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1.1. Introduction 

Environmental pollution with metals is a serious problem in many areas in the world. 

Metals can be accumulated at high concentrations in organisms, resulting in effects on 

organisms and on humans directly and indirectly. Therefore, assessment of metal 

bioaccumulation and toxicity is of high concern. 

This PhD thesis aimed to model metal bioaccumulation and toxicity by different methods 

(Fig. 1.1). Metal uptake, subcellular distribution, and toxicity depend on behaviour and 

characteristics of each individual metal (Section 1.2 of this thesis). Because of this high 

specificity, mechanistic models simulating metal bioaccumulation, bioavailability, and 

toxicity are scare and poorly validated. Interactions between metal ions and biological 

surfaces (Section 1.3.1 of this thesis) and between different metal ions (Section 1.3.2 of this 

thesis) complicate metal uptake, subcellular distribution, and toxicity further. In this thesis, 

affinity of metals for biological ligands has been used as a unifying factor in generalisation of 

metal bioaccumulation, bioavailability, and toxicity, allowing integration of metal ion-

organism interactions in predictions (Section 1.4.1 of this thesis). Moreover, the incorporation 

of metal-specific affinity for biological ligands into modelling potentially facilitates 

delineating ion-ion interactions and taking into account the interactive effects in predicting 

bioaccumulation and toxicity of metal mixtures (Section 1.4.1 of this thesis). In this PhD 

thesis, the affinity of metals for biological ligands was integrated in three different modelling 

approaches: the mechanistic bioaccumulation modelling (Section 1.4.2 of this thesis), the 

Biotic Ligand Modelling (Section 1.4.3 of this thesis), and the electrostatic toxicity modelling 

(Section 1.4.4 of this thesis). By applying these approaches, this thesis aimed to model 

bioaccumulation and toxicity of metal mixtures, taking into account ion-ion and ion-organism 

interactions (Sections 1.5 and 1.6 of this thesis). 

 

 

Figure 1.1. The flow chart describes the issues presented in the Introduction Chapter of this 

PhD thesis 

Fundamental contents of the thesis (1.5-1.6) 

Metal toxicity (1.3) 

Biotic Ligand 

Model 

(1.4.3) 

Mechanistic 

bioaccumulation 

model (1.4.2) 

Electrostatic 

toxicity model 

(1.4.4) 

Ion-organism interactions (1.3.1) Ion-ion interactions (1.3.2) 

Metal principles (1.2) 

Affinity for biological ligands (1.4.1) 
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1.2. Principles of metal exchange 

1.2.1. General principles 

Metals have a number of unique properties that are largely different from characteristics of 

organic substances (Fairbrother et al., 2007). For example, metal bioavailability and toxicity 

are influenced by the speciation in the environment, which is in turn heavily affected by the 

environmental chemistry. Metals are naturally occurring in the environment with varying 

background concentrations in different geographic regions. Additionally, some metals are 

nutritionally essential for the growth of organisms. Therefore, organisms have developed 

various regulatory mechanisms for uptake, metabolism, distribution, storage, and elimination 

of metals in response to metal exposure in the one hand and to maintain metal homeostasis on 

the other hand. Furthermore, metals occur in the environment in mixtures. On the one hand, 

these principles influence the toxicokinetics and toxicodynamics of metals and contribute to 

complications in metal behaviour (i.e., transport, trafficking, subcellular distribution, and 

binding to potentially sensitive sites). On the other hand, they complicate the use and 

interpretation of bioaccumulation data as well as the toxicity of bioaccumulated metals 

(Fairbrother et al., 2007). Therefore, these metal-specific properties should be addressed and 

taken into account in assessment of metal bioaccumulation and toxicity. Ignorance of these 

characteristics may lead to inaccurate estimations of metal bioaccumulation, bioavailability, 

and toxicity.  

1.2.2. Bioaccumulation 

Metal bioaccumulation is of high concern because of its relations to direct effects on 

organisms accumulating the metal and indirect effects on their predators through trophic 

transfer (Fairbrother et al., 2007). The bioaccumulation of metals is complicated as it results 

from a variety of uptake and depuration mechanisms (OECD, 2001; see below). Metal 

accumulation is related to various mechanisms, e.g., natural background uptake, homeostasis 

and internal detoxification, storage, and elimination (McGeer et al., 2002, 2003). Metal 

accumulation at background concentrations is a natural phenomenon and may be non-toxic. 

Detoxification and elimination of accumulated metals represent the ability of organisms to 

acclimate to metal exposure (McGeer et al., 2003). Physiological processes that influence 

metal bioaccumulation are presented in Sections 1.2.3–1.2.5. 

