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Bone  

Bone has several important functions in the body: not only does it support 

soft tissue and protect the internal organs, it also facilitates locomotion and 

serves as a giant calcium-storage. Bone is found in two forms in the body: 

cortical (or compact) bone and trabecular (spongy) bone (Figure 1). On a 

microscopic level, bone is a specialized form of connective tissue that is a 

combination of tough collagen fibers and hard calcium phosphate crystals. 

Bone is a highly dynamic tissue that remodels constantly and is capable of 

repair after fractures and adapting to changing functional requirements and 

mechanical load.

 Bone remodeling mainly occurs on the 

surface of trabecular bone (Howship lacunae) 

or inside cortical bone as cylindrical Haversian 

systems and is regulated by three different cell 

types: osteoclasts, osteoblasts, and osteocytes 

(Figure 2). Their activity is regulated by 

mechanical forces, hormones, and cytokines. 

Osteoclasts are big, multi-nucleated cells that 

can firmly attach themselves to bone, thereby creating a sealed-off pocket: 

the sub-osteoclast compartment. Osteoclasts can subsequently excrete 

enzymes that resorb the underlying bone, which is necessary in order to 

remove damaged or unloaded bone. If, after resorption, new bone matrix is 

needed at the location, dormant osteoblasts (lining cells) will be activated and 

start producing new extracellular matrix components such as collagen type 

1 and proteoglycans. Eventually, osteoblasts will get encapsulated by it and 

Figure 1: the proximal femur, 
clearly showing trabecular 
bone inside the femoral head 
and cortical bone in the shaft.
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become osteocytes. Osteocytes are mature bone cells and are situated in the 

lacunae (or voids) of the calcified bone matrix. They are thought to contribute 

to the regulation of bone remodeling in response to mechanical and micro-

environmental changes by signaling to osteoblasts and osteoclasts.

Osteoporosis  

Osteoporosis, a disease characterized by low bone mass, is the most 

common metabolic bone disorder, affecting 200 million individuals worldwide 

[34]. Even though osteoporosis is defined by a low bone mass, its clinical 

manifestation is a fracture. In the year 2000 alone, about 9 million fragility 

fractures were associated with osteoporosis worldwide [30]. Osteoporosis 

always involves an imbalance between bone resorption and bone formation. 

Whatever the cause of this imbalance (excessive bone resorption, insufficient 

bone formation, or an inadequate peak bone mass to begin with), the result 

is always a lower bone mass [48]. Since remodeling takes place at the bone 

surface, the sponge-like trabecular bone is more active than cortical bone 

and therefore more susceptible to the effects of osteoporosis. The individual 

Figure 2: Bone cells repairing a microcrack. Osteoclasts (blue) are dissolving the bone, 
osteoblast (red) are forming new bone and osteocytes (green) are mature osteoblasts 
encapsulated by the bone matrix.
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trabeculae within cancellous bone become thinner and may even disappear 

completely, leading to a more anisotropic architecture of bone (Figure 3) 

[25,51]. It comes as no surprise that bones with large amounts of trabecular 

bone (wrist, hip and spine), are amongst those with the highest number of 

reported fractures in osteoporotic patients [30]. 

 

 

 With an estimated 1.4 million new fractures comingto the attention of 

clinicians in the year 2000 alone, vertebral compression fractures (VCFs) are 

one of the most common fractures related to osteoporosis [30]. Probably, 

this number is even higher in reality, as not even one third of all the VCFs 

come to clinical attention [13,52]. Vertebral fractures can have serious clinical 

consequences such as spinal deformity (kyphosis) [14], height loss [28], 

impaired physical function and immobility [10,44], and decreased pulmonary 

function [49,36].

 The deterioration of bone due to osteoporosis is a major cause for 

vertebral fractures [39], but many other factors can also influence the fracture 

risk, like the size of the vertebral endplates [21], the moment arm length of 

the erector spinae muscles [21] and hyperkyphosis [26]. In addition Sornay-

Rendu et al [50] found a statistical correlation between disc degeneration and 

vertebral fractures, but the precise and logical connection between the two 

Figure 3: Overview 
of a vertebra (right). 
Sagittal section of a 
healthy vertebral body 
(upper left) and of a 
vertebral body affected 
by osteoporosis (lower 
left).
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was unclear. In CHAPTER 2 of this thesis we tried to clarify this connection 

by simulating the bone remodeling in a vertebral body while the adjacent 

intervertebral disc was in several stages of degeneration.

 While the occurrence of a vertebral fracture is already problematic 

in itself, the risk for new fractures steeply increases once a spinal fracture 

has occurred. It has been demonstrated that after an initial vertebral fracture, 

the fracture risk increases considerably with every additional prior fracture 

[35,37]. This is also referred to as the ‘vertebral fracture cascade’ [8]. One 

factor that might play an important role in this fracture cascade is the wedge-

like deformity that is often caused by fractured vertebrae (Figure 4) [44]. 

It is known that this wedge-like deformity can induce shearing loads in the 

adjacent vertebrae [8,59] and in CHAPTER 3 of this thesis we will therefore 

investigate whether these shearing loads can increase the fracture probability 

of the adjacent vertebrae.

Percutaneous Vertebroplasty  

Conservative treatment for patients suffering from acute painful osteoporotic 

vertebral fractures has long been the only available treatment option in daily 

Figure 4: When a ver-
tebra fractures, the 
spinal alignment can 
change (left). Injection 
of bone cement into the 
vertebral body during 
percutaneous vetrebro-
plasty (right).
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clinical practice and includes bed rest, administering analgesics and muscle 

relaxants, spinal braces, and physical therapy [17,32,47]. A relatively new 

method in the treatment of osteoporotic spinal fractures is called percutaneous 

vertebroplasty (PVP) and it comprises the placement of wide-bored cannulae 

into the fractured vertebral body under fluoroscopy or CT guidance, and 

subsequent injection of bone cement, usually polymethylmethacrylate 

(PMMA, Figure 4). The technique was first described in 1987 by Galibert and 

Deramond et al. who used it to successfully treat spinal angiomas [18]. It 

was due to this success that the authors also suggested to use PVP for other 

indications as well, such as spinal osteoporotic compression fractures [19].

 The following years, many studies were published that demonstrated 

the clinical success of PVP as a treatment for vertebral compression fractures 

[5,20,29,33,58]. Pain reduction and the prevention of further vertebral collapse 

with a relatively low number of complications were the most important aspects 

of the technique. But even though the complication rate of PVP is low, some 

side effects can seriously affect the patient. Leakage of bone cement outside 

the borders of the vertebral body can, in extremely rare cases, lead to paralysis 

[53] or lung embolisms [41,56].

 Whether other possible complications, such as the occurrence of 

adjacent level fractures, have a direct link to previous PVP procedures in the 

same patient is still an issue of debate. While some claim that the relatively 

stiff bone cement, injected during PVP, can cause stress peaks in the 

adjacent vertebrae leading to new fractures [4,6,22,23,46,55], others have 

not found such a connection [9,15,42,57]. Results of in-vitro studies are often 

difficult to interpret as large volumes of bone cement are used, while surgeons 
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strive to use the minimum amount of bone cement in order to prevent cement 

leakage. In CHAPTER 4 of this thesis we will assess whether a clinically 

relevant amount of bone cement can act as a stress riser and may cause 

adjacent vertebral fractures in patients that received PVP.   

 Apart from its use in the fractured vertebrae directly, PVP can 

also be used in the possible prevention of adjacent level fractures. As 

mentioned before: the risk of additional vertebral fractures increases after 

the first VCF [35,37], particularly in adjacent level vertebrae [15,27,37,54].  

Thus, when augmenting a fractured osteoporotic vertebra it is already known 

that the fracture risk for the adjacent vertebrae increases. In CHAPTER 5 we 

assess if, and to what extent, prophylactic PVP can reinforce osteoporotic 

vertebrae adjacent to previously fractured and deformed vertebrae.

 Currently, PMMA bone cement is the most used augmentation material 

in PVP. Although the clinical results are good, other augmentation materials 

are being developed in order to further improve aspects such as handling, 

mechanics and biocompatibility [24]. A promising upcoming alternative 

material is “Cortoss”. This material strongly attaches itself to the host bone 

[16], relatively low volumes are needed to achieve a satisfactory vertebral fill 

[3,40,45], and it does not require premixing like PMMA and can be injected 

when needed during surgery. In CHAPTER 6 we will evaluate how this relatively 

new material performs in a large number of patients and we will compare it to 

results from previous studies with PMMA bone cement.

Controversy  

Recently, the PVP technique endured razor-sharp criticism. As most of the 
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evidence that supported the positive effect of PVP came from case studies, 

or relatively small cohort studies [38], two double blind randomized controlled 

trials were performed to get a better understanding of the therapy. But instead 

of underlining the beneficial effects, these studies casted considerable doubt 

on the procedure’s efficacy; they showed that sham interventions give similar 

pain relief as PVP [9,31]. The confusion grew even bigger when in 2010 another 

randomized clinical trial (not blinded) demonstrated excellent results on PVP 

compared to conservative treatment [33]. Ever since this period, clinicians as 

well as researchers commented on these studies and discussed whether PVP 

should be used in the clinic or not [1,7,11].

  Regardless of the outcome of this ongoing discussion, it seems that a 

shift in the clinical policy is already taking place as the American Academy 

of Orthopaedic Surgeons issued a “strong” recommendation against the use 

of PVP in 2010 [2], and the Dutch College voor Zorgverzekeringen gave the 

stringent advice to insurance companies to stop the reimbursement for PVP 

in patients with vertebral fractures [12]. In CHAPTER 7 we will investigate 

whether this rapidly changing clinical policy affected the clinicians that have 

to actually facilitate these changes.

Thesis overview  

In this thesis we will focus on several topics within the realm of vertebral 

fractures and the treatment thereof. In CHAPTERS 2 & 3 we will zoom in on how 

intervertebral disc degeneration and altered loading of the vertebra might play 

a role in the occurrence of new vertebral fractures. While CHAPTERS 4 & 5  are 

devoted to assess a potential limitation (induction of adjacent level fractures 



21

due to stress peaks) and a possible advantage (prophylactic vertebroplasty 

to prevent adjacent level fractures) of the PVP technique. In CHAPTER 6 we 

will investigate if the treatment of vertebral fractures can move forward with the 

introduction of a novel augmentation material and in CHAPTER 7 we will study 

how the changed views towards PVP has influence clinicians in their daily 

practice. In CHAPTER 9 the key findings of this thesis will be highlighted and 

possible ways for implementing them into clinical practice will be discussed.
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Introduction  

One of the major problems facing the elderly spine is the occurrence of 

vertebral fractures, which are associated with height loss, back pain, disability 

and even increased mortality rates [4,18]. In the European Union more than 1 

million new vertebral fractures occur every year [6], and in the western world 

vertebral fractures are present in 25% of all postmenopausal women [19]. As 

these vertebral fractures are strongly correlated to low bone density [20], they 

are commonly attributed to osteoporosis. A recent study, however, found a 

correlation between vertebral fractures and disc degeneration [29].

 Disc degeneration begins with the nucleus becoming dehydrated 

and more fibrous, followed by a loss of distinction between the nucleus and 

annulus, disorganized fibers in the annulus and, finally, a decreased disc 

height [11]. With disc pressure measurements it was found that healthy discs 

show an area of constant pressure under the nucleus and the inner annulus. 

For degenerated discs the area of constant pressure was much smaller and 

the pressure within it was lower [1]. Such a change in pressure in the disc 

and on the endplates would, through Wolff’s law, lead to bone adaptation 

in the adjacent vertebrae. Indeed, disc degeneration has been found to be 

correlated to a changed bone density distribution within the vertebra [5,10,27]. 

On the other hand and seemingly contradictory, two recent studies found 

disc degeneration to be correlated to an increased total spinal BMD [16,31]. 

The literature thus seems to suggest that the bone adaptation could be an 

important factor in the reported correlation between disc degeneration and 

increased vertebral fracture risk, but also that this increased fracture risk is 

due to the density distribution and not due to the total bone density. 
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 Although disc degeneration thus appears to be related to the increased 

fracture risk seen in the elderly spine, the pathway from a degenerated disc to 

this increased fracture risk remains unclear. For this study we were interested 

in the global mechanisms of bone adaptation in the degenerating spine: can 

existing bone adaptation simulations, that were previously used for hips and 

knees [22,32], explain the observed association between disc degeneration 

and fracture risk? And if so, what are the effects of the different stages of disc 

degeneration on the bone density in the adjacent vertebrae?

Materials & Methods  

Cadaver material  

We obtained an L2–L4 segment from an 81 year old female cadaver and 

removed all soft tissues, except the ligaments. Four metal pellets (0.8 

mm) were inserted into each of the threevertebrae (posterior process and 

the left, right and anterior wall of the vertebral body) to allow for Rontgen 

Stereophotogrammetric Analysis (RSA). The segment was subsequently CT 

scanned (resolution: 0.3 mm × 0.3 mm × 1 mm) alongside a solid calibration 

phantom (0, 50, 100, and 200 mg/ml calcium hydroxyapatite). Using this 

calibration phantom the calcium equivalent, ash and apparent density values 

were determined for every voxel [30].

Mechanical tests  

For mechanical calibration purposes, the segment was tested in flexion, 

extension, lateral bending and torsion. The upper L2-endplate and the lower 

L4-endplate were embedded in PMMA cement and fixated in a custom made 
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testing jig inside our MTS machine (MTS Systems Corp., USA). The specimen 

was preloaded for 1 h with a static axial load of 367 N (50% of estimated 

bodyweight) to eliminate super-hydratation of the discs. The specimen was 

then loaded instantaneously with 5 N m and RSA-photographs were taken 

just before and after applying the load. As the inserted pellets were visible on 

the CT-scans as well as on the RSA-photographs, they provided detailed 3D 

information of the orientation of the vertebrae during the loading tests.

Finite element model and calibration  

Based on the CT-data, from which the pellets were digitally removed, we 

constructed a finite element model of the complete spine segment (Figure 1). 

The stiffness of the bone elements was calculated using E =  14,900 x ρash1.86 

MPa [12]. The Poisson’s ratio for all bone elements was set to 0.3. Facet joints 

were modeled using a contact algorithm, with an allowed overlap of 0.4 mm 

to represent cartilage compression. The outer edges of the intervertebral disc 

could be determined from the CT-images. This was not possible for the edge 

between the annulus and the nucleus, which was thus based on literature [25]. 

As we are interested in long-term, steady state loading and the resulting bone 

adaptation, the discs were modeled non-linear elastic but did not include 

Figure 1: Finite element model of L2–L4 spine segment. 
The model includes vertebrae, intervertebral discs 
(containing a nucleus and an annulus), ligaments and 
facet joints.
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any biphasic behavior of the material. The “tension-only” elements that 

represent the annulus fibers (occupying 16% of annular volume) were placed 

circumferentially at ±30° with the transversal plane, connecting the endplates 

above and below the disc [25]. Ligaments and facet capsules (tension only 

elements) were added based on literature data [2,15,34] as these could not 

be seen on the CT-images. In the calibration simulations the mechanical 

properties of the nucleus and annular fibers as well as the Poisson’s ratio of the 

annulus were taken from literature [3,13,24,26]. The mechanical properties of 

the annular base material and of the ligaments were based on literature [23],  

but these were varied such that the model best simulated the mechanical 

behavior measured in the mechanical tests. After these calibration steps, the 

mechanical behavior of the model fitted well onto the mechanical behavior of 

the real spine segment as found in the mechanical tests (R2 = 0.98, Figure 

2). The resulting mechanical properties of the ligaments are listed in table 1.

Figure 2: Experiment vs. FE-
calculations. The rotation angles, 
per motion segment, found for the 
real specimen (white bars) and for 
the FE- model (grey bars). Both 
were tested in flexion, extension, 
left bending, right bending, left 
axial torsion and right axial torsion 
with a moment of 5 N m.



36

Bone remodeling simulations  

Bone adaptation of the middle vertebra was simulated using a strain-

adaptive bone remodeling theory, where the bone is assumed to attempt 

to normalize its local load pattern to that of the reference situation [22,32]. 

In this study, the strain energy density over apparent density as calculated 

in the elements of the model with healthy discs represented the reference 

signal (Sref). In an iterative step of the adaptation simulation (Figure 3), 

first, the stiffness of every element was determined from its density [12]. 

Second, the lower endplate of the L4 vertebrae was fixed, while the upper 

endplate of the L2 vertebra was loaded with a distributed load of 500 N [33].  

Third, the stresses, strains and strain energy density values for every element 

were calculated (MSC Software, USA). Fourth, the adaptation of the apparent 

density of each element was based on the value of the current signal (Scurrent) 

compared to the reference signal (Sref) of that same element. If Scurrent was 

less than 65% of Sref, the apparent density is lowered (dρ/dt = τ a(ρ)(Scurrent 

− 0.65Sref)) and if Scurrent was more than 135% of Sref, the apparent density 

Level a b c
Lig. long. anterius L2 - L3

L3 - L4
11.92
11.92

36.12
36.12

0.038*
0.093*

Lig.long.posterius L2 - L3
L3 - L4

7.74
7.74

45.69
45.69

0.115
0.115

Lig.flava L2 - L3
L3 - L4

2.34
2.34

28.78
28.78

0.035
0.035

Lig. interspinalia L2 - L3
L3 - L4

5.47
5.47

16.39
16.39

0.327
0.327

Lig. Supraspinalia L2 - L3
L3 - L4

22.22
22.22

9.59
9.59

-0.225*
0.125

Lig. Capsulae L2 - L3
L3 - L4

1.73
1.73

29.55
29.55

-0.032 
-0.002*

Table 1: Factors describing the nonlinear ligament force: F = a(eb(ε−c)−1) [23]. *changed from 
values found by Rohlmann et al.
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is raised (dρ/dt = τ a(ρ)(Scurrent − 1.35Sref)). Fifth, the thus updated vertebral 

density distribution entered the next iterative step. The bone adaptation 

simulation was stopped when no more density changes occurred and the 

adaptation process had converged. Between 65% and 135% of the reference 

signal no adaptation takes place, this zone is referred to as the lazy zone [32]. 

a(ρ) represents the relationship between free bone surface area per volume 

and bone density (bone adaptation is assumed to take place only at the bone 

surface, [17]). τ represents a time constant relating computer time to human 

time (τ = 130 g2 mm−2 J−1 month−1 [32]).

