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Abstract

We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data
obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior
brightness depressions) using two independent sampling algorithms that consider distinct representations of the
visibility data. We show that the crescent family of models is statistically preferred over other comparably complex
geometric models that we explore. We calibrate the geometric model parameters using general relativistic
magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We
further fit images generated from GRMHD models directly to the data. We compare the derived emission region and
black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable
consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from
near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing
direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of
42±3 μas and constrain its fractional width to be <0.5. Associating the crescent feature with the emission
surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc2=3.8±0.4 μas. Folding in
a distance measurement of -

+16.8 Mpc0.7
0.8 gives a black hole mass of =   ´ ∣ ∣M M6.5 0.2 0.7 10stat sys

9 . This
measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole,
as predicted by the general theory of relativity.

Key words: black hole physics – galaxies: individual (M87) – gravitation – techniques: high angular resolution –

techniques: interferometric

1. Introduction

Einstein’s general theory of relativity not only predicts the
existence of black holes, but also provides a means to directly
observe them. Photons can escape from near the event horizon via
an unstable circular orbit(von Laue 1921; Bardeen 1973), whose
observational manifestation would be a bright ring of emission
surrounding a dark interior black hole “shadow” (Luminet 1979;
Falcke et al. 2000). The diameter of the shadow for a black hole of
mass M as seen by a distant observer is predicted to be
;9.6–10.4GM/c2, which is larger than twice the coordinate
radius of the event horizon due to light-bending effects (Takahashi
2004; Johannsen & Psaltis 2010). The range results from different
values of black hole spin and observer inclination angle. The black
hole shadow can only be seen if (i) there are a sufficient number of
emitted photons to illuminate the black hole, (ii) the emission
comes from close enough to the black hole to be gravitationally
lensed around it, and (iii) the surrounding plasma is sufficiently
transparent at the observed wavelength. For nearby low-luminosity
black holes accreting via a radiatively inefficient flow, these
conditions can be met at millimeter wavelengths(e.g., Özel et al.
2000; Ho 2008; Yuan & Narayan 2014).

The nearby massive elliptical galaxy M87 provides an ideal
laboratory to search for such a black hole shadow. It is relatively
nearby ( D 16.8 Mpc) and has long been known to host a
bright, compact radio source at its center (Cohen et al. 1969).
Starting with Young et al. (1978) and Sargent et al. (1978), several

attempts have been made to “weigh” the supermassive black hole
(SMBH) hypothesized to power the radio source. Recent stellar-
dynamics observations by Gebhardt et al. (2011) found M=
(6.6± 0.4)×109Me, while the latest gas dynamics observations
by Walsh et al. (2013) yielded a more modest = ´-

+( )M 3.5 0.7
0.9

M10 .9 Both values assumed a distance D=17.9Mpc. Strictly
interpreted within the predictions of the general theory of relativity,
these measurements make a strong case that M87 does harbor
some sort of compact massive dark object at its center, but they
have insufficient resolution to formally demonstrate that it is
indeed an SMBH. For M87 the expected shadow angular diameter
is ; 20 or ; 38μ as, which is now accessible using global very
long baseline interferometry (VLBI) at millimeter wavelengths
(EHT Collaboration et al. 2019a, hereafter Paper II).
Accreting black holes are powered by matter flowing in via an

accretion disk that in many cases launches a powerful jet of
magnetized, relativistic plasma (e.g., Blandford & Znajek 1977;
Blandford & Payne 1982). M87 exhibits the characteristic flat-to-
inverted radio/millimeter (mm) synchrotron spectrum considered
to be a hallmark of the compact innermost jet core in low-
luminosity active galactic nuclei (AGNs; e.g., Blandford & Königl
1979; Ho 1999). In this picture, the jet photosphere moves inward
with increasing frequency up to the spectral break, at which point
the entire jet becomes optically thin. The average broadband
spectrum of M87 (Reynolds et al. 1996; Di Matteo et al. 2003;
Prieto et al. 2016) indicates that the mm-band should straddle this
transition. While images at longer radio wavelengths reveal
extended jet structure (e.g., Asada & Nakamura 2012; Hada et al.
2016; Mertens et al. 2016; Kim et al. 2018; Walker et al. 2018),
both the observed core shift (Hada et al. 2011) and compact
size of ;40μas from past mm-VLBI (Doeleman et al. 2012;
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Akiyama et al. 2015) are consistent with an origin of the mm-band
emission near the event horizon of the central black hole.

Although the photon ring and shadow predictions are clear,
the image morphology will depend on the physical origin of
the surrounding emission and spacetime of the black hole. If the
observed synchrotron radiation at 1.3 mm originates far from the
black hole, the forward jet will dominate the observed emission
and the lensed emission and shadow feature should be weak
(Broderick & Loeb 2009). If instead the emission comes from
near the event horizon, either the counter-jet or the accretion
flow can produce a compact ring- or crescent-like image
surrounding the shadow (Dexter et al. 2012). This type of image
is now known to be commonly produced in radiative models of
M87 based on general relativistic magnetohydrodynamic
(GRMHD) simulations (Dexter et al. 2012; Mościbrodzka
et al. 2016; Ryan et al. 2018; Chael et al. 2019b; see EHT
Collaboration et al. 2019d, hereafter Paper V).

The outline of the shadow is expected to be nearly circular, if
the central object in M87 is a black hole described by the Kerr
metric (Bardeen 1973; Takahashi 2004). Violations of the no-
hair theorem generically change the shadow shape and size
(e.g., Bambi & Freese 2009; Johannsen & Psaltis 2010; Falcke
& Markoff 2013; Broderick et al. 2014; Cunha & Herdeiro
2018). Therefore, detecting a shadow and extracting its
characteristic properties, such as size and degree of asymmetry,
offers a chance to constrain the spacetime metric.

The high resolution necessary to resolve horizon scales for
M87 has been achieved for the first time by the Event Horizon
Telescope (EHT) in April 2017, with an array that spanned
eight stations in six sites across the globe (Paper II). The EHT
observed M87 on four days (April 5, 6, 10, and 11) at 1.3 mm
(EHT Collaboration et al. 2019b, hereafter Paper III), and
imaging techniques applied to this data set reveal the presence
of an asymmetric ring structure (EHT Collaboration et al.
2019c, hereafter Paper IV). A large library of model images
generated from GRMHD simulations generically finds such
features to arise from emission produced near the black hole
(Paper V) which is strongly lensed around the shadow.

In this Letter we use three different methods to measure
properties of the M87 230 GHz emission region using EHT
2017 observations. In Section 2, we describe the EHT data set
used. We present in Section 3 a pedagogical description
showing how within compact ring models the emission
diameter and central flux depression (shadow) can be inferred
directly from salient features of the visibility data. In Section 4
we describe the three analysis codes used to infer parameters
from the data, and in Section 5 and Section 6 we fit both
geometric and GRMHD-based models. In Section 7 we extract
properties of the reconstructed images from Paper IV.

We show that asymmetric ring (“crescent”) geometric source
models with a substantial central brightness depression provide
a better statistical description of the data than other comparably
complex models (e.g., double Gaussians). We use Bayesian
inference techniques to constrain the size and width of this
crescent feature on the sky, as well as the brightness contrast of
the depression at its center compared to the rim. We show that
all measurements support a source structure dominated by
lensed emission surrounding the black hole shadow.

To extract the physical scale of the black hole at the distance
of M87, GM/Dc2, from the observed ring structure in geometric
models and image reconstructions, we do not simply assume that
the measured emission diameter is that of the photon ring itself.

We instead directly calibrate to the emission diameter found in
model images from GRMHD simulations. The structure and
extent of the emission preferentially from outside the photon ring
leads to a 10% offset between the measured emission diameter
in the model images and the size of the photon ring. The scatter
over a large number of images, which constitutes a systematic
uncertainty, is found to be of the same magnitude.
We use independent calibration factors obtained for the

geometric models and reconstructed images (Paper IV), providing
two estimates of GM/Dc2. We also fit the library of GRMHD
images described in Paper V directly to the EHT data, which
provides a third. All three methods are found to be in remarkable
agreement. We consider prior dynamical measurements of M/D
and D for M87 in Section 8. In Sections 9 and 10, we discuss the
evidence for the detection of lensed emission surrounding the
shadow of a black hole in EHT 2017 data. We use the prior
distance information to convert the physical scale to a black hole
mass and show that our result is consistent with prior stellar, but
not gas, dynamical measurements. We further discuss the
implications for the presence of an event horizon in the central
object of M87. Further technical detail supporting the analyses
presented here has been included as Appendices.

2. Observations and Data

Operating as an interferometer, the EHT measures complex
visibilities on a variety of baselines bij between stations i and j.
A complex visibility is a Fourier component of the source
brightness distribution I(x, y),

 = p- +∬( ) ( ) ( )( )u v e I x y dxdy, , , 1i ux vy2

where (x, y) are angular coordinates on the sky, and (u, v) are
projected baseline coordinates measured in units of wave-
lengths (Thompson et al. 2017; hereafter TMS).
The 2017 EHT observations of M87 and their subsequent

correlation, calibration, and validation are described in detail in
Paper III. On each of the four days—April 5, 6, 10, and 11—
the EHT observed M87 in two 2 GHz frequency bands centered
on 227.1 GHz (low-band; LO) and 229.1 GHz (high-band; HI);
the baseline coverage for April 11 is shown in Figure 1. For the
modeling results presented in this Letter we analyze all four
observing days and both bands. We use Stokes I visibility data
reduced via the EHT-Haystack Observatory Processing System
(HOPS) pipeline (Blackburn et al. 2019), coherently averaged
in time by scan. Scan averaging decreases the data volume with
negligible coherence losses (see Paper III) and it further serves
to increase the signal-to-noise ratio (S/N) of the data. Fewer
timestamps correspond to fewer gain terms (see Section 2.1)
and higher S/N improves the validity of our Gaussian
likelihood functions (see Section 4.1).

2.1. Data Products

Visibility measurements are affected by a combination of
thermal noise and systematic errors. The thermal noise òij is
distributed as a zero-mean complex Gaussian random variable
with variance determined by the radiometer equation (TMS),
while the dominant systematic noise components are associated
with station-based complex gains gi. The measured visibilities
can thus be expressed as

* = + = f∣ ∣ ( )V g g V e , 2ij i j ij ij ij
i ij
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where ∣ ∣Vij and f = ( )Vargij ij are the measured visibility
amplitude and phase. Measured visibility amplitudes are biased
upward by thermal noise, so we use Aij to denote debiased
visibility amplitude measurements (see TMS).

All noise sources in Equation (2) are functions of time and
frequency, but the gain phase variations are particularly
important for EHT data. Characteristic atmospheric timescales
at 230GHz are on the order of seconds, rendering visibility
phase calibration unfeasible (Paper II; Paper III). We instead
recover source phase information via the construction of
closure phases ψC, given by the argument of a product of
visibilities around a triangle of baselines,

y f f f= = + +( ) ( )V V Varg . 3ijk ij jk ki ij jk kiC,

Because each gain term in the triple product gets multiplied by
its complex conjugate, closure phases are immune to gain
phase corruptions (Rogers et al. 1974).

Visibility amplitudes suffer less severely than visibility
phases from station gain noise but the use of gain-free
amplitude quantities can still aid modeling efforts. Closure
amplitudes AC are constructed from four visibilities on a
quadrangle of baselines,

= ( )A
A A

A A
. 4ijkℓ

ij kℓ

ik jℓ
C,

The appearance of each station in both the numerator and
denominator of this expression causes the station gain
amplitudes to cancel out. Because the closure amplitude is
constructed from products and ratios of visibility amplitudes, it
is often convenient to work instead with the logarithm of the
closure amplitude,

= + - - ( )A A A A Aln ln ln ln ln . 5ijkℓ ij kℓ ik jℓC,

2.2. Data Selection and Preparation

From the scan-averaged visibility data, we increase the
uncertainty associated with the debiased visibility amplitudes,

A, by adding a 1% systematic uncertainty component in
quadrature to the thermal noise (Paper III; Paper IV); we refer
to this increased uncertainty as the “observational error.” These
debiased visibility amplitudes are then used to construct a set of
logarithmic closure amplitudes, Aln C, per Equation (5).
Closure amplitude measurements are generally not independent
because a pair of quadrangles may have up to two baselines in
common, and a choice must be made regarding which minimal
(or “non-redundant”) subset of closure amplitudes to use. We
select the elements of our minimal set by starting with a
maximal (i.e., redundant) set, from which we systematically
remove the lowest-S/N quadrangles until the size of the
reduced set is equal to the rank of the covariance matrix of the
full set (see L. Blackburn et al. 2019, in preparation). This
construction procedure serves to maximize the final S/N of the
resulting closure amplitudes.
We construct closure phases, ψC, from the visibilities using

Equation (3), after first removing visibilities on the short intra-
site baselines (James Clerk Maxwell Telescope–Submillimeter
Array (JCMT–SMA), Atacama Large Millimeter/submillimeter
Array–Atacama Pathfinder Experiment (ALMA–APEX)) which
produce only “trivial” closure phases ;0° (Paper III; Paper IV).
As with closure amplitudes, closure phase measurements are
in general not independent of one another because a pair of
triangles may share a baseline. However, a suitable choice of
non-redundant closure phase subset can minimize the covar-
iance between measurements. We select our subset such that
the highest-S/N baselines are the most frequently shared
across triangles. Such a subset can be obtained by selecting
one station to be the reference and then choosing all triangles
containing that station (TMS). Because ALMA is so much more
sensitive than the other stations in the EHT 2017 array, this
construction procedure using ALMA as a reference station
ensures the near-diagonality of the closure phase covariance
matrix (see Section 4.1).
We list the number of data products in each class, along with

the number of station gains, in Table 1 for each observing day
and band. Information about accessing SR1 data and the

Figure 1. (u, v)-coverage (left panel) and visibility amplitudes (right panel) of M87 for the high-band April 11 data. The (u, v)-coverage has two primary orientations,
east–west in blue and north–south in red, with two diagonal fillers at large baselines in green and black. Note that the Large Millimeter Telescope (LMT) and the
Submillimeter Telescope (SMT) participate in both orientations, and that the LMT amplitudes are subject to significant gain errors. There is evidence for substantial
depressions in the visibility amplitudes at ∼3.4 Gλ and ∼8.3 Gλ. The various lines in the right panel show the expected behavior of (dotted line) a Gaussian, (dashed
line) a filled disk, and (green area) a crescent shape along different orientations. The image of M87 does not appear to be consistent with a filled disk or a Gaussian.
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software used for analysis can be found on the Event Horizon
Telescope website’s data portal.107

3. Descriptive Features of the Visibility Data

In Paper IV, different image reconstruction methods all
obtained similar looking images of M87 from the 2017 EHT
observations, namely, a nearly circular ring with a dark center and
azimuthally varying intensity. In this Letter, we consider a range
of source models and calculate the corresponding visibilities as a
function of the model parameters. We then employ statistical tools
to select between models and to estimate model parameters by
comparing the model visibilities to the observed ones. Because
imaging and visibility domain analysis rely on the entire complex
visibility data set and/or closure quantities, it is useful as a
pedagogical guide to show first how some of the simple image
characteristics are imprinted on the visibility data. We emphasize
that a complete and accurate description of the source requires
imaging analysis and visibility modeling, which we perform in
Paper IV and in later sections of this Letter.

Here we show that the data are consistent with the presence
of a ring structure with a characteristic emission diameter of
∼45 μas. These aspects also match the predictions for an image
dominated by lensed emission near the photon ring surrounding
the black hole shadow of M87 (Paper V).

The 2017 EHT observations of M87 have good (u, v)-
coverage, primarily along an east–west (blue) and a north–
south (red) orientation, with additional diagonal long baselines
(green and black; see Figure 1 and also Paper III). The right
panel of this figure shows the visibility amplitudes observed on
April 11 color coded by the orientation of the baselines.

There is evidence for a minimum of the visibility amplitudes
at baseline lengths of ∼3.4 Gλ, followed by a second peak

around ∼6 Gλ. Such minima are often associated with edges or
gaps in the image domain.
Further, the visibility amplitudes are similar in the north–south

and east–west directions, suggestive of a similar characteristic
image size and shape in both directions (Figure 1). This is
naturally accomplished if the image possesses a large degree of
azimuthal symmetry, such as in a ring or disk. Differences in the
visibilities as a function of baseline length for different
orientations do exist, however, particularly in the depth of the
first null, indicating that the source is not perfectly symmetric.
Next, we consider the presence of the central flux

depression. For the case of a uniform disk model, the second
visibility amplitude minimum occurs at 1.8 times the location
of the first minimum, i.e., at ∼6.3–7Gλ, which is not seen in
the visibility amplitudes. For a ring or annular model, however,
the second minimum moves to longer baseline lengths,
consistent with what is seen in the visibility amplitudes.
Indeed, the Fourier transform of an infinitesimally thin ring

structure shows the first minimum in visibility amplitude at a
baseline length b1 for which the zeroth-order Bessel function is
zero (see TMS). This allows us to estimate the source size for a
ring model as

l
m

-
 ⎜ ⎟⎛

⎝
⎞
⎠ ( )d

b
45

3.5 G
as. 60

1
1

In subsequent sections, we quantify our characterization of this
model through fitting in the visibility and image domains.

4. Model Fitting to Interferometric Data

We utilize three independent algorithms for parameter space
exploration to quantify the size, shape, and orientation of this
asymmetric ring structure. We fit both geometric and GRMHD
models to the 2017 EHT interferometric data. In this section we
outline the modeling framework used to extract parameter
values from the M87 data. We first detail the construction of
the corresponding likelihood functions in Section 4.1, and we
then describe in Section 4.2 the three different codes we have
used to estimate model parameters.