The tendency of substances to build up in organisms is often expressed by the 

bioaccumulation factor (BAF) and the bioconcentration factor (BCF), representing the ratio of 

the residue in the organism versus the concentration in water at equilibrium, including and 

excluding uptake from food, respectively (Mackay, 1982; Bysshe, 1982; Barron et al., 1990; 

Newman, 1995). For metals, BCF and BAF depend on exposure conditions. Specifically, 

these accumulation factors vary widely and are inversely related to the external water 

concentration (Chapman et al., 1996; McGeer et al., 2002, 2003). The wide variability in BCF 

and BAF for metals and the inverse correlation with environmental concentrations are 

attributed to highly complex and specific mechanisms of metal uptake and accumulation, e.g., 

the saturable uptake and the ability of organisms to store and regulate accumulated metals 

within certain ranges (McGeer et al., 2003; Borgmann et al., 2004; Chapman et al., 1996). 

Therefore, BCF and BAF are not intrinsic properties of metals.  

These characteristics of BCF and BAF for metals invalidate the use of single and generic 

values of BCF and BAF in assessing hazard potentials of metals (Chapman et al., 1996; 

McGeer et al., 2003; Fairbrother et al., 2007; US EPA, 2006). Firstly, BCF and BAF for 

metals do not meet the most important criteria for the applicability of accumulation factors in 

hazard identification, i.e., the independence on exposure conditions, and are therefore not 

1 
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relevant indicators of potential hazards of metals (OECD, 2001). Secondly, the potential for 

extrapolation of single values of BCF and BAF for metals across different conditions is 

limited (Fairbrother et al., 2007). There are substantial uncertainties in metal assessment based 

on these data resulting from the differences in metal bioavailability among various conditions 

and from complex metal toxicokinetics. Another reason that accounts for the 

inappropriateness of the application of single and generic values of BCF and BAF in lab-field 

extrapolation is the potential importance of ingestion in total metal uptake (Davies and Dobbs, 

1984). Thirdly, BCF and BAF are not necessarily reflective of ambient contamination or 

indicative of metal bioaccumulation level or potential toxicity. Particularly, these values 

usually do not reflect the steady state and are therefore not truly accurate indicators of 

bioaccumulation levels (Chapman et al., 1996). Moreover, the accumulation from natural 

background and of essential elements is not distinguished from the toxicologically potential 

accumulation in these indicators. Regulations based on these generic accumulation values 

may lead to misleading results about metal toxicity (Chapman et al., 1996; McGeer et al., 

2002, 2003). For example, decreasing BCF and BAF values at elevated exposure levels reveal 

a reduction in impacts, contrasting to toxicological data. Due to these limitations of the use of 

single and generic values of BCF and BAF, these accumulation factors should be expressed in 

relation to media chemistry and the exposure concentration for particular species (Allen and 

Hansen, 1996; Fairbrother et al., 2007). 

1.2.3. Uptake and elimination 

A number of specific transport mechanisms are involved in metal uptake. Metal uptake can 

occur via passive diffusion, facilitated transport, active transport, or endocytosis (Simkiss and 

Taylor, 1995). Only lipid soluble metal species, such as neutral, inorganically complexed 

metals and alkyl-metal compounds, can be taken up by organisms via passive diffusion 

through the membrane. Most ions are highly hydrophilic and mainly taken up by organisms 

via membrane transport proteins, i.e., channels, carriers, and pumps. As a result of these 

specific transport mechanisms, the bioaccumulation of metals may involve saturable uptake 

kinetics. In a number of cases, it was reported that uptake via saturable kinetics-exhibiting 

mechanisms is substantially more common and toxicologically relevant than passive diffusion 

(Newman, 1995; McKim, 1994; Simkiss and Taylor, 1989; McDonald and Wood, 1993; Kiss 

and Osipenko, 1994; Wood, 2001). Similar to uptake processes, elimination is controlled by 

physiological processes (McGeer et al., 2002, 2003). Cellular pathways for the elimination of 

metals involve passive and active processes by the similar mechanisms as for metal uptake 

(Roesijadi and Robinson, 1994; Rainbow, 2007; Sokolova and Lannig, 2008). However, the 

relative importance of these mechanisms in metal elimination may be different from that in 

the metal uptake (Sokolova and Lannig, 2008). Although a thorough understanding of 

mechanisms of metal elimination is lacking, different affinities of metals for biological 

materials may account for the variations in their elimination (Veltman et al., 2008).  