 In this study the influence of the properties of the degenerating 

intervertebral disc on the bone adaptation process of the vertebrae was 

assessed and compared to clinical adaptation patterns that have been 

reported. Therefore the mechanical properties of the discs were changed to 

represent a ‘healthy’ or ‘degenerated’ disc. For the healthy discs, the nucleus 

material had a Young’s modulus of 1.0 MPa and a Poisson’s ratio of 0.499, the 

annular base material had a Young’s modulus of 4.2 MPa and a Poisson’s ratio 

Figure 3: Schematic of bone 
adaptation simulation. Each iteration, 
the loads within the changed model 
are calculated and used to update the 
density of every element: signal values 
outside of the lazy zone lead to bone 
removal (left side of curve) or bone 
apposition (right side of curve). The 
thus adapted model reenters the next 
iterative step.
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of 0.45, and the annular fibers had a Young’s modulus of 35 MPa [3,13,24,26]. 

Disc degeneration step 1 represented complete degeneration of the nucleus: 

dehydration and more fibrous (lower Poisson’s ratio and increased stiffness 

respectively [7,13]), while the annulus remained healthy. Disc degeneration 

step 2 represented the additional complete degeneration of the annulus: 

dehydration and more disorganized fibers (lower Poisson’s ratio and a higher 

but isotropic stiffness without fibers [7,13]). To assess which parameter of 

a degenerated disc contributes most to the bone adaptation process all 

properties of the degenerated disc were changed individually as well (Table2). 

As the intervertebral discs of our specimen were already rather thin, we did 

not include disc thinning (a late aspect of disc degeneration) in our analyses. 

 The amount of bone remodeling was evaluated by calculating the 

gradual changes in apparent density in four volumes of interest (VOI’s): 

trabecular core, anterior wall, posterior wall, and lateral wall (average of left 

and right wall, Figure 4). The effects of the different stages of disc degeneration 

were compared within the different VOI’s.

Figure 4: Volumes of interest (VOI’s): 1, trabecular core; 
2, anterior wall; 3, posterior wall; 4, lateral walls (results 
averaged for left and right).
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Results  
Disc loading  

In the model with healthy intervertebral discs, the load was not distributed 

homogeneously over the discs: the nucleus was loaded more than the annulus 

(± 0.6 MPa vs. ± 0.2 MPa, Figure 5 left). Complete degeneration of just the 

nucleus resulted in a dramatic load shift from the nucleus to the annulus 

(loaded with ± 0.2 MPa and ± 0.8 MPa respectively). Particularly the anterior 

and posterior parts of the annulus were highly loaded (Figure 5, middle). 

Additional degeneration of the annulus did not considerably affect the load-

transfer pattern of an unloaded nucleus and a loaded annulus (loaded with 

± 0.1 MPa and ± 0.5 MPa respectively). It did, however, somewhat reduce 

the peak pressure in the annulus compared to the case of just nucleus 

degeneration (Figure 5, right).

Vertebral loading  

The distribution of the load was not constant over the height of the vertebra. 

For a healthy intervertebral disc, at the mid-transverse level, the vertebral 

walls were loaded more than the core. Near the endplates the core was 

loaded more than the walls (Figure 6, left). Complete degeneration of just 

Figure 5: Disc pressure profiles. Hydrostatic pressure profiles at mid-height in a healthy disc 
(left), a disc with a degenerated nucleus (middle) and a disc with a degenerated nucleus and 
annulus (right).
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the nucleus shifted the load from the core to the walls, particularly near the 

endplate (Figure 6, middle). Subsequent degeneration of the annulus did not 

substantially affect the pattern any further (Figure 6, right).

Adaptation after nucleus degeneration  

Nucleus degeneration had little effect on the average apparent density of the 

total corpus (− 2%), but did effect the density distribution across the regions. 

Nucleus degeneration resulted in a 52% decrease of the apparent density of 

the trabecular core, an increase in density in the anterior and posterior wall 

(12% and 10%, respectively), and little change in the lateral walls (+ 2%, 

Table 3 and Figure 7).

 The changing apparent density values were for the most part caused 

by the dehydration of the nucleus (simulated by a lower Poisson’s ratio). The 

Figure 6: Vertebral loading. Strain energy density distribution as seen in a mid-sagital cross-
section in a model with healthy discs (left), discs with a degenerated nucleus (middle) and 
discs with a degenerated nucleus and annulus (right).
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nucleus becoming more fibrous (simulated by a higher Young’s modulus) had 

little effect on the apparent density values of the adjacent vertebra (Table 3).

Adaptation after total disc degeneration (nucleus and annulus)

Complete disc degeneration, like nucleus degeneration, had little effect on 

the average apparent density of the total corpus (− 3%), but did effect the 

density distribution across the regions. Complete disc degeneration resulted 

Trab. core Ant. wall Post. wall Lat. wall

Nucleus degeneration (Step 1)
•	 Complete degeneration 
•	 Just ν lower 
•	 Just E higher

-52%
-85%
+2%

+12%
+26%
+3%

+10%
+26%
-10%

+2%
+15%
-3%

Annulus degeneration (step 2) 
(on top of a degenerated 
nucleus)
•	 Complete degeneration
•	 Just ν lower
•	 Just E higher (fibers 

‘removed’)

-65%
-40%
-72%

+12%
+3%

+20%

+7%
+3%

+15%

+4%
+4%
+9%

Table 3: Bone density change in each VOI resulting from different disc degeneration stages.

Fig. 7. Apparent density changes due to disc degeneration. Apparent density values in the 
ROI’s (tracebular core, anterior wall, posterior wall, and lateral wall) as a percentage of the 
values before the disc degeneration. Disc degeneration step 1 (only nucleus) is displayed in 
white bars, disc degeneration step 2 (nucleus and annulus) is displayed in grey bars.
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in a 65% decrease of the apparent density of the trabecular core, an increase 

in density in the anterior and posterior wall (resp. 12% and 7%), and a small 

increase in density of the lateral walls (4%, Table 3, Figure 7). These effects 

of additional annulus degeneration on the apparent density distribution were 

caused both by the dehydration of the annulus (lower Poisson’s ratio) and by 

the disorganization of the fibers in the annulus (Table 3).

Discussion  

Our simulations show that disc degeneration results in a large shift of load 

from the nucleus to the annulus. This is a well known fact, that was excellently 

demonstrated by in vitro disc pressure measurements performed by Adams 

et al. [1] on intervertebral discs from cadavers. There are two main differences 

between those experiments and our simulations. Firstly, our vertebrae were 

free to flex under the axial load, which prevented our discs from developing 

as large an increase in stresses in the posterior annulus [28]. Secondly, our 

simulations used an axial load of 500 N, while Adams et al. loaded their 

samples with 2000 N. When our stress values are multiplied by a factor of four 

to account for the load difference, the values for the stresses in the discs are 

remarkably similar. For a healthy disc Adams et al. found a nucleus pressure 

of ± 2.3 MPa and an annulus pressure that increased from 0 MPa (outer edge) 

to ± 2.0 MPa (inner edge). We found a nucleus pressure of ± 2.4 MPa and an 

annulus pressure that increased from 0.4 MPa to 1.2 MPa. For a completely 

degenerated disc Adams et al. found a nucleus pressure of ± 0.7 MPa and an 

annulus pressure of ± 1.2 MPa on average but with peaks up to ± 2.0 MPa. 

We found a nucleus pressure of ± 0.4 MPa and annulus pressures between 
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0.4 MPa and 2.4 MPa, but our model was unable to reproduce the spikes 

in the stress pattern that Adams et al. [1] found. Overall the values are very 

much alike and it thus appears that our disc model can adequately reproduce 

in vivo pressure profiles in healthy and degenerated intervertebral discs.

 Disc degeneration resulted in a load shift in the vertebrae: strain energy 

density values in the cortical wall increased while those within the trabecular 

core decreased. The load shift was virtually the same for degeneration of 

only the nucleus and for degeneration of both the nucleus and the annulus, 

implying that degeneration of the nucleus has more impact than degeneration 

of the annulus. Such a load shift from the core to the shell was also seen in 

previous studies [5,8,14,21].

 Both Livshits et al. [16] and Wang et al. [31] found disc degeneration 

to be correlated to an increased total spinal BMD. The results obtained by 

our bone adaptation simulations cannot explain these found correlations. 

In our simulations, complete disc degeneration (nucleus and annulus) had 

little effect on the average apparent density of the vertebra. Based on our 

results, we would only expect to see such an effect when the total load on 

the corpus is increased. Progressing disc degeneration likely changes the 

posture (sagittal balance) of the spine, which could result in higher total loads 

on individual corpi. The increased total spinal BMD is then not related to the 

disc degeneration directly, but through a change in posture.

 Complete disc degeneration did result in a large reduction of apparent 

density in the vertebral core and in an increase of apparent density in the 

posterior and anterior walls. Keller et al. [10] found that the stiffness of 

the trabecular bone underneath the nucleus area was lower in cases with 
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disc degeneration. Similarly, Simpson et al. [27] observed that spines with 

degenerated discs showed bone loss in the central trabecular regions and 

bone gain in the anterior trabecular regions. Thus, it seems that the results 

obtained by our bone adaptation simulations can explain the found bone 

density distributions in cases with disc degeneration.

 Using our bone adaptation simulations to investigate this response to 

disc degeneration in more detail, we found the loss of bone to be dependent 

upon the vertical location within the vertebra: more severe near the endplates 

and milder at the mid sagittal level. We have also found (here and previously 

[8,9]) that, at the mid transverse level, the trabecular core is relatively 

unloaded. The trabecular core at mid transverse levels may then also be 

more shielded from changes in that load. Our results seem to confirm this 

pathway as the effects of disc degeneration are less visible farther away 

from the endplates (Figure 6). This would explain the fact that, although large 

throughout the trabecular core, the bone adaptation is smaller at the mid 

sagital level compared to near the endplates. 

 As we modeled disc degeneration in several sub-steps, we were able 

to determine that these adaptations are mainly due to the degeneration of 

the nucleus and in particular to its loss of incompressibility (dehydration, 

simulated by a reduced Poisson’s ratio). The important clinical implication of 

this could be that, as nucleus dehydration is the first step in disc degeneration, 

bone adaptation will start shortly after the onset of disc degeneration. As 

disc degeneration will likely not be clinically diagnosed in this first stage, 

bone adaptation will have started well before disc degeneration is diagnosed. 

Perhaps a prescription of bone growth stimulating treatments could partially 
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prevent the negative bone adaptation processes. Another clinical implication 

of the results of our current study lies in the design of prosthetic discs that are 

aimed to restore the kinematics. The current study suggests that prosthetic 

disc designs should also focus on physiological load transfer to the adjacent 

vertebral bodies in order to prevent degenerative changes in the bony 

segments within the spine.

 In a pilot study we investigated the sensitivity of the results to a number 

of input parameters (initial density values and remodeling parameters for 

example), and found that the input parameters affected the quantitative results 

(remodeled density values), but never the qualitative results (reduced density 

in core and increased density vertebral walls). The general mechanisms of 

bone adaptation and disc degeneration in aging spines as found in this study 

thus appear to be rather insensitive to sub-optimal specimen availability and 

uncertainties in the adaptation parameters. Nonetheless, there are some 

limitations to this study. First, we exclusively studied the effects of changes 

in the mechanical properties of the intervertebral discs. However, it is also 

known that one of the late aspects of disc degeneration is a decrease 

in disc height [11]. This disc thinning leads to a transfer of load from the 

vertebral body to the facet joints, and it likely also leads to higher loads in 

the annulus region of the disc (as the loss of height is relatively larger there). 

Logically, additional disc thinning would shift even more load away from the 

trabecular core and would thus decrease the bone density in the trabecular 

core even further. However, since this aspect was not taken into account in 

our simulations, our results should thus be interpreted on a qualitative basis. 

Second, aging also affects ligaments, muscles and bone adaptation itself, 
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which all influence bone adaptation in the vertebrae. None of these aspects 

were included in the current analyses, but all are worthy of further study. It 

may, for example, be that while vertebrae of younger individuals can adapt 

in synchronization with the process of disc degeneration and its resulting 

load shift, vertebrae of the elderly cannot and are more likely to accumulate 

damage at high loaded regions that could eventually result in a vertebral 

fracture. Third, the relation between simulation time and real patient time is 

a general problem of bone adaptation simulations. Such a relationship has 

been estimated for hip implants in dogs [32], but not for human vertebrae. By 

combining computational studies with longitudinal clinical studies, we would 

be able to determine this relationship. As a result we are unable to provide an 

indication of the amount of time the density changes, as found in this study, 

would require in reality.

 In conclusion we found that the shift of load in the vertebra, as caused 

by degeneration of the intervertebral disc, led to density patterns which are 

similar to those that are clinically reported. Furthermore, we found that these 

density changes are mainly caused by the dehydration of the nucleus, while 

degeneration of the annulus had little added effect. In this way, this study 

contributes to the complex comprehension of the multi-factorial aspects that 

play a role in the degeneration of the human spine.
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Introduction  

Osteoporosis, which is the most common metabolic bone disorder, affects 

200 million individuals worldwide [18]. In the year 2000 there were about 9 

million fragility fractures associated with osteoporosis [16]. The most common 

fragility fractures in patients affected by osteoporosis are anterior wedge 

fractures [22]. Such fractures are associated with pain, increased mortality 

and morbidity, and a decreased quality of life [3,34].

 In order to alleviate pain and improve the quality of life of these 

patients, the fractured vertebrae are frequently augmented by bone cement 

that is injected into the vertebral body, i.e. vertebroplasty [36]. The clinical 

results of vertebroplasty, however, are somewhat confusing. On the one hand, 

it appears that vertebroplasty increases the risk for new fractures in adjacent 

vertebrae: up to 70% of the new fractures have been reported to take place 

in adjacent vertebrae [2,12,35]. It is suggested that the relatively stiff bone 

cement injected into the osteoporotic bone causes stress peaks on the 

endplates, leading to fractures at the adjacent levels [2,12,27]. On the other 

hand, an increased risk for adjacent level fractures has also been reported 

in patients that did not receive any vertebroplasty [8,19,20]. Thus, it seems 

that factors other than the presence of bone cement alone play a role in the 

increased risk of adjacent level fractures [1,30].

 One important aspect of wedge fractures is the wedge-shaped deformity 

of the vertebral body. This deformity alters the local morphology and affects 

the adjacent segments of the spine [24]. These morphological changes are 

also likely to change the direction of the load applied to the adjacent vertebrae 

[37]. Normally, the direction of the applied load is perpendicular to the endplate 
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(axial) [31]. However, due to the fact that the fractured vertebra has a wedge-

shaped deformity the load applied to the adjacent vertebrae changes direction  

(Figure 1). This change in direction results in the adjacent vertebrae seeing 

more shear (Figure 1) [5]. These changed load vectors could increase the risk 

of fractures of adjacent level vertebrae [15].

 The goal of this study was to test whether the load to failure is lower for 

off-axis loading as compared to on-axis (axial) loading. With this in mind we 

carried out an in vitro biomechanical study using osteoporotic and osteopenic 

cadaveric vertebrae.

Materials & Methods  

Four complete spines were obtained from fresh frozen cadavers (1 male 

and 3 female). Bone density of the L1-L4 region of each cadaver spine was 

measured in a water basin using dual energy X-ray absorptiometry (DEXA). 

All DEXA scans were made by an independent expert of the DEXA lab. An 

experienced orthopedic surgeon reviewed X-rays of the four spines to exclude 

previously fractured vertebrae from the experiment. 

 A total of twenty vertebrae were included in our study, ranging from 

T9 to L5. These vertebrae were excised from the spines, cleaned from all 

Figure 1: Compression loading of 
healthy vertebra (left) and off-axis 
loading of the vertebra adjacent to a 
wedge-fractured vertebra (right). The 
altered loading direction results in a 
shear and a compression load (upper 
right).
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soft tissue and resected at the pedicles (to allow placement in our test 

setup). Because vertebral size is known to be correlated with its strength 

[32], the endplates of each vertebral body were photographed together with 

a calibration ruler. This allowed us to measure and compare the endplate 

surface areas using AnalySIS (AnalySIS AUTO 3.2, Soft Imaging System 

GmbH, Münster, Germany). Subsequently, both endplates of each vertebra 

were cast in bone cement using a specially designed mold, similar to a recent 

study [6]. These cement caps allowed an even distribution of the load on the 

endplate during testing.

 The twenty cadaver vertebrae were divided into two groups. Both 

groups contained vertebrae from all four cadavers to minimize the effect 

of inter-donor variability. In the first group, each vertebra was crushed with 

the load perpendicular to the endplate (0° group, n 

= 10, Table 1). In the second group, each vertebra 

was crushed with a load that was shifted 20° in the 

sagittal plane (Figure 1), giving it a posterior-anterior 

component as well as an axial component (20° group, 

n = 10, Table 1). This 20° angle was based on the 

Cadaver Sex Age T-score Vertebrae harvested

0° Test

Vertebrae harvested

20° Test

1 Male 87 -2.3 L4, L1, T10 L5, T12, T11

2 Female 89 -4.4 L4, L1 L3, L2

3 Female 92 -4.8 T10, L1 T11, T12

4 Female 85 -4.1 L4, L1, T10 L3, L2, T9

Table 1: Overview of the tested vertebrae.

Figure 2: Testing setup of the experiment (a test of the 20° group 
is depicted).
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study of Rhyne et al. [28] and seemed to be a clinically relevant shift of loading 

direction. In order to minimize spinal-level bias, the vertebrae of the 20° group 

were chosen alternately superior and inferior with respect to those of the 0° 

group (Table 1).

 Each vertebra was compressed to failure in a custom made setup that 

allowed us to align the load through the centre of the vertebral body for both 

loading directions (Figure 2). All crush experiments were performed under 

displacement control (2 mm/min), while measuring displacement and force 

with a sampling rate of 10 Hz (Figure 3). ‘Failure load’ was defined as the 

highest registered force. Vertebral stiffness was defined as the slope of the 

linear part of the force-displacement curve, prior to the failure load.

 All data (endplate surface area, failure load and vertebral stiffness) 

were checked for normality using a Kolmogorov-Smirnov test and compared 

using an unpaired Student’s t-test. Significance was set at p < 0.05. All tests 

were performed with the statistical package SPSS (SPSS 12.01, SPSS Inc., 

Chicago, USA).

