting technique is the tissue response to TCP-HA granules that are 

fractured during impaction. Encapsulation of fragmented TCP-HA granule debris by 

macrophages and giant cells took place in this study. The small particles were found in cells 

resembling macrophages. This was also found in previous studies in non-loaded reconstructions 

[20,25].In the present study, besides the numerous small particles, which were mainly located in 

sheets of macrophages in the soft tissue interface with the cement, we found numerous larger 

fragmented TCP-HA particles. Multinucleated cells surrounded these larger particles. Using the 

TRAP and Acid Phosphatase stains, we tried to discriminate between the smaller osteoclasts and 

the large multinuclear giant cells.  Both stains stained osteoclasts on bone and multinucleated cells 

on the surface of TCP-HA granules (BoneSave®, Stryker Orthopedics, Limerick, Ireland) with 

similar intensity. This was also observed by St John et al. [25]. The staining of the larger 

multinucleated giant cells was inversely related to the content of TCP-HA particles that were 

engulfed. Cells loaded with particles did not show any staining, while partly filled cells showed 

minimal staining. Based on the similarity in staining intensity between the osteoclasts on the 

surface of the bone, and the intense staining of morphological identical cells on the surface of the 

TCP-HA granules, these cells were characterized as osteoclasts. The difficult differentiation 

between macrophage and osteoclast can possibly be explained as the macrophage constitutes the 

precursor cell of osteoclasts and they are derived from the same stem cell [13]. Although 

osteoclast-like cells appear numerous on the surface of the TCP-HA granules, they may not be 

actively resorbing them. In general, the resorption of ceramic scaffolds depends strongly on the 

macro-porosity and dissolution characteristics [16]. Because the TCP-HA granules used in this 

study are sintered at high temperatures (>1100° C), it is unlikely that resorption by dissolution 

takes place. Osteoclastic resorption is also not very rapid, as resorption pits are rare and very 

shallow if found. Moreover, the used TCP-HA granules have no inter connective pores, which is 

also not very favorable for rapid resorption and remodeling of the TCP-HA granules.  

The numerous crushed particles of the TCP-HA granules found in the present study may be the 

result of the impaction process or they may be formed by the loading history in vivo. Based on 

our experience with in vitro models, in which we also observed some fragmentation of similar 

TCP-HA granules [3,4], particularly if porous particles are used as stand alone material [3], we 

believe that the crushed particles are the result of the impaction process. In vivo, the smaller 

particles may migrate within the reconstruction. This might explain the sheets of macrophages 

with very small TCP-HA particles in the interface with the cement layer.    
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In our opinion, the formation of an interface between bone and cement in this study has no 

relation with the use of the TCP-HA granules because this interface was also observed in the 

control group. In previous acetabular study with MCB alone [21], and similar studies [9,20] in the 

femur, a fibrous tissue interface of variable thickness separating the cement layer from the defect 

was also observed. Linder reported a soft tissue interface between bone cement and bone graft 

particles in human retrieval specimens after femoral cancellous impaction grafting [15]. This layer 

of fibrous tissue and bone could enhance the mechanical stability of the impacted bone graft by 

armoring the bone grafts with ingrown fibrous tissue [28]. Clinically, Oonishi et al. applied HA 

granules for acetabular reconstruction utilizing a double cementation technique for over 10 years 

[18,19]. They did not report soft tissue formation between the bone cement and the layer of HA 

granules. After performing an analysis of specimens retrieved at 1, 2, 6 and 10 years, they reported 

that the HA granules evoked little foreign body reaction after 4–10 years clinical follow-up [19]. 

Ceramic particles that migrate into the joint space can induce third body wear and are a potential 

hazard to implant longevity [27]. The fact that TCP-HA granules mixed with MCB for bone 

impaction grafting did not evoke third body wear in this study is encouraging. However, the 

concern of third body wear caused by ceramic materials used as bone graft substitutes can not be 

allayed by this study since the follow-up period was limited. How to best seal the bone graft 

substitutes remains a clinical issue. The damage patterns of the acetabular cups were similar in 

both groups. Damage was mainly located in the center of the cup, whereas the more peripheral 

areas were only slightly damaged. It is likely that the damage pattern was caused by rotational 

friction of the femoral head and cup impingement from the cup overhanging the femoral head in 

the lateral direction rather than by third body wear because of the TCP-HA granules. The fact that 

the EDS analysis showed no calcium, phosphate, or metal-based debris particles also supports this 

conclusion. The occurrence of polyethylene fragments in the soft tissue interface can be of 

concern. However, the presence of polyethylene fragments can be explained by the necessity of 

downsizing the anti-dislocation rim of the cups preoperatively to fit the defect more properly in 

most cases.  

Handling problems of the MCB/TCP-HA mixtures were not observed with the reconstruction of 

the segmental defects. Van Haaren et al. reported an increased risk on femoral fissures when 

applying the same TCP-HA granules as a bone graft extender for use in femoral bone impaction 

grafting [10]. In contrast, we found no adverse effect of the impaction process on fracture 

formation in this acetabular model. In contrary, we believe that firm impaction is essential, 

especially when applying the bone impaction grafting technique on the acetabular side. One 

perforation of the subchondral medial acetabular bone was observed in this study without clear 

clinical consequences.  

We found that a 50-50 % volume mixture of MCB and TCP-HA (BoneSave®, Stryker 

Orthopaedics, Limerick, Ireland) granules incorporated into a new bony trabecular structure in a 

loaded acetabular defect in the goat. From the biological point of view, these mixtures of MCB 

with TCP-HA granules may be attractive for the reconstructions of defects in loaded areas of the 
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hip. Previous research indicated that mixtures of MCB and TCP-HA granules provided adequate 

acetabular cup stability. Based on these results, the start of controlled clinical trials in centers of 

excellence seems to be justified.  
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Summary 
More and more, the indications for total hip arthroplasty (THA) expand in clinical orthopaedics. 

Combined with the consequence of an ageing population, this results in a considerable increase of 

primary THA procedures. As a consequence, the number of revision THA procedures has also 

increased dramatically in the last decades. The occurrence of large bone defects during revision 

THA surgery is a very common clinical problem. These large bone defects result in a weaker bone 

structure, which makes it more difficult to fixate a new prosthesis. The bone impaction grafting 

technique offers a biological solution to this problem. With the bone impaction grafting technique, 

the bone defects are restored with metal meshes and augmented with vigorously impacted 

morselized cancellous bone grafts (MCB). The technique is completed by placement of cemented 

implants in the renewed hip anatomy. Bone impaction grafting has been used in our institution 

(University Medical Center St Radboud Nijmegen) since the late 1970’s. At first, bone impaction 

grafting was used solely on the acetabular side. However, since the early 1990’s, it has also been 

used on the femoral side. The long-term clinical results of bone impaction grafting are very 

satisfying on both the acetabular [14,27,30,31] and the femoral side [1,10,13,16,22, 23,28].  

 

The first part of this thesis (Chapter 2) described the clinical and radiological results of patients 

who underwent an instrumented femoral revision THA procedure with the bone impaction 

grafting technique. We attempted to provide insight into the long-term survival of the bone 

impaction grafting technique. It was shown that the bone impaction grafting technique produced 

very satisfying long-term clinical results when applied in a femoral revision situation (Chapter 2). 

Using re-revision for any reason as an endpoint, the survival rate of the femoral prostheses was 

100 percent at a mean follow-up of 10.4 years. 

 

The second part of this thesis (Chapters 3-4) focussed on several methods to optimise the clinical 

outcome of acetabular bone impaction grafting. An improved surgical technique might temporarily 

delay the need for a revision surgery. Investigations were performed to find out whether the 

clinical outcome of bone impaction grafting could be improved mechanically by washing the bone 

grafts prior to impaction or biologically by the addition of growth factors to the bone grafts. In 

chapter 3, a mechanical experimental study was performed to assess the influence of bone graft 

size and bone graft preparation (washing or not) on initial acetabular cup stability during a 

mechanical compression test and a destructive lever-out test. It was found that the initial cup 

stability was superior when the acetabular reconstructions were performed with large and washed 

bone grafts. Moreover, it was concluded that the size of the bone grafts was a very important 

factor in initial acetabular cup stability, whereas washing the bone grafts resulted in an initial cup 

stability improvement to a lesser degree. From a mechanical point of view, washing of bone grafts 

prior to impaction seemed therefore advisable. In chapter 4, the outcome of acetabular 

reconstruction with impacted morselized cancellous bone grafts mixed with a bone morphogenetic 
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protein 7 growth factor (BMP-7=OP-1®) was studied in a clinically relevant load-bearing 

acetabular defect model in the goat. In this study, the osteoinductive properties of the OP-1® 

device failed to generate a decisive enhancement on the incorporation and remodeling of the bone 

grafts. The recruitment of osteoclasts was also not significantly affected. We speculated that due 

to the impaction process most of the OP-1® was released from its carrier material and had an 

effect outside the reconstruction at the periosteal side of the acetabulum. A carrier material better 

suited to withstand mechanical compression and able to release the growth factor only when 

revascularization of the implant site takes place should be designed. 

 

The third part of this thesis (Chapters 5-9) focussed on the possibility to restore large acetabular 

bone defects by using ceramic calcium phosphate materials. In revision THA procedures with the 

bone impaction grafting technique ceramic materials should be able to withstand the high 

compressive peak forces generated during the impaction process and post-operative loading, 

generate high implant stability and possess adequate handling properties. Furthermore, they 

should be bioactive, not elicit an inflammatory reaction and they should also be safe for use in the 

joint environment of patients. During a destructive lever-out test, acetabular defects reconstructed 

with mixtures of biphasic TCP-HA granules (BoneSave®) and MCB showed an initial cup 

stability higher compared to reconstructions with pure allograft (gold clinical standard) (Chapters 

5-6). From a mechanical point of view it did not matter if a 50-50 or a 25-75 volume ratio of MCB 

and TCP-HA granules was used. Cement penetration properties and inter-particle shear resistance 

(due to interlock of the particles) both contributed to initial acetabular cup stability although it 

seemed that inter-particle shear resistance was the predominant factor. In chapter 6, it was 

hypothesised that a nano-crystallite HA paste (Ostim®) could be used to control excessive cement 

penetration in mixtures of TCP-HA granules and MCB while at the same time improving the 

handling characteristics of such mixtures. It was of utmost importance that the initial cup stability 

values remained high enough to be used clinically. This was feasible only when using 10% of 

Ostim® in the various mixtures. With this 10% dose of Ostim®, the initial stability was 

comparable to pure allograft, while handling still was improved and the cement penetration was 

less limited as compared to reconstructions with 33% Ostim®. In chapter 7, a femoral condylar 

defect model in rabbits was used to assess the biological activity of a HA cement (BoneSource®) 

mixed with either TCP-HA granules or MCB as an alternative to allograft bone chips in impaction 

grafting procedures. Composites of HA cement and porous ceramic biomaterials maintained 

relatively high strength and stiffness over 8 weeks in-vivo, but the incorporation into a new bony 

structure was much slower when compared to composites of HA cement  and impacted MCB. In 

chapter 8, the same animal model as described in chapter 7 was used to assess the biological 

activity of several volume-based mixtures of biphasic TCP-HA granules and MCB. Results 

indicated that BoneSave® TCP-HA granules are osteoconductive and will be incorporated into a 

bony trabecular structure, irrespective to the mix in which they were applied. Based on the results 

from this study and the earlier obtained results from the mechanical study, we felt that the safety 
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of the MCB/TCP-HA granule mixture could now be investigated in a load-bearing and clinically 

relevant model.In chapter 9, a clinically relevant load-bearing acetabular defect model in the goat 

was used to assess whether a 50-50 volume mixture of biphasic TCP-HA granules and MCB could 

be used to reconstruct the acetabular defect during a THA procedure. It was concluded from this 

large animal model that this particular TCP-HA ceramic material could be safely used in a 50-50 

volume mixture with MCB for the reconstruction of acetabular bone defects with the impaction 

grafting technique. The TCP-HA granules were embedded into a bony trabecular structure as also 

observed in the unloaded rabbit model. In this short-term follow-up study, no evidence was found 

that smaller TCP-HA granules had migrated into the joint space and generated additional third 

body wear.  

 

General discussion 
Modifications of the bone impaction grafting technique should be aimed at improving the clinical 

outcome, make the technique less surgeon dependent and to shorten the operation time. 

Modifications for the bone impaction grafting technique should be tested carefully from both a 

mechanical and biological perspective, before implementation in the clinical practice should be 

considered.  