In plants, metal uptake may result from ion-exchange and other surface interactions with 

metal ions through binding at the polymers (Flemming, 1995; Kapoor and Viraraghavan, 

1997; Tsezos et al., 1997; Diels et al., 1995; Tsezos and Remoundaki, 1997; Kratochvil and 

Volesky, 1998). Particularly, the cell wall consists of biopolymers, e.g., proteins, 

polysaccharides, and nucleic acids (Beveridge and Murray, 1976, 1980; Flemming, 1995; 

Kapoor and Viraraghavan, 1997; Tsezos et al., 1997; Tsezos, 1983). As functional groups, 

e.g., carboxyl, sulphate, and amino, are included in the chemical structure of these 

biopolymers, negative charges exist on the plant cell wall, leading to electronic interactions at 

the membrane surface (Kratochvil and Volesky, 1998; Tobin et al., 1984). Generally, the 

adsorption of metal ions by the cell can occur via a number of processes: complexation, 

chelation, coordination, ion exchange, precipitation, and reduction (Tsezos et al., 2006). 

1 
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Among them, the binding of metal ions to the biopolymers may occur via two major 

mechanisms: ion-exchange and complex formation. In the first mechanism, the sorption of 

metal ions occurs as a result of the replacement of protons, alkali, alkaline earth, or other 

cations by the toxic metal ions (Schneider et al., 2001; Tsezos et al., 2006). In the second 

mechanism, complexes are formed between organic molecules and metal ions (Tsezos et al., 

2006). Although ion-exchange is extensively reported as the main pathway, the relative 

importance of these mechanisms is metal-specific. For instance, ion-exchange at the cell wall 

is the major pathway for the accumulation of Cd and Cu by hairy roots while its role in Ni 

uptake is uncertain (Nedelkoska and Doran, 2000).  

Metals can be accumulated in or eliminated from organisms via both the dissolved and 

particulate phases (Wang and Fisher, 1999; Xu and Wang, 2002). It is important to take into 

account and distinguish between these pathways in estimating metal bioaccumulation (Wang 

and Fisher, 1999). Firstly, separation of these two exposure routes provides a better 

understanding of factors controlling metal bioavailability and more reliable indicators for 

setting water and sediment quality criteria. Secondly, a distinction between the two pathways 

provides insights into the metal trophic transfer and biogeochemical cycling. Additionally, the 

exposure type determines internal distribution and eventually toxicity. Contribution of the 

dietary source to the total metal uptake depends on the bioaccumulation in the prey, the type 

of prey organism, and the ingestion rate of the predator. For example, diatoms are digested by 

bivalves at higher assimilation efficiency than sediments. In addition, the difference in the 

assimilation efficiency for these two food items highly varies among predating bivalve species 

(Wang and Kong, 2003). It is evident that dietary exposure can substantially contribute to the 

total metal uptake (Griscom et al., 2002; Rainbow and Wang, 2001; Wang et al., 1996; Chong 

and Wang, 2001; Ke and Wang, 2001; Wang and Ke, 2002; Xu and Wang, 2002). For trace 

elements in anionic forms, e.g., As and Se, dietary exposure dominates the total uptake while 

for metals that are mainly taken up via transport proteins, their accumulation predominantly 

results from the dissolved phase (Wang and Fisher, 1999). Different processes affecting metal 

bioavailability and toxicity are disentangled in Sections 1.2.4 and 1.2.5. 

1.2.4. Regulation 

Organisms have developed physiological and/or anatomical mechanisms to adapt to metal 

exposure (Fairbrother et al., 2007). They are able to actively regulate metal bioaccumulation 

and maintain homeostasis over a range of exposure via exclusion or increased elimination 

(Hamilton and Mehrle, 1986; Chapman et al., 1996; Wood, 2001). Additionally, organisms 

have ability to regulate internal metal concentrations through sequestration, detoxification, 

and storage (George et al., 1980; Mason and Nott, 1981; Rainbow et al., 1980; Simkiss, 1981; 

White and Rainbow, 1982; Rainbow, 1988; Viarengo, 1989; Depledge and Rainbow, 1990; 

Mason and Jenkins, 1995; McDonald and Wood, 1993). The metals accumulated can be 

stored in detoxified forms, such as in inorganic granules or in complexes with 

metallothionein-like proteins, and may therefore become nonbioavailable for organisms and 

their predators (Mason and Jenkins, 1995; Noel-Lambot et al., 1980; Roesijadi, 1980; 

Langston and Zhou, 1986; Hylland et al., 1994; Nott and Nicolaidou, 1990, 1993, 1994). 

Because of the natural occurrence of metals in the environment, these physiological processes 

have evolved over time, allowing organisms to adapt to excess metals and to accumulate 

essential metals at required levels. 