 

Figure 3: Typical force-
displacement curve of one 
experiment.
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Results  

The endplate surface area, failure load and stiffness were all normally 

distributed. Mean endplate area for the 0° group was 1524 mm2 (SD 433 

mm2), while the 20° group had a mean endplate area of 1569 mm2 (SD 

456 mm2). The endplate areas were not significantly different (p = 0.823), 

indicating a good distribution of the vertebrae over both groups.

 The vertebrae tested under 0° had an average failure load of 2854 N 

(SD 622 N), while those tested under 20° had an average failure load of 2162 

N (SD 670 N, Figures 4 & 5). This 24% difference was statistically significant 

Figure 4. The average failure load 
for the 0° and the 20° groups. The 
error bars represent the standard 
deviations. The average failure 
load was significantly different (P 
< 0.028).

Figure 5: The failure loads for every 
individual specimen tested in the 
0° and the 20° groups. Circles 
represent osteoporotic vertebrae, 
triangles represent osteopenic 
vertebrae.
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(p = 0.028). The average stiffness of the vertebrae tested under 0° was 4017 

N/mm (SD 970 N/mm), and the average stiffness of the vertebrae tested under 

20° loading was 2478 N/mm (SD 453 N/mm, Figure 6). This difference was 

also statistically significantly (p < 0.001).

Discussion  

We hypothesized that the off-axis load that vertebrae, adjacent to a wedge 

fracture, experience, may be an important factor in the increased fracture 

incidence seen in these adjacent vertebrae. We tested this hypothesis by 

crushing twenty low bone density cadaveric vertebrae. Ten of these vertebrae 

were subjected to an off-axis (20°) load, and the other ten were subjected to 

an on-axis (0°) load. A comparison of the average vertebral failure loads of the 

two groups showed that the off-axis loading orientation caused an average 

decrease in vertebral failure load of 24%.

 The lower failure load in the off-axis loading group can probably 

be attributed to the osteoporotic or osteopenic state of the vertebrae. 

Osteoporotic vertebral trabecular bone is known for its decreased connectivity, 

and increased anisotropy [11,14]. Mechanics dictates that these connecting 

Figure 6: The average 
stiffness for the 0° and 
20° groups. The error 
bars represent the 
standard deviations.The 
average stiffness was 
significantly different 
(P < 0.001).  
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(transverse) trabeculae are very important for resisting off-axis loads, as well 

as for preventing the axial trabeculae from buckling under compression [4]. 

Osteoporotic vertebrae are also known to have thinner cortical walls [29]. It thus 

seems that osteoporotic vertebrae, with their missing transverse trabeculae 

and their thin cortical walls, are vulnerable to the increased shearing load 

that occurs when the neighboring vertebra has a wedge-like shape [5]. The 

increased anisotropy is probably also the reason for the lower stiffness that 

was found in the off-axis (20°) group compared to the on-axis (0°) group. This 

was expected, as failure load and stiffness of vertebral bone are known to be 

related [10,39].

 In this study, no significant differences between the osteopenic and 

the osteoporotic vertebrae were found for any of the measured parameters  

(p > 0.05). This was probably caused by the low number of osteopenic 

vertebrae (n = 6) and by the fact that the osteopenic vertebrae were nearly 

osteoporotic (t-score -2.3, Figure 5). A clear effect of the bone quality can be 

expected when bigger groups of both healthy and osteoporotic vertebrae are 

compared in a similar experiment. The healthy vertebrae are less anisotropic 

than their osteoporotic counterparts, due to the fact that they have more 

transverse trabeculae [11,14]. As a result, the differences between these 

groups are expected to be more pronounced than when osteoporotic  and 

osteopenic vertebrae are compared. 

 In clinical practice, osteoporotic patients with a fractured vertebra have 

an increased risk for new vertebral fractures [7,19,23]. We believe that this 

increased risk is predominantly caused by two aspects. First, the osteoporotic 

state of the whole skeleton, a vertebral fracture will act as a “marker” for 
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the underlying disease [23]. Second, the change in spinal alignment 

that can occur after a vertebral fracture [5]. In this study we have shown 

that the load resulting from a change in spinal alignment increases the fracture 

risk of adjacent vertebrae. A wedge is not the only clinically occurring fracture 

shape, biconcave and crush fractures are also seen [20]. It has, however, 

been shown that an anterior wedge fracture poses the highest risk for new 

(adjacent) fractures in the spine, when compared to biconcave or crush 

fractures [20]. Seen in the light of our current findings this appears logical: 

we have shown that the failure load of vertebrae is reduced due to off-axis 

loading. Such an off-axis loading is very much present adjacent to wedge 

fractures but will be less distinct in case of biconcave or crush fractures, 

which might explain the lower fracture risk for adjacent vertebrae in these 

latter cases.

 Our current findings also offer a contributing explanation for the high 

number of fractures in levels adjacent to fractured vertebrae that have been 

treated with vertebroplasty. Although the bone cement, that is injected during 

the vertebroplasty procedure, impedes a further collapse of the fractured 

vertebra, the wedge-like deformity often remains present [26]. Thus, it seems 

to be clinically relevant to reposition the endplate to the “pre-wedge” situation 

in order to eliminate the occurrence of off-axis loads in neighboring vertebrae, 

and thereby also decreasing their fracture risk. One procedure that aims 

at the repositioning of the endplates in a clinical setting is kyphoplasty. In 

kyphoplasty a balloon tamp is inflated inside a fractured vertebral body in 

order to restore vertebral height, which is then stabilized by bone cement 

[25]. Unfortunately, it is reported that vertebral height loss after kyphoplasty 
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still occurs, resulting in only partial restoration of the original height [21,38]. 

This vertebral height loss might explain the fact that new, mainly adjacent, 

vertebral fractures are still observed after kyphoplasty [9,13,17,21]. Newer 

techniques may be more successful in restoration of the vertebral morphology 

after a wedge fracture [33].

 This study has a number of limitations that should be considered. First 

of all, the loading condition used in this experiment was a simplification. The 

20° was based on the angle that typically results from a single wedge fracture 

[28]. However, such a wedge-like deformity of the vertebral body does not 

necessarily imply that the loading direction of the adjacent level vertebra also 

shows a 20° shift. Muscles, ligaments and joint capsules can all influence this 

load shift. The true size of the resulting shift can, however, not be deduced 

from the current literature. Therefore, our experiment should be seen as “proof 

of principle”. Secondly, we excluded the effect of the anterior shift of the upper-

body, that may result from a vertebral fracture, from our study. Clinically, the 

effects of an anterior upper-body shift are likely to affect adjacent vertebrae 

simultaneously with the effects of the off-axis loads. Consequently, the real 

fracture risk of adjacent vertebrae in patients is probably higher than what 

we have found in this study. Finally, we were unable to include the potential 

change in load transfer through the facet joints within our test set-up. The role 

of the facet joints on the off-axis failure mechanisms, however, requires further 

study.

 In conclusion, we demonstrated that the failure load of osteopenic/

osteoporotic vertebrae was 24% lower during off-axis compared to on-axis 

loading. Although adjacent fractures after a wedge-like deformity are probably 
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caused by many factors, our data showed that the increased susceptibility to 

off-axis loading may be an important one. This study may lead to a better 

understanding of the etiology of adjacent vertebral fractures after wedge-

like deformities and demonstrates the importance of height reconstruction 

of wedge-fractures in order to normalize the loading conditions on adjacent 

vertebrae.
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Introduction

Percutaneous vertebroplasty (PVP) is an interventional procedure that can be 

performed in the treatment of painful vertebral compression fractures (VCF). 

The procedure comprises the placement of a wide-bored cannulae into the 

fractured vertebral body under fluoroscopy or CT guidance, and subsequent 

injection of bone cement, usually polymethylmethacrylate (PMMA).

 There are many studies that show that PVP can lead to a significant and 

rapid pain decrease in patients with VCF [11,15]. However, two recent double 

blind randomized controlled trials cast doubt on the procedure’s efficacy, as 

they showed that PVP gives similar pain relief as sham interventions [7,16]. 

A more recent randomized controlled trial shows that PVP is a more effective 

method to reduce pain in patients with VCF than conservative therapy [18]. 

Although the inclusion criteria of the latter study are much stricter than those 

of the other two trials, the study is not double blinded and therefore poses 

evidence of a lower level. All we can say at this moment is that PVP decreases 

pain in people suffering from VCF, but whether or not the efficacy of the 

procedure is based on a placebo response will remain subject of debate for 

now [21]. 

 In the light of this debate, it is important to question whether the risk-

benefit ratio is in favor of the therapy. In order to do that, the risks of the 

procedure need to be identified. While some risks, such as leakage of PMMA 

into the spinal canal, are clearly related to PVP, for other risks, it is much more 

difficult to identify whether they are directly linked to PVP. The risk of adjacent 

level fractures after PVP, for example, is difficult to establish. Retrospective 

clinical studies have shown a high incidence of fractures in the levels 
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adjacent to the treated level [12,13,29], leading to the hypothesis that these 

adjacent level fractures are directly linked to the previously performed PVP. 

The relatively stiff bone cement is thought to act as a ‘stress riser’: causing 

stress peaks in the adjacent levels and thereby inducing new fractures [13]. 

Other clinical studies, however, could not find an elevated fracture incidence 

in the levels adjacent to the augmented vertebra [7,10].

 Biomechanical studies show a similar duality: some studies suggest 

that augmenting fractured vertebrae will lead to new fractures [2,5,25], while 

other studies have not found such a relationship [24,31]. When looking closer 

at these biomechanical studies, we see that often large volumes of bone 

cement were used [2,5,25], while much lower volumes of bone cement are 

injected into fractured vertebrae in clinical studies [7,18,19,32].

 The goal of this study is to determine whether a clinically relevant 

amount of bone cement can act as a stress riser and may cause adjacent 

vertebral fractures in percutaneous vertebroplasty. For this purpose, we carried 

out an in vitro biomechanical study using cadaveric vertebrae, and directly 

measured stresses under the lower endplate before and after vertebroplasty.

Materials & Methods  
Specimens  

Four complete spines were obtained from fresh frozen human cadavers (3 

male and 1 female). Each spine was placed in a water basin and the bone 

density of the vertebrae was measured using dual energy X-ray absorptiometry 

(DXA). All DXA scans were made by an independent expert of the DXA lab. 

Ten vertebrae, ranging from T10 to L4, were included in our study (Table 1). 
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These vertebrae were excised from the spines and soft tissue remains and 

posterior elements were removed.

Experimental setup  

The upper endplate of each vertebra was cast in bone cement using a specially 

designed mold [1], similar to a mold used in another recent experimental 

study [8]. The bone cement on the upper endplate (‘cement cap’) served 

two goals: it made proper placement in our testing setup possible, and it 

allowed an even load distribution on the endplate during testing (Figure 1). 

The concavity of the lower endplate was filled with the vinylpolysiloxane and 

placed on a 4 mm thick flap of the same material (Figure 1). This was done 

to re-create intervertebral disc-like beddings for each vertebra. Since 60% of 

the 70-year-old intervertebral discs are severly degenerate [30], we aimed for 

a material with a compressive modulus of around 10 MPa [14] and therefore 

chose dental vinylpolysiloxane (Elite® Transparent, Zhermack SpA, Italy). 

This way, the thickness of each simulated intervertebral disc was about the 

same for all specimens, which should reduce the noise in the measurements.

 Finally, a Tekscan sensor (I-Scan system, sensor model 5076, Tekscan, 

Boston, MA, USA) was placed underneath the 4 mm vinylpolysiloxane flap 

Cadaver Sex Age Vertebrae 

(Bone Mineral Density [g/cm2])
1 Female 87 L4 (0,781) | L1 (0,802) | T10 (1,037)

2 Male 67 L4 (1,111) | L1 (0,805) | T10 (0,76)

3 Male 85 L4 (0,627) | L1 (0,51) | T10 (0,501)

4 Male 75 L3 (0,756)

Table 1: Information on the cadavers used in the experiment.
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in order to measure the 

contact pressure (Figure 

1). Tekscan sensors have 

been used before in 

biomechanical studies, for 

example to measure contact 

stresses in zygapophyseal 

joints [33] or contact 

pressure between thigh 

and calf during flexion [34]. The sensing-area of the Tekscan sensor in this 

study was 83.8 by 83.8 mm and comprised a total of 1936 individual sensing 

elements (sensels) distributed over 44 rows and 44 columns, giving it a spatial 

resolution of 0.28 sensels per square mm. The sensors were conditioned and 

calibrated according to the manufacturer’s recommendations. The maximum 

expected load was based on previously performed experiments and set at 

18,726 N for the whole sensor area [1]. Each sensor was conditioned five 

times at 120% of this maximum expected load and subsequently calibrated 

using the ‘2-point power law calibration’ protocol [6]. For this calibration each 

sensor needed to be loaded to 20% and 80% of the maximum expected load. 

Both conditioning and calibration was performed using a materials testing 

machine (MTS® Systems Corporation, Eden Prairie, MN) while the sensor 

was placed between a machined aluminum plate and a confined 4 mm thick 

silicone flap in order to get an even distribution of the load.

Figure 1: Experimental setup
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Experiment  

Each of the ten vertebrae were then placed in the testing setup and subjected 

to a compressive load that was directed through the centre of the vertebral 

body. Each vertebra was compressed to failure under displacement control 

(2 mm/min), while the applied force and displacement were being measured 

with a sampling rate of 10 Hz. Tekscan contact pressure distribution was 

recorded with a frequency of 10 Hz using the I-Scan software (version 6.03I, 

Tekscan, Boston, MA, USA).

 After the compression test and first measurements, the vertebrae 

underwent a bipedicular vertebroplasty using polymethylmethacrylate 

(Vebroplast, European Medical Contract Manufacturing, Nijmegen, The 

Netherlands). Recent clinical trials reported mean injected volumes ranging 

from 2.8 ml to 4.1 ml [7,18,18,32]. We used these volumes as a guideline for 

our own experiment, resulting in an average injected amount of 3.6 ml (SD 0.6 

ml).

 After the vertebroplasty procedure, X-rays were taken of the vertebrae 

in anterior-posterior, lateral and cranial-caudal direction in order to get an 

indication of the cement distribution. The individual vertebrae were then 

Figure 2: Example of how the 
pressure measurements of the 
same vertebra before (red line) 
and after (black line) augmentation 
were compared. The dotted line 
indicates the lowest value of the 
two peak forces before and after 
augmentation. For each curve the 
accompanying frame of the Tekscan 
measurement was selected and 
used for direct comparison of the 
two measurements. From these 
frames we selected the average 
pressure value of the highest 
5% of the activated sensels and 
compared them afterwards.
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placed in the testing setup for the second time and again subjected to a 

compressive load until failure (displacement control, 2 mm/min). Force, 

displacement and the Tekscan contact pressure distribution were registered 

again with a sampling rate of 10 Hz.
 

Data analysis  

The failure load was defined as the highest force registered by the MTS 

machine. Vertebral stiffness was defined as the slope of the linear part of the 

force-displacement curve, prior to the failure load (Figure 2).

 During the crush tests we obtained two sets of pressure measurements 

for each vertebra; one for the intact vertebra and one for the augmented 

vertebra. These pressure measurements were imported from the Tekscan 

software into Matlab (R2011 B, Mathworks, USA). In order to compare the 

pressure measurements before and after augmentation, a few steps had 

to be taken. First, we integrated the pressure values over the total surface 

to obtain the total force that was applied to the sensor. Second, with these 

data, two force-displacement curves were made of each vertebra: one before 

and one after PVP (Figure 2). Third, the lowest of the two force-peaks was 

used as a reference force and the same force was selected in the other 

force-displacement curve (Figure 2). Fourth, the pressure measurements 

corresponding to these selected forces (reference frames) were selected 

for each measurement (Figure 2). Fifth, the pressure distributions of these 

reference frames were used for the comparison of the two measurements 

(Figure 2). Finally, as we did not want to rely on just the highest pressure 

value measured by a single sensel, we chose to average the pressure values 

of the highest 5% of all the activated sensels in the frame. By comparing 
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this ‘stress peak’ before and after augmentation we could determine whether 

higher stresses occurred after the PVP procedure.

 In order to determine a possible relationship between these stress 

peaks and the location of the bone cement, we assessed whether the locations 

of the measured stress peaks matched with the cement locations as seen on 

the x-rays that were made of the augmented vertebrae.

Statistical analysis  

As the data failed the normality test, differences in the average pressure value 

of the highest 5% of the activated sensels before and after augmentation were 

analyzed using the Wilcoxon rank sum test. The failure load and stiffness data 

were normally distributed and were therefore analyzed using a paired T-test. 

In all cases significance was set at p < 0.05 and all tests were performed 

with the statistical package Sigmastat (version 3.5, Systat Software, Inc., San 

Jose, USA). 

Figure 3: Box plot representing 
the stress peaks before 
and after percutaneous 
vertebroplasty (PVP). The 
10th and 90th percentiles are 
represented as error bars and 
the 75th and 25th percentiles 
are represented by the upper 
and lower ends of the box, 
respectively.
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Results  

Stress peaks and co-locations  

The stress peak values were significantly higher after the PVP procedure 

(median 3.85 MPa, 25% 2.82 MPa, 75% 5.62 MPa, p = 0.014) than before the 

procedure (median 2.82 MPa, 25% 2.23 MPa, 75% 4.34 MPa, Figure 3). It was 

striking that the stress peaks after augmentation appeared to be located more 

Figure 4: Examples of pressure 
measurements before augmentation (top 
row) and after augmentation (middle 
row). Cranial-caudal x-ray of the same 
augmented vertebrae (lower row). No 
bone cement is observed at the location 
of the highest stress peaks.

Figure 5:  
Pressure measurements 
after a u g m e n t a t i o n 
(toprow),cranial-caudal 
(middle row) and anterior-
posterior (lower row) 
X-rays of all vertebrae.No 
clear relationship between 
stress peaks and bone 
cement can be disting 
uished from these images, 
except for specimen 1. 
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at the edges of the vertebrae (Figure 4).

 Visual comparison of both the Tekscan measurements and the x-rays 

showed no relationship between the location of the stress-peaks and the 

location of the bone cement (Figure 5). Only in one specimen (Specimen 1, 

Figure 5) the location of the stress peaks and the bone cement matched.

Failure load and stiffness  

As the data for failure load and stiffness were normally distributed, differences 

before and after augmentation were analyzed using a paired T-test. The mean 

failure load after augmentation (2857N (SD 2018N)) was significantly lower 

than the strength of the intact, unaugmented vertebra (4070N (SD 2018N, 

p=0.002)). The stiffness after augmentation (940 N/mm (SD 793 N/mm)) was 

also significantly lower than the stiffness before augmentation (3059 N/mm 

(SD 1276 N/mm), p<0.001).