4.1. Likelihood Construction

Our quantitative modeling approach seeks to estimate the
posterior distribution Q( ∣ )DP of some parametersQ within the
context of a model and conditioned on some data D,



pQ Q Q Q Q

= º( ∣ ) ( ∣ ) ( )
( )

( ) ( ) ( )D
D

D
P

P P

P
. 7

Here,  Q Qº( ) ( ∣ )DP is the likelihood of the data given the
model parameters, p Q Qº( ) ( )P is the prior probability of the
model parameters, and

 ò pQ Q Qº =( ) ( ) ( ) ( )DP d 8

is the Bayesian evidence. In this section we define our
likelihood functions  Q( ), which we note differ in detail from
those adopted for the regularized maximum likelihood (RML)
imaging procedures presented in Paper IV.
For each scan, the measured visibility amplitude, A, corre-

sponds to the magnitude of a random variable distributed
according to a symmetric bivariate normal distribution (TMS).
This magnitude follows a Rice distribution, which in the

Table 1
The Number of Data Product and Gain Terms

Including
Intra-site

Excluding
Intra-site

Day Band NA Ng NA Ng yN C N Aln C

April 5 HI 168 89 152 88 81 78
LO 168 89 152 88 81 78

April 6 HI 284 134 250 133 141 150
LO 274 125 242 125 141 149

April 10 HI 96 40 86 40 53 56
LO 91 43 82 42 47 48

April 11 HI 223 106 194 100 110 117
LO 216 103 189 98 107 113

Note. NA is the number of visibility amplitudes, Ng is the number of gain terms,

yN C is the number of closure phases, and N Aln C is the number of logarithmic
closure amplitudes. We show counts for the visibility amplitudes both with and
without the inclusion of short intra-site baselines (ALMA–APEX and JCMT–
SMA); the visibility amplitudes including intra-site baselines are used in Section 5,
while those without are used in Section 6. The closure phase count always
excludes triangles containing intra-site baselines, while the logarithmic closure
amplitude count always includes quadrangles containing intra-site baselines. Both
closure phase and logarithmic closure amplitude counts are for minimal (non-
redundant) sets.

107 https://eventhorizontelescope.org/for-astronomers/data
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high-S/N limit reduces to a Gaussian near the mode,


ps s

= -
-⎡

⎣
⎢⎢

⎤
⎦
⎥⎥

( ∣ ∣∣ ∣ ˆ )
( )

A g g A1

2
exp

2
. 9A ij

ij

ij i j ij

ij
,

2

2

2

Here, sij
2 is the variance of the visibility measurement, Âij is the

model visibility amplitude of the source, and ∣ ∣gi and ∣ ∣gj are the
gain amplitudes for stations i and j. Both the mean and standard
deviation of Equation (9) are biased with respect to the true
visibility amplitude distribution, but for A/σ2.0 these biases
are below 10%; at least 94% of our visibility amplitude data for
any day and band meet this criterion.

For scan-averaged EHT 2017 data, the gain amplitudes
constitute on the order of 100 additional nuisance parameters
per data set (see Table 1). These numerous additional
parameters may be efficiently addressed by directly margin-
alizing the likelihood in Equation (9), a procedure detailed in
Appendix A and A. E. Broderick et al. (2019, in preparation).
Once the gain amplitudes have been reconstructed, the joint
likelihood function for all visibility amplitude measurements
within a data set is then given by the product over the
individual likelihoods,

 = ( ), 10A A ij,

where this product is taken over all baselines and scans.
The logarithm of the visibility amplitudes also follows a

Gaussian distribution in the high-S/N limit, with an effective
logarithmic uncertainty of

s
s

= ( )
A

. 11Aln

The Gaussianity of the logarithmic visibility amplitudes implies
that the logarithm of the closure amplitudes will similarly be
Gaussian distributed in the same limit, with variances given by

s s s s s= + + + ( ). 12A ijkℓ A ij A kℓ A ik A jℓln ,
2

ln ,
2

ln ,
2

ln ,
2

ln ,
2

C

This Gaussian approximation for logarithmic closure ampli-
tudes holds well (i.e., the mean and standard deviation are
biased by less than 10%) for s 2.0;Aln C at least 87% of our
logarithmic closure amplitude data for any day and band meet
this criterion.

The likelihood function for a set of logarithmic closure
amplitudes also depends on the covariances between individual
measurements, which in general are not independent. We can
construct a covariance matrix SA that captures the combined
likelihood via

 

p S
S= - -⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

( )A A
1

2 det
exp

1

2
, 13A q

A
Aln

1
C

where A is an ordered list of logarithmic closure amplitude
residuals, and q is the number of non-redundant closure
amplitudes; for a fully connected array with Nel elements,
q=Nel (Nel − 3)/2 (TMS). The covariance between logarith-
mic closure amplitude measurements Aln C,1234 and Aln C,1235 is
(Lannes 1990a; L. Blackburn et al. 2019, in preparation)

s s= +( ) ( )A ACov ln , ln 14A AC,1234 C,1235 ln ,12
2

ln ,13
2

in the Gaussian limit; here, we have used the fact that σij=σji
to simplify notation.

The distribution of measured visibility phases, f, corre-
sponds to the projection of a symmetric bivariate normal
random variable onto the unit circle, which once again reduces
to a Gaussian distribution in the high-S/N limit. Closure
phases, ψC, in this limit will also be Gaussian distributed with
variances given by

s s s s= + +y f f f ( ), 15ijk ij jk ki,
2

,
2

,
2

,
2

C

where sf ij,
2 is the variance in the visibility phase measurement,

fij. The Gaussian approximation for closure phases is unbiased
in the mean with respect to the true closure phase distribution,
and the standard deviation is biased by less than 10% for

sy 1.5;
C

this criterion is satisfied for at least 92% of our
closure phase data on any day and band.
Closure phase measurements are also generally covariant,

and for a covariance matrixSy the joint likelihood is given by

 y y
p S

S= -y
y

y
-⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

( )1

2 det
exp

1

2
, 16

t

1
C

where y is an ordered list of closure phase residuals, and t is the
number of non-redundant closure phases; for a fully connected
array containing Nel elements, = - -( )( )t N N1 2 2el el (TMS).
The covariance between two closure phase measurements, yC,123

and yC,124, is given by (Kulkarni 1989; Lannes 1990b; L.
Blackburn et al. 2019, in preparation)

y y s= f( ) ( )Cov , . 17C,123 C,124 ,12
2

As described in Section 2.2, a non-redundant subset of closure
phases can be selected to maximize independence and thus
ensure the near-diagonality of Sy. In this case the closure
phase measurements can be treated as individually Gaussian,


ps

y y

s
= -

-
y

y y

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ˆ )
( )1

2
exp

2
, 18ijk

ijk

ijk ijk

ijk
,

,
2

C, C,
2

,
2C

C C

where ŷ ijkC, is the modeled closure phase. The joint likelihood
is then

 =y y ( ), 19ijk,C C

where the product is taken over all closure phases in the
selected minimal subset. Because closure phases wrap around
the unit circle, we always select the branch of y y- ˆ

C C such
that the difference lies between −180° and 180°.

4.2. Parameter Space Exploration Techniques

We utilize three independent algorithms for parameter space
exploration. For the geometric crescent model fitting presented
in Section 5, we use both Markov chain Monte Carlo (MCMC)
and nested sampling (NS) algorithms. The MCMC modeling
scheme explores model fits to the visibility amplitude and
closure phase data, while the NS scheme fits to the closure
phase and logarithmic closure amplitude data. For the GRMHD
model fitting in Section 6, we use both MCMC and a genetic
algorithm to fit the visibility amplitude and closure phase data.

4.2.1. THEMIS

THEMIS is an EHT-specific analysis framework for generat-
ing and comparing models to both EHT and ancillary data.
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THEMIS is written in C++ and parallelized via the Message
Passing Interface (MPI) standard. THEMIS implements a
differential evolution MCMC algorithm, and it utilizes parallel
tempering based on the algorithm described in Nelson et al.
(2014) and Braak (2006). In particular, THEMIS uses the
adaptive temperature ladder prescription from Vousden et al.
(2016). All sampling techniques, validation tests, and imple-
mentation details for THEMIS are described in detail in A. E.
Broderick et al. (2019, in preparation).

In Sections 5 and 6, we use THEMIS to model the visibility
amplitude and closure phase data, using the corresponding
likelihood functions given in Equations (10) and (19),
respectively. Gain amplitude terms are incorporated as model
parameters (see Equation (9)) and are marginalized as
described in Appendix A.

4.2.2. dynesty

In Section 5, we also use an NS technique, developed by
Skilling (2006) primarily to evaluate Bayesian evidence integrals.
We use the Python code dynesty (Speagle & Barbary 2018) as
a sampler for the NS analyses presented in this Letter. The NS
algorithm estimates the Bayesian evidence,  , by replacing the
multidimensional integral over Q (see Equation (8)) with a 1D
integral over the prior mass contained within nested isolikelihood
contours. We permit dynesty to run until it estimates that less
than 1% of the evidence is left unaccounted for.

Our NS analyses employ a likelihood function constructed
exclusively from closure quantities; we account for data
covariances in the likelihood function using Equation (16) for

closure phases and Equation (13) for logarithmic closure
amplitudes. Additionally, the use of logarithmic closure
amplitudes in our NS fits removes information about the total
flux density.

4.2.3. GENA

In addition to the above sampling algorithms, which seek to
reconstruct a posterior distribution, we also employ an
optimization procedure for comparing GRMHD simulations
to data in Section 6. The optimization code, GENA (Fromm
et al. 2019), is a genetic algorithm written in Python and
parallelized using MPI. GENA minimizes a χ2 statistic on
visibility amplitudes and closure phases, using the gain
calibration procedures in the eht-imaging (Chael et al.
2016, 2018, 2019a) Python package to solve for the gain
amplitudes. GENA implements the Non-dominated Sorting
Genetic Algorithm II (NSGA-II; Deb et al. 2002) for
parameter exploration and the differential evolution algorithm
from Storn & Price (1997) for constrained optimization.

5. Geometric Modeling

As detailed in Paper IV, images reconstructed from the M87
data show a prominent and asymmetric ring (“crescent”)
structure. In this section we use the techniques described in
Section 4 to fit the M87 data sets with a specific class of
geometric crescent models.
We first quantify the preference for crescent structure in

Figure 2, which summarizes the results of fitting a series of
increasingly complex geometric models to the M87 data. We

Figure 2. Relative log-likelihood values for different geometric models fit to the M87 data as a function of nominal model complexity; the number of parameters is
given in parenthesis for each model. April 5 is shown here, and all days and bands show the same trend. The models shown in this figure are strict subsets of the
“generalized crescent model” (labeled here as model “n”; see Section 5.1), and they have been normalized such that the generalized crescent model has a value of
 = 1; the reduced-χ2 for the generalized crescent fit is 1.24 (see Table 2). We find that the data overwhelmingly prefer crescent models over, e.g., symmetric disk
and ring models, and that additional Gaussian components lead to further substantial improvement. Note that a difference of ∼5 on the vertical axis in this plot is
statistically significant.
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see that simple azimuthally symmetric models (e.g., uniform
disks, rings) do a poor job of fitting the data; indeed, the strong
detection of nonzero closure phases alone precludes such
models. Models that allow for a central flux depression and a
degree of asymmetry (e.g., double Gaussians or crescents)
show significantly better performance. The most substantial
gain in fit quality occurs for the crescent family of models. A
top-hat crescent model (the difference of two uniform disks
with the inner disk shifted, described by five parameters; see
Kamruddin & Dexter 2013, Appendix B) performs vastly better
than a top-hat ring model (three parameters). It also
significantly outperforms the sum of two circular Gaussians
(six parameters) and even the sum of two elliptical Gaussians
(10 parameters). Adding parameters to the simplest crescent
model continues to result in statistically significant, but
comparatively modest, improvements.

5.1. Generalized Crescent Models

Among the large number of potential crescent-like models,
we aim for one having the simplest geometry that is capable of
both adequately fitting the M87 data and constraining several
key observables. The geometric parameters of interest are the
crescent diameter, its width and orientation, the sharpness of
the inner edge, and the depth of any flux depression interior to
the crescent.

With these key features in mind, we use an augmented
version of the “slashed crescent” construction from Benkevitch
et al. (2016) to provide the basis for a family of “generalized
crescent” (GC) models. We refer to the two variants of the GC
model that we use to fit the M87 data as xs‐ring and xs‐
ringauss. Both GC models can be constructed in the image
domain using the following procedure (see Figure 3).

1. Starting with a uniform circular disk of emission with
radius Rout, we subtract a smaller uniform disk with
radius Rin that is offset from the first by an amount r0. The
resulting geometry is that of a “top-hat crescent.”

2. We apply a “slash” operation to the top-hat crescent,
which imposes a linear brightness gradient along the
symmetry axis. The brightness reaches a minimum of h1
and a maximum of h2.

3. We add a “floor” of brightness K to the central region of
the crescent. For the xs‐ring model this floor takes the
form of a circular disk, while for the xs‐ringauss model
we use a circular Gaussian with flux density VF and width
sF . The total flux density of the crescent plus floor
component for the xs‐ring model is denoted as V0.

4. For the xs‐ringauss model, we add an elliptical Gaussian
component with flux density V1 whose center is fixed to
the inner edge of the crescent at the point where its width
is largest (see the right panel of Figure 3), and whose
orientation is set to align with that of the crescent. This
fixed Gaussian component is inspired by the “xringaus”
model from Benkevitch et al. (2016), which in turn
sought to reproduce image structure seen in simulations
from Broderick et al. (2014).

5. The image is smoothed by a Gaussian kernel of
FWHM σ*.

6. The image is rotated such that the widest section of the
crescent is oriented at an angle f in the counterclockwise
direction (i.e., east of north).

The xs‐ring model is described by eight parameters, while the
xs‐ringauss model is described by 11 parameters.
Though it is useful to conceptualize the GC models via their

image domain construction, in practice we fit the models using
their analytic Fourier domain representations. The Fourier
domain construction of both models is described in
Appendix B, along with a table of priors used for the model
parameters. Throughout this Letter we fit the xs‐ring model
using the dynesty sampling code, while the xs‐ringauss
model is implemented as part of THEMIS. Below, we define the
various desired key quantities within the context of this GC
model parameterization.

Figure 3. Schematic diagrams illustrating the crescent components of the xs‐ring (left panel) and xs‐ringauss (right panel) models. Dashed lines outline the inner and
outer circular disk components that are differenced to produce the crescent models, and for the xs‐ringauss model the FWHM of the fixed Gaussian component is
additionally traced as a dotted line. The red and green curves above and to the right of each panel show cross-sectional plots of the intensity through the corresponding
horizontal and vertical slices overlaid on the images. The circular and square markers indicate the centers of the outer and inner disks, respectively. The labeled
parameters correspond to those described in Section 5.1. Both crescents are shown at an orientation of f f= = ˆ 90 .
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We define the crescent diameter d̂ to be twice the average of
the inner and outer crescent radii,

º +ˆ ( )d R R . 20out in

The fractional crescent width f̂w is defined in a similar manner,
as the mean difference between the outer and inner radii
(normalized to the diameter) plus a term to account for the
FWHM, *s sº ( )2 2 ln 2 , of the smoothing kernel:

*s
º

- +ˆ
ˆ ( )f

R R

d
. 21w

out in

The sharpness ŝ is the ratio of the FWHM of the smoothing
kernel to the crescent diameter, i.e.,

*s
ºˆ ˆ ( )s

d
. 22

The fourth quantity of interest is the ratio, f̂c, between the
brightness of the emission floor (interior to the crescent) and
the mean brightness of the crescent,

ºˆ ( )f
brightness of emission floor

mean brightness of crescent
. 23c

The different specifications for the xs‐ring and xs‐ringauss
models (see Appendix B) means that these brightness ratios
must be computed differently,
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Finally, we determine the orientation of the crescent directly
from the f parameter, such that f f=ˆ .

In addition to the crescent component of the GC model, we
also include a small number (two to three) of additional
“nuisance” elliptical Gaussian components intended to capture
extraneous emission around the primary ring and to mitigate
other unmodeled systematics; the parameterization and beha-
vior of these additional Gaussian components are described in
Appendix B.2. GRMHD simulations of M87 often exhibit
spiral emission structures in the region immediately interior and
exterior to the photon ring (see Paper V), and M87 is known to
have a prominent jet that extends down to scales of several
Schwarzschild radii (e.g., Hada et al. 2016, Kim et al. 2018).
Such extra emission is unlikely to be adequately captured by
the crescent component alone, and the nuisance Gaussian
components serve as a flexible way to model generic emission
structures. We define the total compact flux density, ĈF, of the
model to be equal to the summed contributions from the
crescent and nuisance Gaussian components,

åº + + +ˆ ( )V V V VCF , 25F
i

g i0 1 ,

where V0 is the crescent flux density, V1 is the flux density of
the fixed Gaussian component, VF is the flux density of the
central emission floor, and Vg,i are the flux densities of the
nuisance Gaussian components.

5.2. M87 Fit Results

We carry out independent fits to all days and bands using
both the THEMIS- and dynesty-based codes. We show
example GC model fits to the April 6 high-band data in
Figure 4, with their corresponding image domain representa-
tions shown in Figure 5. There are no apparent systematic
trends in the normalized residuals for either model, and we see
similar behavior in the residuals from fits across all data sets.
The corresponding THEMIS gain reconstructions are described
in Appendix A.

Figure 4. Modeled data (top panels) and residuals (bottom panels) for GC model fits to the April 6 high-band data set, with the data plotted in gray; we show results
for the median posterior fit. The panels show visibility amplitude (left panels), closure phase (middle panels), and logarithmic closure amplitude (right panels) data.
The xs‐ringauss model, shown in red, is fit to the visibility amplitudes and closure phases using THEMIS; the dynesty-based xs‐ring model, plotted in blue, comes
from a fit to closure phases and logarithmic closure amplitude. Because both models fit to closure phases, the center panel shows two sets of models and residuals. All
residuals are normalized by the associated observational noise values.
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While our model-fitting procedures formally optimize a
likelihood function modified by a prior (see Section 4.1),
reduced-χ2 values serve as general-purpose distance metrics
between model and data. In our case, reduced-χ2 values have
the added benefit of enabling cross-comparisons with the
images produced in Paper IV. The reduced-χ2 expressions we
use are detailed in Appendix C, and Table 2 lists their values
for all M87 fits.