Similar to aquatic organisms, plants have developed multiple mechanisms to increase their 

tolerance to metal exposure. Main detoxification mechanisms in plants include the distribution 

of metals to apoplast tissues like trichone and cell walls, chelation of the metals by different 

ligands, and the sequestration of the metal-ligand complex into the vacuole (Memon and 
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Schroder, 2009; Yang et al., 2005). In plants, cell walls are of importance in detoxifying some 

metals, e.g., Ni, Zn, Cd, and Mn (Kramer et al., 2000; Li et al., 2006; Memon et al., 2001; 

Memon and Yatazawa, 1984). As a result of this allocation, metal storage in metabolically 

active compartments, e.g., cytosol, mitochondria, and chloroplast, is limited. Metals may form 

complexes with extracellular organic acids released from roots or intracellular low-molecular 

weight proteins, e.g., metallothioneins (MTs) and phytochelatins (PCs) (Yang et al., 2005; 

Memon and Schroder, 2009; Clemens et al., 1999; Cobbett, 2000; Cobbett and Goldsbrough, 

2002; Sarry et al., 2006; Zenk, 1996; Robinson et al., 1993, 1997; Rauser, 1999). In addition 

to detoxification, PCs and MTs are involved in the homeostasis, regulating metal availability 

in plant cells (Thomine et al., 2000). Besides MTs and PCs, heat shock proteins are produced 

in plants under stress of metal contamination (Wollgiehn and Neumann, 1995; Neumann et 

al., 1994; Memon et al., 2001). They were suggested to have protective effects on the 

membrane by facilitating the formation of complexes between metals and proteins. Yet, the 

importance of these heat shock proteins is not fully understood. Compartmentalisation of 

intracellular metals into the vacuole acts as another sequestration mechanism in plants (Tong 

et al., 2004; Kramer et al., 2000). The vacuole is considered the main storage site for metals in 

plant cells and the ultimate storage site for metal ions entering the cytosol (Salt et al., 1995; 

Memon et al., 2001). Metal complexation may occur in the vacuole with the involvement of 

metal-binding molecules, e.g., anthocyanins and organic acids (Kramer et al., 2000; Pilon-

Smits and Pilon, 2002).  

1.2.5. Subcellular distribution 

Subcellular partitioning of metals is of importance in assessing adverse effects as it 

provides a mechanistic understanding of metal toxicity and tolerance (Wallace et al., 2003; 

Wang and Rainbow, 2006). Metals may form complexes with proteins or other carrier 

molecules for distribution to particular organs or for sequestration or excretion (Fairbrother et 

al., 2007). Metal distribution in organisms is dependent on the primary uptake route (Selck 

and Forbes, 2004; Fisher et al., 1996; Long and Wang, 2005; George et al., 1986; Wang et al., 

1996; Wang and Fisher, 1998; Reinfelder and Fisher, 1994). This specificity of metals in 

internal distribution complicates the issue further. The accumulation of metals within a certain 

tissue may partly result from the presence of specific binding sites and may be influenced by 

detoxification mechanisms within that tissue. Cadmium, for example, may preferentially bind 

to the sites that are associated with calcium concretions in gills of freshwater mussels 

(Pynnonen et al., 1987). Consequently, cadmium concentrations are lowest in the shell and 

muscle and highest in the digestive glands, gills, and kidney (Adams et al., 1981; Hemelraad 

et al., 1986; Herwig et al., 1989).  

Similarly, cellular and subcellular distribution of metals should be considered in assessing 

metal bioavailability and toxicity to plants. The allocation pattern of metals into different 

plant organs is metal- and species- specific and provides a better understanding of 

environmental consequences and reflects the sensitivity of organisms (Castro et al., 2009). For 

example, metal distribution into the belowground or aboveground tissues is related to the 

availability of metals in the environment and the tolerance of organisms (Doyle and Otte, 

1997; Weis and Weis, 2004; Weis et al., 2002; Windham et al., 2003; Ramos et al., 2002; 

Ouariti et al., 1997). The importance of metal subcellular partitioning is additionally 

demonstrated by statistically significant relationships found between the distribution pattern 

and the response (Li et al., 2011). In general, in hyperaccumulating plants, metals are mainly 

found in cell walls and vacuoles (Wierzbicka, 1998; Hu et al., 2009; Frey et al., 2000; Kupper 

et al., 2001; Robinson et al., 2003). For example, in salt marsh plants, cell walls and 

membranes are the main storage sites for metals, limiting the accumulation in the cytoplasm 

(Ramos et al., 2002; Zornoza et al., 2002; Castro et al., 2009). By contrast, in sensitive 
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species, a large proportion of the metals accumulated is distributed in the organelle-containing 

fractions (Wu et al., 2005). The subcellular partitioning of metals is, in turn, determined by 

detoxification and sequestration mechanisms mentioned above or acts as a detoxification 

mechanism. For instance, as a result of sequestration by organisms, a high fraction of metals 

accumulated is allocated in the vacuoles in leaves, cell walls, or epidermal layers (Vogeli-

Lange and Wagner, 1990; Chardonnens et al., 1998, 1999; Frey et al., 2000; Tian et al., 2009, 

2010). 