 

In answer to the aims of this thesis as presented in the introduction: 

 

1.  To report the clinical and radiological results of patients who underwent a femoral 
 revision THA procedure with the bone impaction grafting technique in order to 
 provide insight into the long-term survival of this surgical intervention. 
 

In chapter 2 of this thesis, it was shown that the bone impaction grafting technique can result in 

very satisfying long-term clinical results when applied in an instrumented femoral revision THA. 

Other papers reporting on satisfying outcomes have also been published, however, mostly at mid-

term follow-up [1,10,13,16,22,23,28,38]. Although a relatively small patient group was studied, in 

our study the results were very good. Using as an endpoint re-revision of the femoral component 

for any reason, the survival rate of the femoral component was 100 percent at a mean follow-up 

of 10.4 years. Vigorous impaction of morselized cancellous bone graft is essential. However, this 

may result in intra-operative fractures, especially in the calcar region of the femur. When the 

femoral bone is compromised the femur should be supported. Animal studies in the goat showed 

that either a metal mesh or bone strut graft can improve stem stability but the application of a 

metal mesh will lead to more reproducible stem stability [7]. Also the revascularization and fibrous 

tissue ingrowth was compromised underneath a proximal strut graft reconstruction [6].  

Hence, the authors believe that the most attractive technique for proximal reconstruction in the 

calcar region is the use of a metal mesh. More distally in the femur a strut graft is more attractive, 
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because the metal mesh will not be able to protect the reconstruction for overload at this level. 

This may result in femoral fractures. No relation between stem subsidence and clinical outcome 

was observed in this patient follow-up study. This finding was also reported by other studies 

[1,13,16,22]. The authors agree with previous reports that the success of the bone impaction 

grafting technique is primarily determined by adherence to the proper technique [10,19] and also 

that stem subsidence over 5 mm is rare after well performed bone impaction grafting [10,16].   

 

2. To assess whether the bone impaction grafting technique results could be further 
 improved by adaptation of the bone grafts or the addition of growth factors to the 
 bone grafts.  
 A. To assess the influence of bone graft size and washing of bone grafts on 
  initial cup stability of acetabular reconstructions in a synthetic pre-clinical 
  acetabular test model.  
  To evaluate which factors play a key role in initial acetabular cup stability. 
 

It has been generally accepted that the initial stability of artificial cups is an important predictive 

factor in the long-term survival [20,27] and also that high early migration rates are associated with 

early reconstructive failure. Roentgen Stereophotogrammetric Analysis (RSA) is the gold standard 

for stability testing.With this technique both 3-D migration and rotation can be calculated highly 

accurately. Naturally, 3-D implant migration should be as small as possible, although migration 

after bone impaction grafting is higher than migration after a standard cemented cup [20].  

In view of the limited availability of human cadaver pelvic bones, an artificial synthetic test model 

was developed and validated against pelvic bones by Bolder et al. [5]. It is the opinion of the 

author that this synthetic model is an adequate test model for the evaluation of factors influencing 

initial acetabular cup stability. 

In our institution, it is common belief that the ideal size for bone grafts used in acetabular bone 

impaction grafting should be relatively large (8-12 mm). Larger sized bone grafts have a better 

particle interlock, which enhances their resistance to movement and shear forces. Furthermore, 

using larger sized bone grafts will result in a more porous and permeable graft reconstruction 

facilitating cement penetration and thereby resulting in an improvement of initial mechanical cup 

stability [35]. In chapter 3, the initial cup stability was superior when larger sized bone grafts (8-12 

mm) were used. This finding is in agreement with previous reported results [5,36,37] and also 

supported by the long-term clinical results of the acetabular bone impaction grafting technique 

with large bone grafts in our institution [30,31]. We assume that the impaction of small sized (2-4 

mm) bone grafts will result in a very cohesive reconstruction layer which hampers the particle 

interlock and the penetration of bone cement. 

In addition to the use of larger sized bone grafts, literature suggests that washing of the bone 

grafts prior to impaction would remove bone marrow and fat, thereby resulting in an 

improvement of initial cup stability by both a better inter-particle locking and also a higher cement 
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penetration [9,12,35-37]. Next to the beneficial mechanical effects, washing bone grafts could 

reduce the risk of bacterial infection [17] and promote bone graft incorporation [11,19].  

In chapter 3, a positive influence on initial cup stability of washing larger bone grafts prior to 

impaction was indeed reported. Washing improved initial cup stability, however without 

increasing the cement penetration, suggesting that inter-particle shear resistance may be a more 

important factor than cement penetration for reconstructive stability. We concluded that from a 

mechanical point of view washing bone grafts prior to impaction seems justified. In addition, we 

observed that both washing the bone grafts and using larger sized bone grafts positively 

influenced inter-particle shear resistance. In contradiction, cement penetration was primarily 

influenced by bone graft size. Hence, large bone grafts probably facilitate a high lever-out force by 

generating a higher inter-particle shear resistance and a deeper cement penetration and can 

therefore be beneficial in initial cup stability. Henceforth, we advocate using large bone grafts, 

which may be washed prior to impaction, to obtain optimal acetabular cup stability when using 

the bone impaction grafting technique.  

 

 B. To assess in a clinical realistic and loaded animal THA model if the  
  biological incorporation and remodeling of impacted morselized  
  cancellous bone grafts  can be improved by mixing them with bone  
  morphogenetic protein 7 (BMP-7=OP-1®). 
 

Clinical attempts to implement combinations of allograft bone and OP-1® with the bone 

impaction grafting technique were abandoned when 2 patients showed unacceptable stem 

subsidence [18]. It is known from the literature that bone induction can be influenced by the 

concentration of BMPs, the release pattern of BMPs from the carrier, retention over time of the 

biological activity of BMPs and also the geometry of the carrier material [34,39,40]. In a large load-

bearing defect model in the goat, the OP-1® failed to decisively accelerate bone graft 

incorporation and the addition of OP-1® to MCB did not seem to have a clear effect on the 

number of recruited osteoclasts.  

The finding that OP-1® did not have a clear effect on bone incorporation may be explained in 

several ways. It is possible that the concentration of OP-1® used in this study may have been too 

small for a clear effect.  

However, the same concentration as reported by McGee et al. [21] was used in our study. The 

results of the study of McGee et al. demonstrated an advantageous effect of OP-1® on bone graft 

incorporation. The study of McGee et al. also provided some evidence for a stimulatory effect on 

osteoclasts. More likely, OP-1® may have been released from the carrier during or shortly after 

impaction. Consequently, the concentration of OP-1® may have been high when no or few 

reactive stem cells were present in the reconstructive layer. An early release of OP-1® from the 

carrier may explain the effect outside the reconstructive layer at the periosteal side of the 

acetabulum and the bone formation through the metal meshes. Furthermore, it can be argued that 
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the bone graft incorporation process is already quite optimal in this model. We also believe that 

the current bovine collagen OP-1® carrier is not the optimal carrier to be used in bone impaction 

grafting. Future research should focus on the development of a biological carrier capable of a 

more continuous release of OP-1® into the reconstructive layer during incorporation of the bone 

graft. During revascularization of the graft and concomitant resorption of the carrier, more 

reactive stem cells will be available in the reconstruction and this should facilitate a stimulatory 

effect of OP-1® on bone graft incorporation.  

 

3. To test the usability of ceramic calcium phosphate materials for acetabular 
 reconstruction  during revision THA with the bone impaction grafting technique? 
 A. To assess the effect of shear forces on acetabular reconstructions with 
  ceramic calcium phosphate materials in a synthetic pre-clinical acetabular 
  test model. 
 

In the near future the availability of bone grafts for surgical purposes such as revision THA will be 

insufficient. Two alternative ways to cope with diminished bone graft availability are bone tissue 

engineering and/or the application of ceramic materials. The prospects of bone tissue engineering 

in which new bone is harvested from a patient biopsy under laboratory conditions are promising. 

However, it is the opinion of the author that it will take at least another decade before the 

cultivation procedures have been standardized and optimized from current laboratory settings to 

the degree needed for a full scale clinical implementation. It is also questionable if large sized 

defects (such as in the acetabulum during revision THA) can be reconstructed with tissue-

engineered bone. It might take months to generate the quantity of bone needed for such a 

reconstruction. 

In light of the diminishing availability of donor bone grafts, the author assumes that ceramic 

materials will find an increasing use in the orthopedic surgery field. Ceramic materials can be used 

as bone void filler in non-loaded defects, but data about their application in load-bearing 

circumstances are limited. Before such materials can be applied in load-bearing defects in revision 

THA proof of the structural integrity of these materials is necessary. Previously, Blom et al. 

reported favorable results on femoral stem stability when adding ceramic TCP-HA granules to 

MCB [2]. Bolder et al. [3,4] reported the same findings for the acetabular side.  

However, they attributed an excessive cement penetration into the reconstructive layer for their 

findings. This possibly could hamper revascularization of the reconstructive layer [3]. To minimize 

the effect of excessive cement penetration, Bolder et al. advocated using mixtures of TCP-HA 

granules with MCB [3].  

Sintered TCP-HA granules perform well under mechanical compression. In the clinical situation, 

however, also shear forces are present. In chapter 5, we tested the initial cup stability of several 

mixtures of TCP-HA ceramics under shear loading in synthetic acetabular models. In light of 

earlier results [2-4], it was again confirmed that initial cup stability values of reconstructions with 
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mixtures of TCP-HA granules and MCB are higher when compared to pure allograft. However, 

during the impaction process some TCP-HA granules were fractured (especially in the center of 

the defect). The author would like to stress that in his opinion  interconnected highly porous 

ceramic granules should not be used for load bearing applications (with or without impaction 

grafting) because their  structural integrity is too low to carry any significant load. In our studies, 

TCP-HA granules with a non-interconnected porosity of only 50% were used. TCP-HA granules 

and their fractured parts tended to fill the inter-particle spaces in between the MCB making 

cement penetration less feasible in mixtures of MCB and TCP-HA granules. Furthermore, when 

increasing the TCP-HA ratio over MCB in the mixtures, more crushed particles of the TCP-HA 

granules were observed. These crushed particles made it more difficult to reconstruct the 

acetabular defects due to a poorer handling of the mixture. In the clinical patient the 

reconstruction technique is deemed more difficult and  the “sticky” characteristics of only blood 

are not enough to compensate for this problem. Due to its low viscosity, blood will infiltrate the 

granules but does not make them “stick” together. Therefore, the author suggests that a material 

that can “glue” the mixture together should be applied to improve handling. Another problem 

related to the impaction process is the higher risk of bony fractures as reported for the femoral 

side by van Haaren et al. [15]. In our acetabulum model study in goats (Chapter 9) no increase in 

femoral fractures was reported but a couple of medial wall fractures were observed. Therefore, if a 

thin medial wall exists in the clinical situation, we believe that it should always be supported with a 

metal mesh to avoid penetration of the medial wall. 

 

 B. To explore methods for optimization of the initial cup stability of  
  acetabular reconstructions with ceramic calcium phosphate materials in a 
  synthetic pre-clinical acetabular test model. 
 

In chapter 5, mixtures of TCP-HA granules and MCB provided adequate initial cup stability 

comparable to pure allograft. Based on these results and previous work [3,4] methods to limit 

excessive cement penetration and to improve handling of mixtures with TCP-HA granules were 

proposed. In chapter 6, the use of 10% Ostim® in mixtures of TCP-HA granules and MCB or 

with pure TCP-HA granules, resulted in higher initial acetabular cup stability when compared to 

pure allograft (currently the gold standard in the clinic). Ostim® also improved surgical handling 

of the reconstructive mixtures and we concluded that it could be a valuable addition when ceramic 

materials are used for acetabular bone impaction grafting procedures. It can be argued that, 

instead of Ostim®, only blood could be used as a coagulant, however, the author already rported 

that he believes that due to the low viscosity of blood Ostim® is more suitable.  

Ultimately, a total synthetic acetabular reconstruction should be achieved. Perhaps this goal can be 

achieved with mixtures of TCP-HA granules and Ostim® HA paste.  
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 C. To test the biological activity of combinations of ceramic calcium  
  phosphate materials as  an alternative for human morselized cancellous 
  bone allografts in an unloaded animal model. 
 