Discussion  

There has been much debate on whether augmentation of fractured 

vertebrae with bone cement can induce new fractures in the adjacent levels 

[2,5,24,25,31]. In this in vitro study we used direct pressure measurements 

to assess if PVP can act as a stress riser in neighboring levels. Our most 

important findings indicate that there is no direct connection between stress 

peaks and bone cement location.

 We wanted our experimental setup to be sensitive enough to pick 

up possible stress peaks induced by the injected bone cement. Therefore 

we selected solely the vertebral body and did not include load transmission 
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through the posterior elements, even though it is known that up to 90% of the 

load may be transferred through the neural arch in spines with degenerated 

discs [26]. This exaggerated the outcome of the pressure measurements as 

the stress peaks we encountered were around two times as high than stress 

peaks reported in other studies [20,25,26,31]. Another aspect that increased 

the sensitivity of our testing setup was the stiffness of the vinylpolysiloxane that 

we used to simulate the intervertebral discs. This material was, particularly at 

higher loads, stiffer than a real degenerated intervertebral disc. This relatively 

high stiffness will facilitate the transfer of stress peaks, possibly induced by 

the bone cement, more easily to the Tekscan sensor compared to less stiff 

materials that would have smoothed the stress peaks instead. Although these 

two aspects remove our experimental setup more from the clinical reality, 

they represent a ‘worst case scenario’ for the occurrence of stress peaks and 

make the setup more sensitive to pick up possible stress peaks caused by the 

injected cement.

 Despite the high sensitivity of our experimental setup to register stress 

peaks induced by the bone cement, no relationship was found between the 

location of the bone cement and the location of the stress peaks. Although our 

findings are in line with some previously published studies [24,31], they do 

not corroborate the findings of others [2,5]. An aspect that might play a role in 

this discrepancy is the amount of bone cement that is injected. In-vitro studies 

suggesting that there is an association between PVP and adjacent level 

fractures use relatively high volumes of bone cement (8.8 ml (an estimated 

20%) [5] up to an estimated 70% [2] of the vertebral body volume) compared to 

studies that did not find this connection (13% [31] to 20% [24] of the vertebral 
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body volume). We used a relatively low volume of bone cement (average of 

3.6 ml, SD 0.6 ml) that was based on the volumes used in recent clinical trials 

[7,18,19,32]. So it appears that the association between adjacent fractures 

and PVP might be related to the amount of injected cement and deserves 

further attention.

 Apart from the amount of injected bone cement, its distribution might 

also play a role in the occurrence of stress peaks. Endplate-to-endplate filling 

for example, might affect the occurrence of stress peaks in the adjacent level 

vertebrae. It has already been demonstrated that such a filling pattern can 

have a big effect on the strength and stiffness of augmented vertebrae [9,27]. 

In our study we found that the only specimen in which the location of the bone 

cement coincided the location of the stress peak had endplate-to-endplate 

filling (Specimen 1, Figure 5). If no special cementing technique is used in 

order to obtain endplate-to-endplate filling, it is expected that the injection 

of larger volumes of bone cement would increase the chance of endplate-to-

endplate filling, thereby linking the aspects of volume and distribution. Further 

research to assess the clinical relevance of these issues is warranted.

 Failure load after the augmentation was significantly lower compared 

to the intact vertebrae. Several studies, however, reported comparable or 

higher failure loads after PVP [3,4,23,28]. We believe this discrepancy might, 

again, be caused by the relatively high amounts of bone cement injected 

in these studies compared to clinical practice and our study. In a study by 

Molloy et al. it was found that augmentation with low amounts of bone cement 

(2 or 4 ml) leads to a 65-75% restoration of the initial vertebral strength [22]. 

We found that the vertebral stiffness was also decreased after augmentation 
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compared to an intact vertebra, which is in line with the available literature 

[3,4,22,23].

 Like in every scientific study, there are some limitations that have to 

be taken into account. First, the vinylpolysiloxane intervertebral disc-like 

bedding lacks a nucleus pulposus. Although it would be desirable to include 

a nucleus in our experimental setup for a better simulation of an intervertebral 

disc, it was impossible to achieve. Apart from the practical aspect, the effect 

of the nucleus pulposus in a real degenerated intervertebral disc is limited 

as the nucleus dehydrates and becomes more fibrous in the process of disc 

degeneration [17]. Second, as the nature of the experiment is destructive, 

crushing the vertebrae will cause deformations of the bone. This will lead to 

a slightly different loading pattern, independent of the injected bone cement, 

when loading the vertebra for the second time. Although there was no way to 

omit these deformations, their precise effects are unclear. Another limitation 

is the relatively low number of vertebrae that were tested (n = 10). In order 

to better study the effects of aspects such as cement volume or endplate-to-

endplate filling, bigger studies are needed. Finally, we received a $ 25000 

grant from the ‘Fonds NutsOhra’ foundation to perform this study. This did not 

influence our results, as this foundation did not play any role in the design of 

the study, the analysis of the data or the writing of the manuscript 

 In conclusion, we demonstrated that vertebral augmentation with 

clinically relevant amounts of bone cement does not lead to stress peaks 

under the endplate. It is therefore unlikely that PVP, in itself, causes detrimental 

stresses in the adjacent vertebrae, leading to new vertebral fractures.
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Introduction
Vertebral compression fractures are the most common fracture type related to 

osteoporosis, with an estimated 1.4 million new fractures occurring worldwide 

every year [16]. The most common of these vertebral compression fractures 

is the anterior wedge fracture (AO type A1) [22]. Anterior wedge fractures 

are associated with pain, a decreased quality of life, and a changed sagittal 

spinal alignment [10,32]. An accepted surgical treatment of an acute vertebral 

fracture is injecting the fractured vertebra with bone cement; a procedure also 

known as percutaneous vertebroplasty. Although this procedure has had its 

fair share of criticism [6,17], a more recent study shows it to be an effective 

method to reduce pain and improve the quality of life of the patient [18].

 After the first vertebral compression fracture, the risk of additional 

vertebral fractures steeply increases [20,21], particularly in adjacent 

level vertebrae [11,15,21,33]. Whether this increased risk is caused by 

previous vertebroplasties, changed local biomechanics, the susceptibility 

of certain sections of the spine to fractures (thoracolumbar junction), the 

natural progression of the underlying disease, or a combination of all of the 

abovementioned factors remains the subject of debate. What is known, is 

that the fracture risk in adjacent vertebrae increases and that it can further 

deteriorate the patient’s health and wellbeing.

 Prophylactic filling of the adjacent level vertebrae with bone cement 

(prophylactic vertebroplasty) can theoretically prevent new fractures and 

further deterioration of the patient’s health. In vitro experiments have indeed 

shown a beneficial effect of prophylactic vertebroplasty for axially loaded 

vertebrae [9,12,14,24,31]. However, none of these studies analyzed the 
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benefits under off-axis loads. Although the literature suggests that vertebrae in 

healthy spines are mainly loaded axially [25,28], a vertebral fracture changes 

the spinal alignment resulting in a more shearing load on the vertebrae (off-

axis loads) [5]. In a previous study we found that osteoporotic vertebrae are 

more prone to failure under such off-axis loads [1]. The benefits of prophylactic 

filling under such off-axis loads are thus an important, but uninvestigated, 

issue.

 The goal of this study is to determine whether prophylactic vertebroplasty 

is also a successful technique for reinforcing non-fractured vertebrae that 

are loaded with the off-axis load that occurs with changes in spinal sagittal 

alignment. For this purpose, we carried out an in vitro biomechanical study 

using vertebrae from osteoporotic and osteopenic human cadavers.

Materials & Methods 

Four complete spines were obtained from fresh frozen human cadavers (1 male 

and 3 female). Each spine was placed in a water basin and the bone density 

of the L1-L4 region was measured using dual energy X-ray absorptiometry 

(DEXA). All DEXA scans were made by an independent expert of the DEXA 

lab. One of the authors (AJFH), an experienced orthopedic spine surgeon, 

Table 1: Distribution of the vertebrae over the various groups.

Cadaver Sex Age T-Score Vertebrae harvested
0° group 20° group Prophylactic 

group
1 Male 87 -2.3 L4, L1, T10 L5, T12, T11 L3, T9

2 Female 89 -4.4 L4, L1 L3, L2 L5, T12

3 Female 92 -4.8 L4, L1, T10 T12, T11 L3,L2

4 Female 85 -4.1 L4, L1, T10 L3, L2, T9 L5, T12, T11
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reviewed X-rays of the four spines in order to exclude previously fractured 

vertebrae from the experiment.

 A total of thirty one vertebrae, ranging from T9 to L5, were included in 

our study (Table 1). These vertebrae were excised from the spines and soft 

tissue remains were removed. The posterior elements were  resected at the 

pedicles to allow placement in our test setup. Unfortunately, one vertebra 

was damaged during the dissection procedure and we excluded it from the 

study. Of the thirty vertebrae, nine underwent a bipedicular, vertebroplasty 

using Vebroplast bone cement (a PMMA material, European Medical Contract 

Manufacturing, Nijmegen, The Netherlands). As a guideline, we used the 

same vertebral filling percentage that previous prophylactic vertebroplasty 

studies have used, which was around 20% [12,14,31]. These nine specimens 

were compared to the remaining twenty one vertebrae that were used in our 

previous study in which we determined the effects of shearing loads [1]. In 

short, the previously tested vertebrae were divided into two groups: an axial 

group (n = 11) in which unfilled vertebrae were loaded perpendicular to their 

superior endplates, and an off-axis group (n = 10) with unfilled vertebrae that 

were loaded under off-axis loading angles of 20° (Table 1). The nine newly 

tested vertebrae were used in this study in order to determine the effects of 

prophylactic vertebroplasty.

 After performing the vertebroplasties, the nine vertebrae were 

submerged in a waterbath and CT-scanned (slice thickness: 1 mm, in-plane 

resolution: 512 x 512 pixels, pixel size 0.488 mm). From these CT-scans we 

determined the volume of each vertebral body, the volume of injected bone 

cement, and the areas of the upper and lower endplates (Mimics, Version 



97

11.0, Materialise N.V., Leuven, Belgium). Subsequently, both endplates of 

each vertebra were cast in bone cement using the same specially designed 

mold that we used in the previous experiment [1], and similar to a mold used in 

another recent study [7]. The bone cement on the endplates (“cement caps”) 

served two goals: it made proper placement in our testing setup possible, and 

it allowed an even load distribution on the endplate during testing.

 The nine vertebrae were then placed in the testing setup under a load 

that was directed through the centre of the vertebral corpus but was shifted 

20° in the sagittal plane, giving it a posterior-anterior component as well as 

an axial component (Figure 1). The 20° loading angle was chosen in order to 

mimic the in-vivo loading condition of the vertebra adjacent to a fractured one 

[27]. Each vertebrae that had been filled with bone cement was compressed 

to failure under displacement control (2 mm/min), while measuring force with 

a sampling rate of 10 Hz. Failure load was defined as the highest registered 

force. Vertebral stiffness was defined as the slope of the linear part of the 

force-displacement curve, prior to the failure load. We compared the stiffness, 

the failure load, and the endplate areas of the prophylactically filled vertebrae 

Figure 1: Side view of the test setup. The 20° load application 
setting is depicted.
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(n = 9) with the stiffness, failure load and endplate areas of the previously 

performed crush experiment on unfilled vertebrae [1].

  We chose to allocate the specimens based on spinal level and thus 

vertebral size, as it is known that size can influence the vertebral strength 

[29]. For example: if the L2, L1, T12 vertebrae of one cadaver were allocated 

to the 20° off-axis, 0° axial and prophylactic group, respectively, then in a 

second cadaver L2, L1, T12 would be allocated to the prophylactic, 0° axial 

and 20° off-axis group, respectively (Table 1). This way we prevented that one 

group would always have bigger (or smaller) – and thus stronger (or weaker) 

– vertebrae than the other group, which could blur the data. All three groups 

contained vertebrae from all four cadavers to minimize the effect of inter-

donor variability.

 All data (endplate area, failure load and vertebral stiffness) were 

checked for normality using a Kolmogorov-Smirnov test and compared using 

a One Way ANOVA, with an LSD post hoc test.  Significance was set at p < 

0.05. All tests were performed with the statistical package SPSS (SPSS 12.01, 

SPSS Inc., Chicago, USA).

 
Results  

From the CT images we determined that the average volume of injected bone 

cement was 8.4 ml (SD = 2.1 ml). An average vertebral body filling percentage 

0° group 20° group Prophylactic 
group

Mean endplate area (mm2) 1474.7 1569.4 1510.7

Standard deviation (mm2) 443.2 456.4 303.0

Table 2: The mean endplate area for each group. No statistical significant differences were 
found
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of 22.3% (SD = 5.4%) was observed, which is close to the vertebral filling 

percentage target of 20%.

 Since the measured endplate areas, stiffness and failure loads were 

all normally distributed, we continued with the One-way ANOVA to analyze 

the data. The mean endplate area was similar in each of the three measured 

groups and no statistical significant differences were found (Table 2).

 The mean failure load of the prophylactically treated group, loaded 

under 20°, was 2850N (SD=703N). This was significantly higher than the failure 

load of the unfilled 20° group (2163N, SD=670N, p=0.03) and comparable 

Figure 2: The average failure 
load (and SD) for all three 
groups.

Figure 3: The average stiffness 
(and SD) for all three groups.
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to the mean failure load of the unfilled 0° group (2845N, SD=591N, p=0.99, 

Figure 2).

 The mean stiffness of the prophylactically treated group, loaded under 

20°, was 3156N/mm (SD=582N/mm). This was significantly higher than the 

mean stiffness of the unfilled 20° group (2478N/mm, SD=453N/mm, p=0.04), 

but significantly lower than the mean stiffness of the unfilled 0° group (3979N/

mm, SD=928N/mm, p=0.01, Figure 3).

Discussion  

After an initial vertebral compression fracture, the risk of additional adjacent-

level vertebral fractures steeply increases [11,15,21,33]. In this study we 

assessed whether prophylactic vertebroplasty could reinforce cadaver 

vertebrae, when taking sagittal malalignment and the accompanying (off-

axis) load shift into account [5]. The most important finding of this study is that 

prophylactic augmentation of the tested vertebrae makes them 32% better 

capable to withstand such off-axis loads. The failure load of these vertebrae 

is comparable to axially loaded (but unfilled) vertebrae.

 Previous studies on the effects of prophylactic filling have also found 

that the (axial) failure loads were much higher in the prophylactic group than 

in the control group [12,14,31]. For example, the studies of both Furtado et 

al. [12] and Higgins et al. [14] demonstrated that the average failure load of 

the prophylactically filled vertebrae was around 37% higher than that of the 

unfilled control specimens. Sun et al. [31] even showed a failure load increase 

of up to 69% compared to unfilled vertebrae. The main difference between 

these studies and our study is that we used an off-axis load while others used 
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axial loads to crush the vertebrae [12,14]. We see a similar trend:  a 32% 

increase in average failure load when comparing prophylactic group to the 

vertebrae of the 20° group. 

 Thus, single-vertebra in vitro studies have demonstrated that 

prophylactic filling can reinforce vertebrae under both off-axis and on-axis 

loading. Although this suggests a clinical benefit, the real spine is much 

more than a set of single vertebrae. Thus, an important question remains: is 

it enough to save the adjacent vertebra from actually fracturing? The results 

from one multi-vertebrae in vitro study cautiously suggests that prophylactic 

filling of an adjacent vertebra might prevent it from fracturing [9], while 

another study did not find any (positive or negative) effect of the prophylactic 

vertebroplasty [24]. The sparsely available clinical data is also inconclusive 

whether prophylactic bone cement filling of vertebrae can really prevent new 

vertebral fractures in patients [3,19]. Becker et al. [3] performed prophylactic 

balloon kyphoplasties in patients, but could not find any benefits that justified 

this procedure in future patients. On the other hand, Kobayashi et al. [19] 

Figure 4: ’Ball-like’ shape of the cement filling of the vertebra with the lowest failure load (2121 
N) but with one of the highest filling percentages (27.0%) in the prophylactic group.
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performed prophylactic vertebroplasties in their patients and concluded that 

it may prevent new compression fractures for osteoporotic patients. When we 

take our results into account, we see that the failure loads in the prophylactic 

group and the 0° group are similar. This might indicate that the fracture risk of 

a prophylactically augmented vertebra returns to pre-fracture values. Whether 

this is enough to actually prevent a fracture remains inconclusive, as it is still 

a vertebra at risk due to its osteoporotic state. 

 Previous findings have indicated that the filling percentage of vertebrae 

has only a weak correlation with the strength restoration after a fracture 

[23]. A reason for this observation might be the various ways in which the 

cement is distributed within the vertebral body. Endplate-to-endplate filling, 

for example, can dramatically increase the strength of reinforced vertebrae 

[8,30]. It is therefore remarkable that in our study the two vertebrae with the 

highest filling percentage (34,2%: T12, cadaver 4, and 27%: T11, cadaver 

4) have endplate-to-endplate filling, but do not show increased failure loads 

Figure 5: Irregular shapes and branches of the cement filling of the vertebra with the highest 
failure load (3994 N) but with one of the lowest filling percentages (18.2%) in the prophylactic 
group.
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compared to the vertebrae with no or only partial endplate-to-endplate filling. 

When analyzing the CT-images of these two highly filled vertebrae, we noticed 

that the shape of the cement filling is ‘ball-like’, with a smooth surface and 

no irregular shapes or cement protrusions (Figure 4). The cement filling in 

the other vertebrae have all kinds of irregular shapes (Figure 5). This might 

indicate that there is an ‘optimum’ for the amount of cement filling: too little 

cement will only partially reinforce the vertebra [31], while too much cement 

injection might cause a loss in reinforcing capacity. With the injection of 

high amounts of bone cement, high intra-vertebral pressures are likely [13] 

and might damage the remaining trabeculae by ‘pushing’ them to the side, 

resulting in the ‘ball-like’ cement filling. As only the outside of this ‘ball-like’ 

filling can contact the bone, reinforcement is likely to be less effective than in 

vertebrae with cement fillings that are more entangled in the remaining bone. 

This hypothesis is highly speculative, but interesting for future research.