 

1.3. Metal toxicity 

1.3.1. Ion-organism interactions 

Bioavailability and toxicity of metals are strongly affected by the chemical speciation in 

the environment (Fairbrother et al., 2007; Pagenkopf et al., 1974; Sunda and Guillard, 1976; 

Pagenkopf, 1986; Allen et al., 1980; Luoma, 1983). Particularly, environmental conditions as 

well as biological or chemical processes influence the forms of metals (i.e., species, 

compound, matrix, and particle size), which subsequently determine metal bioaccessibility, 

bioavailability, fate, and effects (Fairbrother et al., 2007). The importance of the geochemical 

speciation of metals has been recognised and taken into account in metal assessment by 

linking metal bioavailability to the free metal ion (Parker et al., 1995; Wilkinson and Buffle, 

2004; Parker and Pedler, 1997). Based on this relationship, the free ion activity model (FIAM) 

was developed with the assumption that free ions are the main reactive species of metals, 

determining metal bioavailability and toxicity (Morel, 1983; Pagenkopf, 1983; Sunda and 

Huntsman, 1983). Additionally, a number of chemical speciation models, e.g., Windermere 

Humic Aqueous Model (WHAM), have been developed to integrate effects of the 

environmental chemistry in assessment of metal bioavailability (Tipping, 1998). 

However, toxicokinetics and toxicodynamics of metals are highly dynamic and 

complicated, depending on the metals, speciation of the metals, exposure routes and 

conditions, and regulation and storage of the metals by organisms (Fairbrother et al., 2007). 

The organ or tissue affected may be different from the organ or tissue in which metals are 

accumulated. The target organ or tissue is species-specific and dependent on the kinetics of 

metals, i.e., the differences in absorption, distribution, and excretion. Moreover, trafficking 

processes of metals such as binding to ligands and competition for receptor sites have effects 

on both the uptake level and the internal fate of accumulated metals (McGeer et al., 2003). 

These processes influence metal availability at different levels, i.e., in the aquatic medium, at 

the biological membrane in the vascular or intercellular transfer, and the intracellular matrix 

(Chapman, 1996; Newman and Jagoe, 1994; Langston and Bryan, 1984; Pagenkopf, 1983; 

Hamilton and Mehrle, 1986; Hering and Morel, 1990; Bergman and Dorward-King, 1997; 

Campbell, 1995; Mason and Jenkins, 1995; Stumm and Morgan, 1994; Chapman et al., 1996; 

Playle, 1998). Binding of metals to sites on the membrane determines the pertinent mass 

balance in the environment on the one hand and metal internal speciation, and subsequent 

metal bioavailability, on the other hand (Parker and Pedler, 1997). Furthermore, after metals 

are taken up into the cell, the binding of the metals to efflux transporters as well as the 

complexation of the metals with intracellular and extracellular ligands induced by the 

organism in response to metal bioaccumulation influence the reactivity of the metals 

accumulated (Worms et al., 2006). A number of families of proteins have been found to be 

involved in these transport processes of metals in both plants and aquatic organisms. In 

general, they function as cation efflux transporters, carrying cation efflux out of the 

cytoplasmic compartment, across the plasma membrane to the cell exterior, or across 

endomembranes into the intracellular compartments, e.g., the vacuole (Maser et al., 2001). For 
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example, the heavy metal (CPx-type) ATPases, e.g., the H
+
-ATPases, the Na

+
/K

+
-ATPases, 

and the Ca
2+

-ATPases, involve in the transport of cations across the cellular membrane in both 

plants and fish (Yang et al., 2005; Hall and Williams, 2003; Bury et al., 1999a; Havelaar et 

al., 1998; Axelsen and Palmgren, 2001). Therefore, metal ions, e.g., Cu
2+

 and Ag
+
, will inhibit 

the uptake of Na
+

 or Ca
2+

 for these specific binding sites at the gills, for instance, leading to 

toxic effects (Morgan et al., 1997; Bury et al., 1999b; Wood et al., 1996). Consequently, these 

proteins are considered the toxic sites of the biotic ligands (Niyogi and Wood, 2003). In 

general, based on the physiological mechanism of toxicity, metals can be classified into three 

categories (Niyogi and Wood, 2003). Monovalent metals, e.g., Cu
+
 and Ag

+
, disrupt the 

uptake of Na
+
 and Cl

-
. Divalent metals, e.g., Cd

2+
 and Zn

2+
, disrupt Ca

2+
 uptake. And, metals 

like aluminum and nickel increase the diffusion distance, thus compromising the ability of the 

gill to take up O2 and excrete CO2 (Playle et al., 1989; Pane et al., 2003).  