In chapter 7, it was shown that hydroxy-apatite cement (HAC) combined with either washed MCB 

or TCP-HA granules was able to form a good fit with the surrounding host bone and also 

maintained high compressive strength values as measured by mechanical indentation after 8 weeks 

in-vivo. The HAC showed biocompatibility and an osteoconductive behavior, which was also 

previously reported by Ooms et al. [24] while researching a similar calcium phosphate cement 

material. The incorporation process was faster in the defects were HAC was mixed with MCB. In 

cracks, formed in between HAC and the bone grafts, new bone was formed. This result looked 

similar to the results reported by Boyde et al. [8]. The defects filled with HAC and TCP-HA 

granules also showed some signs of new bone formation in the cracks of the HAC and the pores 

of the TCP-HA granules, but overall the activity was not very high. The resorption activity on the 

surface of the HAC and the TCP-HA granules was low. In contrast the MCB was very rapidly 

resorbed and replaced by new bone. HAC can be used in load-bearing situations such as in 

vertebroplasty. It remains to be proven if HAC can be used as a stand-alone material in load-

bearing acetabular defects in THA procedures and still maintain adequate strength over time. 

Perhaps in small segmental rim or cavitary medial wall defect this is possible, but it is doubtfull if 

combined segmental/cavitary defect can also be adequately repaired. 

In chapter 8, the same critical sized rabbit model as described in chapter 7 was used to assess the 

biological activity and the osteoconductive properties of various volume mixtures of MCB and 

TCP-HA granules. Irrespective of the mixture used, the MCB was mostly resorbed after 8 weeks 

in-vivo and the TCP-HA granules were osseous-integrated with newly formed bone into a bony 

structure. The resorption activity on the TCP-HA granules was generally low. The complete 

resorption of these materials will probably take more than 5 years, possibly even more than 10 

year. Whether these materials should fully resorb remains the question. It can be argued that total 

resorption of ceramic calcium phosphate materials is not essential provided that the materials are 

able to maintain a stable construct.  

In the rabbit study, the effects of the impaction process on the ceramic TCP-HA granules were 

assessed both at time zero and after 8 weeks in-vivo. Most importantly, some evidence was found 

that the very small (30-150 µm) TCP-HA particles (formed due to the impaction process) are 

resorbed during the incorporation process. Scanning electron microscope analysis provided 

evidence for phagocytosis of TCP-HA debris by macrophages. Also the results suggested a limited 

osteoclast mediated resorption. Considering the facts that these smaller particles potentially can 

induce third body wear, this is a promising finding towards clinical implementation of such 

materials. However, if this will also occur in a load-bearing situation is yet unclear. Before 

implementing mixtures of MCB and TCP-HA granules in clinical practice, their safety needed to 

be investigated in a loaded and clinically relevant animal model (Chapter 9). 
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Based on the favorable mechanical results when Ostim® HA-paste was combined with mixtures 

with TCP-HA granules and MCB or pure TCP-HA granules (Chapter 5), Ostim® was also 

combined with either MCB or TCP-HA granules in the previous described rabbit model (Chapter 

6). After 8 weeks, Ostim® was mostly integrated with new bone and direct bone-Ostim® contact 

was observed in all specimens. In contrast to earlier studies in animal models [29], we found 

islands of non-incorporated Ostim® in our histology. This non-incorporated Ostim® was either 

actively resorbed by osteoclasts and macrophages or very little resorption activity was present 

when embedded in newly formed bone.  

It is very likely that over time the incorporated Ostim® will be remodelled by the normal 

remodeling activity of the bone. Combining Ostim® with either TCP-HA granules or MCB 

apparently did not induce adverse biological reactivity in this short time follow-up study. Possibly 

the combination of pure TCP-HA ceramics with 10% Ostim® could be applied in the clinical 

patient as a fully synthetic reconstruction of defects observed at THA revision. However, before 

clinical application, this should first be assessed in a realistic and load-bearing animal model. 

 

 D. To test in a clinical realistic and loaded animal THA model the biological 
  activity of a ceramic calcium phosphate material as an alternative for  
  human morselized cancellous bone allografts. 
 

Based on favorable mechanical (Chapter 5) and biological properties (Chapter 8), a 50-50% 

volume mixture of MCB and TCP-HA granules was applied for the reconstruction of a load 

bearing acetabular defect during a THA procedure in the goat (Chapter 9). When using ceramics 

materials under loaded conditions there are concerns regarding the tissue response to small TCP-

HA granules (that are crushed during impaction) and generation of third body wear particles. The 

numerous crushed particles of the TCP-HA granules found in the present study may be the result 

of the impaction process or they may be formed by the loading history in vivo. In vivo, the 

smaller particles may migrate within the reconstruction or into the joint space. Ceramic particles 

that migrate into the joint space can induce third body wear and are a potential hazard to implant 

longevity [33]. The fact that TCP-HA granules mixed with MCB for bone impaction grafting did 

not evoke third body wear in this short-term study is encouraging. Fragmented TCP-HA particles 

were found in cells resembling macrophages. It was concluded that encapsulation of fragmented 

TCP-HA granule debris by macrophages and giant cells took place in this study. This was also 

found in a previous study [32]. Although osteoclast-like cells appear numerous on the surface of 

the TCP-HA granules, they may not actively resorb them. As discussed before, we believe that it is 

not of critical importance that all ceramic materials are being resorbed over time, as long as they 

continue to provide a stable reconstruction. 

Clinically, Oonishi et al. applied HA granules for acetabular reconstruction utilizing a double 

cementation technique for over a decade [25-26]. They first used a cement layer in order to 

completely seal the ceramic materials in a reconstructed acetabulum. Then, they applied a second 



 161 

cement layer on top of the first one to fixate the acetabular cup. After performing an analysis of 

retrieved specimens, they reported that the HA granules evoked little foreign body reaction after 

4–10 years clinical follow-up [26]. The concern of third body wear caused by ceramic materials 

used as bone graft substitutes can not be excluded by our goat model study since the follow-up 

period was limited. It seems advisable to seal of the joint space. How to best seal the bone graft 

substitutes layer remains another clinical issue.  

 

Final conclusion 
Can ceramic calcium phosphate materials be used for acetabular reconstruction during revision 

total hip arthroplasty with the bone impaction grafting technique? 

 

The results from the mechanical studies (Chapters 5-6), the animal study in rabbits (Chapter 8) and 

particularly the load bearing animal study in the goat (Chapter 9) indicate that biphasic TCP-HA 

granules are indeed suitable to act as a bone graft extender for acetabular reconstruction during 

revision THA with the bone impaction grafting technique. We currently advocate that these 

biphasic TCP-HA granules should be used in a 50-50% volume mixture with morselized 

cancellous bone grafts (MCB). However, it is likely that a higher percentage of ceramic materials 

can be used. Several clinical centers of excellence have recently started clinical trials in which 50-

50% volume mixtures of biphasic TCP-HA granules and MCB are used for the reconstruction of 

acetabular bone defects during revision THA with the bone impaction grafting technique.  

It is of utmost importance that the patients should be carefully followed to determine if the 

outcomes are also satisfying after long-term follow-up. The results from the follow-up will also 

expose possible shortcomings in the materials or the surgical technique. RSA could be a valuable 

tool to determine wear and migration of the implants. 

 

Future research 
The author is convinced that mixtures of MCB and TCP-HA granules are suitable to act as a bone 

graft extender for acetabular reconstruction during revision THA with the bone impaction grafting 

technique. Currently, these biphasic TCP-HA granules should be used in a 50-50% volume 

mixture with morselized cancellous bone grafts (MCB). It is of high importance that the clinical 

results are being presented by multiple institutions in the literature in order to determine whether 

any pitfalls or beneficial effect of the new technique can be revealed. This will benefit the clinical 

outcome of the technique on the long-term. 

 

In addition to the clinical follow-up in patients, the most important research goal in the future 

should be directed at establishing a fully synthetic reconstruction. In other words, taking the bone 

out of the bone impaction grafting technique. At the moment a solely synthetic revision of 

acetabular defects is not possible due to the limited strength of the ceramic materials under 
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impaction forces. Also with solely ceramic materials it is hard to build up a good cohesive 

reconstruction, which facilitates an excessive cement penetration. This excessive cement 

penetration, although resulting in high initial cup stability values, is considered unfavourable from 

a biological perspective. Perhaps the combined application with a nano-crystallite HA-paste might 

offer better results, but this was not assessed under load bearing conditions in a realistic animal 

model in this thesis.  

 

Another approach may be the development of porous calcium phosphate cement, which (in 

contrast to current calcium phosphate cement materials) should facilitate bone ingrowth and also 

pose better resorption characteristics. However, it is unclear whether such a material is strong 

enough for its intended use and if such a material can maintain adequate strength over time for 

use in load-bearing defects. The combined application of ceramic materials and growth factors 

such as OP-1 could be yet another promising solution. 

 

It is also not unthinkable that before a fully synthetic reconstruction with ceramic materials could 

be attempted, a new carrier material should first be developed. This carrier material should 

provide improved handling of the reconstructive materials. Furthermore, this carrier material 

should also be able to generate a short-term mechanical stability of the reconstruction.   

 

If the biological activity appears not to be adequate, the OP-1 research should focus strongly on 

finding a more suitable biological carrier material capable of a controlled release of OP-1 into the 

reconstructive layer. Perhaps the combined application of TCP-HA granules with a high viscous 

carboxy methyl cellulose (CMC) carrier and OP-1® could result in a fully synthetic reconstruction 

during revision THA.  
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Samenvatting 
De indicaties voor totale heup arthroplasty (THA) ruime steeds  binnen het 

orthopaedisch  werkveld. Gecombineerd met de gevolgen van een vergrijzende populatie 

resulteert dit in een forse stijging van het aantal primaire THA procedures. Ten gevolge is ook het 

aantal revisie THA procedures aanzienlijk toegenomen in de laatste 20 jaar. De behandeling van 

grote botdefecten tijdens revisie THA is een veelvoorkomend klinisch probleem. Deze grote bot 

defecten resulteren in een zwakkere botstructuur en dat maakt het moeilijker om een nieuw 

implantaat adequaat te fixeren. De bone impaction grafting techniek biedt een biologische 

oplossing voor dit probleem. Met deze techniek worden de botdefecten afgesloten met metalen 

gaasjes en wordt de botmassa aangevuld met sterk geïmpacteerde (in elkaar geslagen) botsnippers 

(MCB). De techniek wordt meestal gecombineerd met een gecementeerd implantaat. Bone 

impaction grafting wordt in ons instituut (Universitair Medisch Centrum St Radboud Nijmegen) al 

sinds het eind van de jaren 70 toegepast. In het begin alleen aan de acetabulaire zijde, maar sinds 

het begin van de jaren 90 ook aan de femorale kant. De lange termijn klinische resultaten van de 

bone impaction grafting techniek zijn voortreffelijk aan zowel de acetabulaire [14,27,30,31] als de 

femorale zijde [1,10,13,16,22,23,28].  

 

Het eerste deel van dit proefschrift (Hoofdstuk 2) beschrijft de lange termijn klinische en 

radiologische resultaten van patiënten die een geïnstrumenteerde femorale revisie THA met de 

bone impaction grafting techniek hebben ondergaan met als doel meer inzicht te verschaffen in de 

lange termijn overlevingsresultaten van de bone impaction grafting techniek. We hebben 

aangetoond dat een femorale revisie THA met de bone impaction grafting techniek resulteert in 

uitstekende klinische resultaten op de lange termijn (Hoofdstuk 2). Met femorale revisie voor elke 

reden als endpoint, was de overleving van de femorale prothese in deze patiëntengroep 100% bij 

een gemiddelde follow-up van 10.4 jaar. 

 

Het tweede deel van dit proefschrift (Hoofdstukken 3-4) beschrijft meerdere methoden ter 

verbetering van de klinische resultaten van de acetabulaire bone impaction grafting techniek. Een 

verbeterde techniek kan wellicht tijdelijk de noodzaak voor een nieuwe revisie THA operatie 

uitstellen. Hoofdstuk 3 beschrijft een experimentele studie waarin werd bepaald wat de effecten 

op de initiële acetabulaire cupstabiliteit zijn van de grootte van botsnippers en het wassen van de 

botsnippers voor de impactieprocedure. Tijdens zowel een compressie test en als een lever-out 

test was de initiële acetabulaire cupstabiliteit het grootst wanneer de reconstructies werden 

uitgevoerd met grote gespoelde botsnippers. Cementpenetratie in de reconstructieve laag en 

weerstand tegen schuifkrachten (shear) door onderlinge botsnipper vergrendeling leverden beiden 

een bijdrage aan een hogere initiële cup stabiliteit. In het bijzonder is de grootte van de 

botsnippers een belangrijke factor voor de initiële stabiliteit. Wassen van de botsnippers 

verhoogde de initiële cupstabiliteit in mindere mate. Vanuit een mechanisch standpunt is het 

worden r gesteld
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wassen van botsnippers voor de impactieprocedure aan te raden. In hoofdstuk 4 werden de 

biologische en klinische resultaten onderzocht van het toevoegen aan de botsnippers van een bot 

morfogenetisch eiwit type 7 (BMP-7=OP-1®) tijdens een acetabulaire reconstructie in een 

klinisch relevant en belast acetabulair defect model in de geit. In deze studie verschilden de variatie 

in bot incorporatie en remodelering van de OP-1®groep niet of nauwelijks van de controlegroep. 