 The augmentation of vertebral bodies with bone cement can possibly 

also induce new adjacent vertebral fractures. In case of prophylactic 

vertebroplasty, this would be a rather disappointing side-effect, as the 

treatment aims to prevent consecutive fractures. It is suggested that the 

relatively stiff bone cement injected into the osteoporotic bone causes stress 

peaks on the endplates, leading to fractures at the adjacent levels [2,4,26]. 

However, clinical studies in which vertebroplasty groups are compared to 

conservatively treated control groups, show no trends towards increased 

adjacent level fracture risks in the vertebroplasty groups [5,11,18]. A possible 

reason for this discrepancy is the fact that in experimental studies generally 

more bone cement is injected (about 8.8 ml [4], 33% of vertebral body volume 
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[26]) than in the clinical studies (about 4.1 ml [18], sometimes even as little 

as 2.8 ml [6]), thereby exaggerating the possible negative effects. As little 

clinical data on prophylactic vertebroplasty is available at this moment, it is 

difficult to judge whether adjacent levels of prophylactically filled vertebrae 

also have elevated fracture risks due to the injected bone cement. It is, 

however, important to keep this in mind in future studies

 This study has a few limitations that should be considered. First, 

the loading condition used in this experiment was a simplification. The 20° 

was based on the angle that typically results from a single wedge fracture 

[27]. However, such a wedge-like deformity of the vertebral body does not 

necessarily imply that the loading direction of the adjacent level vertebra also 

shows a 20° shift. Muscles, ligaments and joint capsules can all influence 

this load shift, although the true size of the resulting shift cannot be deduced 

from the current literature. As a result, our experiment should be seen as 

‘proof of principle’. Second, in order to reach the 20% vertebral filling that 

has been suggested in the literature [12,14,31], we had to inject relatively 

high amounts of bone cement (8.4 ml, SD = 2.1 ml) compared to the amounts 

used in clinical studies (2 to 6 ml [3]). We therefore think that more clinically 

realistic volumes or more advanced filling materials and delivery techniques 

are important topics for future in-vitro research. Finally, we were unable to 

include the potential change in load transfer through the facet joints within 

our test set-up. The role of the facet joints on the off-axis failure mechanisms 

requires further study.

 We demonstrated with our in-vitro tests that prophylactic augmentation 

can lower the chance of a fracture in malaligned, osteoporotic vertebrae 
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adjacent to a wedge fracture. Whether this reinforcement is enough to actually 

prevent additional vertebral fractures in clinical situations, remains subject of 

further study.
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Introduction  

Vertebral compression fractures (VCF) can be a painful consequence of 

osteoporosis, trauma, and metastatic lesions. In the year 2000, an estimated 

1.4 million vertebral fractures were caused by osteoporosis alone [23]. In 

reality, however, the number of vertebral fractures will probably be even 

higher, as it is suggested that only one third of the fractures are clinically 

recognized [13]. It is important that VCF are treated because, besides pain, 

they are also associated with a significant degree of morbidity and mortality 

and a decrease in quality of life [6,37].

 Percutaneous vertebroplasty (PVP), a procedure in which fractured 

vertebrae are filled with an augmentation material, is one of the current 

treatment options for VCF. This minimally invasive procedure gained 

widespread acceptance as a quick and efficient way to reduce the pain in 

patients suffering from VCF. [26,40] Two recent studies suggest the contrary 

[10,24], but several methodological shortcomings hamper proper clinical 

interpretation of these studies [1,8,12]. 

 Polymethylmethacrylate (PMMA) Bone cement is currently the most 

used augmentation material in PVP. However, several alternative materials with 

improved handling, mechanics and biocompatibility are in development [21]. 

One of these alternative materials is a bioactive glass containing  bisphenol-

a-glycidyl dimethacrylate also known as “Cortoss” (Orthovita, Inc., Malvern, 

PA) which has several advantages over PMMA.  Over time,  Cortoss stimulates 

new bone formation and develops a mechanical bond to the host bone, in 

contrast to  PMMA, which is separated from the host bone by a fibrous tissue 

layer [17]. Another important advantage of Cortoss over PMMA is the relatively 
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low volume that is required to obtain a satisfactory fill [3,30,32], which can 

reduce the incidence of a rare, albeit serious, complication of vertebroplasty: 

embolisms due to fatty marrow or injected material [31,39]. Cortoss does 

not require premixing like PMMA and can be injected when needed during 

surgery. Furthermore, Cortoss is highly radiopaque, which contributes to the 

safety of use under fluoroscopy.

 Thus, there are some important theoretical grounds on which Cortoss 

might be preferred over PMMA. However, only limited published data on its 

clinical performance exist. There are three prospective clinical studies that 

show good results in a limited number of patients [3,30,32], but whether 

results remain as good in a larger patient population is as yet not known. 

The goal of this study was to assess the clinical performance of Cortoss in 

a routine population of 161 patients with VCF. Pre- and postprocedural pain 

scores were collected prospectively using a Numerical Rating Scale (NRS) 

scores and adverse events were registered and compared to the literature.

Materials & Methods  
Study design and patients  

In our region, all patients with severe back pain (NRS score of 7 or higher) 

were referred to an orthopaedic spine surgeon and underwent a thorough 

physical exam and received a planar spinal X-ray in order to locate the 

origin of the pain. If the pain was suspected to be caused by a VCF, six 

weeks of conservative therapy was the first treatment option. If, after the 

initial conservative treatment, the pain would not diminish (NRS score of 7 or 

higher), the patients were referred to the Radiology department and a MRI 
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scan was made. The MRI scan can confirm the diagnosis and can also aid 

in the determination of the acuteness of the fracture through the presence of 

bone marrow edema, which has been shown to be associated with an acute 

VCF’s [41]. In case bone marrow edema was present, patients were scheduled 

for a PVP procedure with Cortoss. This procedure would take place within the 

next two weeks after the MRI scan and eight weeks after the onset of pain.

  Between October 2005 and March 2011, a total of 268 vertebrae were 

augmented in 165 consecutive patients. Four out of these 165 patients were 

excluded from the study (Tables 1 & 2). For two patients the PVP was part 

of a more elaborate spine surgery in one patient pain was caused by a four 

year old fracture and not by a malignant tumor as suspected, and in another 

Group Patients
(n)

Vertebrae
(n)

Procedures
(n)

Male / Female Mean age in 
years (range)

All 161 264 186 43 / 118 73.7±10.7

Osteoporosis 139 228 162 28 / 111 75.2±9.7

Trauma 11 13 12 7 / 4 60.0±13.9

Malignancy 11 23 12 8 / 3 68.6±9.6

Table 1: Patient characteristics.

Inclusion criteria Exclusion criteria

•	 Vertebral compression fracture 
due to aosteoporosis, trauma or 
malignancy.

•	 Invalidating back pain (NRS ≥7).
•	 Bone marrow edema of fractured 

vertebrae on MRI.
•	 No improvement on standard 

conservative treatment for at least six 
weeks.

•	 Poor cardiopulmonary condition. 
•	 Untreatable coagulopathy. 
•	 Ongoing systemic or local infection 

in the spine.
•	 Radicular and / or myelum 

compression syndrome.
•	 Major retropulsion of bony 

fragments into the spinal canal. 
•	 Vertebroplasty in combination with 

additional spinal interventions

Table 2: Inclusion and exclusion criteria.
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patient the fracture was caused by tuberculosis. Thus a cohort of 161 patients 

was included, which consisted of 117 women and 44 men, the average age 

was 73.7 years (SD 10.7 years, Table 1).

Percutaneous vertebroplasty procedure  

The patient was positioned prone on a single plane angiographic system 

(Integris V 5000 Philips). PVP was performed under sterile conditions and 

with continuous monitoring of the oxygen saturation and the blood pressure. 

No antibiotics were administered. After infiltration of the skin and periosteum 

with a local analgesic (Lidocaine 1%), an 11 Gauge needle was positioned 

in the pedicle of the vertebra. A 13 G microreamer was subsequently used 

to create a thin channel in the vertebra, up to 5 mm from the anterior cortex 

of the vertebral body. Correct positioning of the needle with microreamer was 

controlled in two directions (AP and lateral) using fluoroscopy. 

 After positioning of the needle, Cortoss was injected manually using a 

coaxial delivery system.  Continuous lateral fluoroscopic imaging was used 

in order to monitor the filling pattern and to detect possible leakage. Injection 

of Cortoss was done with a unipedicular approach. However, if unilateral 

injection did not result in a filling pattern that crossed the midline and filled 

the anterior two thirds of the vertebral body, the procedure was repeated 

through the other pedicle. The amount of Cortoss injected in each vertebra 

was registered and a maximum of three fractured vertebrae were augmented 

in one patient during a single session, in order to minimize the chance of an 

embolism. 

 In the case of any venous leakage, the administration was stopped, 
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and restarted after 5 minutes, after the injected material had hardened. In 

case a clinically relevant cement leakage was suspected, a CT scan was 

made immediately after the procedure in order to identify the exact location 

and extent of the leak. After the procedure, the patient stayed in bed for 20 

minutes and was then mobilized. After the final check by the radiologist, 

approximately one hour after the procedure, patients were discharged and 

instructed to immediately contact either the spine surgeon or the radiologist 

in case of any new or recurrent back pain.

Clinical follow-up  

All 161 patients were asked to fill out a pain questionnaire before the PVP 

(baseline). The pain questionnaire consisted of a numerical rating scale 

(NRS) for back pain, which is closely correlated to the more known visual 

analogue scale (VAS) questionnaire [9,18]. The NRS score indicated pain 

on an eleven-point scale, ranging from 0 (no pain) to 10 (worst imaginable 

pain). When discharged from the hospital, the patients were given two new 

NRS score forms and were asked to fill them out at home at two and six 

weeks after the PVP. These score forms were then handed in at a routine 

assessment, six weeks after the PVP, which was performed by the orthopedic 

spine surgeon in order to evaluate the status of the treated levels as well as 

detect new fractures. At this routine assessment, patients were also instructed 

to immediately contact the orthopedic spine surgeon or the radiologist in case 

new or similar back pain would emerge. Pain scores of patients with dementia 

were excluded from the analysis.
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Analysis  

In March 2011 a retrospective analysis of the data was performed. The primary 

outcome was pain relief at two weeks and six weeks after PVP. We defined 

clinically significant pain relief as a decrease in NRS score from baseline 

of at least three points or more [5,35]. Secondary outcomes were: injected 

volume of Cortoss per treated level; adverse events such as decrease of 

blood pressure or oxygen saturation during the procedure and leaks. New 

VCFs that occurred up to 48 months after the initial PVP, were also registered.

Statistical analysis  

The three NRS scores (pre, 2-weeks, 6-weeks) were compared using the 

Friedman repeated measures analysis of variance (ANOVA). In case of an 

initial statistical significant difference, the Tukey test was used as a post-hoc 

test.

Results  

264 Vertebrae were treated during 186 procedures in the included 161 

patients. In total, 97 out of 161 (60.2%) patients handed in their NRS pain 

scores according to protocol (after six weeks). With an average decrease of 5.0 

points there was a clinically relevant improvement between the average NRS 

pain scores at baseline (average: 8.5) and those registered two weeks after 

the treatment (average: 3.5). This difference was also statistically significant 

(post-hoc Tukey Test: p < 0.05). After six weeks, the average NRS score was 

even lower (average 3.0) and also statistically different (5.5) from the baseline 

value (post-hoc Tukey Test: p < 0.05). It was, however, not statistically different 
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from the NRS score after two weeks (post-hoc Tukey Test: p < 0.05). After two 

weeks, 83.6% of the patients had a reduction in NRS score of three points or 

more, this increased to 88.8% after six weeks (Table 3).

 Of the 264 vertebrae, 151 were treated using a unipedicular approach 

and in the remaining 113 vertebrae a bipedicular injection was employed. The 

amount of injected Cortoss was registered for 238 vertebrae (90.2%) and the 

average injected amount of Cortoss in these vertebrae was 1.54 ml (SD 0.62 

ml, range 0.2 – 3.8 ml, Figure 1, Table 4).

 A total of 14 clinically relevant adverse events were registered during 

the procedure (Table 5). The most important adverse event was a myocardial 

infarction , which happened in one patient after the procedure. The infarction 

Group Number 
of 

patients

Number 
of

procedures

Mean age Mean Nrs Score Deacrease 
of NRS 

score > 3 
(%)

T=0   T=2   T=6 T=2   T=6

Osteoporosis 82 99 72.9 ± 10.0 8.5   3.4   3.0 84.8   88.8

Trauma 11 12 60.0 ± 13.9 8.5   4.1   3.2 75.0   91.7

Malignancy 4 5 71.3 ± 9.1 8.4   4.0   3.0 80.0   80.0

All 97 116 71.4 ± 11.1 8.5   3.5   3.0 83.6   88.8

Table 3: Mean NRS-scores at base line and after PVP (t = time in weeks)

Number of 
vertebrae

Percentage 
(%)

Volume Cortoss (ml)

Unipedicular 136 52 1.32±0.49

Bipedicular 99 38 1.88±0.62

Total 235 89 1.54±0.61

Not measured 28 11 n/a

Table 4: Used volume of Cortoss per vertebra.
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had no obvious relationship with the timing of the injection. And it is believed 

that the interrupted antiplatelet therapy in preparation of the procedure was 

the cause for the myocardial infarction. The other 13 adverse events ranged 

from leakage to hypotension and were all transient in nature.

 35 New vertebral fractures occurred in 14.9% of the patients (n = 24) 

within 48 months after the PVP. Most of these new fractures occurred in the 

osteoporotic patients (28 fractures in 21 patients), the remaining fractures 

occurred in the malignancy group (7 fractures in 3 patients). No new fractures 

occurred in the trauma group. 26 of the 35 new vertebral fractures were 

augmented with PVP, and the remaining 9 vertebrae (6 patients) were treated 

conservatively. Of the 35 new fractures, 19 fractures occurred in adjacent 

levels (54%).

Figure 1: Mean injected volume per level + standard deviations (based on 234 vertebrae).
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Discussion  

The goal of our study was to assess the short-term performance of the relatively 

new vertebral augmentation material Cortoss in a large patient population. 

Pre- and post procedural pain scores were collected prospectively using a 

NRS and adverse events were registered and compared to the literature.  

This study demonstrates that a PVP with Cortoss results in an average pain 

reduction of 5.0 points and 5.5 points on the 11-point NRS pain scale in 132 

patients at 2 weeks and 6 weeks postoperatively, respectively. These results 

are comparable to the short-term pain relief of patients that underwent a PVP 

with the traditional augmentation material PMMA [16,22,26]. This finding 

Event N Clinical sypmtoms

Cement leakage 
  - Venous
    * Paralumbar 
    * Epidural 
    * Basivertebral
  - Intradiscal 
  - Pedicle filling 
  - Spinal canal 
  - Subcutaneous
Hypotension

Hypertension
Decrease of oxygen 
saturation 
Myocardial infarction 
Technical problem 
with trocar 
Infections

85
52
38
7
7

28
3
1
1
9

1
1

1
1

0

None
None
None
None
None
None
None
None
Pain, removed under local anesthesia.
6 During insertion needle, 3  procedures in 2 
sessions 3 During injection of Cortoss; procedure 
halted, immediate recovery of 
blood pressure.No change in oxygen saturation.

None
Temporarily, just before injection of Cortoss.

Believed to be caused by interruption of antiplatelet 
therapy
None; Procedure in 2 sessions

Note: no prophylactic antibiotics

Table 5: Adverse events
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makes the often suggested “thermic stress” an unlikely mechanism for pain 

reduction in vertebroplasty, as polymerization of Cortoss generates less heat 

than polymerizing PMMA. This finding corroborates the results of previously 

published studies [2,14].

 We only included patients with persisting severe pain after 6 weeks 

of conservative treatment (NRS ≥ 7), because we believe that these patients 

suffer from fracture pain, which is the only pain we might be able to relief by 

putting a stabilizing material into the vertebra. In the study of Kallmes patients 

with a NRS of 3 were included in the study, and not all patients underwent an 

MRI to detect bone marrow edema. We doubt that all patients in this study 

really suffered from fracture pain; probably facet joint degeneration due to the 

altered forces in the deformed spine played a role in these patients [7].

  We used an average amount of 1.54 ml (SD 0.62 ml) Cortoss to 

augment a single vertebra. This is much less than the average amounts of 

PMMA used in PVP procedures. Hulme et al. report in their review article that 

the average amount of PMMA during vertebroplasty procedures ranged from 

2.6 to 8.7 ml [22]. Klazen et al used an average of 4.1 ml PMMA to augment a 

vertebra [26]. Injection of augmentation material into the vertebrae may force 

fatty marrow into the systemic circulation and can cause symptoms such as 

sudden hypotension, bradycardia and desaturation. In the worst case fatty 

marrow embolisms can even lead to the death of high risk patients if not 

managed immediately [11,38,39]. Thus, the injection of less augmentation 

material into the vertebra can potentially reduce the risk of fatty marrow 

embolisms. This might make the treatment of multiple levels in one patient 

during a single session also much safer. 



124

 Apart from the low volume of augmentation material needed, we also 

noticed a different type of filling with Cortoss compared to standard bone 

cement. Where bone cement usually shows a bolus-type filling, Cortoss 

dispersed nicely throughout the vertebral body (Figure 2). This dispersed 

filling might even contribute to a more physiological loading condition 

through the vertebra compared to the bolus like-filling of bone cement [36]. 

 After the PVP we observed new VCFs in 14.9% of the patients (n = 

24). This is in line with the literature; both review articles of Eck et al [16] and 

Hulme et al [22] reported similar numbers. The number of new fractures of 

our study are also in line with two other recently published studies [10,26]. 

We observed that 19 of the 35 new fractures (54.0%) occurred in adjacent 

vertebrae, which corroborates the literature [27]. Some studies suggest that 

adjacent fractures are linked to the stiffness increase caused by augmenting 

the initial fractured vertebra [4,20,33]. On the other hand, an increased risk 

for adjacent level fractures has also been reported in patients that did not 

receive any augmentation of the fractured vertebra [15,28,29].

 Thus, other factors might play a more important role than the stiffness 

Figure 2: Dispersed filling pattern.
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of the augmentation material. In our study, the fracture location might be of 

importance, as 14 out of 19 adjacent fractures (73.7%) were located around 

the thoracolumbar junction (T11-L2), a region that is notorious for its high 

fracture incidence [25]. So, the high number of adjacent fractures in the 

thoracolumbar region might give the impression that they are related to the 

initial PVP, however the thoracolumbar region itself might be a more important 

risk factor for those fractures.