Because of the multitude of processes affecting metal uptake and internal metal 

distribution, the relationship between the chemical speciation of metals in the environment 

and their bioavailability is complicated and not well developed (van Leeuwen, 1999; Pinheiro 

and van Leeuwen, 2001). In addition to the geochemical speciation of metals in the 

environment, reactions of metals with different binding sites at the biological surface and 

activities of organisms control metal bioavailability. This accounts for a number of exceptions 

from the FIAM that have been summarised (Parker et al., 1995; Parker and Pedler, 1997; 

Kalis et al., 2006). A biological response only occurs as a result of interactions of metals with 

the cell membrane surface (Brown and Markich, 2000). Toxicity of metals is dependent on 

their affinity for biological ligands (Seregin and Kozhevnikova, 2006). The role of metal-

organism interactions in determining metal bioavailability has been increasingly noticed 

(Worms et al., 2006; Ahlf et al., 2009). The organisms should be included in the speciation 

system in order to obtain a better understanding of factors controlling metal bioavailability 

(Kalis et al., 2006). Specifically, interactions at the biological ligands, such as sites of action 

of toxicity and other binding sites, need to be integrated together with chemical speciation in 

assessment of metal bioavailability (Allen and Hansen, 1996; Di Toro et al., 2001). In other 

words, formation of both the metal-ligand complex in solution and the metal-cell surface 

complex should be simultaneously taken into account in the assessment (Parker and Pedler, 

1997). From a chemistry perspective, a binding site at the biological surface is considered a 

biotic ligand, which competes with abiotic ligands, e.g., organic molecules, in the water phase 

for metal ions, determining metal bioavailability. Reactions in the immediate proximity of the 

biological surface are a key determinant of metal bioavailability (Worms et al., 2006).  

Some new methods that take into account interactions at the biological surface have been 

developed from the FIAM in assessments of metal bioavailability. The fish gill surface 

interaction model is one example of extension of the FIAM (Playle, 1998). This model is 

based on the integration of conditional metal-gill surface binding constants into a geochemical 

speciation model. In the model, effects of competition and complexation on metal binding to 

freshwater fish gills are incorporated, providing mechanistic-based estimations of metal 

bioavailability. However, the model has been developed to investigate toxicity of only a 

limited number of metals at the known gills of rainbow trout or fathead minnows. Then, 

Brown and Markich (2000) combined the concepts of the FIAM and the biological receptor 

theory to obtain more reliable estimations of metal bioavailability. In the approach, the 

interactions of chemical species at biological receptor sites are more precisely quantified. The 

extended FIAM shows better potential for assessment of metal-organism interactions. More 

recently, the Biotic Ligand Model (BLM) has been developed on the basis of the fish gill 

surface interaction model to increase the potential for application to a wide range of species, 

metals, and exposure chemistry conditions. Both the fish gill surface interaction model and 
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the BLM are based on the assumption of competition among ions for binding sites as the 

mechanism of interaction, but a more general concept of binding sites, i.e., biotic ligands, was 

introduced into the BLM (Di Toro et al., 2001). Additionally, ion-organism interactions at the 

membrane surface have been integrated in metal assessment in another approach that is based 

on the role of the electrical potential at the plasma membrane (PM) surface in the ion transport 

(Kinraide et al., 1998). Particularly, the surface potential influences the metal activity at the 

membrane surface as well as the transport of the ions across the membrane (Kinraide, 2006; 

Wang et al., 2011). According to the electrostatic approach, ameliorative effects of competing 

ions on metal bioavailability are expressed by their influence on the depolarisation of the PM 

surface (Kinraide, 2006). 

1.3.2. Ion-ion interactions 

In the environment, toxic metals are present in mixtures with major cations and other toxic 

metal ions. Significant progress has been made in investigating effects of major cations on 

toxicity of detrimental ions. For example, according to the concept of the BLM, major cations, 

e.g., H
+
, Na

+
, K

+
, Ca

2+
, and Mg

2+
, might compete with toxic ions, e.g., Cu

2+
 and Zn

2+
, for 

binding sites at the biotic ligands (Di Toro et al., 2001). These interactions result in a decrease 

in the accumulation of toxicants at the biotic ligands, and subsequently reduce metal toxicity. 