Ook het aantal gerecruteerde osteoclasten leek niet verschillend tussen de interventie- en controle 

groep. We speculeren dat door de impactieprocedure een groot deel van het OP-1® direct loslaat 

van zijn drager materiaal (carrier) en als gevolg hiervan het grootste effect van de OP-1® aan de 

buitenzijde van het acetabulaire defect optrad. Een nieuw drager materiaal dat beter bestand is 

tegen de mechanische impactiekrachten zal moeten worden ontwikkeld. Tevens zal dit te 

ontwikkelen drager materiaal de groeifactor pas moeten loslaten op het moment dat 

revascularisatie van het defect optreedt. 

 

Het derde deel van dit proefschrift (Hoofdstukken 5-9) richt zich op de mogelijke toepassing van 

keramische calciumfosfaat materialen voor het opvullen van grote acetabulaire botdefecten. In 

revisie THA procedures met de bone impaction grafting techniek zouden de keramische 

materialen hoge compressie krachten (opgewekt tijdens de impactieprocedure en de 

postoperatieve belasting) moeten kunnen weerstaan, hoge implantaat stabiliteit moeten kunnen 

genereren en ook adequate hantering karakteristieken (het materiaal moet vormbaar zijn en niet 

blijven plakken aan het instrumentarium) moeten bezitten. Evenzeer zouden deze materialen 

bioactief moeten zijn, niet moeten leiden tot een ontstekingsreactie en veilig in het gewricht van 

patiënten gebruikt moeten kunnen worden. Tijdens een destructieve lever-out test leverden 

acetabulaire reconstructies met een mix van TCP-HA korrels (BoneSave®) en botsnippers een 

initiële cupstabiliteit waarde hoger dan de waarde van de huidige klinisch gouden standaard 

allograft botsnippers (Hoofdstuk 5-6). Vanuit een mechanisch perspectief gezien was er geen 

verschil tussen het gebruik van een 50-50 of een 25-75 volume ratio van botsnippers en TCP-HA 

korrels. Wederom werd aangetoond dat cementpenetratie in de reconstructieve laag en weerstand 

tegen schuifkrachten (door onderlinge korrel vergrendeling) beiden een bijdrage leverden aan een 

hogere initiële cupstabiliteit. In hoofdstuk 6 werd getest of de toepassing van een nano-kristallijn 

HA pasta (Ostim®) excessieve cementpenetratie zou kunnen beheersen wanneer dit gemixt werd 

met allograft botsnippers en TCP-HA korrels. Ook werd onderzocht of de hanteerbaarheid van 

de mix verbeterde door toevoeging van de HA pasta. Het was van cruciaal belang dat de initiële 

cupstabiliteit hoog genoeg bleef om klinisch toepasbaar te zijn. Dit werd alleen bereikt bij een 

toevoeging van 10% Ostim® in de reconstructieve mix. Met deze 10% Ostim® was de initiële 

cupstabiliteit vergelijkbaar met puur allograft, de hanteerbaarheid van de mix was sterk verbeterd 

en cementpenetratie meer optimaal in vergelijking met mixen met 33% Ostim®. Met een 33% 

Ostim® percentage in de reconstructieve mixture werden zowel de schuif weerstand als de 

cementpenetratie aantoonbaar lager en dat resulteerde in een onacceptabel lage initiële cup 

stabiliteit. 
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In hoofdstuk 7 werd een femoraal condyldefect in konijnen femurs gebruikt om de biologische 

activiteit te bepalen van een HA cement in een mix met TCP-HA korrels of allograft botsnippers. 

Een mix van HA cement en TCP-HA korrels kon zijn initiële hoge kracht en stijfheid over een 

periode van 8 weken in-vivo handhaven, maar de omvorming naar nieuw bot was veel langzamer 

dan wanneer allograft botsnippers met HA cement werden gemengd. In hoofdstuk 8 werd 

hetzelfde diermodel, als beschreven in hoofdstuk 7, gebruikt om de biologische activiteit van 

verschillende volume mixen van TCP-HA korrels en allograft botsnippers te bestuderen. 

Resultaten indiceerden dat BoneSave® TCP-HA korrels osteoconductief zijn en worden ingebed 

in een gevormde trabeculaire bot structuur onafhankelijk van de mix waarin ze werden toegepast. 

Gebaseerd op deze resultaten en de eerdere resultaten uit de mechanische studies besloten we om 

de veiligheid van een 50-50 volume mix van allograft botsnippers en TCP-HA korrels te testen in 

een belast en klinisch relevant diermodel. 

In hoofdstuk 9 werd een klinisch relevant en belast diermodel in de geit ontwikkeld om vast te 

stellen of een 50-50 volume mix van allograft botsnippers en TCP-HA korrels gebruikt kon 

worden om een acetabulair defect te reconstrueren tijdens een THA procedure met de bone 

impaction grafting techniek. We concludeerden dat een dergelijke mix veilig kon worden toegepast 

voor de reconstructie van een acetabulair botdefect met de bone impaction grafting techniek. De 

TCP-HA korrels werden net als in het onbelaste konijn model ingebed in een trabeculaire 

botstructuur. In deze korte termijn studie vonden we geen bewijs dat kleine TCP-HA korrels 

migreerden naar de gewrichtsholte. Ook genereerden kleine TCP-HA korrels geen slijtage (third 

body wear) in deze studie. 

 

Discussie 
Aanpassingen van de bone impaction grafting techniek moeten gericht zijn op het verbeteren van 

de klinische resultaten, verminderen van operatietijd en het verminderen van de afhankelijkheid 

van een goede chirurgische operatietechniek. Voorgestelde aanpassingen en de consequenties 

dienen uitvoerig mechanisch en biologisch getest te worden voordat klinische implementatie in 

overweging kan worden genomen.  

 

In antwoord op de in de introductie van dit proefschrift opgestelde leerdoelen: 

 

1.  To report the clinical and radiological results of patients who underwent a femoral 
 revision THA procedure with the bone impaction grafting technique in order to 
 provide insight into the long-term survival of this surgical intervention. 
 

In hoofdstuk 2 van dit proefschrift werden bevredigende lange termijn resultaten van de femorale 

bot impactie techniek gerapporteerd voor revisie THA situaties. Meerdere auteurs rapporteerden 

vergelijkbare resultaten, maar deze studies hadden gemiddeld een minder lange follow-up tijd 
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[1,10,13,16,22,23,28,38]. Hoewel een relatief kleine patiënt populatie was ge ncludeerd in deze 

studie waren de gerapporteerde klinische resultaten erg goed. Met als uitgangspunt re-revisie voor 

iedere reden, was de overleving van het femorale implantaat 100% na een gemiddelde follow-up 

tijd van 10.4 jaar. Een krachtige impactie van de botsnippers is essentieel, maar dit kan in het 

bijzonder in de calcar regio van het femur leiden tot intra-operatieve fracturen. Wanneer de 

femorale bot sterkte niet afdoende is zal deze moeten worden ondersteund. Dierenstudies in de 

geit concludeerden dat zowel een metalen gaas (metal mesh) als een structurele graft (strut graft) 

stabiliteit van het implantaat kan verbeteren [7]. Het gebruik van een metalen gaas gaf hierbij een 

meer reproduceerbaar resultaat [7]. Tevens werden revascularisatie en fibreus weefsel groei 

gecompromitteerd onder een proximale strut graft reconstructie [6]. Het is de mening van de 

auteur dat voor proximale reconstructie in de calcar regio een metalen gaas de beste oplossing is, 

terwijl meer distaal in het femur een strut graft kan worden gebruikt omdat daar de metalen gaas 

diste weinig bijdraagt aan de mechanische stabiliteit. Dit kan een mogelijke fractuur als gevolg 

hebben. Er werd geen relatie gevonden tussen verzakking van de femorale prothese en de 

klinische resultaten in deze prospectieve follow-up studie. Deze bevinding is in overeenkomst met 

eerder gerapporteerde resultaten [1,13,16,22]. De auteur onderschrijft eerder genoemde conclusies 

dat het succes van de bone impaction grafting techniek primair bepaald word door het volgen van 

de juiste techniek [10,19]. Een migratie in de cementmantel van de femorale component groter 

dan 5 mm is extreem zeldzaam na een technisch goed uitgevoerde chirurgische procedure met de 

bone impaction grafting techniek [10,16].  

 

2. To assess whether the bone impaction grafting technique results could be  further 
 improved by adaptation of the bone grafts or the addition of growth factors to the 
 bone grafts.  
 A. To assess the influence of bone graft size and washing of bone grafts on
  initial cup stability of acetabular reconstructions in a synthetic pre-clinical 
  acetabular test model.  
  To evaluate which factors play a key role in initial acetabular cup stability. 
 

Het is algemeen geaccepteerd in de literatuur dat de initiële cupstabiliteit een belangrijke 

predictieve factor is voor implantaat survival op de lange termijn [20-27]. Ook kan een hoge 

migratie in een vroeg stadium na operatieve ingreep geassocieerd kan worden met een vroegtijdig 

falen van de reconstructie. Röntgen stereogrammetrische analyse (RSA) is de huidige gouden 

standaard voor het testen van implantaat stabiliteit en met deze techniek kunnen zowel de 3-

dimensionale (3-D) implantaat migratie als implantaat rotatie uiterst nauwkeurig bepaald worden. 

Vanzelfsprekend dienen deze migratie waarden zo klein mogelijk te zijn, hoewel deze bij het 

gebruik van de bone impaction grafting techniek hoger zijn [20]. Omdat humane kadaver bekkens 

zeer weinig beschikbaar zijn en een grote variatie vertonen, is in ons instituut een artificieel 

synthetische acetabulair test model ontwikkeld welke vervolgens gevalideerd is tegen humane 



 170 

bekkens door Bolder en collega’s [5].  

De auteur is van mening dat dit synthetische testmodel een adequaat model is om de factoren die 

een invloed hebben op de initiële cupstabiliteit te evalueren. In ons instituut (Universitair Medisch 

Centrum St Radboud Nijmegen) is er consensus dat de ideale grootte van allograft botsnippers 

voor het gebruik in acetabulaire bone impaction grafting relatief groot (8-12 mm) dient te zijn. 

Allograft botsnippers van deze grootte hebben een beter onderlinge vergrendeling die resulteert in 

een hogere weestand tegen schuifkrachten. Bovendien, resulteert het gebruik van grote allograft 

botsnippers in een meer poreuze en permeabele reconstructie die cementpenetratie in de 

reconstructieve laag bevordert. Een hogere cementpenetratie resulteert in een hogere initiële cup 

stabiliteit [35]. In hoofdstuk 3 werd aangetoond dat initiële cupstabiliteit superieur was wanneer 

grote (8-12 mm) allograft botsnippers werden gebruikt voor de acetabulaire reconstructie. Deze 

bevinding is in overeenstemming met eerder gerapporteerde resultaten [5,36,37] en wordt tevens 

ondersteund door de lange termijn resultaten van de bone impaction grafting techniek met grote 

allograft botsnippers in ons instituut [30-31]. De impactie van kleine (2-4 mm) botsnippers 

resulteert in een meer cohesieve reconstructieve laag welke zowel de onderlinge botsnipper 

vergrendeling als de cementpenetratie hindert.  

Naast het gebruik van grote allograft botsnippers, is er in de literatuur ook de suggestie gedaan dat 

het spoelen van allograft botsnippers voor de impactie procedure botmerg en vet zal verwijderen. 