In general we find joint reduced-χ2 values for the fits of
∼0.9–1.5. The number of degrees of freedom in the data ranges
from ∼20 to 120, corresponding to an expected reduced-χ2

deviation from unity of ∼0.06–0.16 if our likelihoods follow a
χ2-distribution. The implication is that while we see little
evidence for overfitting, there are instances in which the
residual values are distributed more broadly than the data error
budget would nominally permit. The fact that such models
sometimes underfit the data then indicates that we need to
empirically determine our uncertainties, as posterior widths
alone may not be reliable in the face of a statistically poor fit.
We describe the empirical determination of the “observational
uncertainties” in Appendix D.3, and we list the derived values
in Table 3.
An illustrative pairwise parameter correlation diagram for

both the xs‐ring and xs‐ringauss GC model fits to the April 5
high-band data set is shown in Figure 6, with single-parameter
posteriors plotted along the diagonal. Figure 7 shows
constraints on the GC model crescent component parameters,
split up by data set. We also list the best-fit crescent parameters,
as defined in Section 5.1, in Table 3.
Despite the differences in data products, sampling proce-

dures, and model specifications, we find broad agreement
between the derived posteriors from the two fitting codes. We
note that the systematically wider posteriors from the xs‐ring
fits (by anywhere from a few to several tens of percent) are seen
across all data sets and are an expected consequence of the use
of closure amplitudes rather than visibility amplitudes.
Our primary parameter of interest is the diameter of the

crescent, d̂ . The weighted mean xs‐ringauss value of 43.4 μas
is in excellent agreement with the corresponding xs‐ring value
of 43.2 μas, with an rms scatter in the measurements of
0.64 μas and 0.69 μas, respectively, across all days and bands.
This remarkable consistency provides evidence for the diameter
measurement being robustly recoverable. The posterior widths
of diameter measurements for individual data sets are typically
at the ∼1% level, but our empirically determined uncertainties
associated with the changing (u, v)-coverage and other

Figure 5. Image domain representations of a random posterior sample from the xs‐ring (left panel) and xs‐ringauss (right panel) model fits to the April 6 high-band
data set; note that these are representative images drawn from the posteriors, and thus do not represent maximum likelihood or other “best-fit” equivalents. The xs‐ring
model fit uses only closure quantities, so we have scaled the total flux density to be equal to the 1.0 Jy flux density of the xs‐ringauss model fit.

Table 2
Reduced-chi2 Statistics for the GC Model Fits

Model

Data Set xs‐ringauss xs‐ring

Day Band cA
2 cy

2
C

c y+A
2

C
cy

2
C

c Aln
2

C
cy + Aln

2
C C

April 5 HI 1.66 1.48 1.24 1.30 1.30 1.02
LO 1.33 1.32 1.05 1.43 1.35 1.10

HI+LO 1.16 1.07 1.01 L L L

April 6 HI 1.02 1.46 1.12 1.44 0.96 1.06
LO 1.57 1.36 1.32 1.37 1.52 1.29

HI+LO 1.16 1.35 1.19 L L L

April 10 HI 1.57 1.52 1.05 1.44 1.08 0.82
LO 2.23 2.74 1.53 1.95 1.50 1.28

HI+LO 1.11 1.32 1.04 L L L

April 11 HI 1.40 1.37 1.20 1.37 1.02 1.02
LO 1.34 1.16 1.07 1.18 0.92 0.89

HI+LO 1.32 1.14 1.15 L L L

Note. Reduced-χ2 values corresponding to the maximum likelihood posterior
sample for individual M87 data sets from both fitting codes, split by data type and
calculated as described in Appendix C. The xs‐ringauss values are from fits to
visibility amplitudes (reduced-χ2 given by χA

2) and closure phases (reduced-χ2

given by cy
2

C
), with the joint visibility amplitude and closure phase reduced-χ2

denoted as c y+A
2

C
. The xs‐ring values are from fits to closure phases and

logarithmic closure amplitudes (reduced-χ2 given by c Aln
2

C
), with the joint closure

phases and logarithmic closure amplitude reduced-χ2 denoted as cy + Aln
2

C C
.
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observational systematics (see Appendix D.3) place a more
realistic uncertainty of ∼2% on this measurement. This more
conservative uncertainty value is consistent with the magnitude
of the scatter observed between measurements across different
days and bands.

The fractional width f̂w of the crescent is considerably less
well constrained than the diameter, with a scatter between data
sets that is comparable to the magnitude of individual
measurements. Furthermore, we see systematically larger
fractional width measurements from the xs‐ring model than
from the xs‐ringauss model (see Figure 7). Some of this offset
is expected from differences in model specifications. A larger
contributor to the discrepancy is likely to be the different data
products being fit by the two models. For the data sets in which
the xs‐ring model prefers a significantly larger f̂w than the xs‐
ringauss model, we find that the smoothing kernel (described
by ŝ) for the xs‐ring model is also systematically wider. This
smoothing by a Gaussian has no effect on the modeled closure
phases. The additional gain amplitude degrees of freedom
permitted in the xs‐ringauss model fits can thus compensate for
the smoothing in a manner that is not possible for the xs‐ring
model, which is fit only to closure amplitudes. Such smoothing

affects the inferred diameter in a correlated manner that is well
understood (see Section 7 and Paper IV, their Appendix G).
In both models, and across all data sets, we consistently

measure a value for f̂w that is significantly smaller than unity.
This rules out a filled-in disk structure at high confidence. We
find instead that the emission must be concentrated in a
relatively thin annulus, with a fractional width of 0.5,
indicating the presence of a central flux depression. The
brightness ratio f̂c in this hole is also well constrained: we
consistently measure f̂ 0.1c (and often f̂ 0.1c ). This value
corresponds to a brightness contrast between the crescent and
hole of at least a factor of 10.
We find a sharpness ŝ 0.2, indicating that the smoothing

kernel stays smaller than ∼20% of its diameter. The inner and
outer edges of the crescent are therefore well defined, even if
their locations are uncertain due to the large uncertainty in the
width measurement.
We find that the crescent position angle f̂ consistently

confines the brightest portion of the crescent to be located in
the southern half. We see some evidence for a net shift in
orientation from ∼150°–160° (southeast) on April 5–6 to
∼180°–200° (south/southwest) on April 10–11, which

Table 3
Best-fit GC Model Parameters for All Data Sets and Both Models, as Defined in Section 5.1; Median Posterior Values are Quoted with 68% Confidence Intervals

Data Set Parameter

Day Band Code Model d̂ (μas) f̂w (ˆ)slog10 ( ˆ )flog10 c f̂ (deg.) ĈF (Jy)

April 5 HI THEMIS xs‐ringauss -
+43.1 0.36

0.35
-
+0.12 0.06

0.07 - -
+1.35 0.54

0.30 - -
+1.60 0.37

0.26
-
+160.6 1.6

2.3
-
+0.75 0.17

0.16

dynesty xs‐ring -
+42.9 0.54

0.59
-
+0.39 0.07

0.06 - -
+1.07 0.48

0.23 - -
+1.97 0.50

0.40
-
+160.5 3.1

3.4 L

LO THEMIS xs‐ringauss -
+43.5 0.28

0.27
-
+0.09 0.04

0.06 - -
+1.41 0.51

0.29 - -
+1.76 0.37

0.29
-
+160.9 2.5

1.5
-
+0.72 0.15

0.17

dynesty xs‐ring -
+43.5 0.41

0.44 0.20±0.06 - -
+1.23 0.50

0.26 - -
+2.15 0.48

0.29
-
+157.9 1.8

1.7 L

HI+LO THEMIS xs‐ringauss -
+43.3 0.23

0.22
-
+0.09 0.04

0.05 - -
+1.62 0.55

0.33 - -
+1.74 0.31

0.24
-
+160.7 0.9

0.8 0.75±0.15

April 6 HI THEMIS xs‐ringauss -
+44.1 0.20

0.23
-
+0.16 0.05

0.04 - -
+0.94 0.30

0.12 - -
+1.96 0.58

0.39
-
+146.4 3.2

2.6 0.99±0.04

dynesty xs‐ring -
+43.3 0.43

0.44
-
+0.34 0.06

0.05 - -
+0.70 0.11

0.07 - -
+2.23 0.56

0.36 149.1±1.5 L

LO THEMIS xs‐ringauss 43.5±0.14 -
+0.18 0.04

0.03 - -
+0.87 0.20

0.09 - -
+2.14 0.62

0.43
-
+153.0 2.4

2.0
-
+1.07 0.04

0.05

dynesty xs‐ring -
+43.4 0.26

0.27
-
+0.20 0.06

0.07 - -
+1.31 0.52

0.31 - -
+2.63 0.60

0.41
-
+148.5 1.2

1.4 L

HI+LO THEMIS xs‐ringauss -
+43.7 0.11

0.10
-
+0.19 0.02

0.03 - -
+0.88 0.07

0.05 - -
+2.28 0.61

0.48
-
+151.8 1.7

1.6 1.03±0.03

April 10 HI THEMIS xs‐ringauss -
+42.9 0.86

1.09 0.46±0.06 - -
+1.03 0.51

0.28 - -
+1.12 0.52

0.32
-
+199.8 4.5

4.1
-
+0.78 0.17

0.18

dynesty xs‐ring -
+43.3 0.65

0.79 0.50±0.06 - -
+0.97 0.50

0.26 - -
+1.89 0.53

0.47
-
+194.3 4.6

4.1 L

LO THEMIS xs‐ringauss -
+43.6 1.92

1.50 0.41±0.06 - -
+0.98 0.60

0.32 - -
+1.57 0.57

0.42
-
+204.2 4.5

4.4
-
+0.71 0.15

0.20

dynesty xs‐ring -
+44.4 0.87

0.84
-
+0.41 0.07

0.08 - -
+1.02 0.51

0.26 - -
+1.87 0.52

0.42
-
+204.0 4.2

3.9 L

HI+LO THEMIS xs‐ringauss -
+43.9 0.86

0.69 0.42±0.05 - -
+1.16 0.54

0.29 - -
+1.52 0.60

0.40
-
+203.1 3.4

3.0
-
+0.69 0.14

0.17

April 11 HI THEMIS xs‐ringauss -
+41.8 0.43

0.46 0.35±0.04 - -
+1.41 0.52

0.31 - -
+1.38 0.52

0.32
-
+207.4 1.9

1.8 0.50±0.03

dynesty xs‐ring -
+43.4 0.48

0.74
-
+0.44 0.06

0.05 - -
+1.00 0.48

0.22 - -
+1.69 0.57

0.37
-
+180.1 1.8

2.3 L

LO THEMIS xs‐ringauss -
+42.2 0.41

0.43
-
+0.35 0.04

0.05 - -
+1.27 0.51

0.26 - -
+1.69 0.61

0.41
-
+201.1 2.3

2.6
-
+0.50 0.03

0.04

dynesty xs‐ring -
+41.6 0.46

0.51
-
+0.50 0.05

0.04 - -
+0.95 0.42

0.17 - -
+1.69 0.59

0.36
-
+175.9 2.0

2.1 L

HI+LO THEMIS xs‐ringauss -
+42.4 0.33

0.34 0.34±0.04 - -
+1.35 0.48

0.27 - -
+1.80 0.62

0.47
-
+198.1 1.8

1.9 0.49±0.03

Observational
uncertainty

THEMIS xs‐ringauss -
+

1.66%
2.51%

-
+

47.1%
30.1%

-
+

0.57
0.41

-
+

0.71
0.47

-
+

25.9
24.8

-
+

35.2%
57.9%

dynesty xs‐ring -
+

1.69%
1.75%

-
+

22.1%
21.3%

-
+

0.46
0.21

-
+

0.58
0.46

-
+

11.4
21.9 L

Note. Observational uncertainties are listed at the bottom of the table and have been determined as described in Appendix D.3. Note that recovery of the total compact

flux density ĈF is not possible for the dynesty-based fits, which only make use of closure quantities.
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amounts to a difference of ∼20–50 degrees between the two
pairs of days. The direction of this shift is consistent with
structural changes seen in the images from Paper IV, though
the magnitude is a factor of ∼2 larger.

The xs‐ringauss model fits find a typical compact flux
density value of »ĈF 0.75 Jy. The inter-day measurement
scatter is at the ∼50% level, which is consistent with the
expected magnitude of the observational uncertainties as
predicted by synthetic data in Appendix D.3. We find that
the modeled ĈF value is less well-constrained than, but in good

agreement with, the -
+0.66 Jy0.10

0.16 determined in Paper IV from
consideration of both EHT and multi-wavelength constraints.

5.3. Calibrating the Crescent Diameter to a Physical Scale
Using GRMHD Simulations

Though the GC models have been constructed to fit the M87
data well, the geometric parameters describing these models do
not directly correspond to any physical quantities governing the
underlying emission. Our primary physical parameter of interest is

Figure 6. Joint posteriors for the key physical parameters derived from GC model fits to the April 5, high-band data set. Blue contours (upper-right triangle) show xs‐
ring posteriors obtained from the dynesty-based fitting scheme, while red contours (lower-left triangle) show xs‐ringauss posteriors obtained using THEMIS.
Contours enclose 68% and 95% of the posterior probability. Note that recovery of the total compact flux density ĈF is not possible for the dynesty-based fits, which
only make use of closure quantities.
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the angular size corresponding to one gravitational radius,

q = ( )GM

c D
. 26g 2

The gravitational radius sets the physical length scale of the
emission region. Most of the observed 230 GHz emission is

expected to originate near the photon ring (see, e.g., Dexter
et al. 2012), whose scaling with θg is known for a given black
hole mass and spin a* (Bardeen 1973; Chandrasekhar 1983).
The crescent component in the GC models does not necessarily
correspond to the photon ring itself. If, however, the crescent
component is formed by lensed emission near the horizon, then

Figure 7. Posterior medians and 68% confidence intervals for selected parameters derived from GC model fitting for all observing days and bands. Blue circular points
indicate xs‐ring fits using the dynesty-based fitting scheme applied to individual data sets (i.e., a single band on a single day). Red square points indicate xs‐ringauss
fits using THEMIS applied to individual data sets, while orange square points show THEMIS-based xs‐ringauss fits to data sets that have been band-combined. All
plotted error bars include the systematic “observational uncertainties” estimated from simulated data in Appendix D; these uncertainties are listed in the bottom row of
Table 3. Note that recovery of the total compact flux density ĈF is not possible for the dynesty-based fits, which use only closure quantities. The light purple band in
the lower-right panel is the range inferred in Paper IV.
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its size should obey a similar scaling with θg,

aq=ˆ ( )d . 27g

For emission at the photon ring, α;9.6–10.4 depending on
the black hole spin parameter. For a realistic source model, the
emission is not restricted to lie exactly at the photon ring. The
value of this scaling factor α and its uncertainty are therefore
unknown a priori.

We have measured α and its uncertainty for both GC models
using a suite of synthetic data sets generated from snapshots of
GRMHD simulations from the GRMHD image library
(Paper V). The full calibration procedure, including properties
of the selected GRMHD simulations, the synthetic data
generation process, and the calibration uncertainty quantifica-
tion, is detailed in Appendix D. By fitting each calibration
image with a GC model, and then comparing the corresponding
d̂ measurement to the input value of θg for the simulation that
produced the image, we determine the value of α for that
image. Combining the results of such fits from a large number
of GRMHD simulations yields a calibration (and uncertainty)
for α. For the xs‐ring model we find a mean value of
a = 11.55, while for the xs‐ringauss model we find a nearly
identical a = 11.50. Both of these values are somewhat larger
than the a » 10 expected for the photon ring itself, indicating
that the GC models are accounting for emission in the GRMHD
model images that preferentially falls outside of the
photon ring.

Figure 8 shows the θg values obtained as a result of applying
our calibrated scaling factor to the crescent diameter values
measured for each day and band, and Table 4 lists the results
from combining the measurements from all data sets. There is
excellent agreement between the two GC models, resulting in
an averaged value of q m= -

+3.77 asg 0.40
0.45 . We note that the 12%

uncertainty in the θg measurement is dominated by the diversity
of GRMHD models used in the primary calibration; the
quantification of this “theoretical” uncertainty component from
the GRMHD simulations is described in Appendix D.2.

6. Direct Comparison with GRMHD Models

EHT data have the power to directly constrain GRMHD
simulation based models of M87 and to estimate the physical
properties of the black hole and emitting plasma. Such a direct
comparison is challenging due to stochastic structure in the
models.

The EHT 2017 data span a very short time frame for the M87
source structure. Its characteristic variability timescale at
230 GHz is ;50 days (Bower et al. 2015), much longer than
our observing run. Thus, although the entire ensemble of model
snapshots taken from a given simulation captures both the
persistent structure as well as the statistics of the stochastic
components, we do not yet have enough time coverage for M87
itself to measure its structural variations.
Model images from GRMHD simulations show a dominant,

compact, asymmetric ring structure resulting from strong
gravitational lensing and relativistic gas motions (Paper V).
Hence, they capture the qualitative features found by image
reconstructions in Paper IV and by geometric crescent models
in Section 5. This motivates a direct comparison of the
GRMHD model images with the EHT data.
In this section we summarize the GRMHD image library

(Section 6.1) and fit individual simulation snapshot images
(Sections 6.2 and 6.3) in a similar fashion to past work on

Figure 8. Constraints on θg arising from the GRMHD simulation calibrated GC
model fits, by day and band. Solid error bars indicate 68% confidence intervals,
while dashed error bars indicate the systematic uncertainty in the calibration
procedure. Circular blue points indicate independent analyses for each band
and on each day in the context of the xs‐ring GC model fit using the dynesty-
based method. Square points indicate independent analyses for each band (red)
and band-combined analyses (orange) for each day using the xs‐ringauss GC
model with THEMIS. Colored bands around dashed lines (right) indicate the
combined constraint across both bands and all days, neglecting the systematic
uncertainty in the calibration procedure.