Based on the electrostatic theory, additions of the major cations reduce the negativity of the 

electrical potential at the membrane surface. The change in the potential subsequently leads to 

variations in the activity of toxic ions at the PM surface as well as the transport of the ions via 

the membrane, therefore affecting toxicity (Kinraide et al., 1998; Kinraide, 1998). However, 

limited developments have been obtained in incorporating ion-ion interactions in predicting 

bioaccumulation and toxicity of mixtures of toxic metals.  

The low progress in estimating bioaccumulation and toxicity of metal mixtures is ascribed 

to the complex interactions between different metals. In addition to interactions of ions with 

the cellular or organismal system, toxicity of metal mixtures is influenced by interactions 

between different ions in the mixtures (Dardenne et al., 2008). Interactions between different 

metals in their mixtures contribute to adverse effects following exposure to metal mixtures 

even when these substances are present at concentrations below the environmental quality 

guideline levels of individual components (Cooper et al., 2009). The interactions occur at 

different levels, i.e., in the environment, at the root surface, and within the plant (Kabata-

Pendias and Pendias, 1984; Phalsson, 1989). At the environmental-chemical level, in 

combination with physicochemical conditions of the environment, interactions outside 

organisms determine the environmental availability of metals. Subsequently, at the 

toxicokinetic phase, interactions between different substances influence uptake of single 

substances by organisms. At the toxicodynamic phase, interactions occur at target sites in 

organisms, affecting joint toxicity. Metal binding and uptake are highly influenced by 

competition between different ions (Kalis et al., 2006). Major cations, e.g., H
+
, Na

+
, Ca

2+
, and 

Mg
2+

, may compete with toxic metal ions, e.g., Cu
2+

, for binding sites at the organism-water 

interface, such as fish gills (Pagenkopf, 1983; Zitko and Carson, 1976; Playle et al., 1992, 

1993; Campbell and Stokes, 1985; Santore et al., 2001). Furthermore, once accumulated in 

organisms, metals may compete for binding sites on specific enzymes or receptors during the 

absorption, excretion, or sequestration, or at the target site (Fairbrother et al., 2007). For 

example, Cu(I) and Ag(I) were found to compete for the transporter Ctr1 (Lee et al., 2002; 

Boyle et al., 2011). Consequently, the chemical and toxicological reactions between different 

metals following exposure to their mixtures have effects on their reactivity, bioavailability, 

and toxicity. These interactions together with interactions of ions with the cellular systems, 

e.g., uptake, transport, and receptor binding, may result in different patterns of joint toxicity, 

e.g., additive, synergistic, or antagonistic. Toxicity of metal mixtures may vary widely and 
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biological actions of metal mixtures may deviate significantly from the actions of single 

metals (Norwood et al., 2003; Otitoloju, 2002; Manzo et al., 2010). Bioaccumulation of metal 

mixtures is a function of the specific components and their proportions in mixtures 

(Shuhaimi-Othman and Pascoe, 2007). These observations emphasise the importance of 

integrating interactions between different ions in metal assessment. The exclusion of the 

interactions in interpreting the relation between metal speciation in the environment and metal 

uptake may lead to incorrect assessment of bioavailability. The incorporation of the joint 

biological action of mixtures provides more reliable estimations of toxicity (Otitoloju, 2002).  

While interactions between different metals in the environment are well assessed by 

chemical speciation models, e.g., WHAM, toxicological interactions, i.e., at the biological 

ligands at the toxicokinetic and toxicodynamic phases, are usually excluded or not properly 

addressed in current models for assessment of mixture toxicity. For example, the concepts of 

concentration addition and response addition (or response multiplication) are based on the 

assumption that the presence of one metal does not affect the biological action of another 

(Bliss, 1939; Hewlett, 1979). Consequently, deviations from the ideal behaviour of substance 

mixtures (i.e., additivity), e.g., more than and less than additive effects, cannot be quantified 

by these models or incorporated in estimating toxicity of the mixtures. 