 The most common risk of PVP with Cortoss was leakage: in 85 of 

the 264 (32.2%) augmented vertebrae, a leak was observed. This is in line 

with the leakage rates of PVP with regular bone cement [16,19,34]. Of all 

the observed leaks only one was symptomatic: a subcutaneous remnant, 

which was successfully removed afterwards. In case a leakage was observed 

during the procedure, the physician stopped injecting Cortoss briefly, waiting 

for the injected material to get more viscous and “plug” the leak. After this 

brief interruption, the procedure could be continued without further problems.

 Some other adverse events were also encountered during the procedure. 

In nine of the 161 patients (5.6%) transient hypotension was observed during 

either the introduction of the needle, or the injection of Cortoss. At the onset of 

hypotension the procedure was halted and the blood pressure returned to its 

normal state within seconds. It is possible that this sudden hypotension was 

caused by fatty marrow that was forced into the circulation [39]. Only in one 

patient a change in oxygen saturation was observed. This happened before 

the injection of Cortoss. One important complication that was encountered 

after the procedure was a myocardial infarction in one patient. We believe 

that this is caused by the interruption of the anti-platelet therapy of the patient 
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prior to the PVP. However, we cannot exclude the PVP as a possible cause for 

this myocardial infarction.

 This study has several drawbacks. First, our findings could only be 

compared to the literature, as there was no control group that was treated 

conservatively or received a PVP with PMMA. Second, a follow-up period 

of six weeks is relatively short. However, longer follow-up periods might 

influence the measurements as other painful back problems, such as facet 

joint degeneration due to wedge-shaped deformity of the spine, can develop 

over time28. Third, 97 out of 161 (60.2%) patients handed in their NRS pain 

scores according to our protocol (after 2 and 6 weeks). The remaining 64 

patients handed in their NRS forms much later or not at all and were therefore 

not included in the analysis of NRS scores. However, to get an idea of the pain 

scores of these “missing” patients, an assistant phoned them 3 to 6 months 

after the PVP and obtained the scores for 47 patients. Looking at those scores 

(8.9 at baseline, 4.7 after 2 weeks and 4.0 after 6 weeks), we see a similar 

decrease in pain after 2 and 6 weeks as in the 97 patients that handed in their 

pain scores without any delay. However we deem these additional scores 

not suitable for any statistical analysis, as there are months between the 

registration and the actual pain that was felt.

 Based on our short term data, we conclude that Cortoss is a safe and 

effective augmentation material for the use in patients with painful vertebral 

fractures. These good clinical results, together with the low complication rate 

and the low cement volume needed, makes it a safe and effective augmentation 

material for the use in patients with painful vertebral fractures. 
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Introduction  

With an estimated 1.4 million new vertebral fractures coming to the attention 

of clinicians in the year 2000 alone, vertebral compression fractures 

(VCFs) are one of the most common fractures related to osteoporosis [10]. 

Conservative treatment has long been the only available treatment option in 

daily clinical practice and includes bed rest, analgesics, muscle relaxants, 

spinal braces, and physical therapy [7,12,15]. But ever since Galibert and 

Deramond introduced percutaneous vertebroplasty (PVP) to successfully 

treat spinal angiomas in 1987 [8], they also saw its value for the treatment of 

spinal osteoporotic compression fractures [9]. From that time onwards, PVP 

has been accepted as a treatment option in the management of patients with 

painful VCFs, even though its efficacy was only supported by case studies or 

relatively small cohort studies [13].

 With the publication of level I evidence, demonstrating the limited 

effect of PVP [4,11], it seems as if the days of this technique are numbered. 

In the US, the American Academy of Orthopaedic Surgeons (AAOS) issued 

a strong recommendation against the use of PVP [2]. Moreover, in a society 

where health care costs are steadily increasing over the years [16], financial 

compensation of treatments with doubtful efficacy is bound to be thoroughly 

scrutinized. In the Netherlands, this even led to an advice of the Dutch Health 

Care Insurance Board (an executive board appointed by the ministry of 

health) to stop reimbursing PVP procedures for patients with painful vertebral 

fractures [6].

 In this study, we will try to identify if the two randomized clinical trials in 

2009 and the subsequent critical recommendations towards PVP at the end of 
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2010 have resulted in any changes in the clinical practice of spine surgeons. 

We sent out a survey to spine surgeons, mostly across Europe, in order to test 

the following two hypotheses:

1. The number of PVP procedures decreased in the years following the 

vertebroplasty trials and subsequent recommendations.

2. The awareness concerning the reimbursement policy for PVP procedures 

increased in the years following the vertebroplasty trials and subsequent 

recommendations.

Materials & Methods  

Similar to a previously performed study [14], the secretary of the AO Spine 

Research Commission was contacted in order to reach a large number of 

international spine specialists. The AO Spine is an international community and 

includes spine surgeons, orthopaedic surgeons, neurosurgeons, academics, 

researchers, and other spine care professionals. In addition, Dutch Spine 

Society members were contacted in order to increase the number of possible 

participants. An additional reason for contacting the Dutch Spine Society was 

to include more Dutch spine specialists, which could be useful as the Dutch 

Health Care Insurance Board advised to stop reimbursing PVP procedures.

 The survey itself (Figure 1) started with general questions informing on 

geographical location, age, gender and professional background. After these 

questions, participants were asked if they had performed PVP procedures 

during the year 2011 or in the period before 2011. We selected 2011 as it 

was the year after the AAOS and the Dutch Health Care Insurance Board 
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published their recommendations regarding PVP. If they would answer one 

or both questions positively, applicants were invited to answer two questions 

for each period: 1) how many PVP procedures did you perform, and 2) did 

reimbursement by the insurers fully covered the costs of a PVP procedure. 

The answers from 2011 could then be compared to the period before 2011.

 Participants were subsequently asked if the reimbursement policy had 

changed during the last five years. If so, we inquired if this change affected 

the daily clinical practice. If it did affect the daily clinical practice, we asked 

whether the change was positive or negative for patients. Finally, we asked if 

Figure 1: The questionnaire layout.
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the responders were familiar with the contents of the two vertebroplasty trials 

[4,11] in order to get an idea of the awareness of the surgeons with these level 

I evidence studies.

 The survey was put on the AO Spine website on February 24th 2012 

and a mail was sent to the entire mailing list of the AO Spine (n = 6213) and 

the Dutch Spine Society (n = 150). After four weeks, results were gathered 

and the data were processed in Microsoft Excel for descriptive analysis. We 

decided to separately present the results from Dutch responders and compare 

them to the results of the three countries with the most responders to see if 

the advice of the Dutch Health Care Insurance Board to stop reimbursing PVP 

procedures already showed some effect on Dutch clinical policy.

Results  

In total, 6363 professionals were invited to fill out the survey. Complete 

N %

Austria
Belgium
Bulgaria
Croatia 
Cyprus 
Czech Republic 
Denmark
Estonia
Finland
France 
German
Ghana
Greece
Hungary
Israel
Italy
Latvia
Lithuania

8
8
4
1
1
3
1
1
1
7

53
1
9
3

11
44
2
1

2.6
2.6
1.3
0.3
0.3
1.0
0.3
0.3
0.3
2.3

17.5
0.3
3.0
1.0
3.6

14.5
0.7
0.3

N %

Mexico
The Netherlands 
Norway
Poland
Portugal
Moldova
Romania
Russia
Serbia
Slovakia 
Slovenia
Spain
Sweden
Switzerland
Turke
Ukraine
UK 

TOTAL

1
24
2
9
9
2

10
14
2
2
2

13
6

10
17
2

19

303

0.3
7.9
0.7
3.0
3.0
0.7
3.3
4.6
0.7
0.7
0.7
5.3
2.0
3.3
5.6
0.7
6.3

100

Table 1: 303 
Responders 
from 35 coun-
tries
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responses were received from 303 responders (4.8% response rate) from 

35 countries (Table 1). All responders were clinicians i.e. 179 orthopedic 

surgeons (59%), 111 neurosurgeons (37%), 7 trauma surgeons (2%), 3 spine 

surgeons (1%), and 3 interventional radiologists (1%).

 Out of the responders, 293 (97%) performed the PVP procedure in 

the period before 2011, and 274 professionals (90%) used the technique 

in the year 2011. Besides the decrease in surgeons using the technique, 

we also observed a decrease in the number of PVP procedures performed 

annually. Compared to the period before 2011, less specialists performed 

PVPs in the four highest categories (11-25, 26-50, 51-80, >80), whereas 

Figure 2: Number of PVP 
procedures performed by the 
responders.

Table 2: The number 
of PVP procedures 
before 2011 and in 
2011 (including the 
Netherlands).  
Percentages are dis-
played in brackets.
for the four coun-
tries with the most 
responders.

Number of PVP’s before 2011
1-10 11-25 26-50 51-80 >80 Total

The  
Netherlands

15
(65.2)

4
(17.4)

4
(17.4)

0
(0)

0
(0)

23
(100)

Germany 7
(13.5)

18
(34.6)

18
(34.6)

3
(5.8)

6
(11.5)

52
(100)

Italy 11
(25.6)

18
(41.9)

11
(25.6)

2
(4.7)

1
(2.3)

43
(100)

UK 4
(23.5)

9
(52.9)

4
(23.5)

0
(0)

0
(0)

17
(100)
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more specialists performed only a few (1-10) PVPs in 2011 (Figure 2). 

When analyzing the results of the Dutch responders, we observed that surgeons 

performed up to 50 PVP procedures annually, whereas some German and 

Italian specialists performed more than 80 PVPs per year (Table 2).

 Of all responses, 293 (97%) answered the question if reimbursement 

covered the costs in the period before 2011, and 274 professionals (90%) 

answered the question for the year 2011. Remarkably, 24% of the responders 

did not know if reimbursement for the PVP procedure fully covered the 

costs in both the period before 2011 as well as 2011 itself (Figure 3).  

We also saw a relatively high percentage of Dutch specialists that did not 

Figure 3: Did the reimbursement 
fee fully cover the costs of a 
percutaneous vertebroplasy 
procedure?

Table 2  continued: 
The number of PVP 
procedures before 
2011 and in 2011 
(including the Neth-
erlands).  
Percentages are dis-
played in brackets.
for the four coun-
tries with the most 
responders.

Number of PVP’s in 2011
1-10 11-25 26-50 51-80 >80 Total

The  
Netherlands

11
(57.9)

6
(31.6)

2
(10.5)

0
(0)

0
(0)

19
(100)

Germany 5
(10.9)

19
(41.3)

17
(37.0)

3
(6.5)

2
(4.3)

46
(100)

Italy 15
(36.6)

14
(34.1)

10
(24.4)

1
(2.4)

1
(2.4)

41
(100)

UK 8
(47.0)

7
(41.2)

2
(11.8)

0
(0)

0
(0)

17
(100)
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know if the reimbursement fee covered the costs of the procedure: 13 out of 

23 (57%) prior to 2011, and 9 out 19 (47%) in 2011. These percentages are 

much higher than those from other countries like Germany or Italy (Table 3). 

73 Of the 303 (24.1%) responders indicated that the reimbursement policy 

had changed during the last five years and in 24 of the 73 (32.9%) cases 

this also led to a change in the care for patients with vertebral fractures. This 

change was considered to be ‘negative’ in 15 of the 24 cases (62.5%).

 When asked about the two vertebroplasty trials published in the New 

England Journal of Medicine, 75 out of the 303 responders (24.8%) indicated 

that they were not familiar with the contents of these two studies.

Discussion  

To identify whether the criticism towards PVP led to changes in the clinical  

practice of spine specialists performing this treatment, we postulated the 

following two hypotheses: 1) the number of PVP procedures decreased in the 

Table 3: Information on the coverage of the reimbursement fee for the percutaneous vertebroplasy 
procedure before 2011 and in 2011 for the four countries with the most responders (including 
the Netherlands).

Did the reimbursement fee 
fully cover the costs of the PVP 

procedure? (before 2011)

Did the reimbursement fee 
fully cover the costs of the PVP 

procedure? (in 2011)
Yes No Do not 

know
Total Yes No Do Not 

Know
Total

The 
Netherlands

5
(21.7)

5
(21.7)

13
(56.5)

23 
(100)

2
(10.5)

8
(42.1)

9
(47.4)

19
(100)

Germany 42
(80.8)

5 
(9.6)

5 
(9.6)

52
(100)

37
(80.4)

3 
(6.5)

6
(13.0)

46
(100)

Italy 28 
(65.1)

8 
(18.6)

7 
(16.3)

43
(100)

26 
(63.4)

8 
(19.5)

7 
(17.)

41
(100)

UK 11 
(64.7)

1 
(5.9)

5
(29.4)

17
(100)

11 
(64.7)

1 
(5.9)

5
(29.4)

17
(100)
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years following the vertebroplasty trials and subsequent recommendations, 

and 2) the awareness concerning the reimbursement policy for PVP procedures 

increased in the years following the vertebroplasty trials and subsequent 

recommendations. To either accept or reject these two hypotheses, we asked 

6213 AO Spine members and 150 Dutch Spine Society members to fill out an 

online survey.

 First, we observed a decrease in the number of specialists using the 

PVP technique as well as the number of PVP procedures in 2011 versus the 

period before 2011 (Figure 2). Especially the number of surgeons performing 

over 80 PVP procedures annually showed a drastic decrease (Figure 2).  

These findings support our first hypothesis. Whether the decrease is a 

direct consequence of the vertebroplasty trials [4,11] and the subsequent 

recommendations [2]  is, however, difficult to prove. 

 Second, in the years following the vertebroplasty trials and subsequent 

recommendations, the surgeon’s awareness concerning the reimbursement 

policy for PVP did not seem to be affected (Figure 3). Despite the controversy 

the two randomized clinical trials invoked in the recent literature [4,11], almost 

a quarter of the responders (24%) did not know whether reimbursement could 

fully cover the costs of the procedure. In the Netherlands, this percentage 

was even higher, also when compared to the other three other ‘high response’ 

countries (Table 3). We do know that PVP procedures were still reimbursed 

in 2011 in Germany and Italy, while in the Netherlands the Dutch Health Care 

Insurance Board advised to stop reimbursing PVP procedures in 2010. In any 

case, it seems that changes in reimbursement did not increase the awareness 

concerning the costs as we hypothesized. But how should we then explain 
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these results? It seems unlikely that specialists are confused by changes in 

the reimbursement policy of the insurers, making them unsure whether the 

procedure is still fully covered or not: of the 66 responders who did not know 

whether the procedure was fully reimbursed in 2011, only 13 (20%) indicated 

that the reimbursement policy had changed during the last five years.

 25% Of the responders did not know the contents of two papers 

published in the New England Journal of Medicine [4,11], despite the fact that 

they were published 3 years ago in a high impact journal and got quite some 

attention. We will not focus on the critical comments that the trials evoked 

here [1,3,5], but rather highlight the fact that these trials casted doubt on the 

efficacy of a widely implemented treatment. If 25% percent of professionals 

is not aware of treatments that are possibly ineffective, many patients might 

be at risk and valuable resources are being spent on possible ineffective 

treatment options. Most of the responders that were unaware of the contents 

of the vertebroplasty trials performed relatively few PVPs in 2011 (9.3% did 0 

PVPs, 40% did 1-10 PVPs, 25.3% did 11-25 PVPs). This suggests that PVP is 

not the key focus of these specialists, thereby making it easier to miss ongoing 

discussions in the literature. Surprisingly, there were also responders who 

performed large numbers of PVP procedures and indicated to be unaware of 

the vertebroplasty trials (21.3% did 26-50 PVPs, 2.7% did 51-80 PVPs, 1.3% 

did >80 PVPs). To us, it is puzzling that the surgeons of this latter group are 

not aware of the possible efficacy-problems of the treatment they provide their 

patients with on a regular basis. We, therefore, think that implementation of 

scientific evidence into clinical practice is an important topic that needs to 

be addressed more rigorously, especially within this group. It is important to 
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realize that the key to a successful implementation of evidence into the clinic 

lies in the participation of the healthcare professionals themselves [17].

 This study has limitations that should be considered while interpreting 

the results. One of the biggest drawbacks of the study is the relatively low 

response rate (4.8%). This response rate can partially be explained by the 

fact that not all of the AO Spine members are involved in direct spinal care. For 

example, we know that 311 AO Spine members primarily focus on business 

management and 111 members are involved in research. In addition, it is 

likely that not all the surgeons in the database use the PVP procedure in their 

practice. Fortunately, still a large group of professionals (n = 303) completed 

the survey, providing us with valuable information on their vertebroplasty 

practice in the past couple of years. Another drawback of the study is the 

possible bias of the responders, as they are probably more aware of the recent 

vertebroplasty trials [4,11] compared to the specialists who did not respond. 

In this view, it is surprising that 25% of the responders are not familiar with 

the contents of these two papers, which implies that the awareness of these 

papers in the ‘average’ group of spine specialist is probably even lower.

 In conclusion, we confirm our first hypothesis: the number of PVP 

procedures decreased in the years following the vertebroplasty trials and 

subsequent recommendations, as the number of surgeons performing 

the procedure decreased as well as the number of PVPs they performed. 

However, we reject our second hypothesis: the awareness concerning the 

reimbursement policy for PVP procedures increased in the years following 

the vertebroplasty trials and subsequent recommendations, as there was no 

change observed in the percentage of responders who did not know whether 
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the procedure was fully reimbursed. Furthermore, 25% of the responders 

were not aware of the contents of the 2009 vertebroplasty trials. Therefore, 

we suggest that implementing scientific evidence into clinical practice needs 

further attention in order to optimize the treatment for patients with painful 

vertebral compression fractures.
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Summary

Vertebral compression fractures are an important clinical problem not only 

because they cause pain and influence the quality of life in a negative way, 

but also because many people will sustain a spinal fracture during their life. 

In this thesis we looked at factors that can influence the occurrence of these 

fractures as well as ways to treat or to prevent them. 

 Vertebral fractures are typically attributed to osteoporosis, a metabolic 

disease characterized by a low bone mass. Although disc degeneration has 

also been suggested to play a role in the origin of these fractures. In order to 

further explore this influence of disc degeneration, a finite element model of 

a lumbar segment was created and calibrated, and existing bone adaptation 

theories were used in order to elucidate the biomechanical pathway from a 

degenerated disc to an increased vertebral fracture risk (CHAPTER 2). The 

disc properties were varied to represent either a healthy or degenerated 

disc and the resulting bone adaptation was simulated. Disc degeneration 

resulted in a shift of load from the nucleus to the annulus. The resulting bone 

adaptation led to a dramatically reduced density of the trabecular core, and to 

an increased density in the vertebral walls. Degeneration of just the nucleus, 

and in particular the dehydration of the nucleus, resulted in most of this bone 

density change. Additional annulus degeneration had much less of an effect 

on the density values. The density decrease in the trabecular core, as seen in 

this study, matches clinical observations. In this study we demonstrated that 

intervertebral disc degeneration can cause vertebral bone loss and thereby 

increase the vertebral fracture risk.