Table 4
Calibrated Scaling Factors, α, and Corresponding θg Measurements

Model d̂ (μas) Calibration α θg (μas) sstat (μas) sobs (μas) sthy (μas)

xs‐ring 43.2 MAD+SANE 11.56 3.74 (+0.064, −0.063) (+0.064, −0.069) (+0.42, −0.43)
MAD only 11.13 3.88 (+0.057, −0.055) (+0.050, −0.060) (+0.32, −0.25)
SANE only 12.06 3.58 (+0.073, −0.073) (+0.089, −0.096) (+0.44, −0.51)

xs‐ringauss 43.4 MAD+SANE 11.35 3.82 (+0.038, −0.038) (+0.078, −0.077) (+0.44, −0.36)
MAD only 11.01 3.94 (+0.040, −0.039) (+0.092, −0.10) (+0.25, −0.20)
SANE only 11.93 3.64 (+0.036, −0.036) (+0.061, −0.050) (+0.54, −0.55)

Note. We use the angular diameter measurements (d̂ ) from Section 5.2 and combine them with the calibrated scaling factors (α) from Section 5.3 to arrive at our
measurements of θg. We list scaling factors calibrated using both magnetically arrested disks (MAD) and standard and normal evolution (SANE) GRMHD simulations
(see Section 6.1), as well as ones calibrated using only MAD and only SANE simulations; for the final measurement presented in the text we have used the MAD
+SANE calibration. The various uncertainty components are described in Appendix D.2. We quote median values for all measurements and the associated 68%
confidence intervals for the different categories of uncertainty.
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GRMHD fitting to mm-VLBI data of Sgr A* (e.g., Dexter et al.
2010; Kim et al. 2016). We further develop and apply a method
for testing the consistency of the M87 data with the simulation
models (Section 6.4) and find that the majority of the simulation
library models is consistent with the data. We use the results to
estimate physical parameters, including the black hole angular
radius GM Dc2 (Section 6.5). The implications of our results
for the physical properties of the emission region are discussed
in more detail in Paper V. From EHT data alone it is difficult to
rule out many of the broad range of possible models for the
black hole and plasma properties. However, in combination
with other data (especially the observed jet power), ultimately
more than half of the models can be excluded.

6.1. Summary of Simulations

As described in detail in Paper V, we have constructed a
large image library of horizon-scale synchrotron emission
images at 230 GHz computed from GRMHD simulations. We
summarize the broad features of this library here and direct the
reader to Paper V for more information. The GRMHD
simulations cover a wide range of black hole spins as well as
initial magnetic field geometries and fluxes. These result in
images associated with a variety of accretion flow morpholo-
gies and degrees of variability. The magnetic flux controls the
structure of the accretion flow near the black hole. Low
magnetic fluxes produce the standard and normal evolution
(SANE) disks characterized by low-efficiency jet production.
In contrast, magnetically arrested disks (MAD) are character-
ized by large magnetic fluxes, set by the ram pressure of the
confining accretion flow.

From these models, families of between 100 and 500
snapshot images were produced assuming synchrotron emis-
sion from an underlying thermal electron population (see
Section 3.2 of Paper V). The snapshot image generation
introduces additional astrophysical parameters associated with
the intrinsic scales in the radiative transfer. These parameters
include the black hole mass, the viewing inclination, i, and
a model for the electron thermodynamics: Ti/Te≈Rhigh in
gas-pressure dominated regions and is unity otherwise
(Mościbrodzka et al. 2016), where Ti and Te are the ion and
electron temperatures.

The number density of emitting electrons is scaled
independently for each simulation such that the typical

230 GHz flux density is ∼0.5Jy. The temporal separation
between snapshots is selected such that adjacent snapshots are
weakly correlated.

6.2. Single Snapshot Model (SSM)

Each snapshot image generates a three-parameter SSM
defined by the total compact flux (CF), angular scale (θg), and
orientation (defined to be the position angle of the forward jet
measured east of north, PAFJ). Variations in these parameters
approximately correspond to variations in the accretion rate,
black hole mass, and orientation of the black hole spin,
respectively. Variations in mass are associated with changes in
the diameter of the photon ring, a generic feature found across
all of the images in the GRMHD image library.
Each snapshot image is characterized by a nominally scaled,

normalized intensity map of the image, ˆ ( )I x y, , with a
corresponding nominal total intensity ĈF, gravitational radius
q̂g, and forward jet position angle PAFJ=0°; associated with
the intensity map are complex visibilities ˆ ( )V u v, . The SSM is
then generated by rescaling, stretching, and rotating ˆ ( )V u v, :

I Im m m= ¢ ¢( ) ˆ ( ) ( )V u v V u v, ; , , PA , 28SSM FJ

whereI º ˆCF CF, m q qº ˆ
g g, and (u′, v′) are counter-rotated

from (u, v) by the angle PAFJ. This procedure is illustrated in
Figure 9.
We show in Paper V that these approximations generally

hold for flux and mass for rescalings by factors of 2 from
their fiducial values.

6.3. Fitting Single Snapshots to EHT Data

For both model selection and parameter estimation, the first
step is fitting an SSM model to the EHT data set described in
detail in Section 2.1. The only difference here is that intra-site
baselines are excluded. These probe angular scales between
0 1 and 10″, at which unmodeled large-scale features, e.g.,
HST-1, contribute substantially (see Section4 of Paper IV). We
verify after the fact that the reconstructed compact flux
estimates are consistent with the upper limits necessarily
implied by these baselines. The fitting process is complicated
by large structural variations between snapshots resulting from
turbulence in the simulations (see Section 6.4).

Figure 9. Illustration of the parameters of the SSM described in Section 6.2. Both the original GRMHD simulation (left) and the corresponding SSM for an arbitrary
set of parameter values, (flux rescaling, stretching of the image, and rotation; right) are shown. In both panels, the gray arrow indicates the orientation of the
forward jet.
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We employ two independent methods to fit SSMs to the
EHT data sets. Both employ the likelihoods constructed as
described in Section 4.1 for visibility amplitudes and closure
phases. The two methods, THEMIS and GENA, are utilized as
described in Section 4, producing posterior estimates or best-fit
estimates, respectively, for CF, θg, and PAFJ.

We adopt a uniform prior on the total compact flux density
between 0.1 and 10 Jy for THEMIS and between 0.1 Jy and 4 Jy
for GENA; both of these priors cover ranges that substantially
exceed the limits placed by Paper IV. While the position angle
(PA) of the large-scale radio jet in M87 is well known, we
permit the PA of the horizon-scale jet to be unconstrained,
setting a uniform prior from [0°, 360°). Finally, we place a flat
prior on θg ranging from 0.1 to 100 μas for THEMIS and
between 0 and 10 μas for GENA, again substantially exceeding
the physically relevant ranges.

6.4. Model Selection and Average Image Scoring (AIS)

Quantitatively assessing the quality of SSM fits presents
unique challenges because of the presence of stochastic image
features due to turbulence in the underlying GRMHD
simulations that produce large variations in image structure.
The structural variability leads to changes in EHT observables
that are much larger than the observational errors. It is therefore
not feasible to generate a sufficient number of images from
existing GRMHD simulations to have a significant probability
of finding a formally adequate (i.e., χ2≈1) fit to the data (see
the discussion in Paper V). Nevertheless, the ensemble of
snapshots from a given simulation provides a natural way to
characterize the impact of these stochastic features on the
inferred SSM parameters.

We can thus assess individual GRMHD simulations,
effectively comprised of many (100–500) snapshot images,
by comparing the quality of SSM fits to a numerically
constructed distribution of reduced χ2 values. Note that this
procedure is conceptually identical to the normal fitting
procedure, in which a χ2 is interpreted relative to the standard
χ2-distribution and thus a reduced χ2≈1 is a “good” fit, with
the exception that an additional source of noise has been
effectively introduced as part of the underlying model, altering
the anticipated distribution of χ2 values. In practice, this
comparison is executed via the AIS method described in
Appendix F using the THEMIS SSM fitting pipeline.

We estimate the appropriate χ2-distribution by performing
multiple fits of an SSM constructed from the arithmetic average
snapshot image to simulated data generated from each snapshot
image within the underlying GRMHD model. Finally, the average
snapshot image is compared to the EHT data, and the resulting χ2

is assessed. Thus, THEMIS-AIS is effectively determining if the
EHT data are consistent with being drawn from the GRMHD
simulation. The result is characterized by a simulation p-value,
which we call pAIS. Because of the significant variations in data
quality and baseline coverage across days, this procedure must be
repeated independently for each day.

It is possible for a model to be ruled out by the AIS
procedure both by the average image SSM having a χ2 that is
too high (the data is “further” from the average snapshot image
than typical for the simulation) and by the average image SSM
having a χ2 that is too low (the data is “closer” to the average
snapshot image than typical for the simulation, usually a
consequence of too much variability in the GRMHD model).
These are similar to finding a reduced χ2 that is much larger

and smaller than unity, respectively, in traditional fits. Both
occur in practice.
The result of the THEMIS-AIS procedure is limited by the

number of snapshots from each model, and thus is currently
capable of excluding models only at the 99% level for a given
day and band (i.e., <p 0.01AIS ). Due to the long dynamical
timescale of M87—GRMHD snapshots exhibit correlations
extending up to 20GM/c3≈1 week—this is not significantly
improved by combining bands and/or days. Therefore, unless
otherwise noted, we set a threshold of pAIS>0.01, below
which we deem a GRMHD model unacceptable and exclude it
from consideration.

6.5. Ensemble-based Parameter Estimation

The posteriors for the SSM parameters for a given GRMHD
model are estimated using both the observational errors in the
EHT data and the stochastic fluctuations in the snapshot images
themselves; among these “noise” terms, the latter significantly
dominates. This is evidenced by the variations among SSM fit
parameters from snapshots within a GRMHD model, which
typically exceed the formal fit errors from the SSM fit alone
(see Appendix G). Some care must be taken in extracting and
interpreting parameter estimates from these.
Only SSM fits with likelihoods among the highest 10% within

each model are used for parameter estimation. The results for θg
are insensitive to the precise value of this fit-quality cut after it
passes 50%. The measured values are consistent over the range of
GRMHD models explored (see Figure 10 for five examples). The
consistency is likely a result of the dominant strong lensing and
relativistic motion that are common to all models.
The full posteriors are then obtained by marginalizing over all

GRMHD models that are found to be acceptable via the THEMIS-
AIS procedure. At this point we also include the ancillary priors
on jet power, X-ray luminosity, and emission efficiency described
in Paper V (see their Table2). This procedure corresponds to

Figure 10. Distributions of recovered θg from five representative GRMHD
simulations as measured by the THEMIS (left; maroon) and GENA (right; green)
pipelines. Only those snapshots for which the likelihood is above the median
(THEMIS), or for which the combined χ2 statistic is below the median (GENA)
are included. For a wide range of simulations, the recovered θg are consistent
with each other. All of the simulations shown are deemed acceptable by AIS
(pAIS>0.01; see Section 6.4 for details).
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simply summing the posteriors obtained for each acceptable
GRMHD model.

In principle, it is possible for the posteriors constructed in this
fashion to suffer from biases induced by the treatment of the
high values of χ2 found when including only observational
errors. We have attempted to estimate this bias using a large
number of mock analyses. In those, simulated data were
generated from a snapshot within a GRMHD model. Posteriors
were then generated for that model given the simulated data and
compared to their known SSM parameters; no significant biases
were found. We have further conducted two posterior mock
analyses for the full suite of GRMHD models, independently for

the THEMIS and GENA pipelines. In these the impact of including
“incorrect” GRMHD models was a key difference with the
previous tests. See Appendix G for more details.
The results of both of these experiments only hold if the

GRMHD models used as synthetic data provide a good
description of M87. As multiple observation epochs become
available, it will be possible to explicitly measure the statistics of
the stochastic fluctuations, empirically addressing this assump-
tion. It will also enable direct ensemble-to-ensemble comparison
like that described in Kim et al. (2016). A promising, alternative
approach would be to perform a principal component analysis
(PCA) decomposition of the snapshots within each model

Figure 11. Visibility amplitude and closure phase residuals for an SSM fit to the April 5, high-band data for a “good” snapshot image frame from a MAD simulation
with a*=0, i=167°, and Rhigh=160. The reduced-χ2 values for the fits are 5.9 (THEMIS) and 7.3 (GENA). All residuals are normalized by their corresponding
estimated observational errors.

Figure 12. Three sample SSM fits to April 6 high-band data. All are from models with THEMIS-AIS pAIS>0.1. In panels (a) and (b), the prominent photon ring places
a strong constraint on θg. In panel (c), the extended disk emission results in a smaller θg estimate.
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(Medeiros et al. 2018), and fit images generated by varying the
weights of the PCA components to the data to mimic the set of
possible realizations of the turbulence.

6.6. M87 Fit Results

An example SSM fit is shown for both the THEMIS and GENA
methods in Figure 11. As anticipated, the presence of stochastic
features within the images results in a poor formal fit quality for
all simulation snapshots, that is, reduced c 22 . Nevertheless,
broad features of the visibilities and closure phases are accurately
reproduced. These include the deep visibility amplitude minimum
near 3.4Gλ and amplitude of the following bump at 6.0Gλ, both
of which are key constraints on the image structure (see
Section 3). Significant structure in the residuals, as seen in
Figure 11, is a natural consequence of the presence of stochastic
model components, but may also signify that the underlying
model is insufficient to fully explain the EHT data. Representative
fits obtained via this process are shown in Figure 12 for the best

SSM from a selection of models that are not ruled out by
THEMIS-AIS.
Even aggressive model selection via THEMIS-AIS produces a

very weak cut on the GRMHD models—upon choosing
pAIS>0.01 and pAIS>0.1 only 9.7% and 28.5% of models
are excluded. After applying the additional observational
constraints, we discard 65.3% of the models (for details of
the model selection, see Paper V). Here we focus on estimates
of the compact flux density, θg and PAFJ, after marginalizing
over the acceptable models that remain.
The GRMHD-based SSM models produce compact flux

estimates between 0.3 and 0.7Jy. This is at the lower end of
the range reported in Paper IV ( -

+0.66 Jy0.10
0.16 ). The PAFJ

obtained via comparison of the GRMHD snapshots and the f̂
found from fitting the GC models are generally consistent after
accounting for the average 90°offset between the location of
the forward jet in the GRMHD simulation and the location of
the brightest region in the crescent image (Paper V). This
appears marginally consistent with the mas-scale forward-jet
PA measured at 3 and 7 mm of 288° (e.g., Walker et al. 2018),
though see Paper V for further discussion on this point.
The posteriors for θg are broadly consistent among days and

bands, as illustrated in Figure 13 and Table 5. The combined
value for both the THEMIS and GENA analyses is
q m= -

+3.77 asg 0.54
0.51 . Finally, note that the process by which

this estimate is arrived at differs qualitatively from the analysis
presented in Section 5. Here GRMHD snapshot images are fit
directly to data, whereas in Section 5 GRMHD snapshots were
used to calibrate the geometric models. These subsets are
independent—the set of images used to calibrate the geometric
models are not used in the GRMHD analyses. Nevertheless, a
systematic correlation between these estimates may remain as a
result of the use of the same set of underlying GRMHD
simulations.

7. Image Domain Feature Extraction

In the previous sections, we fit geometric and numerical
models in the visibility domain to measure the properties of
features in the models that give rise to the observed
interferometric data. In Paper IV, we performed direct image
reconstruction using two RML methods (eht-imaging and

Figure 13. Constraints on θg arising from the GRMHD model fitting
procedure, by day and band. The maroon squares and green triangles are the
constraints arising form the THEMIS and GENA pipelines. Solid error bars
indicate the 68% confidence levels about the median. The maroon colored band
indicates the combined constraint across both bands and all days.

Table 5
Best-fit Parameters for All Data Sets from Direct GRMHD

Simulation Fitting, as Defined in Section 6.2

Data Set Parameter

Day Band Code qg (μas) CF (Jy) PAFJ (deg.)

April 5 HI THEMIS -
+3.71 0.30

0.39
-
+0.53 0.11

0.18
-
+233 37

35

LO THEMIS -
+3.74 0.28

0.36
-
+0.53 0.10

0.16
-
+228 36

33

April 6 HI THEMIS -
+3.73 0.31

0.40
-
+0.52 0.10

0.16
-
+223 35

34

HI GENA -
+3.77 0.30

0.40
-
+0.42 0.07

0.08
-
+220 40

37

LO THEMIS -
+3.74 0.30

0.39
-
+0.56 0.11

0.16
-
+232 35

33

April 10 HI THEMIS -
+3.85 0.32

0.37
-
+0.55 0.10

0.13
-
+232 62

52

LO THEMIS -
+3.83 0.28

0.33
-
+0.57 0.10

0.14
-
+238 61

49

April 11 HI THEMIS -
+3.93 0.31

0.35
-
+0.58 0.10

0.14
-
+264 52

36

LO THEMIS -
+3.96 0.30

0.33
-
+0.60 0.10

0.14
-
+261 50

36

Note. Median posterior values are quoted with 68% confidence intervals.

Figure 14. A sample image cross section showing the definitions of the image
domain measures that we use in identifying and comparing features in the
images (see Section 7).
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SMILI; Akiyama et al. 2017a, 2017b) and one CLEAN
method (DIFMAP; Shepherd 1997). Here we present a first
analysis of ring properties seen in reconstructed M87 images.
We describe the method used to extract parameters
(Section 7.1). We then show that the extracted ring diameter
is consistent across imaging methods and compare the ring
diameter and width with that measured from geometric
modeling (Section 7.2). We convert the diameter measurements
to the physical scale around the black hole, θg, by calibrating
with GRMHD simulations (Section 7.3). Finally, we measure
the image circularity (Section 7.4).

7.1. Measuring the Parameters of Image Features

We describe the M87 image morphology using five quantities
that are similar in spirit but not identical to those introduced in
Equations (20)–(23) in Section 5.1: the diameter d of the ring/
crescent, its fractional width fw, the relative brightness fc of its
center with respect to its rim, and the PA f. Figure 14 shows a
schematic diagram of these parameters. Here we focus on the
first two parameters. Measurements of the remaining parameters
in the various image reconstructions and more details on the
method can be found in Paper IV.

The reconstructions obtained in Paper IV use a pixel size of
2 μas (;1/10 of the EHT 2017 beam), but the GC image
models considered below often show narrower structures. We
interpolate both the GC models and image reconstructions onto
a grid with pixel size of 0.5 μas before applying the feature
extraction methods. When necessary, we use a 2D linear
interpolation between adjacent pixels for finer sampling.

The radial brightness profile is characterized by a peaked
distribution that declines toward the center. We first locate the
(arbitrary) center of the ring. We measure the position of the
radial brightness profile maximum along different azimuthal
angles. For a trial center position, we calculate the dispersion of
the radii defined by these maxima. The center is then chosen
iteratively as the location that minimizes this dispersion. Once a
center position is chosen, the mean diameter d of the image is
defined as twice the distance to the peak, averaged over
azimuth.

We define the ring width to be the FWHM of the bright
region along each radial profile. The fractional width fw of the
image is the average of the FWHM over azimuthal directions
divided by its mean diameter. In the following we first smooth
the image with a 2μas Gaussian. In Appendix H we show that
variations on this method produce small (sub-pixel) differences
in the results.