Dit zou moeten leiden tot een hogere initiële cupstabiliteit door de synergistische werking van 

zowel een betere onderlinge vergrendeling van de allograft botsnippers als een hogere 

cementpenetratie in de reconstructieve laag [9,12,35-37]. Naast de voordelige effecten op de 

mechanische stabiliteit zal het wassen van allograft botsnippers ook het risico op een bacteriële 

infectie verlagen [17] en de incorporatie van botsnippers stimuleren [11-19]. In hoofdstuk 3 werd 

een positief effect op de initiële cupstabiliteit gevonden bij het wassen van grote allograft 

botsnippers. Wassen verbeterde initiële cupstabiliteit zonder cementpenetratie te verbeteren. Deze 

resultaten suggereren dat onderlinge vergrendeling van allograft botsnippers verantwoordelijk is 

voor de weerstand tegen schuifkrachten een belangrijkere factor in initiële cupstabiliteit is dan 

cementpenetratie in de reconstructieve laag. Wij concluderen dat vanuit een mechanisch 

perspectief wassen van allograft botsnippers voor impactie is gerechtvaardigd. Bovendien werd 

geobserveerd dat zowel het gebruik van grote allograft botsnipper als het wassen van botsnippers 

voor impactie beide onderlinge vergrendeling van de allograft botsnippers verbeteren. In 

tegenstelling werd de hoogte van cementpenetratie primair beïnvloed door de allograft botsnipper 

grootte. Concluderend stellen wij dat grote allograft botsnippers een hogere weerstand tegen 

mechanische krachten genereren door het gecombineerde effect van een hogere onderlinge 

interlock als een hogere cementpenetratie in de reconstructieve laag. Wij adviseren daarom het 

gebruik van grote allograft botsnippers, gewassen voor de impactie procedure, om een optimale 

cupstabiliteit te verkrijgen bij het toepassen van de bone impaction grafting techniek aan de 

acetabulaire zijde. 
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 B. To assess in a clinical realistic and loaded animal THA model if the  
  biological incorporation and remodeling of impacted morselized  
  cancellous bone grafts can be improved by mixing them with bone  
  morphogenetic protein 7 (BMP-7=OP-1®). 
 

Klinische implementatie van combinaties van allograft botsnippers en een bot morfogenetisch 

eiwit type 7 (BMP7 = OP-1®) met de bone impaction grafting techniek zijn gestopt nadat in een 

pilot-study in Zweden twee patiënten onacceptabele migratie van de femorale prothese 

vertoonden [18]. Het is bekend in de literatuur dat botvorming kan worden beïnvloed door de 

concentratie van BMP, het patroon van loslating van de BMP en ook de geometrie van het carrier 

materiaal van de BMP [34,39,40]. In een belast defect in de geit werd na toevoeging van OP-1® 

aan de allograft botsnippers geen duidelijk aantoonbare acceleratie van bot incorporatie gevonden. 

Ook werd er geen duidelijk stimulerend effect gevonden op het aantal gerecruteerde osteoclasten. 

Deze verrassende bevinding dat de BMP geen aantoonbare stimulerende invloed had op 

botincorporatie kan op diverse manieren verklaard worden. Het is mogelijk dat de in deze studie 

gebruikte OP-1® concentratie te klein was voor een duidelijk stimulerend effect. Echter dezelfde 

concentratie als gerapporteerd door McGee et al. [21] was gebruikt in onze studie en zij 

rapporteerden wel een positief effect op botincorporatie van OP-1®. Het is waarschijnlijker dat in 

onze studie OP-1® vroegtijdig is losgelaten uit het dragermateriaal (carier). Dientengevolge was er 

een hoge concentratie van OP-1® in de reconstructie op het moment dat er geen of weinig 

reactieve cellen (stam cellen) zich terplekke bevonden. Een vroegtijdige loslating van OP-1® uit 

het drager materiaal kan een mogelijke verklaring zijn voor het de formatie van nieuw bot door de 

metalen gaas en buiten de reconstructieve laag aan de periostale zijde van het acetabulum. Een 

andere reden voor het niet optreden van een duidelijk effect van OP-1® op de botincorporatie 

kan zijn dat deze in het gebruikte diermodel zo goed als optimaal is met alleen allograft 

botsnippers en dat de toevoeging van OP-1® hier weinig waarde heeft. De auteur is ervan 

overtuigd dat de huidige OP-1® carrier niet optimaal is voor gebruik in bone impaction grafting. 

Vervolg onderzoek zou zich primair moeten richten op de ontwikkeling van een carrier materiaal 

dat een meer continue loslating van OP-1® in de reconstructieve laag kan bewerkstelligen. Tijdens 

revascularisatie van de reconstructieve laag en de samengaande resorptie van de carrier zullen meer 

reactieve stamcellen beschikbaar zijn in de reconstructieve laag en dit zou een groter stimulerende 

effect van OP-1® op bot incorporatie kunnen faciliteren.  

 

3. To test the usability of ceramic calcium phosphate materials for acetabular 
 reconstruction during revision THA with the bone impaction grafting technique? 
 A. To assess the effect of shear forces on acetabular reconstructions with 
  ceramic calcium phosphate materials in a synthetic pre-clinical acetabular 
  test model. 
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De beschikbaarheid van allograft botsnippers voor chirurgische doeleinden als revisie THA zal in 

de nabije toekomst niet meer aan de vraag kunnen voldoen. Twee manieren om hier mee om te 

gaan zijn opkweken van bot buiten het lichaam (tissue engineering) of het gebruik van keramische 

materialen. Het vooruitzicht van opkweken van bot vanuit een patiënt biopsie in een laboratorium 

situatie is veelbelovend. Maar wellicht duurt nog minimal 10 jaar gaat duren voordat de huidige 

technieken voor celkweek vanuit een laboratorium setting gestandaardiseerd kunnen worden 

doorgevoerd in de klinische praktijk. Het blijft daarbij ook de vraag of grote botdefecten (in 

bijvoorbeeld het acetabulum) wel kunnen worden gereconstrueerd met opgekweekt bot. Wellicht 

zal het maanden duren voordat de juiste hoeveelheid bot dat nodig is voor een dergelijke 

reconstructie gegenereerd kan worden. Het is zeer aannemelijk dat in de nabije toekomst 

keramische materialen steeds meer gebruikt zullen gaan worden ter vervanging van botsnippers in 

de orthopaedische praktijk.  

Keramische biomaterialen kunnen worden gebruikt voor het opvullen van onbelaste botdefecten 

(void filling), echter er is nog weinig literatuur over de toepassing van keramische materialen in 

belaste botdefecten. Voordat keramische materialen daadwerkelijk in belaste botdefecten kunnen 

worden toegepast is bewijs van de structurele integriteit van dergelijke materialen nodig. Blom en 

collega’s rapporteerden een positieve invloed op femorale prothesestabiliteit na gebruik van een 

mix van keramische materialen en allograft botsnippers voor femorale reconstructie met de bone 

impaction grafting techniek [2]. Bolder en collega’s rapporteerden een hoge cupstabiliteit bij 

gebruik van keramische materialen in acetabulaire reconstructies met de bone impaction grafting 

techniek aan de acetabulaire zijde [3-4]. Echter deze hogere cupstabiliteit werd met name 

veroorzaakt door een buitensporige penetratie van cement in de reconstructieve laag [3,4]. Deze 

buitensporige cementpenetratie zou revascularisatie van de reconstructie zeker gaan belemmeren 

[3]. Om buitensporige cementpenetratie te minimaliseren werd geadviseerd om een mix van 

allograft botsnippers en keramische materialen te gebruiken. 

Gesinterde keramische TCP-HA korrels blijven grotendeels intact tijdens mechanische 

compressie. In de klinische situatie zijn echter ook shear krachten aanwezig. In hoofdstuk 5 

werden synthetische acetabulum modellen gereconstrueerd met verschillende volume mixen van 

allograft botsnippers en keramische TCP-HA korrels om de initiële cupstabiliteit van de 

reconstructies te beoordelen bij blootstelling aan schuif krachten. In overeenstemming met eerder 

gerapporteerde resultaten [2-4] werd opnieuw bevestigd dat de initiële cupstabiliteit van 

reconstructies met een mix van allograft botsnippers en TCP-HA korrels hoger was dan de initiële 

cupstabiliteit van reconstructies met alleen allograft botsnippers. Tijdens deze studie werd ook 

geobserveerd dat tijdens de impactie procedure sommige TCP-HA korrels fractureerden (vooral 

in het centrum van het defect). Het is de persoonlijke mening van de auteur dat hierom hoog 

poreuze keramische met onderling verbonden poriën niet gebruikt kunnen worden voor 

reconstructie van belaste botdefecten (met of zonder toepassing van de bone impaction grafting 

techniek) omdat hun weerstand tegen compressieve krachten te gering is.  

In onze studies werd gebruik gemaakt van een 50% poreus keramisch materiaal zonder onderling 
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verbonden poriën. De kleine gefractureerde deeltjes van een TCP-HA korrel vullen de ruimtes 

tussen de TCP-HA korrels op en kunnen hierdoor cementpenetratie remmen. Het verhogen van 

de TCP-HA korrel percentage in reconstructieve mixen met allograft botsnippers zal leiden tot 

meer gefractureerde TCP-HA deeltjes en een slechtere hanteerbaarheid van de mix die het 

reconstrueren van het acetabulaire defect vermoeilijken. In de klinische patiënt is de acetabulaire 

reconstructie techniek met keramische materialen waarschijnlijk moeilijker dan in een synthetisch 

testmodel en het is de mening van de auteur dat de “klevende” eigenschappen van bloed niet 

afdoende zijn om de hanteerbaarheid van keramische materialen te verbeteren. Het is sterk aan te 

raden om een materiaal te gebruiken dat de keramische materialen en allograft botsnippers kan 

“lijmen” om zodoende de hanteerbaarheid van de mix te verbeteren. Een ander probleem 

gerelateerd aan het gebruik van keramische materialen bij bone impaction grafting is een hoger 

risico op fracturen als gerapporteerd voor de femorale zijde door van Haaren en collega’s [15]. In 

de acetabulum reconstructies in de geit (Hoofdstuk 9) werd een verhoging van fracturen niet 

waargenomen maar wel enkele mediale wand penetraties. Mocht in een klinische situatie een 

dunne mediale acetabulum wand aanwezig zijn dan is het zer te adviseren om deze altijd te 

ondersteunen met een metalen gaas om penetratie van de mediale wand te voorkomen. 

 

 B. To explore methods for optimization of the initial cup stability of  
  acetabular reconstructions with ceramic calcium phosphate materials in a 
  synthetic pre-clinical acetabular test model. 
 

In hoofdstuk 5 werd aangetoond dat een mix van allograft botsnippers en TCP-HA korrels 

resulteerde in een initiële cup stabiliteit gelijk of hoger dan reconstructies met alleen allograft 

botsnippers. Gebaseerd op deze en eerder gepubliceerde resultaten [3,4] werden diverse methoden 

gepostuleerd met als doel overdadige cement penetratie te remmen en de hanteerbaarheid van 

reconstructieve mixen met keramiek korrels te vergroten. In hoofdstuk 6 resulteerde het gebruik 

van 10 % Ostim® in een mix van allograft botsnippers en TCP-HA korrels of met alleen TCP-HA 

korrels in een hogere initiële cup stabiliteit wanneer vergeleken met reconstructies met alleen 

allograft botsnippers (de huidige gouden standaard). Ostim® verbeterde tevens de 

hanteerbaarheid van de reconstructieve mix en kan een waardevolle toevoeging kon zijn wanneer 

men keramische materialen wenst te gebruiken voor acetabulaire reconstructie met de bone 

impaction grafting techniek. Wellicht kan in plaats van Ostim® ook bloed worden gebruikt als 

“plakkend” materiaal, maar de auteur is van mening dat door de lagere viscositeit van bloed 

Ostim® meer geschikt is. 

Het uiteindelijke doel is het realiseren van een acetabulaire revisie THA met uitsluitend keramische 

materialen. Mogelijk kan dit bereikt worden met een mix van TCP-HA korrels en Ostim® HA-

pasta. Echter, voordat klinische implementatie overwogen kan worden zal dit vastgesteld moeten 

worden in een realistisch en belast diermodel. 
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 C. To test the biological activity of combinations of ceramic calcium  
  phosphate materials as an alternative for human morselized cancellous 
  bone  allografts in an unloaded animal model. 
 

In hoofdstuk 7 werd aangetoond dat een mix van hydroxyapatiet cement (HAC) met zowel 

gewassen allograft botsnippers als TCP-HA korrels in staat was om goed contact te creëren met 

het omringende botweefsel.  

Ook bleef de hoge compressieve sterkte behouden na 8 weken in-vivo in een femoraal condyl 

defect in konijnen. De HAC vertoonde biocompatibiliteit en osteoconductieve karakteristieken in 

overeenstemming met eerder gerapporteerde resultaten van Ooms en collega’s betreffende een 

vergelijkbaar calciumfosfaat cement [24]. Het incorporatieproces verliep sneller waneer HAC 

gemixt was met allograft botsnippers. In scheurtjes in het HAC trad dan nieuwe botformatie op. 