 With every vertebral fracture, the risk for additional vertebrae to 
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fracture steeply increases. The wedge-like deformity that often comes with 

these type of fractures changes the spinal alignment and the loading of the 

adjacent level. Loading of vertebrae is usually perpendicular to the endplate, 

but a wedge-like deformity can induce a more shearing, off-axis load to 

the adjacent level vertebrae. In order to investigate the effect of such off-

axis loads on vertebrae, twenty vertebrae, harvested from one osteopenic 

cadaver spine and three osteoporotic cadaver spines, were loaded until 

failure (CHAPTER 3). Half of the vertebrae were loaded perpendicular to the 

upper endplate (0° group), while the other half was loaded at an angle of 20°, 

representing vertebrae adjacent to a wedge fracture (20° group). The failure 

load was significantly higher (p = 0.028) when tested at 0° (2854 N, SD 5 622 

N), compared with vertebrae tested at 20° (2162 N, SD 5 670 N). Vertebrae 

were also significantly stiffer (p < 0.001) when tested at 0° (4017 N/mm, SD 5 

970 N/mm) than those tested at 20° (2478 N/mm, SD 5 453 N/mm). The failure 

load of vertebrae with a low bone density was 24% lower under off-axis loads 

(20°) than under axial loads (0°). This study shows the detrimental effect of 

off-axis loading, due to wedge-like deformities, on adjacent level vertebrae. It 

is thus important to consider reconstruction of the spinal anatomy prior to the 

fracture in the search for new treatment options for vertebral fractures.

 A treatment option for patients suffering from spinal fractures is 

percutaneous vertebroplasty: the injection of bone cement into the fractured 

vertebral body. It is often suggested that this treatment can cause stress 

peaks in adjacent vertebrae thereby leading to additional fractures. However, 

the in vitro studies implying this relationship often use higher volumes of bone 

cement than in the clinic. In CHAPTER 4 we determined whether percutaneous 
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vertebroplasty, with a clinically relevant amount of bone cement, is capable of 

causing stress peaks in adjacent level vertebrae. Ten fresh-frozen vertebrae 

were loaded until failure. Force and displacement as well as the pressure 

under the lower endplate were registered. After failure, the vertebrae were 

augmented with a clinically relevant amount of bone cement (3.6 ml, SD 0.6 

ml) and then loaded until failure again. The force, displacement and pressure 

under the lower endplate were again registered. The stress peaks were 

higher after augmentation (median: 3.85 MPa) than before (median: 2.82 

MPa). However the stress peaks did not match the location of the injected 

bone cement. Both failure load and stiffness were significantly lower after 

augmentation. Based on our findings we conclude that vertebral augmentation 

with clinically relevant amounts of bone cement does not lead to stress peaks 

under the endplate. It is therefore unlikely that percutaneous vertebroplasty, 

in itself, causes detrimental stresses in the adjacent vertebrae that can lead 

to new vertebral fractures.

 As mentioned before, the risk of additional vertebral fractures increases 

after the first vertebral fracture, especially in the adjacent levels. In theory, 

adjacent level fractures can be prevented with a prophylactic vertebroplasty. 

However, previously performed experiments focusing on prophylactic 

percutaneous vertebroplasty have always been performed with an axial 

load on the endplate, while in reality a changed spinal alignment can cause 

detrimental off-axis loads. We therefore determined whether prophylactic 

vertebroplasty could reduce the fracture risk in vertebrae loaded with off-axis 

loads, which is common in spinal sagittal malalignment (CHAPTER 5). To reach 

this goal, we performed an in vitro cadaveric study in which three groups of 
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fresh-frozen vertebrae were loaded until failure. In the first group, vertebrae 

were loaded perpendicular to the upper endplate, representing vertebrae in 

a spine without wedge fractures (n = 11, 0° group). In the second group, 

vertebrae were loaded at an angle of 20°, representing vertebrae adjacent to 

a wedge fracture (n = 10, 20° group). The third group comprised vertebrae 

that were filled with bone cement and were also loaded at an angle of 20°, 

representing vertebrae adjacent to a wedge fracture but with a prophylactic 

augmentation (n = 9, prophylactic group). Vertebral failure load and stiffness 

were compared between the groups. The failure load of the vertebrae from 

the prophylactic group (2850 N, SD 703 N) was comparable to that of the 0° 

group (2845N, SD 591 N, p = 0.99), but greater than the failure load of the 20° 

group (2163 N, SD 670 N, p = 0.03). The stiffness of the vertebrae from the 

prophylactic group (3156 N/mm, SD 582 N/mm) was lower than that of the 0° 

group (3979 N/mm, SD 928 N/mm, p = 0.01), but higher than that of the 20° 

group (2478 N/mm, SD 453, p = 0.04). Prophylactic augmentation can thus 

lower the chance of fracturing in a malaligned, osteoporotic vertebra, but 

whether this reinforcement is enough to actually prevent additional vertebral 

fractures in vivo remains subject of further study.

 Polymethylmethacrylate bone cement is the standard augmentation 

material for vertebroplasty procedures, but several alternative materials 

are also in development. One of these alternative materials is a bioactive 

glass containing bisphenola-glycidyl dimethacrylate, also known as Cortoss, 

which has several advantages over PMMA with respect to handling and 

biocompatibility. However, not much is known of the performance of Cortoss in 

a large group of patients. We therefore analyzed the outcome of percutaneous 
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vertebroplasty with Cortoss in 161 patients with 264 vertebral compression 

fractures between 2005 and 2011 (CHAPTER 6). Inclusion criteria were: 

vertebral compression fractures due to osteoporosis, trauma or malignancy, 

invalidating back pain, no improvement to standard conservative therapy for 

minimal 6 weeks, numerical rating scale (NRS) score for pain of at least 7 and 

bone marrow edema on MRI. The NRS Score was measured at baseline and 

two and six weeks after augmentation. The amount of material injected into 

the vertebrae, adverse events during the intervention and new, symptomatic, 

spinal fractures up to 48 months after the procedure were all registered. Two 

weeks after vertebroplasty, 83.6% of the patients showed a decrease of at 

least three points on NRS score and this increased to 88.8% after six weeks. 

The mean injected volume was 1.54 ml (SD 0.62 ml). After 20 months, 35 

new vertebral compression fractures occurred in 24 patients (14.9%). This 

study shows that a rapid and significant pain decrease can be obtained using 

low volumes of Cortoss, thereby making it a suitable candidate for vertebral 

augmentation.

 In recent years, the efficacy of percutaneous vertebroplasty has 

been questioned due to the publication of two double-blind randomized 

clinical trials in 2009, followed in 2010 by recommendations against use of 

percutaneous vertebroplasty. In CHAPTER 7 we assessed whether these 

trials and recommendations resulted in any changes in the clinical practice 

of spine surgeons. We hypothesized that: 1) the number of percutaneous 

vertebroplasty procedures decreased in the years following the vertebroplasty 

trials and subsequent recommendations and 2) the awareness concerning 

the reimbursement policy for percutaneous vertebroplasty procedures 
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increased in the years following the vertebroplasty trials and subsequent 

recommendations. A questionnaire was sent to the entire mailing list of the AO 

Spine (n = 6213) and the Dutch Spine Society (n = 150). Complete responses 

were received from 303 responders (4.8% response rate) from 35 countries. 

97% Of the responders had performed percutaneous vertebroplasties in the 

period before 2011, whereas 90% of the professionals used the technique 

in the year 2011. 24% Of the responders did not know if reimbursement for 

the percutaneous vertebroplasty procedure fully covered the costs. This 

percentage did not change over time. About 25% of the responders indicated 

that they were not familiar with the contents of the two vertebroplasty trials 

published in 2009. In conclusion, the number of percutaneous vertebroplasty 

procedures decreased in the years after the publication of the papers and 

recommendations. However, contrary to our hypothesis, the awareness of the 

reimbursement policy did not increase in the years after the publication of the 

papers and recommendations. Furthermore, as 25% of the responders were 

not at all aware of the contents of the vertebroplasty trials, we suggest that 

transferring scientific evidence to the clinicians requires further attention.

Samenvatting  

Wervelfracturen vormen een belangrijk klinisch probleem, niet alleen omdat 

ze pijn veroorzaken en de kwaliteit van leven negatief beïnvloeden, maar ook 

omdat een grote groep mensen zulke fracturen zullen oplopen tijdens hun 

leven. In dit proefschrift hebben we gekeken naar factoren die een rol kunnen 

spelen bij het ontstaan van wervelfracturen, maar ook naar manieren om deze 

fracturen te behandelen of zelfs te voorkomen.
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 Vaak zijn wervelfracturen een gevolg van osteoporose, een metabole 

ziekte die wordt gekenmerkt door een lage botmassa. Onlangs bleek echter 

dat tussenwervelschijfdegeneratie ook een rol kan spelen bij het ontstaan van 

deze fracturen. Om de invloed van tussenwervelschijfdegeneratie verder te 

onderzoeken werd een eindig elementen model van een lumbaal wervelsegment 

gemaakt en gekalibreerd. Vervolgens werden bestaande botadaptatie 

theorieën gebruikt om te onderzoeken hoe tussenwervelschijfdegeneratie 

het risico op een wervelfractuur kan beïnvloeden (HOOFDSTUK 2). 

De materiaaleigenschappen van zowel een gezonde als een versleten 

tussenwervelschijf zijn in het model geimplementeerd. Door deze verschillen 

kon de bijbehorende botadaptatie worden gesimuleerd. De simulaties lieten 

zien dat bij discusdegeneratie de belasting van de tussenwervelschijf verschoof 

van de nucleus pulposus naar de annulus fibrosus. Deze verschuiving leidde 

vervolgens weer tot een sterk verminderde dichtheid van het trabeculaire kern 

en een grotere dichtheid van de wanden in het wervellichaam. Degeneratie 

van alleen de nucleus pulposus, en met name de dehydratatie, leidde tot 

het grootste deel van deze verandering van de botdichtheid. Additionele 

annulus fibrosus degeneratie had veel minder effect op de dichtheid van het 

bot. De veranderingen die gevonden zijn in dit onderzoek kwamen overeen 

met de resultaten uit klinisch onderzoek. In deze studie hebben we laten 

zien dat tussenwervelschijfdegeneratie botverlies in het wervellichaam kan 

veroorzaken, dit zal een hoger fractuurrisico tot gevolg zal hebben.

 Met elke fractuur in de wervelkolom neemt het risico op additionele 

wervelfracturen sterk toe. De wigvormige vervorming, die vaak ontstaat door 

deze fracturen, verandert het alignement van de wervelkolom en daarmee 
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ook de belasting op de aangrenzende wervels. Waar de belasting normaliter 

loodrecht op de eindplaten staat, ontstaat na een fractuur een afschuifkracht 

op de aangrenzende wervels. Om het effect van dergelijke afschuifkrachten 

op wervels te onderzoeken, hebben we twintig wervels, afkomstig van vier 

stoffelijke overschotten met een lage botdichtheid, vezameld. Deze wervels 

zijn vervolgens op twee manieren belast tot falen. Bij de ene helft werd er een 

kracht loodrecht op de bovenste eindplaat gezet (0° groep) en bij de andere 

helft werd er een kracht onder een hoek van 20° op de bovenste eindplaat 

gezet (20° groep) (HOOFDSTUK 3). De faalkracht van de 0° groep (2854 

N, SD 5 622 N) was significant hoger (p = 0.028) dan die van de 20° groep 

(2162 N, SD 5 670 N). Ook de stijfheid was significant hoger (p < 0.001) in 

de 0° groep (4017 N/mm, SD 5 970 N/mm) vergeleken met de 20° groep 

(2478 N/mm, SD 5 453 N/mm). De faalkracht van wervels die onder een hoek 

van 20° belast werden, was gemiddeld 24% lager dan van wervels waarbij 

de belasting loodrecht op de eindplaat aangreep. Deze studie laat dus het 

schadelijke effect zien van de belastingssituatie zoals die vaak ontstaat 

bij wervels die grenzen aan een gefractureerd niveau. Het nastreven van 

de oorspronkelijke anatomie van de wervelkolom is dus van belang bij de 

ontwikkeling van nieuwe therapieën voor de behandeling van wervelfracturen.

 Een behandeloptie voor patiënten met wervelfracturen is de percutane 

vertebroplastiek. Vaak wordt echter gesuggereerd dat het vullen met 

botcement tot verhoogde spanningen leidt in de aanpalende wervels met 

nieuwe wervelfracturen als gevolg. Opvallend is dat er in de in vitro studies 

waarin dit gesuggereerd wordt vaak veel meer botcement geinjecteerd 

wordt dan wat klinisch gebruikelijk is. In HOOFDSTUK 4 hebben we daarom 
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onderzocht of de injectie van een klinisch relevante hoeveelheid botcement 

ook kan leiden tot spanningspieken in de aanpalende wervels. Tien wervels 

afkomstig van stoffelijke overschotten zijn daartoe belast tot falen en de kracht, 

verplaatsing alsook de drukken onder de onderste eindplaat zijn daarbij 

geregistreerd. Na falen zijn de wervels gevuld met een klinisch relevante 

hoeveelheid botcement (3.6 ml, SD 0.6 ml) en vervolgens opnieuw belast 

tot falen, waarbij opnieuw de kracht, verplaatsing en de drukken onder de 

onderste eindplaat zijn geregistreerd. De spanningspieken na de percutane 

vertebroplastiek (mediaan: 3.85 MPa) waren hoger dan ervoor (mediaan 

2.82 MPa). Echter was er geen overeenkomst tussen de locatie van deze 

pieken en die van het geinjecteerde botcement. Zowel de faalkracht als de 

stijfheid waren significant afgenomen na percutane vertebroplastiek. We 

concluderen dus dat een klinisch relevante hoeveelheid botcement niet leidt 

tot spanningspieken onder de eindplaten. Daarom is het ook onwaarschijnlijk 

dat percutane vertebroplastiek spanningspieken in aanpalende wervels 

veroorzaakt die tot nieuwe fracturen zouden kunnen leiden.

 Het risico op additionele wervelfracturen neemt toe na de eerste 

wervelfractuur, dit geldt met name voor de buurwervels. Theoretisch kunnen 

zulke additionele fracturen voorkomen worden met een profylactische 

percutane vertebroplastiek. In voorgaande in vitro studies, waarin de effecten 

van profylactische percutane vertebroplastiek onderzocht werden, werden 

krachten vaak loodrecht op de eindplaat van het wervellichaam gezet. In 

werkelijkheid spelen afschuifkrachten echter ook een belangrijke rol, doordat 

het alignement van de wervelkolom na een fractuur vaak verandert. Daarom 

hebben we onderzocht of een profylactische percutane vertebroplastiek het 
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fractuurrisico ook kan verkleinen in wervels die met een afschuifkracht belast 

worden (HOOFDSTUK 5). Hiervoor zijn drie groepen wervels, afkomstig van 

vier stoffelijke overschotten, gebruikt. De eerste groep (n = 11, 0° groep) 

stond model voor een wervelkolom zonder fracturen en hierin zijn de wervels 

dan ook belast met een kracht die loodrecht op de bovenste eindplaat 

werd aangebracht. De tweede groep (n = 10, 20° groep) stond model 

voor wervels die grenzen aan gefractureerd niveau, deze wervels werden 

dan ook onder een hoek van 20° belast. De derde groep stond ook model 

voor wervels die grenzen aan gefractureerd niveau, maar in tegenstelling 

tot de 20° groep werden deze gevuld met botcement (n = 9, profylactische 

groep). De sterkte en stijfheid werden tussen de groepen vergeleken. De 

sterkte van de wervels in de profylactische groep (2850 N, SD 703 N) was 

vergelijkbaar met die van de 0° groep (2845N, SD 591 N, p = 0.99), maar 

groter dan die van 20° groep (2163 N, SD 670 N, p = 0.03). De stijfheid van 

de wervels in de profylactische groep (3156 N/mm, SD 582 N/mm) was lager 

dan die van de 0° groep (3979 N/mm, SD 928 N/mm, p = 0.01), maar hoger 

dan die van de 20° groep (2478 N/mm, SD 453, p = 0.04). Profylactische 

percutane vertebroplastiek kan de kans op additionele fracturen verkleinen 

in osteoporotische wervelkolommen met een verkeerd alignement. Of 

dit daadwerkelijk genoeg is om ook in vivo wervelfracturen te kunnen 

voorkomen moet met aanvullend onderzoek verder worden uitgezocht.  

 Hoewel botcement bestaande uit polymethylmethacrylaat het 

standaardmateriaal is bij percutane vertebroplastiek procedures, zijn er 

ook verscheidene alternatieve materialen in ontwikkeling. Eén van deze 

alternatieven is een bioactief glas dat bisfenol-glycidyl dimethacrylaat 
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bevat, beter bekend als Cortoss. Dit materiaal heeft verschillende voordelen 

vergeleken met botcement, met name op het gebied van het gebruiksgemak en 

de biocompatibiliteit. Ondanks deze voordelen is er echter nog weinig bekend 

over het gebruik van Cortoss in grote groepen patiënten, daarom hebben wij 

de resultaten van een percutane vertebroplastiek in 161 patiënten met totaal 

264 wervelfracturen tussen 2005 en 2011 geanalyseerd (HOOFDSTUK 6). De 

inclusiecriteria waren: wervelfractuur door osteoporose, trauma of maligniteit, 

invaliderende rugpijn, geen verbetering na standaard conservatieve therapie 

gedurende 6 weken, numerical rating scale pijnscore van zeven of hoger en 

beenmerg oedeem op de MRI beelden. De pijnscores werden op baseline en 

twee en zes weken na de behandeling met Cortoss gemeten. Het geinjecteerde 

volume, bijwerkingen en nieuwe, symptomatische fracturen tot 48 maanden 

na de procedure werden eveneens geregistreerd. 83,6% Van de patiënten 

liet twee weken na de percutane vertebroplastiek een vermindering van drie 

of meer punten in pijnscore zien en dit percentage steeg tot 88,8% na zes 

weken. Gemiddeld is er 1,54 ml (SD 0,62 ml) Cortoss geinjecteerd per wervel 

en na 20 maanden zijn er 35 nieuwe wervelfracturen geregistreerd in 24 

patiënten (14,9%). Deze studie laat zien dat kleine volumes Cortoss gebruikt 

kunnen worden voor een snelle en significante pijnreductie bij mensen met 

pijnlijke wervelfracturen. Cortoss lijkt dus een geschikte vervanger voor het 

normaliter gebruikte botcement.