7.2. M87 Image Ring Diameters and Widths

Figure 15 shows the mean diameters of images reconstructed
using the low-band data during all four days of M87
observations with three image reconstruction methods (eht-
imaging, SMILI, DIFMAP; see Paper IV). Image samples
are reconstructed for each data set and for a wide range of
weights of the regularizers (∼2000 images for eht-imaging
and SMILI and ∼30 for DIFMAP, see Paper IV). Diameters
measured from the full set of images that produce acceptable
fits to the visibility data (the “Top Set”) are shown here. The
diameters of the ring features found across all methods and all
days span the narrow range ∼38–44 μas.
Figure 16 shows the fractional width versus mean diameter

for the Top Set images from eht-imaging and SMILI
compared with those from geometric models for the low-band
M87 data of April 6 (Section 5). For the two visibility domain
methods, the points correspond to the diameters and widths
obtained from a sample of 100 images from the xs‐ring and xs‐
ringauss model, chosen randomly from their posteriors. Those
model images have been analyzed in the same way as the
reconstructed ones.
The fractional widths for the reconstructed images are 0.5,

which are consistent with the results of geometric crescent
models in Section 5. While both the image reconstructions and
model fits show a large uncertainty in fractional width, the
widths measured from the image reconstructions in the Top
Sets are 10 μas. Images of rings with narrower widths are
consistent with the data and can be produced by the imaging
algorithms; however, the parameters in the imaging algorithms
(e.g., regularizer weights) that determine the Top Set images
were trained on synthetic data from sources smoothed with a
10 μas beam (Paper IV, their Section 6.1). This may help
explain the differences in the fractional widths measured with
the different techniques.
An anti-correlation between diameter and fractional width

for these image domain results is clearly present in three of the
four days, but is less clear in the data of April 11. We consider
two manifestations for this anti-correlation, based on the
location of the first visibility amplitude minimum in simple ring
models. First, we use the geometric crescent model of
Kamruddin & Dexter (2013), and derive the following
approximate fitting formula to the exact expression relating
the mean ring diameter d and ψ:

y
y y
-

- +
 ( )d d

1 2

1 0.48 0.11
, 290 5

where d0 is the diameter of an infinitesimally thin ring that
produces a null at baseline length b1 (Equation (6)). The
fractional width is y y= -ˆ ( )f 2w . The blue shaded region
in Figure 16 shows the expected diameter and fractional
width anti-correlation for a visibility minimum occurring at a
range of baseline lengths 3.5–4.0 Gλ, similar to that seen in

Figure 15. Image domain measurements of the ring diameter of M87 over all
observing days comparing three image reconstruction methods. The error bars
show the full range of results for the Top Set images using low-band data. The
gray dashed line and band show the weighted average and uncertainty across
methods and observing days.
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the M87 data (Section 3, Paper III). This corresponds to
d0;39.5–45 μas.

We repeat this exercise for an infinitesimally thin ring
convolved with a Gaussian. Here the mean diameter d can
be approximated for FWHM w d as (AppendixG of
Paper IV):

-
⎛
⎝⎜

⎞
⎠⎟ ( )d d

w

d
1

4 ln 2
. 300

2

0
2

Here the fractional width =f̂ w dw . The pink shaded area in
Figure 16 shows the shaded region for this model, which
follows a similar trend.

The measured properties of the images and source models
inferred by all methods generally fall within the expected
bands. At least part of the systematic differences in our
diameter measurements may be attributed to the relatively large
uncertainty in width, as a result of their weak anti-correlation.

7.3. From Image Diameter to Angular Gravitational Radius

We can convert the diameters measured from the recon-
structed images to the black hole angular gravitational radius
using a scaling factor, α (Equation (27)), following the same
procedure used in the calibration of crescent model diameters
to GRMHD images discussed in Section 5.3. We calculate a
separate value of α for each image reconstruction method
(eht-imaging, SMILI, DIFMAP) as described in

Appendix E and listed in Table 6. The image domain methods
do not report posteriors. We therefore estimate the statistical
along with the observational component of the uncertainty in
the calibration procedure using synthetic data. As found for the
geometric crescent models, the theoretical uncertainty dom-
inates the final error budget. The total observational uncertainty
is similar to but slightly larger than the statistical spread of the
median diameter measurement between days.
After applying the calibrated scaling factor to the image

domain diameter measurements, we find consistent results
across all observing days and reconstruction methods
(Figure 17). This is further indication that the statistical
component of the calibration error is sub-dominant. The
combined value from all methods is q m= -

+3.82 asg 0.38
0.42 .

Despite small differences in the measured mean diameters,
the physical scale θg is remarkably consistent with that found
earlier from both geometric and GRMHD model fitting. This is
because the corresponding calibration factors α obtained from
synthetic data show the same trends as the measured diameters.

7.4. The Circular Shapes of the M87 Images

Our reconstructed M87 images appear circular. We quantify
their circularity by measuring the fractional spread in the
inferred diameters measured along different orientations for
each of the reconstructed images. Here we define the fractional
spread as the standard deviation of the diameters measured
along different orientations divided by the mean diameter. For
each image, the diameters along different orientations measure

Figure 16. Diameters and fractional widths inferred from image (black and
green) and visibility (red and blue) domain measurements on April 6. The
visibility domain measurements are from GC model fitting (see Section 5),
while the reconstructed images are from Paper IV. The filled regions show
diameter and width anti-correlations expected in simple ring models
(Section 7.2). The anti-correlation between mean diameter and width helps
to explain the small (;5%) offset in mean diameter found between methods.

Table 6
Measured Diameters, d, Calibrated Scaling Factors, α, and Corresponding Gravitational Radii, θg, for the Image Domain Analysis Presented in Section 7

Imaging Method d (μas) sd (μas) α θg (μas) sobs (μas) sthy (μas)

eht-imaging 40.5 0.5 10.67 3.79 (+0.06, −0.06) (+0.42, −0.37)
SMILI 41.5 0.4 10.86 3.82 (+0.04, −0.05) (+0.40, −0.38)
DIFMAP 42.5 0.8 11.01 3.84 (+0.09, −0.10) (+0.42, −0.32)

Note. We quote median values and 68% confidence intervals. The angular diameters d are averages across the four observing days, weighted by the range within each
day. Their uncertainties sd are the standard deviation of the mean over the four days. We combine the angular diameter measurements with the calibrated scaling
factors (α) to arrive at measurements of θg. The various uncertainty components of θg are obtained using synthetic data, as described in Appendix E.

Figure 17. Constraints on θg from GRMHD simulation calibrated image
domain feature extraction, by day and band. The solid lines show the full range
of diameter measurements from the Top Set images. The dotted lines show the
systematic calibration uncertainty. The shaded regions show the weighted
average and uncertainty over observing days for each method.
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the distance of the location of peak brightness from the center
of the image along each orientation. A small fractional spread
suggests that the locus of peak brightness on each image has a
circular shape.

Figure 18 shows the distribution of the fractional spread in
diameters for the Top Set images of M87 reconstructed using
two image domain methods (eht-imaging and SMILI) for
the April5 low-band data set. The figure also shows the
fractional spread in diameters of a subset of ∼300 images
among those in the GRMHD image library discussed in
Paper V that provide acceptable fits according to AIS. Note that
these comparison images have a much higher intrinsic
resolution than the reconstructed images of M87. The
distributions of fractional spreads for the reconstructed images
peak at a fractional spread of ∼0.05–0.06. This is within the
range found in the GRMHD images. The GRMHD models
mostly show circular image structure (peak 0.1 in blue
distribution in Figure 18). This corresponds to the bulk of the
images where the photon ring is the dominant feature (see
Paper V). The tail to larger fractional diameter spread may in
part be the result of occasional bright filaments that light up in a
small azimuthal range and then quickly fade. During such
snapshots, the locus of points with the brightest emission
around the shadow becomes non-circular and the fractional
spread increases. Arrows in Figure 18 indicate the expected
fractional diameter spread for elliptical models. Our results
suggest an image axial ratio of 4:3.

8. Prior Mass and Distance Estimates

In this section we briefly review prior estimates of the mass-
to-distance ratio for M87ʼs central black hole for comparison
with our new EHT results. For a more detailed discussion, see
Appendix I.

8.1. Distance

M87 is the central galaxy of the Virgo cluster, the closest
galaxy cluster to the Milky Way. This proximity allows a high-
precision measurement of its distance using primary or

secondary standard candles available only for nearby galaxies
within ∼20Mpc. Among numerous distance estimators
obtained for M87, we base the distance that we use here on
two estimators of the absolute distance modulus (μ). The first
uses as a primary candle the tip of the red giant branch (TRGB
method). The second uses a well-calibrated secondary standard
candle, the surface brightness fluctuations (SBF method) from
resolved stellar distributions observed at high angular
resolution.
We combine one TRGB measurement (Bird et al. 2010) with

two SBF measurements (Blakeslee et al. 2009; Cantiello et al.
2018a) to arrive at a combined distance measurement. We
consider the three distance measurements to be independent
and calculate the combined posterior as their product. Based on
these, we adopt a distance of = -

+D 16.8 Mpc0.7
0.8 to M87. A

more detailed description, together with the summary of each
measurement, can be found in Appendix I.

8.2. Mass-to-distance Ratio and Related Quantities

For the mass of the central black hole in M87 we focus on
the two latest dynamical measurements of the kinematic
properties of surrounding stars and gas (Gebhardt et al. 2011;
Walsh et al. 2013) that have high-quality data and state-of-the-
art modeling approaches.
Stellar dynamical measurements. Gebhardt et al. (2011)

used infrared spectroscopic observations of stellar absorption
lines over the central 2″ (∼150 pc) of M87 and modeled
the observed stellar kinematics to infer a mass of (6.6±0.4)×
109Me, assuming a distance of 17.9Mpc. They compared the
full line-of-sight stellar velocity distributions at all points with
the projected kinematics of axisymmetric models of the galaxy.
The models allowed for adjustable but radially constant mass-
to-light ratios of the central stellar population and the central
effects of the M87 dark matter halo. The analysis demonstrates
that kinematics cannot be fitted without the inclusion of a
central compact non-luminous mass.
Gas dynamical measurements. Walsh et al. (2013) used

Hubble Space Telescope (HST) Space Telescope Imaging
Spectrograph observations of Hα and [N II] emission lines from
the central gas-disk within the M87 nucleus to map its
kinematic field within 40 pc of the black hole. The velocity
field implies a compact mass of ´-

+
( ) M3.5 100.7

0.9 9 , assuming a
distance of 17.9 Mpc, on the assumption that the velocity field
is Keplerian and is not subject to non-gravitational forces such
as shocks and winds. Several factors could account for the
lower mass inferred via this technique (see, e.g., Kormendy &
Ho 2013; Jeter et al. 2018).

9. Inferred Black Hole Parameters and Discussion

9.1. Lensed Emission Around the Black Hole Shadow

The results of fitting analytic models (Section 5) and
GRMHD image snapshots (Section 6) to visibility domain
data, as well as image reconstructions (Paper IV, Section 7)
strongly favor an asymmetric ring (crescent) source morph-
ology with a deep central brightness depression. This
morphology is robust among the different analysis methods
and is consistent with characteristic features in the interfero-
metric visibilities (Section 3).
Fitting geometric models to the data and extracting feature

parameters in the image domain both allow us to quantify the
following properties of the crescents: (i) a compact flux density

Figure 18. Distributions of fractional spreads in the inferred diameters of the
M87 images measured along different orientations, for images reconstructed
using two methods for the April 5 data set. The blue histogram is the
distribution of fractional spreads for a subset of images from the GRMHD
library. The values for elliptical shapes with different axes ratios are indicated
with arrows (a value of 0 is an axis ratio of 1:1). The distribution for
reconstructed images peaks at values ∼0.05–0.06, which is consistent with the
range found from GRMHD model images.
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of ;0.7 Jy, which is 50% of the total at arcsecond scale (see
also Paper III and Paper IV); (ii) a mean emission diameter of
∼42±3 μas; (iii) a fractional width of 0.5; (iv) a deep
central brightness depression with a brightness contrast ratio of
10; and (v) a persistent asymmetry with the brightest region
to the South (PA of 150°–200°).

All of these features support the interpretation that we are
seeing emission from near the event horizon that is grav-
itationally lensed into a crescent shape near the photon ring.
The central flux depression is the result of photons captured by
the black hole: the black hole shadow (Falcke et al. 2000). The
asymmetry is a result of Doppler beaming due to the rotation of
plasma at relativistic speeds. The peak brightness location is
expected to be oriented ;90° away from the jet PA (Dexter
et al. 2012; Mościbrodzka et al. 2016; Ryan et al. 2018; Chael
et al. 2019b, see Paper V), roughly north–south as we find here.

In many active galactic nuclei, the radio VLBI jet core on
parsecs and larger scales is inferred to be significantly offset
from the black hole itself(e.g., Marscher et al. 2008). For M87,
this is disfavored by past VLBI observations. The jet and
counter-jet angular separation inferred by VLBA observations
(Ly et al. 2004, 2007; Kovalev et al. 2007) locates the radio
core close to the black hole. VLBA astrometric observations
further tightly constrain the jet apex to be ;41±12 μas
upstream of the VLBI core at 43 GHz (Hada et al. 2011, 2013;
Nakamura & Asada 2013), suggesting that the mm emission
originates very close to the black hole.

The observed EHT image morphology also disfavors an
origin offset from the black hole. Models of M87 where the
emission predominantly arises in the forward jet have found a
larger size and blob-like Gaussian structure (e.g., Broderick &
Loeb 2009) due to Doppler beaming resulting from the
acceleration of the jet along the line of sight. Additionally,
the stable source size over several years of mm-VLBI
(Doeleman et al. 2012; Akiyama et al. 2015), despite changes
in compact flux density by factors of ;2–3 (Paper IV), favors
the extreme gravitational lensing scenario. Future EHT
observations will provide a sensitive additional test of this
paradigm by measuring the source morphology on year
timescales.

9.2. The Black Hole Mass and Comparison
to Prior Dynamical Measurements

We have used several techniques to arrive at θg estimates
from the EHT 2017 M87 data, and in Table 7 we list the result
for each technique after averaging over observing days and
bands (see also Figure 19). We find a striking level of
consistency across all measurement methods, with GC
modeling, direct GRMHD fitting, and image domain feature
extraction procedures converging on a characteristic value of
θg=3.8±0.4 μas as the angular size subtended by one
gravitational radius. The measurement techniques themselves
are entirely independent of one another. The mutual agreement
that we see among the multiple measurements indicates that the
θg value we have converged upon is robust to the many
different choices that can be made regarding data products,
model specifications, and parameter space exploration
algorithms.

All of the individual θg estimates use the GRMHD
simulation library, either through directly fitting GRMHD
snapshots to the data (Section 6) or through calibration of
diameters resulting from geometric models or reconstructed

images (Sections 5 and 7). A degree of caution is therefore
warranted. The measurements rely on images generated from
GRMHD simulations and should be understood within that
context (see also Paper V). We have also used only a small
subset of 100 such randomly chosen frames (with randomly
assigned SSM parameters) out of a much larger library. A
simple (but poorly motivated) alternative to the full calibration
presented here would be to assign the mean emission diameter
to the size of the photon ring itself (α;9.6–10.4 for all
methods). That would give a nearly identical θg result for the
image domain estimates and only a ;10% increase for the
geometric models, within its current systematic uncertainty.
The mass measurements that we have carried out with EHT

data show a high level of consistency, converging to an average
value ofM=6.5×109Me. All measurement techniques share a
large source of systematic uncertainty arising from the GRMHD
calibration, with an average value of σsys=0.7×109Me. The
geometric crescent modeling and image domain measurements
further enable an estimate of the systematic uncertainty associated

Table 7
Summary of θg and M Measurements

Measurement Method θg (μas) M (109 Me)

GC model fitting -
+3.77 0.40

0.45
-
+6.42 0.71

0.82

GRMHD model fitting -
+3.80 0.31

0.39
-
+6.48 0.61

0.73

Image domain feature extraction -
+3.83 0.36

0.42
-
+6.51 0.71

0.78

Gas dynamics (Walsh et al. 2013) -
+2.05 0.16

0.48
-
+3.45 0.26

0.85

Stellar dynamics (Gebhardt et al. 2011) -
+3.62 0.34

0.60
-
+6.14 0.62

1.07

Combined measurements from this work 3.8±0.4 6.5±0.7

Note. Measurements made in this work (top) and from the literature (middle)
are quoted as median values with 68% confidence intervals. The final
combined measurements from this work are listed in bottom row of the table,
rounded to two significant figures. The distance used to compute M from θg is

16.8 0.8 Mpc (see Section 8).

Figure 19. Estimates of the mass of the central black hole in M87 for the three
different measurement techniques employed in this Letter (see also Table 7).
Gray horizontal bands around dashed lines correspond to the 68% confidence
levels for the stellar (top) and gas (bottom) dynamical mass measurements (see
Table 9).
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with the angular diameter measurement, which manifests in the
mass measurement with an average, rounded value of
σstat=0.2×109Me. As can be readily seen in Figure 19, our
mass measurements are also in excellent agreement with those
made by Gebhardt et al. (2011) using stellar dynamics
(Section 8.2). Our mass measurement is inconsistent with the
gas dynamics measurement of Walsh et al. (2013) at the ∼99%
confidence level.

9.3. Implications for the Black Hole Environment

The measurement of a large black hole mass in M87 has a
number of implications for the relationship between the black
hole and its immediate environment. The observed line-of-sight
velocities of atomic line emission produced within the gas flow
at 10–100 pc place strong constraints on the dynamical state of
gas on these scales and its relationship with the horizon-scale
and milliarcsecond-scale features.

In combination with the stellar dynamics mass estimate, the
mass M reported here provides an upper limit on the extended
dark mass enclosed within the smallest scale probed by
Gebhardt et al. (2011), 0 25 or approximately 20 pc, set by the
upper limit on the difference between the two masses:

- = - ´-
+

M M M0.3 10G11 0.9
1.3 9 , where MG11 is the stellar

dynamics mass in Table 7 and the 68% confidence intervals
have simply been added in quadrature. Thus, at 95%
confidence this comparison implies that inside 20 pc
2.3×109Me, or 36% of the central black hole mass,
can exist as a dark extended component. This limit is not yet
sufficient to constrain the presence of a density “spike” of dark
matter associated with the formation of the central black hole
(see, e.g., Lacroix et al. 2015).