Dit was vergelijkbaar met eerder beschreven resultaten van Boyde en collega’s [8]. Defecten met 

HAC en TCP-HA korrels vertoonden ook enige nieuwe botformatie in de scheuren van het HAC 

en tussen de TCP-HA korrels, maar over het algemeen was de botformatie gering. HAC kan 

worden gebruikt in belaste botdefecten, bijvoorbeeld in wervelkolom defecten. Het dient nog 

bewezen te worden of HAC toegepast kan worden in belaste botdefecten in acetabulaire revisie 

THA. Misschien is HAC toch meer geschikt voor kleine segmentale of mediale wand defecten dan 

voor gecombineerde defecten. In hoofdstuk 8 werd hetzelfde konijn model als in hoofdstuk 7 

gebruikt om de biologische activiteit en osteoconductieve eigenschappen te bepalen van diverse 

volume mixen van allograft botsnippers en TCP-HA korrels. Onafhankelijk van de mix waren de 

allograft botsnippers geresorbeerd na 8 weken in-vivo en de TCP-HA korrels waren geïntegreerd 

met nieuwe gevormd bot in een botstructuur. De resorptieactiviteit van osteoclasten op de TCP-

HA korrels was laag. Complete resorptie van deze materialen zal waarschijnlijk meer dan 5 jaar 

vergen, mogelijk zelfs meer dan 10 jaar. Of complete resorptie van deze materialen wenselijk is 

blijft natuurlijk een punt van discussie. Misschien is volledige resorptie van keramisch calcium 

fosfaat materiaal niet essentieel zolang deze materialen blijven zorgen voor een adequate stabiliteit 

van de reconstructie. De effecten van impactie op TCP-HA korrels werd onderzocht direct 

postoperatief en na 8 weken in-vivo. Zeer kleine (10-150 µm) TCP-HA deeltjes (gevormd tijdens 

impactie proces) werden geresorbeerd door macrofagen. Elektronen microscopie (SEM) analyse 

lieten gefagocyteerde de kleine TCP-HA deeltjes in macrofagen zien. Ook werden aanwijzingen 

gevonden dat er enige resorptie door osteoclasten plaats vond. Wanneer in overweging genomen 

wordt dat deze kleine TCP-HA deeltjes mogelijk “third body wear” kunnen induceren is dit een 

veelbelovende bevinding. Of deze processen ook zullen optreden in belaste botdefecten is nog 

onduidelijk. Voordat een mix van allograft botsnippers en TCP-HA korrels in de klinische praktijk 

kan worden toegepast moet de veiligheid van dergelijke mixen worden onderzocht in een belast en 

klinisch relevant diermodel (Hoofdstuk 9). Gebaseerd op de positieve mechanische resultaten 

wanneer Ostim® HA-pasta werd toegepast in een mix van allograft botsnippers en TCP-HA 

korrels (Hoofdstuk 5) werden deze materialen ook onderzocht in het eerder beschreven onbelast 
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defect model in konijnen (Hoofdstuk 6). Na 8 weken in-vivo was Ostim® grotendeels 

geïntegreerd met nieuw bot en direct bot Ostim® contact werd in alle defecten terug gevonden. In 

tegenstelling tot eerdere resultaten in dieren studies [29] observeerden wij eilandjes van niet 

geresorbeerde Ostim® in onze coupes. Deze eilandjes van niet geresorbeerde Ostim® werden 

actief geresorbeerd door osteoclasten en macrofagen. Wanneer de eilandjes omgeven werden door 

nieuw gevormd bot weefsel was er weinig resorptieactiviteit te bespeuren. Waarschijnlijk zal na 

verloop van tijd ook de door bot omgeven Ostim® geremodelleerd zal worden. De 

gecombineerde applicatie van Ostim® met zowel allograft botsnippers als TCP-HA korrels leidde 

niet tot een ongunstige biologische reactie in deze korte termijn dierenstudie. Het is mogelijk dat 

een mix van 10% Ostim® met TCP-HA korrels kan worden toegepast in de klinische situatie als 

een volledig synthetische reconstructie van defecten tijdens revisie THA procedures. Voordat 

klinische implementatie kan worden overwogen moet dit eerst onderzocht worden in een belast en 

klinisch realistisch diermodel. 

 

 D. To test in a clinical realistic and loaded animal THA model the biological 
  activity of a ceramic calcium phosphate material as an alternative for  
  human  morselized cancellous bone allografts. 
 

Gebaseerd op positieve mechanische resultaten (Hoofdstuk 5) en biologische resultaten 

(Hoofdstuk 8) werd een 50-50% volume mix van allograft botsnippers en TCP-HA korrels 

toegepast voor de reconstructie van een belast acetabulair defect tijdens een THA procedure in de 

geit (Hoofdstuk 9). Tijdens gebruik van keramische materialen in belaste situaties is een adequate 

beoordeling van de weefsel reactie op zeer kleine (10-150 µm) TCP-HA deeltjes (ontstaan door de 

impactie procedure) belangrijk. Ook het voorkomen van “third body wear” door deze TCP-HA 

deeltjes is erg belangrijk. De kleine (10-150 µm) TCP-HA deeltjes die in deze studie werden 

geobserveerd kunnen het resultaat zijn van zowel het impactie proces als de in-vivo belasting. 

Mogelijk kunnen deze TCP-HA deeltjes migreren binnen de reconstructie of naar de 

gewrichtsholte. In de gewrichtsholte kunnen ze “third body wear” induceren. Dit is een potentiaal 

gevaar voor de overleving van de implantaten [33]. Daarom is het zeer bemoedigend dat er geen 

bewijs voor ‘third body wear” werd gevonden in deze studie. Gefragmenteerde TCP-HA deeltjes 

korrels werden geobserveerd in macrofaagachtige cellen. Dit werd ook geobserveerd in een andere 

studie [32]. Alhoewel osteoclastachtige cellen in veelvoud aanwezig waren op de oppervlaktes van 

de TCP-HA korrels, wil dit niet zeggen dat deze korrels actief geresorbeerd worden. Zoals eerder 

gezegd is het de mening van de auteur dat complete resorptie van keramische materiaal niet van 

kritiek belang is zolang de stabiliteit van de reconstructie gegarandeerd blijft.  

Klinisch gebruiken Oonishi en collega’s HA korrels al meer dan 10 jaar voor acetabulaire 

reconstructie met behulp van een dubbele cementeringtechniek [25,26]. De eerste cement laag 

word gebruikt om een acetabulair defect gevuld met HA korrels compleet in te sluiten.  

Daarna wordt op deze cement laag een tweede cementlaag aangebracht waarin de acetabulaire cup 
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gefixeerd word. Een analyse van biopsien van Oonishi en collega’s leerde dat de HA korrels 

weinig afstotingsreacties (foreign body reaction) opwekken na 4 tot 10 jaar klinische follow-up 

[26]. Gebaseerd op de resultaten in het belaste diermodel is nog steeds niet definitief bewezen dat 

keramische materialen geen “third body wear”opwekken (Hoofdstuk 9). Daarvoor was de follow-

up tijd van de studie te kort. Misschien is het te adviseren om preventief de keramische materialen 

van de gewrichtsholte af te sluiten. Hoe dit het beste bewerkstelligd kan worden is op het moment 

nog niet duidelijk. 

 

Eindconclusie 
Kunnen keramische calcium fosfaat materialen worden toegepast voor het reconstrueren van 

acetabulaire defecten tijdens revisie THA met de bone impaction grafting techniek? 

 

De resultaten van de mechanische studies (Hoofdstuk 5-6), de studies in een onbelast diermodel

(Hoofdstuk 8) en vooral in het belaste diermodel in de geit (Hoofdstuk 9) wijzen erop dat 

bifasische TCP-HA korrels inderdaad geschikt zijn om gebruikt te worden als botvervangers voor 

de reconstructie van acetabulaire defecten tijdens revisie THA met de bone impaction grafting 

techniek. Momenteel adviseren wij om deze TCP-HA korrels te gebruiken in een 50-50% volume 

mix met allograft botsnippers. Het is niet onwaarschijnlijk dat een hoger percentage van TCP-HA 

korrels in een mix met allograft botsnippers ook mogelijk is. Verschillende centra met uitgebreide 

klinische ervaring met de bone impaction grafting techniek zijn recentelijk gestart met een klinisch 

onderzoek waarin een 50-50% volume mix van TCP-HA korrels en allograft botsnippers gebruikt 

wordt voor de reconstructie van acetabulaire defecten tijdens revisie THA met de bone impaction 

grafting techniek. Het is erg belangrijk dat deze patiënten nauwkeurig opgevolgd worden in de 

klinische praktijk om te bepalen of de lange termijn resultaten ook bevredigend zijn. De resultaten 

van het klinisch onderzoek zullen ook eventuele tekortkomingen van de keramische materialen 

aantonen. RSA kan hierbij een waardevol meetinstrument zijn om de migratie en slijtage (wear) 

van implantaten te bepalen 

 

Toekomstig onderzoek 
Het is de mening van de auteur dat mixen van allograft botsnippers en TCP-HA korrels bruikbaar 

zijn voor reconstructie van acetabulaire defecten met de bone impaction grafting techniek tijdens 

revisie THA. We adviseren een 50-50% volume ratio van allograft botsnippers en TCP-HA 

korrels te gebruiken. Het is erg belangrijk dat de klinische resultaten worden gepresenteerd in de 

literatuur door meerdere instituten om eventuele tekortkomingen of eventuele voordelen van de 

nieuwe reconstructie techniek te onthullen. Dit zal de klinische uitkomst op de lange termijn 

alleen maar ten goede komen. 
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Naast de klinische follow-up in patiënten zal het meest belangrijke onderzoeksdoel in de toekomst 

zich moeten richten op het bewerkstelligen van een volledig synthetische reconstructie. Met 

andere woorden, het verwijderen van bot uit de bone impaction grafting techniek. Momenteel is 

een volledig synthetische revisie van acetabulaire defecten niet mogelijk door de gelimiteerde 

sterkte van keramische materialen tijdens de impactieprocedure. Tevens blijft het lastig om met de 

huidige keramische materialen een goede cohesieve reconstructie te verkrijgen. Hierdoor wordt 

een overdadige cementpenetratie in de reconstructie gefaciliteerd. Deze overdadige cement 

penetratie resulteert in een hoge initiële cupstabiliteit, maar wordt vanuit een biologisch perspectief 

(remming van revascularisatie) toch als ongewenst beschouwd. Mogelijk is de gecombineerde 

applicatie van een nano-kristallijne HA-pasta en TCP-HA korrels beter geschikt, maar dit is in dit 

proefschrift niet getest in een diermodel onder belaste condities.  

 

Een andere benadering kan de ontwikkeling van poreuze calcium fosfaat cementen zijn. Deze 

zouden ingroei van nieuw bot beter faciliteren en daarnaast ook betere resorptie karakteristieken 

moeten bezitten in vergelijking met huidige calcium fosfaat cement materialen. Het is nog 

onduidelijk of poreuze calcium fosfaat cementen structureel sterk genoeg zijn voor de gewenste 

taak en ook of ze hun structurele integriteit gedurende langere tijd kunnen behouden om bruikbaar 

te zijn in belaste botdefecten.  

 

De gecombineerde toepassing van keramische materialen en groei factoren als OP-1® kan wellicht 

nog een andere veelbelovende oplossing zijn. Het is niet ondenkbaar dat voordat een volledig 

synthetische reconstructie van keramische materialen en groei factoren getest kan worden er eerst 

een nieuw carrier materiaal ontwikkeld dient te worden. Een dergelijk materiaal zou een verbeterde 

hanteerbaarheid (de TCP-HA korrels moeten “lijmen”) moeten bezitten en zal ook in staat 

moeten zijn om een korte termijn mechanische stabiliteit van de reconstructie te verzorgen.  

 

Toekomstig OP-1® onderzoek moet zich vooral richten op het vinden van een betere biologische 

carrier die een meer gecontroleerde vrijlating van de groei factor in de reconstructie mogelijk 

maakt. De carrier zal dus ook beter bestand moeten zijn tegen de mechanische krachten die 

optreden tijden de impactie procedure.  