 De effectiviteit van percutane vertebroplastiek is onder vuur komen te 

liggen door de publicatie van twee kritische, dubbelblind, gerandomiseerde 

trials in 2009 en een tweetal negatieve adviezen in 2010 waarin het gebruik 

van percutane vertebroplastiek wordt afgeraden. In HOOFDSTUK 7 hebben 
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we onderzocht of deze onderzoeken en adviezen hebben geleid tot een 

verandering in de klinische praktijk van wervelkolomchirurgen. We hebben 

daartoe twee hypothesen opgesteld: 1) het aantal percutane vertebroplastiek 

procedures is afgenomen in de jaren na de publicatie van de onderzoeken 

en adviezen en 2) de bewustwording omtrent de vergoeding van percutane 

vertebroplastiek is toegenomen in de jaren na de publicatie van de onderzoeken 

en adviezen. We hebben een vragenlijst naar alle leden van de AO Spine (n = 

6213) en de Dutch Spine Society (n = 150) gestuurd. Van 303 ondervraagden 

(4,8%) uit 35 verschillende landen kregen we een volledig ingevulde vragenlijst 

retour. 97% Van de ondervraagden voerde de percutane vertebroplastiek 

procedure uit voor 2011 terwijl 90% van de respondenten de techniek in 

2011 had gebruikt. 24% Van de clinici wist niet of percutane vertebroplastiek 

volledig vergoed werd. Dit percentage bleef ongewijzigd in 2011 vergeleken 

met de periode daarvoor. Ongeveer 25% van de ondervraagden gaf aan 

de inhoud van de twee dubbelblind gerandomiseerde trials uit 2009 niet te 

kennen. Concluderend: het aantal percutane vertebroplastieken is gedaald 

in de jaren na de publicatie van de onderzoeken en adviezen, maar de 

bewustwording omtrent de vergoeding van de procedure is niet toegenomen. 

Verder adviseren we dat de implementatie van wetenschappelijke gegevens 

in de kliniek meer aandacht behoeft, aangezien 25% van de respondenten 

niet op de hoogte was van de trials uit 2009.
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As stated in the introduction, the research presented in this thesis focused on 

several topics within the realm of vertebral compression fractures (VCFs) and 

the treatment thereof. In this final chapter, we assess how our results can aid 

clinicians and the industry in improving the care for patients with these spinal 

problems.

 First of all, we demonstrated that intervertebral disc degeneration 

can increase the chance of new vertebral fractures (CHAPTER 2). We saw a 

dramatic decrease of the trabecular bone in the core of the vertebra adjacent 

to the degenerated disc, thereby increasing the fracture risk of the bone. 

Obviously, it is important to keep the fracture risk as low as possible, but how 

can this be managed? Several strategies are possible: prevention of disc 

degeneration in the first place,decreasing the responsiveness of the bone-

remodeling in patients with degenerated discs or returning the bone loading 

back to its pre-disc-degeneration state. 

 Prevention of disc degeneration could focus on aging, genetic and 

environmental determinants as the pathophysiology involves a combination 

of these aspects [28]. But because the efficacy of interventions such as 

gene therapy or stem cell transplantations is still being evaluated [14,20], the 

emphasis at this moment should thus lie on environmental factors. Possible 

environmental factors that can be targeted involve occupational habits like 

manual materials handling, frequent bending or twisting and whole body 

vibration, or lifestyle habits like smoking [32]. Although the effect of these 

environmental aspects are probably limited, they can still help in preventing, 

or at least delaying disc degeneration. Clinicians have to keep in mind though 

that the biggest bone loss takes place during the first stage of intervertebral 
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disc degeneration (nucleus dehydration), which makes swift intervention 

essential.

 If discs are already degenerated, the fracture risk can be reduced by 

either preventing bone resorption, or by normalizing the loading of the bone. 

The bone resorption can be counter-acted by drugs like bisphosphonates, 

strontium ranelate, raloxifene and parthyroid hormone peptides [7]. These 

drugs influence osteoclasts, osteoblasts or both, thereby limiting bone loss 

resulting in a lower fracture risk. When pursuing normalization of the bone 

loading, the degenerated discs need to be repaired or replaced. Although 

intervertebral disc prostheses are currently available, reports suggest that 

they can lead to alterations in range-of-motion [26], and persistent pain due 

to subsidence [21]. It might therefore be better to move on to newer concepts 

such as an annulus-sparing spinal disc prosthesis [6] or a biomimetic artificial 

intervertebral disc [4] when it comes to aspects such as physiological bone 

loading after arthroplasty.

 In case a VCF does occur, caused by a degenerated disc or a metabolic 

disorder such as osteoporosis, it can lead to serious pain. This pain is not only 

treated using a range of conservative treatment options like bed rest, spinal 

braces, and physical therapy [10,16,24], but also with invasive procedures 

such as percutaneous vertebroplasty (PVP). Some say PVP has a superior 

palliative effect over conservative treatment [17], while others claim its effects 

are similar to a sham intervention [5,15]. Although the discussion on this topic 

is still ongoing, it seems that the awareness amongst clinicians concerning 

the possible lack of specific efficacy of the PVP technique could be improved 

(CHAPTER 7). There are, however, also other reasons for clinicians to choose 
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for PVP instead of conservative treatment; PVP can reduce the mortality in 

patients with spinal fractures [9] and decrease the number of hospital-days 

for inpatients [8].

  A big drawback of the PVP-technique is the possible increased risk 

for adjacent level fractures due to increased stress peaks caused by the 

injected bone cement [1,2,11,12,23,30]. However, according to our results 

presented in CHAPTER 4 of this thesis, injecting a clinically relevant amount 

of bone cement did not lead to stress peaks that could lead to adjacent level 

fractures. The fact that clinicians usually strive to use the minimum amount of 

bone cement in order to prevent cement leakage makes it thus unlikely that 

PVP will lead to additional new vertebral fractures.

 While the PVP procedure is usually carried out with a PMMA-based 

bone cement, other materials can be used as well. In CHAPTER 6 we showed 

that the palliative effect of a new type of augmentation material (Cortoss) 

was comparable to that of bone cement as reported in the literature. The 

advantages of Cortoss over regular bone cement are the low volume needed 

and the improved handling characteristics for the surgeon. It is therefore a 

promising substitute for bone cement in the near future.

 Besides the pain and reduced quality of life, another problem called the 

‘vertebral fracture cascade’ presents itself: with each prior VCF, the chance for 

an additional spinal fracture increases [3]. In CHAPTER 3 we demonstrated 

that off-axis loading, which can occur in the vertebrae adjacent to the fractured 

level, leads to a dramatic decrease of vertebral strength in osteoporotic 

vertebrae, thereby contributing to this ‘vertebral fracture cascade’. Several 

actions can be undertaken in order to reduce this increased fracture risk. One 
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way is to focus on the removal of the off-axis loads, another possibility is to 

increase the strength of the vertebrae at risk.

  Because the off-axis loads occur due to the wedge-shaped deformity 

of the prior VCF, removal of the off-axis loads should theoretically be possible 

by restoring the spinal anatomy to the ‘pre-wedge’ situation. Although the 

kyphoplasty procedure was originally introduced to achieve this shape 

restoration [22], height-loss after the procedure is still being reported and off-

axis loads are thus still possible [19,31]. Therefore, new techniques aiming at 

restoring the vertebral anatomy such as the Vertebral Jack Tool [27], Vertebral 

Body Stent [25] or the comparable Titanium Mesh Implant [29] should be 

explored and evaluated.

 Instead of removing the off-axis loads by restoring the original anatomy, 

it is also possible to focus on reinforcement of the vertebrae at risk. This can 

be done by using the aforementioned drugs to influence bone resorption. 

However, it may take a year for drugs to have a measurable effect on spinal 

bone mineral density [13], whereas the vertebrae at risk tend to fracture within 

the first year after the prevalent fracture [18]. It is thus important to have 

an immediate reinforcing effect on the vertebrae at risk. In CHAPTER 5 we 

demonstrated that prophylactic PVP can significantly augment a vertebra at 

risk. Prophylactic vertebroplasty can therefore play a role in diminishing the 

fracture risk of adjacent level vertebrae.

 The presented range of treatment options can help clinicians and 

industry in improving the care for patients with vertebral fractures. A 

particularly big challenge will lie in identifying the multi-factorial aspects of 

spinal fractures, of which only a small part was investigated in this thesis. 
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Future research should thus focus on further determination of risk-factors for 

spinal fractures, and how these risk-factors are related to each other, in order 

to optimize the prevention and treatment of vertebral fractures.
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To the Editor,

With great interest, we read the article of Bogduk et al and their hypothesis 

that zygapophysial disruption leads to pain proves to be an interesting one 

[1]. It is not unthinkable that a subluxation of the facet joints is painful for the 

patient, and it is nicely demonstrated in the article that medial branch blocks 

can actually relieve the pain. However, there are some issues that need 

further discussion. The authors suggest that persistent pain after a vertebral 

compression fracture (VCF) is caused by either the fracture site or by a less 

specific “biomechanical” pain; in this case, zygapophysial disruption. We 

firmly believe that these two hypotheses do not have to be mutually exclusive 

but a prerequisite is that the factor “time” has to be taken into account.

 When a VCF occurs, physicians can choose for augmentation of 

the vertebra in order to relieve the pain [2]. An important condition for the 

treatment to be successful is that there has to be proof that the fracture is 

not yet consolidated (bone marrow edema has to be present at the fracture 

site [3]). In other words: the fracture has to be “fresh.” In case bone marrow 

edema is absent, the fracture is already consolidated, and it is likely that the 

experienced pain is caused by other factors. In those cases, it is less likely 

that vertebral augmentation would lead to pain relief [3].

 As most of the patients in Bogduk-study had the medial branch block 

long after the occurrence of the initial fracture (6–96 months, case 2 was 

difficult to assess),  it is likely that these patients already had consolidated 

vertebral fractures. The result of these six cases does not allow for conclusions 

in cases of fresh compression fractures.

 The study of Bogduk et al did not test whether or not medial branch 
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blocks are able to alleviate the pain after a fresh VCF. We therefore suggest that 

vertebroplasty should still be performed shortly after the onset of a vertebral 

fracture, when bone marrow edema is still present at the fracture site. Not 

only because it can successfully take away the pain [2] but also because 

it can prevent a further collapse of the vertebral body [4]. For patients with 

consolidated vertebral fractures, however, medial branch blocks might be a 

good alternative. More insight into the mechanisms of action and more clinical 

data are of course mandatory.
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Ze zeggen wel eens “promoveren doe je niet alleen”. Euh… jullie dachten 

toch niet écht dat ik mijn dankwoord zo zou beginnen hè?

Beste Nico, het zit erop! Bedankt voor alles en met name voor je doortastende 

begeleiding gedurende deze hele periode. We weten dat dit traject niet alleen 

maar rozengeur en maneschijn was (is het dat eigenlijk weleens?). Zo kwam 

er vroegtijdig een einde aan het Europees project en duurde alles vaak langer 

dan gepland,maar je niet aflatende enthousiasme heeft me er doorheen 

gesleept. Hoewel ik het lab nu zal verlaten weet ik zeker dat we elkaar niet uit 

het oog zullen verliezen.

Mijn copromotoren, Jasper en Esther. Ik onze samenwerking altijd als zeer 

prettig ervaren: mails werden altijd snel beantwoord en manuscripten snel 

nagekeken. Minder fijn: wanneer ik dacht iets afgerond te hebben, hadden 

jullie altijd nog een lijst met toevoegingen of aanpassingen :-). Gelukkig bleek 

dan achteraf dat de stukken er veel beter van werden. Superbedankt voor 

jullie relaxte begeleiding!

Pieter, hoewel je rol binnen mijn promotietraject niet groot was, wil ik je toch 

bedanken voor de vele grappige gesprekken die we bij de koffieautomaat 

gevoerd hebben. Jij weet, samen met Nico, een fijne sfeer in het lab neer te 

zetten. Geweldig!

Willem, je bent in zo ongeveer elk proefschrift van het ORL bedankt en ook 

in mijn boekje zal je naam niet ontbreken. Ik wil je niet alleen bedanken voor 
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alle praktische hulp bij mijn experimenten, maar ook voor de gezelligheid 

tijdens al die uren dat we weer eens samen stonden te werken in de kelder, 

bij anatomie of bij de DXA scanner. Dankzij jou (en Radio 5 Nostalgia) ken ik 

ook meer ‘hits’ uit de jaren ’30 dan me lief is. Geniet van die enorme zee van 

vrije tijd die nu voor je ligt!

Allard, ik hield mijn hart vast elke keer als je weer binnen kwam vliegen 

met 20 ideeën. Gelukkig hebben we een paar van je ideeën samen kunnen 

uitvoeren en met goed resultaat. Dank voor je niet aflatende enthousiasme en 

je praktische insteek.

Beste Ineke, ik denk dat ik geen enkele kamer vaker heb bezocht dan de 

jouwe en gelukkig was dat ook altijd gezellig. Dank voor alle hulp met die 

eeuwig vervelende declaratieformulieren of het plannen van vergaderingen. 

Ik hoop dat ik je ook heb weten te vermaken met mijn cryptische t-shirt prints.

Relinde en Marieke, ik vind het erg leuk dat onze eerste ontmoeting op het 

kleine vertebroplastieksymposium hier in het ziekenhuis uiteindelijk tot een 

artikel heeft geleid. Bedankt daarvoor! Ik weet zeker dat we elkaar in de 

toekomst nog vaker tegen zullen komen.

Marjo van de Ven, de keren dat we gebruik konden maken van de DXA scanner 

en jouw expertise zijn niet op 1 hand te tellen (vast ook niet op 2 handen). 

Ook al was het vaak last-minute of op vrijdagmiddag, we waren altijd welkom. 

Bedankt voor alle hulp!
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Alle medewerkers van de afdeling anatomie en het preparatorium, bedankt 

voor de hulp die we kregen wanneer we weer eens botten voor onze 

experimenten kwamen halen.

Alex, Maikel, Conrad en Wilma en alle andere medewerkers van het centraal 

dierenlaboratorium. Hoewel er geen dierexperimenteel onderzoek is 

beschreven in dit boekje, wil ik jullie toch bedanken voor de expertise en de 

gezelligheid gedurende de talloze uren die we met z’n allen op de OK hebben 

gestaan.

Dank aan het UMC St Radboud voor die oneindige stroom aan smerige koffie, 

vervelende Radbodes en zeurderige campagnes. Ik weet niet aan welke van 

de drie ik de grootste hekel heb gekregen de afgelopen jaren.

Iedereen weet dat promoveren een stuk vervelender is zonder kamergenoten, 

daarom veel dank aan Pawel, Astrid en Tony voor de gezelligheid en de vele 

koppen koffie!

Pawel, I’m going to do this in English, like always. You’re a great guy and I’d 

like to thank you for all the interesting discussions we had during and after 

working hours. I wish you all the best for the future, not only job-wise but also 

family-wise together with Gosia and the baby.

Astrid, ik vond het gezellig om de kamer met je te delen, ook al was dat 

maar voor 2 dagen in de week. Veel geluk samen met Jantien en succes en 
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plezier de komende tijd met het opknappen van jullie huis, het managen van 

je bedrijf en het voetballen op zo ongeveer elk ander moment van de week. 

Heb je eigenlijk nog wel tijdom te promoveren ;-) ?

Tony, nog niet heel lang kamergenoten, maar daarom niet minder gewaardeerd. 

Altijd in voor een praatje en zeer gedreven. Ik hoop echt dat het je nog eens 

gaat lukken om succesvol patent te schrijven waarbij jij inventor bent EN 

BLIJFT!

Alle ORL collega’s die ik heb ontmoet de afgelopen jaren. De pauzes, feestjes 

en congressen waren echt veel leuker met jullie gezelschap. Ik ga een poging 

wagen jullie allemaal te bedanken. Mocht ik je gemist hebben: SORRY!  

Here goes: Anne, Chantal, Chris, Daan, Dennis, Eric, Erwin, Gerjon, Hendi, 

Huub, Jorrit, Lennert, Léon, Liesbeth, Loes, Marco, Maria, Marloes, Maud, 

Miranda, Pieter, Sanaz, Thom, Veronica, Wojciech.

Tjitze en Bo, ik vind het tof dat jullie stage bij mij hebben gelopen. Veel succes 

met jullie carrières! Natuurlijk ook bedankt aan Chris en Vera. Hoewel jullie 

niet ‘mijn’ stagaires waren heeft jullie werk wel tot een hoofdstuk in dit boekje 

geleid. Super!

Brian, thanks voor al die avond- en weekenduren die je in de lay-out hebt 

gestoken!!

Vrienden van de VVV! De niet aflatende stroom van feestjes, vakanties en 
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ondertussen ook bruiloften en kraamvisites maken me weer altijd gelukkig. 

Jullie hebben voor veel broodnodige afleiding gezorgd de afgelopen jaren, 

dank daarvoor.

Budblaffers, studiegenoten en ex-ganggenoten: we hebben vaak samen 

gegeten, koffie gedronken, gevoetbald, of de Yeti bar onveilig gemaakt. Niet 

alleen in mijn studietijd, maar ook nu nog. Thanks!

Music has always been important in my life, but these last couple of years 

it actually took over part of my life. I’d like to thank Elio for all the great riffs 

and the cool records we made and Otto for the countless hours we spent 

rehearsing, driving, recording, mixing and destroying! I’d also like to thank all 

the people in the so-called ‘music industry’ that I’ve met these last years. Even 

though most of you are never going to read this, all the talks we had were very 

inspiring to me. Until we meet again!

Marcel en Otto, ik hoop zo dat één van jullie een stelling moet gaan voorlezen 

tijdens de promotie!

Annelies, Alexander, Maartje, Sanne en Hugo bedankt voor jullie steun, 

interesse en gezelligheid gedurende deze hele periode. Annelies, het is best 

bijzonder dat we nu beiden gepromoveerd zijn. Je bedankte me in je eigen 

proefschrift voor mijn “wetenschappelijke interesse in je proefschrift” en je 
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