9.4. Evidence for a Horizon

The constraint on the size of the emission region, coupled
with multi-wavelength limits on the emission from within the
shadow region, provide evidence for the existence of event
horizons. These limits arise from looking for the boundary-
layer emission that should be present if a photosphere is visible,
i.e., not hidden from view by an event horizon (Narayan &
McClintock 2008; Broderick et al. 2015). The source of such
emission is often called a “surface,” though we note that it need
not be so in practice.

The results reported in the previous section strengthen this
argument. First, they provide an accurate reconstruction of the
source structure, which now locates the central mass to within
the photon orbit. Second, as discussed in Paper V, the observed
image is broadly consistent with models of jet launching driven
by electromagnetic processes. Jets are collimated by accreting
material; thus a significant boundary-layer emission component
would be expected if M87 is not a black hole (Broderick et al.
2015).

The spectrum of this additional boundary-layer emission
component is generally thermal when the photon escape
fraction is small, in which case this emission effectively
couples the photosphere to itself on a timescale that depends
only logarithmically on redshift (though see Lu et al. 2017
regarding the possibility of longer equilibrium times). The
color temperature of the emission is set uniquely by the
accretion power and apparent size of the emission region.
The former can be related to within factors of a few to the total
jet power, ∼1042 erg s−1 (see the discussion in Paper V). Note

that this lower limit is an order of magnitude smaller than the
lower end of the range considered in Broderick et al. (2015).
The resulting putative photospheric emission would have a
color temperature of TC104 K and peak in the near-infrared/
optical.
While the EHT is not sensitive to this component, its

existence can be excluded by near-infrared, optical, and
ultraviolet flux measurements (see, e.g., Broderick et al.
2015; Prieto et al. 2016). We show this excess in Figure 20
for the mass measurement reported here.

9.5. Implications for the Kerr Nature of the Black Hole

The detection of a substantial central brightness depression
in the image of M87 that we identify with the shadow of the
black hole allows us, in principle, to perform two tests of the
nature of the compact object and its spacetime. One is related to
the size of the shadow, and the other to its shape.
There are two properties of spinning black holes that,

depending on spin and observer inclination, could alter the size
and shape of the black hole shadow. The spacetime quadrupole
q tends to lend an oblate shape to the shadow, while frame
dragging due to the spin a acts to compress the shadow in
the direction perpendicular to its spin. When the spacetime
quadrupole satisfies the Kerr condition q=−a2, the two
effects nearly cancel each other out, leaving a quasi-circular
shadow with a mean diameter that lies in the very small range
(9.6–10.4) GM/c2. This shape is expected to be nearly circular
for the low inclination of M87 (e.g., Takahashi 2004; Chan
et al. 2013).
For a black hole of known mass-to-distance ratio, the angular

size of the shadow on the sky is, therefore, fixed and can
be used as a null-hypothesis test of the Kerr nature of the
compact object (Psaltis et al. 2015). Alternatively, we can
infer the mass-to-distance ratio of the black hole using the
size of its shadow image, as we do here, and compare it to the

Figure 20. Spectral energy distribution of a putative photosphere in
comparison to EHT and multi-wavelength data. The lower limit for the
thermal bump associated with boundary-layer emission in the absence of a
horizon is shown for a compact object with the size reported here (dark green
band and arrow) and a jet power 1042 erg s−1. The photospheric component
has been added to a jet synchrotron emission model (blue lines, M. Lucchini
et al. 2019, in preparation). EHT compact flux densities and limits (orange
points) are insensitive to a putative boundary-layer component. Its presence is
ruled out by near-infrared, optical, and ultraviolet measurements (dark red and
black points, see Broderick et al. 2015; Prieto et al. 2016).
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mass-to-distance ratio measured dynamically at much larger
distances. Demonstrating agreement between the two infer-
ences results in an equivalent null-hypothesis test.

The null hypothesis in this case consists of three ingredients:
that the dynamical measurements provide an accurate determi-
nation of the black hole mass, that the brightness depression we
detect in the EHT image of M87 is indeed the black hole
shadow, and that the spacetime of the black hole is described
by the Kerr solution. Demonstrating a violation of this null
hypothesis would imply that one or more of these assumptions
is invalid.

We have used the 2017 EHT observations of M87 to infer
the posterior probability Pobs(θg) of the angular gravitational
radius at the distance of M87. Earlier dynamical measurements
also provide us with the prior probability Pdyn(θdyn) for the
same quantity. We can, therefore, measure the fractional
difference δ between the predicted and measured mass-to-
distance ratio for the black hole as

d
q
q

º - ( )1 31
g

dyn

and its posterior as

òd q q q d q= +( ) ( ) ( ( )) ( )P P P d1 . 32dyn dyn dyn obs dyn dyn

Figure 21 shows the posterior on the fractional deviation
between the EHT and the dynamical inferences of the mass-to-
distance ratio, when we assume the prior measurements based
on stellar and gas dynamics. We find δ=−0.01±0.17 (68%
credible intervals) for the stellar and δ=0.78±0.3 for the gas
dynamics priors. The fact that our measurement θg is consistent
with one of the prior measurements θdyn allows us to conclude
that our null hypothesis has not been violated.

The second property of the black hole shadow that is
affected by potential deviations of its spacetime from the Kerr
metric is its shape. Shadows of Kerr black holes are nearly
circular with a maximum asymmetry of 10%, as defined in
Johannsen & Psaltis (2010). For the case of the ∼17°

inclination of M87 (and assuming that the large-scale jet
points along the spin axis), the maximum asymmetry is 2%
for all values of black hole spin (e.g., Chan et al. 2013).
Measuring a shadow shape that deviates from circular to a
degree larger than this amount would require that the spacetime
of the compact object is not described by the Kerr metric
(Johannsen & Psaltis 2010).
Figure 18 shows that the circularity measured from

reconstructed images of M87 is consistent with that found in
model images from GRMHD simulations in the Kerr metric.
The images used in our analysis in Section 7 measure the shape
of the emitting region. In future work a similar analysis can be
done using images from models that violate the no-hair
theorem, where the photon ring/shadow shape can be highly
prolate, oblate, or even amorphous (Broderick et al. 2014;
Giddings & Psaltis 2018).

10. Conclusions

The horizon-scale emission of M87 at 1.3 mm exhibits a
robust crescent-like structure. This is seen in image reconstruc-
tions (Paper IV) and supported by features in the visibility data
from the 2017 EHT campaign (Paper III). Geometric crescent
models are overwhelmingly preferred to similarly complex
models that we have explored that do not have a central flux
depression.
The crescent structure is well defined, with a rapid decline to

a dark interior with a brightness 10× lower than the average
of that in the annular region. The average diameter of the
crescent is well constrained by multiple methods with a
combined range of 42± 3 μas. This is consistent among all
observation days and bands.
Based on geometric models, GRMHD simulations, and

image domain feature extraction, the angular size of the
gravitational radius is θg=3.8±0.4 μas. The uncertainty of
this value is currently dominated by a systematic component
associated with the location of the mean emission diameter in
GRMHD simulations that is used to convert from an angular to
physical scale. Accounting for this uncertainty explicitly, the
resulting black hole mass is =   ´∣ ∣M 6.5 0.2 0.7stat sys

M109 . This mass is consistent with that measured from stellar
but not gas dynamics.
The crescent morphology, rapid drop to a deep interior flux

depression, and broad consistency among days, methods, and
the stellar dynamics measurement all point to the emission
structure from M87 being due to strong gravitational lensing
around a central black hole. The consistency between the
10 pc-scale stellar dynamics and EHT mass measurements
provides a null test of the Kerr metric. The size constraint and
qualitative support of the standard jet formation paradigm
argues for the presence of a horizon. Together, our results
strongly support the hypothesis that the central object in M87 is
indeed a Kerr black hole, and provide new evidence for the
long-believed connection between AGNs and SMBHs.
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Appendix A
THEMIS Station Gain Amplitude Reconstruction

Both THEMIS and eht-imaging provide tools for
analyzing EHT data within the visibility domain. Both address
the reconstruction of individual station gains, though in
substantially different ways. Here, we briefly describe the
procedure employed by THEMIS and compare the reconstructed
gains with the results reported in Paper IV.
We reconstruct gains on a scan-by-scan basis. Thus, for EHT

2017 data, the gain amplitudes constitute between 40 and 143
additional nuisance parameters per data set; more if sub-scan
variations are necessary. For the GC models this represents a
proliferation of parameters by 200%–700%.
Even with efficient sampling techniques, treating these

identically with the other model parameters would result in a
substantial (super-linear) increase in the computation expense
needed to adequately sample the likelihood. Thus, in THEMIS,
these are efficiently addressed instead by directly marginalizing
the likelihood in Equation (9).
This is done by numerically maximizing A ij, over the ∣ ∣gi

(subject to Gaussian priors on the ∣ ∣gi ) for each scan and then
marginalizing over an expansion around this maximum (see A.
E. Broderick et al. 2019, in preparation, for more details).
Within this procedure it is assumed that gains from neighboring
scans are independent. For all analyses presented here, the
standard deviation of these priors for the LMT and all other
stations are 100% and 20%, respectively. While the latter
substantially exceeds the anticipated uncertainty stated in Table
3 of Paper III, the reconstructed station gains are typically very
well constrained and close to unity.
Typically, the station gains on a given scan are significantly

overdetermined. Thus, calibrating the station gains in this way
produces model-independent patterns, driven primarily by the
need for consistency among a given observation.
In Figure 22 we show the reconstructed LMT gains for the

best-fit GC model model on each day (low-band only) in
comparison to those obtained by image-domain methods for
the LMT. This station was selected because it exhibits large
gain excursions; the other reconstructed station gains are
generally much closer to unity.
The two different procedures based on different intrinsic source

models find remarkable agreement over all days. Importantly,
there are no large gain offsets that would produce a significant
impact on the reconstruction of the total compact flux.
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Appendix B
Generalized Crescent Models

In this appendix we describe the GC models used in
Section 5 to fit the M87 data. Descriptions of the model
parameters and their associated priors are listed in Table 8.

B.1. Fourier-domain Construction of the GC models

Following Kamruddin & Dexter (2013), we start with a unit
circular “top-hat” function circ(r), defined in the image domain
to be


=

>
⎧⎨⎩( ) ( )r

r
r

circ
1, 1
0, 1.

33

A disk of radius R can then be expressed as D(r)=circ(r/R).
The Fourier transform of such a disk is given by

r
r

pr=˜ ( ) ( ) ( )RD
R

J 2 , 341

where r = +u v2 2 is the Fourier-domain radial coordinate
and J1(x) is the Bessel function of the first kind of order 1. We
can construct a circular crescent C via the difference of two
such disks after shifting the smaller, inner disk by r0 in the
negative x-direction prior to subtracting it from the outer disk.
A spatial shift in the image domain corresponds to a frequency
shift in the Fourier domain, such that
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where Rout and Rin are the outer and inner disk radii,
respectively.
Similar to Benkevitch et al. (2016), we define a “slash”

operation s(x) that imposes a linear brightness gradient across
the image. The slash operator can be expressed in the image

Figure 22. Reconstructed LMT station gains by THEMIS from GC model fits to the April 5, 6, 10, and 11 low-band data sets. All other station gains are very close to
unity, and are consistent with those from image reconstruction. The inferred LMT gains are consistent with those found in Paper IV across all days.
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domain as
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where h1 and h2 are the amplitudes of the function at x=Rout

and x=−Rout, respectively. We apply s(x) to the crescent via
multiplication in the image domain, which corresponds to
taking a derivative in the Fourier domain
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Application of the slash is aided by the fact that the derivative
of a Bessel function can be expressed in terms of other Bessel
functions

r
pr p pr pr= -( ) [ ( ) ( )] ( )d

d
J R R J R J R2 2 2 , 381 0 2

and we denote the slashed crescent model as sC.

B.1.1. xs-ring Model

We now seek to add an emission “floor,” F, to the center of
sC to account for nonzero central emission. In the xs‐ring

construction, F takes the form of a circular disk with amplitude
K and radius Rin that is shifted by r0 along the x-axis,

r
pr= p˜ ( ) ( ) ( )u v

KR
e J RF , 2 . 39ir uin 2

1 in0

In the image domain, we can express the slashed crescent plus
emission floor [sC+F] as

+ = - -
+ -

[ ]( ) ( )[ ( ) ( )]
( ) ( )

x y s x D x y D x r y
x r y

sC F , , ,
F , . 40

out in 0

0

The model thus corresponds to the difference of two spatially
offset circular disks having a linear brightness gradient across
them, to which a central emission floor is then added. We then
further allow the entire model to be rotated by some PA f,
which amounts to replacing f f +( ) ( )u u vcos sin and

f f - +( ) ( )v u vsin cos . Finally, we convolve the model
in the image domain with a circular Gaussian kernel of width σ

and then scale it to have a total flux density of V0. The compact
component of the xs‐ring model can thus be written in the

Table 8
Parameters and Priors for the GC Models

Prior

Parameter Description xs‐ringauss xs‐ring Units

V0 Flux density of crescent component L U( )0, 2 Jy
+V V0 1 Flux density of crescent component (including fixed Gaussian) U( )0, 2 L Jy

Rout Outer radius of crescent U( )0, 100 μas
f PA U( )0, 360 degrees
ψ Fractional thickness U( )0, 1 unitless
τ Structural asymmetry parameter U( )0, 1 unitless
β Flux asymmetry parameter U( )0, 1 L -( )5, 5e unitless
σ Width of Gaussian smoothing kernel U( )0, 100 μas
γ Fractional amplitude of central emission floor L U( )0, 1 unitless
VF Flux density of central Gaussian emission floor U( )0, 2 L Jy
sF Width of central Gaussian emission floor U( )0, 25 L μas
VG Flux density of large-scale Gaussian U( )0, 10 Jy
sG Width of large-scale Gaussian L -( )2, 110 arcsec
V V1 0 Ratio of fixed Gaussian flux density to crescent flux density U( )0, 1 L unitless
s Rx out Ratio of fixed Gaussian width to outer radius of crescent U( )0, 3 L unitless
s sy x Axis ratio of fixed Gaussian U( )0, 100 L unitless

Vg Flux density of additional Gaussian component U( )0, 2 Jy
x0 Central x-coordinate of additional Gaussian component U -( )200, 200 L μas
y0 Central y-coordinate of additional Gaussian component U -( )200, 200 L μas
σ Width of additional Gaussian component U( )0, 100 L μas
A Anisotropy of additional Gaussian component U( )0, 0.99 L unitless
θ PA of additional Gaussian component U( )0, 180 U( )0, 90 degrees
x0,0 Central x-coordinate of first additional Gaussian component L U -( )100, 100 μas

Δx Change in x-coordinates of adjacent Gaussian components L U( )0, 100 μas
y0,0 Central y-coordinate of first additional Gaussian component L U -( )100, 100 μas
Δy Change in y-coordinates of adjacent Gaussian components L U -( )100, 100 μas
σx Major axis width of additional Gaussian component L U( )0, 100 μas
σy Minor axis width of additional Gaussian component L U( )0, 100 μas

Note. The top section of the table corresponds to crescent component parameters, and the bottom section corresponds to additional Gaussian component parameters
(see Appendix B.2). U( )a b, denotes a uniform distribution spanning the range [a, b], L ( )a b,x denotes a log-uniform distribution in base x spanning the range
[x a, x b].
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Fourier domain as
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and we have followed Kamruddin & Dexter (2013) in defining
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y

t
y

g

b

p b y b

y t b gb
pr

y

º -

º -

º

º

º

= + - - +

- - - -
º
º -

{( ) ( ) [( )

( )( ) ]}

( )

R

R
r

R
K

h
h

h
h h

V hR

X R
X X

1

1

1

2
1 1 1

1 1 2
2

1 .

in

out

0

out

1

1

2

2

0 out
2 2

out out

in out

The xs‐ring model has eight free parameters describing the
compact emission: V0, Rout, f, σ, ψ, τ, γ, and β. The ψ, τ, and γ
parameters are restricted to lie between 0 and 1. The ψ

parameter describes the typical fractional thickness of the
crescent; as y  1 the crescent reduces to a filled disk, and as
y  0 the crescent reduces to an infinitesimally thin ring (i.e.,
delta function in radius). The τ parameter is a measure of the
crescent’s structural symmetry; as t  1 the crescent reduces
to a circular ring, and t  0 when the inner and outer disks

meet at one edge. The γ parameter describes the amplitude of
the emission floor, with γ=0 indicating no central emission.
The β parameter describes the strength of the emission gradient
across the crescent, with β=1 indicating no gradient.
In addition to the compact component, we add a large-scale

circular Gaussian, G, to the model

r = p s r-˜ ( ) ( )V eG . 45G
2 G

2 2 2

This component is permitted to have very large widths,
σG?1 arcsec, to account for short-spacing flux that might be
missed by the bulk of the array. The free parameters in G are its
flux density (VG) and width (σG), bringing the total number of
parameters for the xs‐ring model to 10. An example of the xs‐
ring model is shown in the left panel of Figure 3.

B.1.2. xs-ringauss Model

The xs‐ringauss model differs from the xs‐ring model in two
key respects. The first difference is that the xs‐ringauss model
follows Benkevitch et al. (2016) and includes a fixed elliptical
Gaussian component on top of the crescent. This component is
centered at (x, y)=(r0−Rin, 0) prior to applying the PA
rotation, and its orientation is fixed to match that of the
crescent. The additional free parameters provided by this
Gaussian component are thus its widths (σx, σy) and flux
density V1. The second difference is that the emission floor F in
the xs‐ringauss model takes the form of a circular Gaussian
rather than a disk,

r ps= =p s r p s r- -˜ ( ) ( )V e KeF 2 . 46F F
2 2 2F F

2 2 2 2 2 2

In addition to the amplitude parameter K, this form of the
emission floor has a width parameter σF that also enters into the
model.
The remaining parameters in the xs‐ringauss model match

those in the xs‐ring model, for a total of 14 free parameters: 10
of these parameters are shared with the xs‐ring model, and the
additional four are V1, σx, σy, and σg. An example of the xs‐
ringauss model is shown in the right panel of Figure 3.

B.2. Nuisance Gaussian Components

In addition to the crescent components of the GC models, we
also fit a small number (two to three) of additional “nuisance”
Gaussian components (see Section 5.1). These additional
components are intended primarily to capture extraneous
amorphous emission surrounding the main ring (see, e.g.,
Figure 12) and secondarily to provide additional flexible
degrees of freedom that allow the model to absorb systematic
uncertainties.