In de ideale situatie zal de vrijlating van groei factor uit de carrier gekoppeld zijn aan de 

revascularisatie van de reconstructie. Een mogelijke toepassing van TCP-HA korrels met een hoog 

visceuze carboxy methyl cellulose (CMC) carrier en OP-1® zou kunnen resulteren in een volledige 

synthetische reconstructie voor revisie THA procedures met de bone impaction grafting techniek.  
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Appendix I 
Ceramic materials used in this thesis.  
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BoneSave 
TCP-HA granules (BoneSave®; Stryker Orthopaedics, Limerick, Ireland) are composed of 80% 

TCP [Ca3 (PO4)2] and 20% HA [Ca10(PO4)6(OH)2].  The granules are produced by mixing together 

two CaP based powders (each with a different TCP:HA ratio) and a carbonaceous filler. This 

mixture is dry blended, water is then added and the material is further blended for a set period of 

time. This is then allowed to 'set', the resulting cake is broken into granules of the required size (2-

4 mm or 4-6 mm) and these are then sintered at temperatures above 1100C. During sintering, the 

burning off of a carbonaceous filler creates the final porosity. The granules have a 50% non-

interconnected macro-porosity ranging between 300–600 µm (Figure 1A). The particles also 

possess a micro-porosity ranging between 5–80 µm (Figure 1B).  

 

Porosity values are provided by Stryker Orthopaedics. The final granules are then QA tested for 

verification of granule quality. Both X-Ray Diffraction (XRD) and Fourier Transform Infrared 

spectroscopy (FTIR) analysis were performed and examples of these analyses are depicted in 

figure 2 and 3, respectively. The XRD pattern of BoneSave granules (Figure 2) showed main 

reflections for -TCP at 25.9, 27.9, 31, 32.5 and 34.4 degrees 2-theta and also showing main 

reflections for HA at 25.9, 29.5, 31.9, 32.3, 33.0 and 34.0 degrees 2-theta indicating that this 

material is truly biphasic in an 80% -TCP : 20% HA ratio [4].  

 

The FTIR pattern (Figure 3) of BoneSave granules (3mg in 300mg KBr) showed IR-absorption’s 

at 590 cm-1 (phosphate peak TCP/HA), 630 cm-1 (OH group of hydroxy apatite), between 900-

1100 cm-1 (phosphate peak and secondary crystalline peaks) and 3560 cm-1 (OH group of hydroxy 

apatite). Analysis of this pattern is consistent with a highly crystalline calcium phosphate material.  

 
 

Figure 1. 

 

(A) Scanning electron microscopy (SEM) micrograph at low (x35) resolution showing the macro-
porous structure of a BoneSave TCP-HA granule. (B) SEM micrograph at high (x5000) resolution 
showing the microporous structure of a BoneSave TCP-HA granule.  

A B 



 183 

BoneSource 
BoneSource Classic®  (BSC) calcium phosphate bone cement (Stryker Orthopaedics, Limerick, 

Ireland) is a self-setting, isothermic bone substitute consisting of an equimolar ratio of 

tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA).  

The DCPA is produced as follows: pharmaceutical grade DCPA powder is mixed into water to 

produce slurry which is bead-milled in order to produce a finer grade of slurry. This milled slurry 

is then freeze dried to remove the excess liquid and the resulting powder is processed to produce a 

consistently fine powder. The TTCP is produced as follows: pharmaceutical grade DCPA and 

calcium carbonate powders are mixed together in water to produce slurry. This slurry is then 

processed to remove the excess water and 'cakes' are formed which are fired at temperatures 

above 1500C for a set period of time allowing the transformation of the cake material to that of 

the TTCP phase. These cakes are then milled to form a fine powder. Subsequently, both powders 

Figure 2. 

 

X-Ray Diffraction (XRD) pattern of a BoneSave granule recorded with a CN2005 “Miniflex” X-Ray 
Diffractometer.  
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Figure 3. 

 

Fourier Transform Infrared spectroscopy (FTIR) pattern of BoneSave granules (3mg in 300mg 
KBr) recorded with a Genesis 2 FTIR Spectrometer. 
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(DCPA and TTCP) are then mixed in an equimolar ratio to form a product which is sold as BSC. 

The powder consists of 72.3 mass percent of TTCP and 27.7 mass percent of DCPA. The median 

particle size ratio of TTCP and DCPA is approximately 10:1 [5].  

This material can be mixed with either water or a sodium phosphate solution after which it forms 

putty-like cement that can be easily shaped and applied. Within 5-10 minutes after mixing, a 

structurally stable implant is formed, that converts to a calcium deficient HA upon setting (this is 

chemically very similar to the inorganic phase of natural bone). Within 24 hours, 72-80 percent of 

the original starting material will have converted to HA and the remainder will be mainly TTCP. 

The XRD pattern of BSC, 24 hours after mixing, showed main reflections for TTCP, DCPA and 

HA (Figure 4) [4]. The macroporosity of BSC is quite low and rarely large pores are observed with 

SEM investigation of the samples (Figure 5).  

 

Figure 5. 

 

A scanning electron microscopy (SEM) micrograph at high resolution showing the surface struc-
ture of BoneSource Ca-P cement. 

Figure 4. 

 

X-Ray Diffraction (XRD) pattern of BoneSource Ca-P cement 24 hours after mixing the TTCP and 
DCPA components recorded with a CN2005 “Miniflex” X-Ray Diffractometer.  
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BSC offers excellent biocompatibility and high mechanical stability (compressive strength  50 

MPa) while being easy to handle making it an ideal bone graft substitute for void filling 

applications, such as filling cranial defects, vertebroplasty [1]or metaphyseal bone void filling [3]. 

Also, because this material is isothermic, no damaging heat release to surrounding tissue is 

generated. Over time, the material will remodel into bone. In a recent animal study it was reported 

that 90% of BoneSource had been resorbed and replaced by bone after 40 weeks [8]. 

 

Ostim 
Ostim®: Ostim (Osartis GmbH & Co. KG, Obernburg, Germany) is a nano-crystallite 

precipitated hydroxyl-apatite [Ca10(PO4)6(OH)2] paste that contains about 40% of water (Figure 6). 

The paste consists of a suspension of pure hydroxyapatite in water prepared by a wet chemical A 

scanning electron microscopy (SEM) micrograph at high resolution showing the surface structure 

of BoneSource Ca-P cement. 

reaction. After completion of the paste, the HA content is 35%. The crystallite size is about 18 nm 

(Figure 6). The Ca/P ratio of the material is 1.67. Advantages of such a material are the easy 

handling and the close contact with surrounding tissue. Ostim resorbs quickly [10], thereby 

stimulating cell infiltration immediately after revascularization of the implant site [9]. In dental 

applications Ostim has been used for treatment of tooth perforations [7], and jaw cysts [2,6]. In 

orthopaedic surgery, Ostim has been used as a void filler combined with plating for various types 

of metaphyseal fractures such as the calcaneus and tibia. 

Figure 6. 

 

Transmission Electron Microscopy image showing precipitated Ostim nano-crystallite agglomer-
ates. 
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Dankwoord 
Ik ga promoveren, het klonk zo wijs de eerste dag, maar ik had werkelijk geen idee wat het precies 

inhield. Ik heb er bijna 5 jaar lang over mogen nadenken en ik ben tot de conclusie gekomen dat 

het volgen van een promotietraject uitzonderlijk veel overeenkomsten vertoond met het leren 

duiken. Mijn andere passie!  

 

In het begin is er de sprong in het diepe…letterlijk! Van alle kanten worden goedbedoelde 

adviezen over je uitgestort met als doel je meer op je gemak te doen voelen. Na een jaartje van 

flink spartelen en het onder de knie proberen te krijgen van de technieken die een onderzoeker 

nodig heeft, om tijdens alle ups and downs stabiel te blijven drijven kwam de overgang van de 

theorie naar de praktijk in het zwembad. Net zoals bij het leren duiken wordt het hierbij belangrijk 

om zaken zelf ter hand te nemen. Na een tijdje was het zover om metaforisch voor het eerst kopje 

onder te gaan. Dit was een prachtige ervaring. Ik mocht daarna overstappen vanuit het zwembad 

van talent (de stagaire kamer) naar de open zee. De rode lijn was door mijn drie begeleidende 

divemasters vastgelegd maar als je jezelf vertrouwd krijg je de neiging om de rode lijn wat te laten 

vieren. Als het even tegenzit, lijkt het alsof de omgeving bodemloos wordt. Om op koers te 

blijven is bijsturing van de begeleidende divemasters dan onontbeerlijk. In het laatste jaar van mijn 

promotietraject navigeerde ik grotendeels zelf door de zee, met hier een daar een koerscorrectie en 

uiteindelijk kom je op het juiste punt weer boven drijven. Een ervaring rijker! 

 

 

Mijn proefschrift is tot stand gekomen door de samenwerking van en met een groot aantal 

mensen waarvan ik er een aantal in het bijzonder bedanken wil. 

 

 

Mijn promotor Professor Veth. Hoewel ons contact zich alleen in de laatste fase van het 

promotietraject heeft afgespeeld, wil ik u hartelijk danken voor de geboden steun bij het gereed 

maken van het boekje voor de manuscriptcommissie. Uiteindelijk is de corona toch gevonden.  

Mijn drie co-promotoren Pieter, Wim en Nico dienen veel lof te krijgen voor de uiteindelijke 

vorm en omvang van dit proefschrift. Soms zag ik door de bomen het bos niet meer bij de 

biologische, mechanische en klinische kijk op zaken. Nu achteraf bezien heb ik enorm geluk gehad 

met mijn dagelijkse begeleiders omdat ik altijd in staat gesteld ben om mijn eigen richting te 

zoeken en te volgen. Als ik van elke dagelijkse begeleider wat kwaliteiten zou mogen overnemen 

dan zou ik graag het snel schrijven van een manuscript en het flitsen door histologie willen 

overnemen van Pieter. Het kritisch beoordelen van literatuur en vooral van eigen werk van Nico 

en de enorme kennis van beschikbare literatuur alsmede het vermogen om gecompliceerde 

klinische vaardigheden simpel uit te leggen van Wim. Ook hoop ik dat ik net als mijn begeleiders 

altijd veel plezier zal blijven houden in mijn werk.  
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Als een soort van vierde dagelijkse begeleider wil ik ook de prettige samenwerking met Jean 

Gardeniers  noemen. Vele uren hebben we samen met Marianne doorgebracht op het CDL en 

daardoor weet ik nu perfect hoe schaar, mes, naald en hechtdraad gehanteerd dienen te worden.  

Op het Orthopaedic Research Lab (ORL) is het onder de blik van moeder overste Ineke goed 

vertoeven. Ik heb het altijd heel erg gezellig gevonden op het ORL en de afdeling Orthopaedie en 

dat is niet alleen de verdienste van mijn (ex)collega AIO’s, maar zeker ook van de leidinggevende 

en technisch ondersteunende staf. Pieter, Nico en Esther zijn de stafleden van het ORL en zij 

zorgen voor een relaxte sfeer waar een ieder optimaal weet te renderen. Alle secretaresses bedankt 

voor de hulp en de talloze zoektochten naar röntgenmappen. Vanaf nu laat ik jullie echt met rust! 

In mijn eerste jaar werd ik door mijn projectvoorganger Stefan Bolder wegwijs gemaakt in alle 

aspecten van het project. Talloze uren hebben we femurkoppen geknabbeld, Sawbones modellen 

in elkaar gemept of RSA foto’s met de hand gemeten (wij nog wel ja). Ik wil Stefan hiervoor 

oprecht bedanken. Ook werd ik in het eerste jaar door Stefan, Sanne en Tony wegwijs gemaakt op 

het dierenlab en in chirurgische technieken. Dat was in het begin heel spannend en over het 

algemeen altijd veel te gezellig. Bedankt voor de goede instructies.  

Alle AIO’s die in de loop der jaren het lab hebben doorlopen en verlaten te weten dank ik 

hartelijk voor hun bijdrage aan de positieve sfeer en de plezierige samenwerking. Dan zijn er nog 

mijn huidige AIO collega’s Dennis, Gerjon, Luc, Marco, Marloes, Miranda, Niels, Rene en Roy. In 

de afgelopen jaren heb ik met jullie wellicht voor 10 jaar levenservaring opgedaan, voor een heel 

leven sterke verhalen aanschouwd en ongetwijfeld de meest nutteloze discussies over een groot 

scala van onderwerpen gevoerd. Het was altijd verrassend en gezellig zowel binnen het lab als 

buiten het lab tijdens de AIO etentjes of het drinken van een biertje.  