B.2.1. Parameterization

We parameterize the Gaussian components in one of two
ways. The first of these, used when fitting the xs‐ring model, is
given by
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Here, Vg,1 is the total flux density of the Gaussian, (x0, y0) are
its central coordinates, (σx, σy) are the Gaussian widths along
the two principal axes, and θ is the PA. A circular Gaussian
model is constructed by setting σx=σy and θ=0.

When fitting multiple Gaussian components in the context of
the xs‐ring model, we only parameterize the first component, as
described above, with a central coordinate position of (x0,0,
y0,0). All additional components have positions that are
referenced to that of the previous component, such that

= + D + D- -( ) ( )x y x x y y, ,i i i i i i1 1 . Such a parameterization
enables the imposition of a spatial ordering by treating the Δx
or Δy parameters as slack variables, thereby breaking the
multimodal labeling degeneracy otherwise caused by pairwise
swaps of different Gaussian components.

The second Gaussian parameterization, used by the xs‐
ringauss model, follows the form described in Broderick et al.
(2011). Specifically,

= p y q+ - - -r
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where (ρ, ψ) are cylindrical polar coordinates in the (u, v)-
plane. Here,
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is an anisotropy parameter. For small numbers (5) of
Gaussian components, tempering is sufficient to ensure that
the MCMC exploration can navigate all posterior modes;
because the xs‐ringauss model never utilizes more than two
additional Gaussian components, no mode collapsing is
necessary.

B.2.2. Behavior in Fits to the M87 Data

In principle, it is possible to add a large number of nuisance
Gaussian components to a model and thereby to fit the data
arbitrarily well. However, our primary goal with model fitting
is not to exactly reproduce all details of the emission structure,
but rather to make robust measurements of the crescent
component model parameters relevant for constraining the
lensed part of the image. Once a sufficient number of Gaussian
components have been added to the model, further additions do
not substantially modify the derived crescent parameters (see
Figure 23). We find that two nuisance Gaussians for the xs‐
ringauss GC model (for a total of 26 free parameters), and three
for the xs‐ring GC model (for a total of 28 free parameters), are
the threshold values that most generally satisfy this criterion.
These values are thus used for all GC model fits presented in
this Letter.
When fit alongside the GC models to the M87 data, we find

that the nuisance Gaussian components account for ∼10%–

70% of the compact flux density. Assessing consistency in the
best-fit parameter values for the nuisance Gaussian components
across models is complicated by the differing model

Figure 23. Measured crescent parameter values from fitting the xs‐ring model with an increasing number of nuisance Gaussian components, shown for the April 5
high-band data set. We see that after a small number of components is reached (three for this data set, marked in green), adding additional components does not
substantially modify the parameter posteriors.
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specifications. In general we find less consistency in the
properties of nuisance Gaussian components for a given day
across models (within a single data set) than we do across
bands (within a single model).

Within the context of a particular GC model, we find that the
nuisance Gaussian components approximately fall into two
categories: (1) components that reside near or on the crescent
component and whose location and structure are consistent
across bands within a single day, and (2) components that tend
to reside far (40 μas) outside the crescent component and
whose location and structure may vary across bands and days.
We associate the first class of nuisance Gaussian components
with attempts by the model to account for a real flux
distribution that is too complex for the crescent component
alone. The second class of nuisance Gaussians acts in a similar
manner to the artifacts frequently seen in image reconstructions
(see Paper IV). We thus associate this second class of
components with the image-domain manifestation of systema-
tic errors in the data products. We emphasize, however, that we
have no mechanism for enforcing a categorization such as that
described on the nuisance Gaussian components, and in general
we expect that any single component will be influenced both by
real source emission and by systematic uncertainties.

Appendix C
χ2 Statistics

In this appendix we define the various χ2 statistics used as
diagnostics of model fit quality in Section 5. We note that the
expressions presented here do not have any bearing on the
fitting process itself; the likelihood functions used during fitting
are described in Section 4.1.

The visibility amplitude reduced-χ2 is given by
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where NA is the number of visibility amplitudes (see Table 1),
Np is the number of GC model parameters, Ng is the number of
independent gain terms, σ is the uncertainty in visibility
amplitude, and Â and A are the modeled and measured
visibility amplitudes, respectively. For the xs‐ring GC model
fits using dynesty we have Np=28 model parameters, while
for the xs‐ringauss GC model fits using THEMIS we have
Np=26.

Analogous to Equation (54), the closure phase reduced-χ2 is
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where yN
C
is the number of closure phases, syC

is the closure

phase uncertainty, and ŷC and ψC are the modeled and
measured closure phases, respectively. As in Section 4.1, we
avoid phase wrapping by selecting a branch of the closure
phase space such that differences always fall between −180°
and 180°.

For the logarithmic closure amplitude reduced-χ2, we have
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where N Aln C is the number of logarithmic closure amplitudes,
s Aln C is the logarithmic closure amplitude uncertainty, and

Âln C and Aln C are the modeled and measured logarithmic
closure amplitudes, respectively.
For the THEMIS fits, we report the joint visibility amplitude

and closure phase reduced-χ2
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The values for each of these statistics are reported in Table 2
for both fitting codes and for all data sets.

Appendix D
Using GRMHD Simulations to Calibrate

the Generalized Crescent Model

To create a mapping between the GC model diameter and the
angular gravitational radius θg, we require data sets for which
we know both quantities. To this end, we take the GRMHD
simulation library described in Paper V to provide our “ground
truth” images. These simulations are necessarily limited in the
range and resolution of physical parameter space that they
probe, but they critically provide a large sample of plausible
emission structures for which we know the underlying physical
parameters. By treating these GRMHD simulations as “ground
truth” images, generating synthetic data from them, and then
fitting that data with the GC models, we aim to (1) determine a
calibration of the measured crescent diameter d̂ in terms of θg,
and (2) estimate the magnitude of the uncertainty in this
calibration.

D.1. GRMHD Image Selection and Synthetic Data Generation

For a given GRMHD simulation, individual “snapshots”
are ray-traced to produce images of the 230 GHz emission as
it would be seen from Earth. These images are then used as
input for generating synthetic observational data with eht-
imaging, which generates visibilities corresponding to the
(u, v)-coverage from the 2017 EHT observations of M87 and
corrupts this data with realistic levels of thermal noise and
station-based systematics. A detailed description of the
synthetic data generation pipeline is provided in Paper IV.
From the GRMHD simulation library we selected 103

separate snapshot images with which to generate synthetic data
sets. These images were selected randomly from within the
parameter space explored by the library, and thus included
examples of emission structures that were incompatible with
the M87 data. The images were split into two groups, from
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which were generated two sets of synthetic data targeting
different aspects of the calibration.

The first group of synthetic data sets, Part I, was created
using only three simulated GRMHD images (shown in the top
three panels of Figure 24). From each of these images 10
synthetic data sets were generated, corresponding to 10
different realizations of the observational noise (i.e., thermal
noise and known systematics such as station gain fluctuations
and polarization leakage) spanning the full range of (u, v)-
coverage in the 2017 EHT M87 data and containing
independent instances of thermal and systematic errors. The
goal of the Part I data sets is to assess the impact of such
observational corruptions on the recovered model parameters,
which enters into the error budget for the calibration.

The second group of synthetic data sets, Part II, contains the
remaining 100 GRMHD images (samples are shown in the
bottom four panels of Figure 24). Only a single synthetic data
set was generated for each of these images, using a randomly
selected realization of the (u, v)-coverage from among the four
days of 2017 M87 observations. The goal of the Part II data
sets is to provide a sample of images for which we know both
the underlying values of θg and the best-fit values of the
diameter d̂ from the GC model fits.

D.2. θg Calibration

We know the input value of the angular gravitational radius
θg for each simulation in Parts I and II of the GRMHD
calibration data set. The basic calibration task is then to fit each
of the corresponding synthetic data sets with a GC model and
determine the scaling factor α (see Equation (27)) relating the
best-fit crescent diameter to θg for the underlying simulation.

The value of this scaling factor is equal to the diameter
measured in units of θg, which Figure 25 shows plotted for all
simulations in the calibration data set. We obtain an estimate of
the scaling factor from each individual fit in Parts I and II, and
we use the mean of these fits as our final determination of α;
the uncertainty in this mean value is roughly an order of
magnitude smaller than any of the calibration uncertainties we
consider below, and we thus neglect it in our error budget.
Table 4 lists the calibrated α values, which we determine
separately for THEMIS and dynesty.
We can see in Figure 25 that each set of 10 synthetic data

sets corresponding to a single simulation from Part I shows
excellent agreement across all measured d values. Comparing
these to the measurements from Part II demonstrates that the
inter-simulation scatter is substantially larger than the inter-
observation scatter, and that the former will be the limiting
factor in measuring θg from the M87 data.

D.3. Uncertainty Budgeting for All Parameters

In general, the error budget for any single measurement of θg
will have three contributions: (1) a “statistical uncertainty”
associated with the width of the posterior, (2) an “observational
uncertainty” associated with incomplete (u, v)-coverage and
unmodeled systematics that change from one observation to the
next, and (3) a “theoretical uncertainty” associated with the
data being a single sample from a dynamic system whose
specific physical properties we are largely ignorant of. For
other measured parameters that lack a counterpart input to the
GRMHD simulations, we only consider the first two uncer-
tainty components.

Figure 24. Examples of GRMHD snapshots used for calibration (see Appendix D). The top three panels show the images used to calibrate the “observational
uncertainty” associated with changing (u, v)-sampling and systematics across days (Part I). The bottom four panels show example images taken from the pool of 100
that were used to calibrate the “theoretical uncertainty” caused by different physical parameters and turbulence realizations in the GRMHD simulations (Part II).
40 μas scale bars are shown in white.
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To quantify the magnitude of these different uncertainty
components, we employ a generalized lambda distribution
(GλD). The GλD is an extension of the Tukey λ distribution
(Tukey 1962) that provides a compact parameterization for
representing a diverse family of probability densities. The GλD
is also flexible and convenient, permitting highly asymmetric
and heavy-tailed distributions to be analytically represented in
terms of a function that depends only on their quantiles. We use
the FMKL parameterization (Freimer et al. 1988), defined in
terms of the inverse cumulative distribution function (CDF),
which can be expressed using four parameters (λ1, λ2, λ3, λ4)
as

l
l l l

= +
-

-
- -l l⎡
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2 3 4

3 4

where q is the quantile of the distribution. The fits were
performed using the GLDEX package in R (Su 2007a, 2007b).

The GλD fits to all three components of the error budget are
shown in Figure 26 for the θg measurements from each of the
two fitting codes. We find that the theoretical uncertainty is
dominant, being larger by a factor of ∼4–5 than either the
statistical or observational components. However, the magni-
tude of this theoretical uncertainty depends strongly on the
category of simulation being used for calibration. We find that
SANE simulations show nearly a factor of ∼2 larger theoretical
uncertainty than MAD simulations; the increased SANE scatter
is visually apparent in Figure 25, and the effective decrease in
calibration uncertainty that would result from using only MAD
simulations is listed in Table 4. However, because such a
preference for MAD over SANE is not well motivated from a
theoretical standpoint (Paper V), we use the calibration factor
determined from MAD+SANE for the measurements pre-
sented in this Letter.

The output of a MCMC or NS fitting run is a “chain” of
samples from the posterior distribution. We determined the
statistical uncertainty component for each parameter by fitting a
single GλD to the ensemble of chains from all 130 Part I and II
data sets simultaneously. Each chain was first mean-subtracted

so that the GλD characterizes only the shape of the typical
posterior distribution for a single GC model fit, rather than
capturing variation in mean value between different fits.
The observational uncertainty component was determined

using Part I data sets only. For each of the three simulations in
Part I, we combined the 10 chains corresponding to the
individual realizations of observational uncertainty for that
simulation. We then subtracted out the mean of each combined
chain before further combining all three chains and fitting a
GλD to the resulting stack. This fitted distribution then

Figure 25. Reconstructed diameters using the GC models from synthetic data generated from GRMHD simulations. Green bands show the one-sided 68-percentile
ranges within the Part I reconstructions (left). The red bands show the one-sided 68-percentile range of the combined Part I and II reconstructions (right). These are
separated by GRMHD simulation type: MAD models are collected in white panels, while SANE models are collected in gray panels. The dotted lines indicate the
MAD+SANE calibration factor, α for the xs-ringauss model (see Table 4).

Figure 26. Sources and magnitudes of random and systematic uncertainty on
the measurement of θg with GC models. These include the average posterior
(blue), the impact of different realizations of unmodeled observational
systematic errors (e.g., polarization leakage, (u, v)-coverage, etc.; green), and
the impact of variations in the assumed underlying GRMHD simulation (red).
(The latter two match the appropriately colored ranges shown in Figure 25.)
These are similar for analyses that employ the xs‐ringauss-based (THEMIS; top)
and xs‐ring-based (dynesty; bottom) GC models. The gray band shows the
range of photon ring diameters for a Kerr black hole from spin 0 to 0.998 over
all viewing inclination angles.
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describes the typical variation in individual parameter mea-
surements that we expect to see across multiple observations of
the same underlying emission structure. The derived observa-
tional uncertainties are listed in Table 3 for each parameter.

The theoretical uncertainty component was determined using
synthetic data sets from Parts I and II, and applies only to θg.
We first made a fit-quality cut on the Part II data sets, removing
all that had a measured diameter of q>d̂ 15 ;g these outlying
fits were deemed poor upon inspection, as they had arrived at
large-diameter solutions by fitting the crescent portion of the
model to extraneous emission while the Gaussian components
were trying to form the ring. We found eight such fits out of
100. The chains for the remaining 92 data sets from Part II and
three data sets from Part I (one randomly selected for each
image) were then combined without performing any mean
subtraction, and a GλD was fit to the entire set.

Note that this is by far the largest component of the
calibration uncertainty. That is, the emission distribution can
vary significantly in position and structure. This is reflected
both in its net shift away from the photon ring size (α;11.5
instead of ;10) and in its scatter between model images.

Appendix E
Using GRMHD Simulations to Calibrate

Image Domain Feature Extraction

To create a mapping between image domain feature
extraction methods and θg, we follow an analogous method
to that described in Appendix D. For the same simulated data
sets used in Appendix D, we generate reconstructed images
using the RML methods as implemented in eht-imaging
and SMILI and the CLEAN algorithm as implemented in
DIFMAP (Paper IV). The images are generated with the fiducial
hyper-parameters determined from the M87 Top Set. The
spread in diameters from varying the hyper-parameters can be
significant (Figure 15). Still, in the final error budget this term
is significantly smaller than the full calibration error measured
here (Table 6).

The reconstructed images frequently exhibit the dominant
ring structures found in the underlying GRMHD model images.
Occasionally, however, significant non-ring features are
present, e.g., a single compact component or multiple rings.
We discard images with such pathologies. For DIFMAP, eht-
imaging, and SMILI, this leaves all 30 images from Part I,
and 70, 86, and 96 of the 100 images from Part II. The
acceptance rates for eht-imaging and SMILI are similar to
those found for the geometric crescent models (92/100). The
large number of rejected DIFMAP frames could lead to a bias in
either the resulting calibration factor α or to an underestimate
of the theoretical uncertainty component in the error bar on θg
from this method.

The image domain feature extraction method described in
Section 7 and Paper IV is then used to estimate the ring
diameters of the Part I and Part II images. We find a qualitative
similarity between the diameter measurements from the image
reconstructions and those obtained in Figure 25: the Part II
images exhibit substantially more scatter than the Part I images,
and within Part II the SANE models are less tightly constrained
than MAD.

We generate an error budget for the image domain diameter
measurements in a fashion similar to that employed in
Appendix D. The primary difference between the two budgets
arises from the lack of posterior distributions reported using the

image reconstructions. We estimate the combined statistical
and observational systematic uncertainty components from the
comparisons in Part I. The analysis of Part II retains the same
meaning as in Appendix D, providing a measurement of the
observational uncertainties (statistical and systematic) com-
bined with the theoretical contribution to the systematic
uncertainty associated with variations in the underlying
intrinsic image structure. Both sets of uncertainties appear in
Table 6.

Appendix F
Average Image Scoring

Assessing the consistency of a given GRMHD model with
the EHT observations is complicated by stochastic features in
the image, associated with turbulence in the underlying
accretion flow. As a result of these, no single snapshot image
from a simulation is expected to provide a high-quality fit
directly to the EHT observations when only observational
errors are included. However, the self-consistency of a model
may be directly assessed by numerically constructing the
anticipated distribution of χ2 values using the ensemble of
snapshot images from a GRMHD model.
Note that this procedure is identical in principle to that

typically employed for assessing fit quality in the presence of
Gaussian errors: the construction of a χ2 and its comparison to
the standard χ2 distribution. In the case of interest here, the
stochastic image fluctuations may be thought of as an
additional noise term that is specified by the model. Apart
from the need to numerically construct the appropriate χ2

distribution, its interpretation is very similar to the normal
procedure.
The AIS method formalizes this process and makes use of

key efficiencies permitted by the small observational errors in
comparison to the stochastic fluctuations. In order to both
formulate a concrete method and ensure computational
feasibility, the THEMIS-AIS method employs a SSM based on
the arithmetic average image from the simulation. Therefore,
the procedure for each GRMHD model and observation day is
as follows.

1. Generate an SSM based on the average snapshot image.
2. Numerically construct a CDF of reduced χ2 values by

fitting this SSM to simulated data generated from each
snapshot image associated with the GRMHD model of
interest for the particular observation day of interest.

3. Finally, fit this SSM to the data, obtain the associated
reduced χ2 by fitting to the corresponding EHT
observations, and assess in light of the previously
constructed CDF.

The second step is the most onerous, requiring the generation
of many additional simulated data sets. However, the
dominance of the stochastic image features over the observa-
tional noise simplifies this process considerably. The CDF
constructed from fitting the average image to the frames is
similar to the CDF constructed from fitting the frames to the
average image. This has been verified explicitly, and the
resulting CDFs constructed both ways are indistinguishable.
For each GRMHD model and observation day this procedure
must be repeated, resulting in a family of more than 1200 CDFs
generated by the THEMIS-AIS procedure.
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The final step, interpreting the fit to the observations, is
quantified by the two-sided quantile of the fit reduced χ2:
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where c( ∣ )DP ,2 is the distribution of fit reduced χ2 and we
have assumed that the distribution of χ2 is broad and extends
beyond the tails of the intrinsic χ2 distribution in the relevant
direction.

A qualitative illustration of this interpretation that uses only
three closure phases as a proxy for the total reduced χ2 is
shown in Figure 27 for three GRMHD models that show the
three potential outcomes. The direct comparisons to the full
CDFs for each of these models are shown in Figure 28. For the
first (top row), the typical deviation between the closure phases

of the average image (red diamond) and those from the
individual snapshot images (blue points) are similar to the
deviation between the former and the EHT data (green
triangle); this model has a pAIS near unity.
In the second (middle row), the EHT data are further from

the average image than the typical snapshot image; this model
has a pAIS<0.01. This is a model for which no snapshots are
likely to be an adequate description of the data, regardless of
computational limits. In the third (bottom row), the EHT data
are closer to the average image than is typical; again the
pAIS=0.01, and this model is excluded. In this case it is likely
that a snapshot could be found, given a sufficiently large
number of images from this GRMHD model, that fits the EHT
observations well. However, the fact that the reduced χ2 is
much less than that expected implies that the “noise” model,
the distribution of stochastic image fluctuations, is wrong. That
is, this GRMHD model is too variable. This is akin to finding a
reduced χ2 much less than unity in the standard fitting process.
Finally, note that the “true” model is necessarily accepted by

the THEMIS-AIS procedure. That is, were a GRMHD simula-
tion to produce the true image on the sky, the probability for it
to be assigned a score of pAIS is identically pAIS. Given a choice
of the minimum acceptable pAIS, the probability of excluding
the true model is then exactly that value (e.g., here 1%).
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Figure 27. Illustration of “good” (top panels) and two “bad” (middle and bottom panels) models following the THEMIS-AIS procedure. Closure phases are shown for
three triangles at 5 UTC for April 5 as proxies for the χ2. Blue dots indicate the closure phases for the best-fit SSM associated with each simulation snapshot image.
The red diamond shows the same for the average snapshot image. The green triangle shows the observed values on April 5, high-band, near 5 UTC. The manner in
which the two models shown in the middle and bottom rows are excluded differs: in the middle case the reduced χ2 is too large, while in the bottom case the χ2 is too
small to be consistent with that anticipated by the individual GRMHD model snapshots.
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Appendix G
GRMHD Model Parameter Estimation

The presence of a significant stochastic component in the
snapshot images from GRMHD models complicates the
interpretation of posterior distributions of the SSM parameters.
This is exacerbated by the very incomplete coverage of the
turbulent realizations by the simulation snapshots (relative to
the observational noise) in a way similar to that found during
model selection (Appendix F). Here we explicitly describe how
we address this.

G.1. Ensemble-based Posterior Construction

The GRMHD models effectively comprise an ensemble of
snapshot images, which simultaneously identify a “typical”
image and the statistical distribution of the stochastic features
within the image. In principle, this stochasticity can be
addressed by introducing hyper-parameters associated with
this additional image structure, subject to priors obtained from
the statistics of the fluctuations within the snapshot ensemble,
and subsequently marginalizing over them. In practice, we
approximate this procedure by instead fitting and marginalizing
over each snapshot image independently. Thus, we formally
define the joint model-parameter posterior distributions for the
SSM model, following Bayes’ theorem, by
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where Q( ∣ )DP , is formally the likelihood,  refers to a
particular snapshot image from  obtained with probability
 ( ∣ )P , and p Q( ) and p ( ) are the priors on parameters Q

and the model, respectively. We now discuss each of these
terms separately.

The prior on a given model is obtained from the THEMIS-AIS
procedure combined with theoretical priors based on X-ray
luminosity, jet power, and radiative efficiency (see Table2 of
Paper V). Because the probability of finding a snapshot image
within the ensemble generated for a particular GRMHD model
that fits the EHT observations well when only observational

errors are considered is small, we do not make significant
distinctions between values of ( ∣ )DpAIS above some thresh-
old, pAIS,0 (see Appendix F). Thus, we set

 p » Q -( ) [ ( ∣ ) ] ( )Dp p , 63AIS AIS,0

where Θ(x) is the Heaviside function. The priors on the SSM
parameters, p Q( ), are described in Section 6.3.
The interpretation of the likelihood, Q( ∣ )DP , , is again

complicated by the substantial stochastic image components. In
the presence of only data-based uncertainties, this likelihood is
formally no different from that described in Section 4.1. In
practice, we find that the spread in “best-fit” Qp; across
different snapshots within a single GRMHD model is much
larger than the distribution of the likelihood function for each
individual snapshot (see Figure 29).
The value of Q( ∣ )DP ,p; is misleading due to the

sparse sampling of the stochastic image components within
the snapshot ensembles. That is, for models deemed acceptable
by the AIS procedure, even large reduced χ2 (defined relative
to the observational noise estimates) may be “high quality” in
that they are well within the range anticipated by the stochastic
variability. For the best of these, the expectation is that a
realization of the turbulence close to that in the relevant
snapshot image would constitute a “good” fit in the normal
sense, i.e., a reduced χ2 of unity; that such a fit was not found is
a consequence only of the necessarily sparse nature of the
snapshot image ensemble. Therefore, these “high-quality” fits
are indicative of parameters for which a realization of the
stochastic component could adequately explain the EHT
observations.
We address this in two steps. First, by specifying “high

quality” within a particular model by ranking the fits relative to
the likelihood (THEMIS) or χ2 (GENA) and placing a cut at
some fractional level, e.g., for the THEMIS pipeline cutting on
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Fits with  q , above some cutoff q0 are assumed to be
sufficiently close to a formally acceptable fit in that a nearby
realization of the stochastic image features could be found.
Second, by making use of the comparatively narrow nature for
the high-quality SSM posteriors

   dQ Q Q» - Q -( ∣ ) ( ) ( ) ( )DP q q, . 65p
3

; , 0

Combining these, the estimated posteriors on the SSM
parameters after marginalizing over all models and images is
then
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Key meta-parameters in this estimate are the quality cuts on
models, pAIS,0, and on snapshot images within a model, q0. In
the following, we note that the posteriors are only weak
functions of pAIS,0, and are converged for q0<0.5, i.e.,
accepting snapshots with fit qualities above the median.
This procedure, while credible, does require a number of

assumptions about the utility of what are ultimately low

Figure 28. Anticipated cumulative distribution function of reduced χ2 for the
SSM for the same three representative models shown in Figure 27 for the April
5 high-band data. For comparison, the measured reduced χ2 is indicated by the
vertical blue line for each model.
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likelihood fits when only observational noise is considered.
While practically these comport with the expectation from the
underlying GRMHD simulations (see Section 6.4), it may
result in intrinsic biases. Therefore, we now turn to validating
the method with mock analyses.

G.2. Validation with Mock Analyses

The first set of validation tests involves the construction of
mock data from a GRMHD snapshot and subsequent analysis.
In the creation of the mock data, the (u,v)-coverage from M87
observations was employed and realistic realizations of all
known systematic errors were included (e.g., polarization
leakage and gain fluctuations). In some cases, these tests have
been repeated hundreds of times. See Appendix D.1 and Paper
IV for descriptions of synthetic data generation.

Analyses using an SSM based on the snapshot from which
the mock data was generated demonstrate the ability to
reconstruct the SSM parameters, i.e., reconstruct Q( ∣ )DP , .
An example, taken from the calibration data sets employed in
Appendix D, is shown in the left panel of Figure 29. This
analysis has been performed for all 130 of the sets described in
Appendix D, and for more than 1200 additional data sets as
part of the THEMIS-AIS scoring procedure and internal
validation. Generally, we find that the input SSM parameters
are recovered within the very narrow posterior distributions.

Ensemble-based posterior reconstruction was performed for
all 130 simulated data sets described in Appendix D and the
more than 1200 sets constructed as part of the THEMIS-AIS
procedure using the “truth” model, i.e., for the GRMHD model
from which a snapshot was selected from which to generate the
data. This directly tests the ability to reconstruct Q( ∣ )DP for a
single GRMHD model, i.e., Equation (66). An example is
shown in the right panel of Figure 29 for the same example data

set shown in the left panel. As expected, the true parameters lie
within the ensemble-based posterior distribution. Small net
biases, defined by the difference of mean parameter value and
the “truth” in units of the posterior width (measured by
standard deviation, σ), have been identified: less than 0.3σ in
the compact flux, less than 0.07σ in θg, and less than 0.02σ in
PAFJ.
For two mock data sets, the ensemble-based posterior

estimate, Q( ∣ )DP in Equation (66), was reconstructed for the
full GRMHD model library without model selection, i.e.,
pAIS,0=0. Again, as expected, the true parameters lie within
the ensemble-based posterior distribution.

G.3. Convergence Tests

There are a number of what might be deemed convergence
tests, i.e., comparisons of the ensemble-based posteriors
constructed in various ways that differ in the mechanics but
not the underlying physical inputs.
Were the posteriors sensitive to outliers, we may have

anticipated them to change with total number of snapshots
used. A subset of GRMHD models had 500 snapshots
generated from them, in comparison to the 100 snapshots that
was standard. These do not show materially different ensemble-
based posteriors when a subsample of 100 snapshots are used
and when the full 500 snapshots are used.
The ensemble-based posteriors are typically generated from

only a subset of the SSM analyses associated with a given
GRMHD model, determined by a fit quality cut. This is
characterized in terms of a likelihood or χ2 percentile, with the
expectation that particular bad fits are likely dominated by the
peculiarities of the realization of the stochastic components.
The ensemble-based posteriors cease to evolve after reducing
the percentile cut below 50%; i.e., once the likelihoods (χ2)

Figure 29. Example joint posterior plots for the SSM parameters from one of the many mock analyses performed as part of the ensemble-based posterior estimation
validation. Shown are the distributions for compact flux density, θg, and PA from SSM analyses of simulated data sets using individual frame snapshots. Left panel:
the posteriors from fitting only the frame from which the data was generated. Right panel: the stacked posteriors of snapshots with a likelihood larger than the median
for the GRMHD simulation from which the simulated data was generated (i.e., q<0.5). Note that the ranges on the right are much larger than those on the left. The
underlying model was a SANE-type accretion flow with a*=0.94, i=163°, Rhigh=80, and mass rescaled such that θg=4.5 μas. The data was generated for the
April 5 (u, v)-coverage. Contours enclose 68% and 95% of the posterior.
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that are included are above (below) the median value. This
suggests that these are not contaminated by particularly
poor fits.

A subset of GRMHD models have been run with different
GRMHD simulation codes and resolutions (and imaging
resolutions); i.e., for the same black hole and initial accretion
flow parameters, multiple GRMHD simulations have been
performed. Individual SSM analyses do depend modestly on
the GRMHD simulation resolution and the resolution of the
snapshot image, though this is far smaller than the typical size
of the ensemble-based posterior. Comparisons of the ensemble-
based posteriors for identical simulation setups among
GRMHD codes indicate that they are very consistent, implying
that the number of frames is sufficient to adequately cover the
posterior.

Appendix H
Image Domain Feature Extraction Method Tests

In order to explore and quantify the sensitivity of our
measurement of the image parameters to the presence of noise
in the images, the effect of pixelization, and the presence of
outliers in the pixel brightness distribution, we performed a
number of validation tests. We used the images reconstructed
with eht-imaging data on April5 and analyzed them using
two different algorithmic implementations and three variants of
the methods described above. CaseA refers to the above
definitions. CaseB refers to using the same definitions but after
having smoothed with a 2μas Gaussian (Paper IV Section 9
uses this method to find the ring center before measuring the
width and diameter from the unblurred image). CaseC uses
unsmoothed images but locates the centers by minimizing the
difference between the 25th and the 75th percentile distances to
the peak brightness over all azimuthal angles. It then calculates
the image diameter using the median of the peak brightness
distances from the center over all azimuthal angles. CaseB
tests the sensitivity of the measured parameters against the
presence of noise in the image reconstruction. CaseC tests
against biases that might be introduced by outliers in the
azimuthal cross sections.

Figure 30 shows the fractional differences in the measured
diameters and fractional widths inferred using these three

different variants. The differences in diameter between the
three cases have means of 0.4–0.9 μas and comparable standard
deviations, whereas the differences in fractional width have a
mean of zero and a standard deviation of 0.04. These
differences are smaller than the differences in the feature
parameters inferred from the same data using different
visibility- and image-domain techniques. In Section 7, we use
CaseB.

Appendix I
Prior Measurements of the Distance to M87 and the

Dynamical Mass of Its Central Black Hole

I.1. Prior Distance Measurements

We provide the details of the methods and the uncertainties
included in each distance measurement here.
TRGB method. The TRGB method leads to a direct distance

measurement by utilizing the bright-end distributions of the red
giant stars as a primary standard candle. Bird et al. (2010)
reported the absolute distance modulus of μ=31.12±0.14,
using data sets of the HST Advanced Camera Survey (ACS)
Virgo Cluster Survey (VCS) that resolved the brightest red
giant stars in M87 for the first time.
SBF method. The SBF method also utilizes red giant stars. It

is often categorized as a secondary standard-candle method
because it relies for its calibration on nearby galaxies for which
distances are independently measured with resolved-star
methods. Therefore, SBF measurements in Virgo Cluster
surveys provide relative distances of Virgo galaxies to the
calibrated mean distance of the entire Virgo Cluster. To date,
there are two distinct measurements that fall into this category.
The first one by Blakeslee et al. (2009) uses the HST ACS-VCS
data and finds μ=31.11±0.08 (denoted hereafter as μSBF1;
see also Mei et al. 2007). A second, more recent study by
Cantiello et al. (2018a) reported μ=31.15±0.04 (denoted
hereafter as μSBF2) based on data from the Next Generation
Virgo Cluster Survey (NGVCS), obtained using ground-based
adaptive-optics with the Canada French Hawaii Telescope.
There are a couple of other sources of systematic errors in

SBF measurements. The first one is a systematic error of
0.1 mag on the distance zero-point (Cantiello et al. 2018b),

Figure 30. Differences in the measured (left panel) diameters and (right panel) fractional widths of the Top Set images reconstructed with eht-imaging using the
April 5 M87 data when applying three different variants (A, B, and C; see the text for details) of the method for measuring these parameters. In both panels, the solid
lines show Gaussian distributions with means and standard deviations equal to those of the histograms. The typical differences between the parameters measured with
the three variants are smaller than the pixel size.
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which was not accounted for in either of the two measurements.
A second one, considered in Blakeslee et al. (2009) but not in
Cantiello et al. (2018a), arise from the intrinsic scatter in the
absolute fluctuation magnitude attributed to stellar populations
(cosmic scatter; Tonry et al. 2000) and is estimated to be
0.06 mag (Blakeslee et al. 2009). Adding these in quadrature to
the formal errors quoted above, we obtain for the absolute
distant moduli μSBF1=31.11±0.13 (Blakeslee et al. 2009)
and μSBF2=31.15±0.12 (Cantiello et al. 2018a). Finally, we
average the two measurements weighted by their errors to get
μ=31.14±0.12. We report these measurements in Table 9,
together with the combined posterior as their product in
Figure 31.

Assuming Gaussian posteriors P(μ) for the distance modulus
measurements with the means and standard deviations given in
Table 9, we calculate the posteriors for the distance P(D) to
M87 using the relation m = -( )D5 log 510 as

m
=( ) ( ) ( )P D

P

D

5

log 10
. 67

Finally, considering the three distance measurements to be
independent, we calculate the combined posterior as their

product. We show the posteriors in Figure 31 and quote their
most likely values and uncertainties in Table 9.

I.2. Mass Determination

Both the stellar dynamical and the gas dynamical mass
measurement techniques that we described in Section 8.2
measure, in reality, a mass-to-distance ratio rather than the
mass of the central object directly. To convert these into
posteriors over a mass, we first convert the measurements into
posteriors over the mass-to-distance ratio  and then rescale
them based on the posterior over distance that we described in
the previous section.
We use the marginal χ2 distributions for mass MBH shown in

Figure 6 of Gebhardt et al. (2011) and Figure 6 of Walsh et al.
(2013) and set MBH=×(17.9 Mpc). We denote the
posteriors for the stellar and gas dynamical measurements as
( )P stars and ( )P ,gas respectively, and write



 ò

c
c

º
- ´

- ´
( ) [ ( ) ]

[ ( ) ]
( )P

d

exp 17.9 Mpc 2

exp 17.9 Mpc 2
68i

i

i i

2

2

for each model (i=gas, stars). Table 9 summarizes the credible
regions of these distributions.
We can also convert the mass-to-distance ratio from

dynamical measurements directly to an angular size of one
gravitational radius at the distance of M87, θdyn≡G/c2.
This posterior is given by

q =( ) ( ) ( )P
c

G
P . 69dyn

2

We list the credible intervals for this quantity in Table 9.
We can now use the posterior over the mass-to-distance ratio

and that over distance to calculate the posterior over the mass
for the stellar and gas dynamics measurements as

ò=( ) ( ) ( ) ( )P M
D

P D P dD
1

, 70i i

where i=Mi/D.
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Table 9
Relevant Literature and Derived Quantities

Method Measurement Type Units Value References

TRGB D Mpc -
+16.75 1.04

1.11 Bird et al. (2010)
SBF D Mpc -

+16.67 0.96
1.02 Blakeslee et al. (2009)

SBF D Mpc -
+16.98 0.91

0.96 Cantiello et al. (2018a)
Gas dynamics qdyn μas -

+2.05 0.16
0.48 Walsh et al. (2013)

Stellar dynamics qdyn μas -
+3.62 0.34

0.60 Gebhardt et al. (2011)

Product of two SBF measurements D Mpc -
+16.82 0.86

1.02 This work

Product of three measurements D Mpc -
+16.76 0.66

0.75 This work

Gas dynamics M 109 Me -
+3.45 0.26

0.85 Walsh et al. (2013); this work
Stellar dynamics M 109 Me -

+6.14 0.62
1.07 Gebhardt et al. (2011); this work

Note. We report median values and 68% confidence intervals.

Figure 31. Normalized posteriors for the distance measurements to M87. Two
colored lines show the posterior from the measurements using the TRGB
method (Bird et al. 2010) and combined posterior from the SBF method
(Blakeslee et al. 2009; Cantiello et al. 2018a). The black line shows the
normalized product of three posteriors obtained by combining these
measurements.
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