Miranda, mijn roomie!! We hebben het erg gezellig gehad op de kamer. Er was tijd voor werken, 

tijd voor ontspanning of een goed gesprek, tijd voor sport en altijd tijd voor het halen van een 

blikje Cola. Ik weet dat je mijn eetgewoontes nog steeds niet erg kunt waarderen, maar je pikte het 

toch maar wel. Net zoals mijn chagrijnige dagen, al kreeg ik het dan wel voor mijn kiezen. Maar 

dat hoort ook zo als je jaren samen op een kamer zit. Ik vind het heerlijk om te observeren hoe jij 

omgaat met “prutsers” en de uitdagingen van je “peppi en kokki onderzoek” en dat ook nog goed 

weet te combineren met topsport en Noel. 

Willem, Rene, Huub, Leon en Natasja hebben me allen bij een of meerdere projecten met hun 

technische kennis en expertise bijgestaan. Ik heb hier veel van geleerd. Niets was jullie teveel. 

Bedankt voor alle aandacht, ondersteuning, discussie en gezelligheid. Ik weet het nu inmiddels 

ook: “Er bestaan geen problemen, alleen uitdagingen!”.  
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Talloze stagaires en onderzoekende arts-assistenten zijn in de afgelopen jaren de revue gepasseerd 

op het ORL. Ook jullie hebben bijgedragen aan de goede sfeer op het lab. Mijn eigen “stagaires” 

Roy Welsing, Tanja van de Camp en Luc Walschot hebben mij zeer geholpen met het analyseren 

van de resultaten. Mijn grote dank aan een ieder. Natuurlijk wil ik ook alle anderen die hier niet 

met naam genoemd worden bij deze hartelijk bedanken. 

Naast het ORL is het CDL mijn tweede thuis binnen het Radboud geweest tijdens mijn 

promotieonderzoek. Talloze uren heb ik op de OK grote dieren doorgebracht en gedurende de 

jaren heb ik hier vele potten koffie mogen nuttigen. In het begin opereerde ik onder de kritische 

blikken van Alex, Fred en Ton en in een later stadium ook met hulp van Connie, Jeroen en 

Wilma. Het controle lab van het CDL, Frans van Munsteren en zijn afdeling bedank ik voor de 

goede verzorging en ziektevrij houden van mijn konijntjes en geiten. Tevens bedank ik Hennie, 

Conrad en de andere medewerkers van de boerderij ook hartelijk voor alle hulp en gezelligheid.  

Als onderzoeker moet je naast het uitvoeren van onderzoek af en toe ook even tijd vrijmaken 

voor een kleine energie intake (in mijn geval koffie). Onder de noemer “op ieder labje een ander 

hapje“ heb ik in de afgelopen jaren enkele koffie plekken binnen het Radboud met regelmaat 

bezocht. Ik dank Dorine, Hanneke, Peggy en Marijke dan ook voor de koffie, de praatjes en de 

afleiding. Dat het hier allen vrouwen betreft berust op louter toeval. 

Tijdens mijn promotie heb ik tevens samengewerkt met de collega’s van de afdeling Biomaterialen. 

Vooral Esther, Jeroen, Joop, Marijke en Sander wil ik hartelijk bedanken voor hun hulp bij dit 

proefschrift (zowel analytisch, dierexperimenteel, materiaalkundig of bij het corrigeren van 

artikelen). Siebers, jouw hulp ging verder dan een kopje koffie, het regelen van mooie SEM 

plaatjes, een artikeltje van me lezen of chauffeur spelen met Manon. Thanks. 

De leden van de STW gebruikerscommissie dank ik hartelijk voor hun input tijdens de 6 

maandelijkse besprekingen. Voor mij was het erg nuttig om mijn onderzoek eens vanuit een 

andere optiek belicht te zien. Also thanks to Gerard Insley and Mike Voor for all their support. 

Luc en Gerjon mijn paranimfen. Samen met Dennis, Marco en Miranda hebben jullie de laatste 

twee jaar veel bijgedragen aan mijn proefschrift en ook aan mijn werkplezier. Bedankt voor al 

jullie hulp aan mijn promotieonderzoek, jullie onuitputtelijke bron van sterke en minder sterke 

verhalen, het delen van jullie bijzondere kijk op relaties en alle activiteiten naast het werk. Fijn 

ook, dat jullie me ondersteunen tijdens mijn verdediging. Ger, bedankt voor alle hulp bij de lay-

out van mijn boekje. Ik ben erg blij met het uiteindelijke resultaat. 

Mijn broers, familie, vrienden en sportkameraden wil ik ook hartelijk bedanken voor hun 

belangstelling en voor hun acceptatievermogen als ik weer eens meer wilde doen dan de tijd 

toestond of door bleef zagen over mijn onderzoek. Hopelijk is het jullie nu duidelijk dat ik meer 

gedaan heb dan het beschadigen van lieve geitjes en konijntjes. 
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Janneke, mijn maatje, mijn schat!  

Zonder jou was alles anders geweest en was ik waarschijnlijk nog steeds een orkaan van 

onbeteugelde chaos. Als geen ander kun jij mij van mijn roze wolkjes afplukken. Ik bedank je 

vooral voor je morele steun en uitzonderlijke relativerende vermogen en ook dat je me de tijd gaf 

om dit proefschrift op mijn eigen voorwaarden af te ronden. Dat je wel eens het geduld met me 

verloor en me weer met twee beentjes stevig op de grond zet had ik soms gewoon even nodig. 

Samen met onze zoon Luuk gaan we verder werken aan onze eigen dromen en idealen. Met een 

beetje geluk blijft de computer weer eens een weekend uit.  

 

 

Papa,  

We hebben elkaar helaas al lang niet meer kunnen spreken.  

Jij was, bent en blijft altijd een van de grootste bronnen van motivatie en ik mis je nog steeds ontzettend. 

Hopelijk kijk je 6 april even over mijn schouder met me mee... 
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Curriculum vitae 
Chris Arts werd geboren op 7 november 1973 2005 in Oss. Het was de tijd van de autoloze 

zondag en hoge brandstofprijzen. Hij bracht een onbezorgde jeugd door in Haren en bracht zijn 

middelbare schooltijd door in het nabij gelegen Oss. In 1992 behaalde hij zijn HAVO diploma aan 

het Titus Brandsma Lyceum te Oss. Vervolgens begon hij met de opleiding tot fysiotherapeut aan 

de Hogeschool Enschede in het uiterste oosten van Nederland. In 1997 werd het getuigschrift 

behaald. In hetzelfde jaar vervolgde hij zijn educatieve opleiding aan de Universiteit Maastricht 

met als afstudeerrichting Bewegingswetenschappen. Tijdens de studie snabbelde hij een beetje bij 

als fysiotherapeut in het omringende Limburgse landschap. In het kader van zijn afstudeerstage 

voor bewegingswetenschappen vertrok Chris uiteindelijk toch de grens over naar de Verenigde 

Staten. Onder leiding van Prof. J.A. Elefteriades werd op de afdeling Cardio-Thoracic Surgery van 

de  Yale Universiteit een onderzoek verricht naar de mogelijkheden van diafragma 

electrostimulatie bij patiënten met een hoge dwarslaesie. Na deze periode was Chris aan het 

onderzoeken verkocht. Per 1 november werd hij als AIO aangesteld op het Orthopaedische 

Research Lab van het UMC St Radboud Nijmegen. Onder leiding van promotor Prof. Dr. R.P.H. 

Veth en co-promotores Dr. P. Buma, Dr B.W. Schreurs en Dr. Ir N. Verdonschot verrichte hij 

onderzoek naar het gebruik van keramische materialen voor het opvullen van grote botdefecten 

tijdens revisie THA. Dit proefschrift is daarvan het resultaat. 

Chris is getrouwd met Janneke Strik en inmiddels genieten zij sinds december 2005 van hun eerste 

zoon, Luuk. 

Familiewapen familie Arts 
Coat of arms Arts family 
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Chapter IV Figure 2. 
(A and B) TRAP stained sections showing numerous osteoclasts (Red arrows) at the revasculariza-
tion front invading the bone graft (BG) and close to the cement layer (C) in a control (A x30) and 
OP-1 specimen (B x60). (C) Saffranin O stained section with spots of cartilage (CA) embedded in 
bone x60. (D) Medial wall (MW) of acetabulum (OP-1) with considerable periosteal newly formed 
bone (PB) x5. (E) Mesh (M) for containment of the impacted MCB with new bone (NB) formation 
in the holes of the mesh x5. (F) New bone (NB) formation on remnants of bone graft (BG) x30. 
Fibrous tissue (FT). 

C

C

C

BG
BG

FT

M

M
NB

BG

BG

BG

NB

NB

NBFT

FT

FT

MW

PB

C

NB
CA

BA

C D 

E F



 205 

Chapter IV Figure 3. 
(A) HE stained section showing periosteal bone in 6-weeks OP-1 group, which is a mixture of 
chondral bone and new bone x60. (B) Saffranin O stained section of 6-weeks OP-1 group with nu-
merous cartilage like areas (arrows) in new bone (NB) x60. (C) New cancellous bone (NB) (control 
group 15 weeks) with fatty marrow (FM). C is the cement layer. x15. (D) Higher magnification 
showing inactive osteoclasts (arrows) on the new bone x60. (E) Fibrous tissue around mesh (M) in 
15-week control specimen x15. (F) Interface between cement and bone in 15-week OP-1 specimen 
x15.  
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Chapter VI Figure 5. 
Histology results. (A) Section of an empty defect after 8 weeks. The defect borders are denoted by 
the circle (Ø represents 5.5 mm). (B) New bone formation (NB) on a bone graft remnant (BG) with 
osteoblasts lining the bone graft (arrows). (C) Areas of non-resorbed Ostim (O) integrated in new 
bone (NB). (D) Osteoclasts (arrows) against islands of Ostim (O). (E) TRAP staining confirmed 
the presence of osteoclasts (arrows) on Ostim (O). (F) New bone (NB) osseous-integrated with 
Ostim (O) and TCP-HA granules (BS). Bar scale B-F 0.1 mm.
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Chapter VIII Figure 2. 
Saw sections. (A-B) Time zero section showing 10-150 micron TCP-HA particles in between the 
larger TCP-HA granules. The circle denotes the defect borders. (C-D) Low magnification sections 
of an empty defect (C) and a BS0 defect (D) after 8 weeks. The circle denotes the defect borders. 
(E-F) Low magnification section of a BS50 defect (E) and a detailed image of osseous integrated 
TCP-HA granules (F) after 8 weeks. (G-H) Irregular filling observed in this BS50 defect (G) and 
BS100 defect (H) after 8 weeks. Bars are 2 mm (ACDEGH) and 0.05 mm (BF) respectively 
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Chapter VIII Figure 4. 
(A-C) HE stained sections. (A) Magnification of a BS0 defect section, showing a bone graft rem-
nant (BG) surrounded by new bone (NB). (B) Detail of BS75 defect, showing osseous-integrated 
TCP-HA granules and a giant cell (arrow) in close contact with a TCP-HA granule (BS). (C) 
Macrophage and osteoclast activity between new bone and a TCP-HA granule in a BS75 defect. 
(D) TRAP staining confirming the presence of osteoclast cells (red) on the TCP-HA granule bor-
ders. Bars are 0.1mm (ABC) and 0.05 mm (D) respectively. 
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Chapter IX Figure 3.
(A) New bone formed in the 100% MCB group. A remnant of the original bone graft (BG) is com-
pletely surrounded by new bone (NB) (HE Stain, x30). (B)  Specimen from the MCB/TCP-HA group 
is shown. New bone formation (NB) in between TCP-HA granules (BS) in the deeper part of the de-
fect (HE Stain, x30). (C) Tartrate-resistant acid phosphatase stained osteoclasts (OS) resorbing 
(arrows) bone graft remnants (BG) in the 100% MCB defects (x40) are shown. (D) Bright stained os-
teoclasts (OS) (arrows) and lightly stained giant cells (GC) (arrows) on the surface of TCP-HA gran-
ules (BS) (acid phosphatase stain, x40). (E) Low magnification micrograph showing the interface be-
tween new bone (NB) and cement (C) of a specimen from the 100% MCB group. Locally, a thin soft 
tissue interface (ST) is present (HE Stain, x10). (F) Interface between incorporated TCP-HA granules 
(black) and cement (C) of a specimen from the MCB/TCP-HA group is shown. TCP-HA granules 
(BS=black) and new bone (NB) are in direct contact with cement (arrows; HE Stain, x10). (G) Low 
magnification micrograph showing polyethylene particles (arrows) within a relatively thick soft tissue 
interface (HE Stain, x40). (H) Same section, but with polarized light, showing birefringent polyethyl-
ene particles (arrows; HE Stain, x40)  
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