 

1.4. Affinity for biological ligands and metal toxicity 

1.4.1. Affinity for biological ligands 

Metal uptake, bioaccumulation, and bioavailability are highly influenced by ligand binding 

and competitive interactions at the receptor site as described in the previous section and 

reported by Alsop et al. (1999) and Hollis et al. (2000). Toxicity of metals is dependent on 

their affinity for biological ligands (Seregin and Kozhevnikova, 2006). Binding of metal ions 

to the cell wall varies as a function of the affinity of the ions for ligands, e.g., polygalacturonic 

acid (Rudakova et al., 1988; Merce et al., 2001). Therefore, the use of the affinity of metals 

for the biological ligands may create significant progress in modelling bioaccumulation, 

bioavailability, and toxicity of metal mixtures. On the one hand, the inclusion of the 

interactions between ions and biological materials as expressed by the metal-specific affinity 

for the biological ligands provides more reliable estimations of metal bioaccumulation and 

bioavailability. On the other hand, the integration of the metal-specific affinity in predicting 

metal bioaccumulation and bioavailability allows taking into account interactions between 

different metals in estimating toxicity of metal mixtures. Moreover, this modelling approach 

is based on an intrinsic property of metals, i.e., independent of environmental conditions, thus 

facilitating extrapolation to different conditions.  

In this PhD thesis, the use of the affinity of metals for biological ligands in metal 

assessment was studied in three different approaches: the mechanistic bioaccumulation model, 

the Biotic Ligand Model (BLM), and the electrostatic toxicity model (ETM) (Fig. 1.2). 

Besides the potential for integrating interactions between metals and organisms and between 

different metals, these approaches show other significant advantages in estimating metal 

bioaccumulation and toxicity. Mechanistic bioaccumulation models overcome limitations of 

the use of single and generic values of accumulation factors BCF and BAF by delineating 

physiological processes in simulating metal uptake and elimination. By including the 

interactions at sites of toxic action, the BLM, at least in principle, provides a mechanistic 

understanding of the relation between metal bioaccumulation and toxicity. The ETM provides 

insights into other mechanisms of interactions besides the competitive binding as included in 

the BLM. A detailed description of these approaches is presented in Sections 1.4.2–1.4.4. 

1 



17 

 

1.4.2. Mechanistic bioaccumulation models 

Kinetic-based models have been recommended as an alternative to the use of single and 

generic values of BCF and BAF in assessment of metal bioaccumulation (Luoma and 

Rainbow, 2005; Wang and Zauke, 2004; Kahle and Zauke, 2003; Chang and Reinfelder, 

2000; Reinfelder et al., 1998). These models provide reliable estimations of metal 

accumulation in organisms with the integration of different exposure routes (e.g., water vs. 

diet) and the dynamic nature of bioaccumulation processes (Fairbrother et al., 2007; Ahlf et 

al., 2009). Another advantage of the models is that the distinction of metal bioaccumulation 

from different pathways, which determines internal distribution and subsequent toxicity, is 

addressed in the models. The models were found to accurately predict metal bioaccumulation 

from different uptake routes for a number of metals and organisms (Luoma and Rainbow, 

2005; Luoma et al., 1992; Thomann et al., 1995; Wang et al., 1996, 1997, 1998; Wang and 

Fisher, 1998; Hendriks and Heikens, 2001; Veltman et al., 2007a,b). 

 

 

Figure 1.2. The diagram describes the principles of: (1) the mechanistic bioaccumulation 

model (denoted by the dashed rectangle), (2) the Biotic Ligand Model (BLM) (denoted by the 

dotted rectangle), and (3) the electrostatic toxicity model (denoted by the solid rectangle). All 

these models are based on the binding of metals (denoted by the circles with a plus sign) to 

the biological ligands (BL). The biological ligands are transport proteins in the 

bioaccumulation model, biotic ligands at the water-organism interface in the BLM, and the 

binding sites at the membrane surface in the electrostatic toxicity model. In the mechanistic 

bioaccumulation model, the internal concentration of metals in organisms is a function of 

kinetics of uptake (ku) and elimination (ke) via different exposure pathways. According the 

BLM concepts, metal accumulation at the biotic ligands results from the association (ka) and 

dissociation (kd) processes. In the BLM, one more step is modelled, i.e., the bioaccumulation 

of metals at the biotic ligands is related to toxic effects. In the electrostatic toxicity model, 

both the bioaccumulation of metals at the biological surface and the transport of metals 

through the membrane might be predicted and incorporated in modelling toxic effects. As 

such, the interactions between metal ions and biological ligands are integrated in modelling 

toxicity of metal mixtures. 

 

The kinetic-based bioaccumulation model is based on a biodynamic delineation of metal 

accumulation processes that provides a detailed understanding of the extent of and 

contribution to the variability in the amount of different metals accumulated in various species 
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and environmental conditions (Luoma and Rainbow, 2005). This biokinetic model is 

developed on the basis of the concept of biodynamics originated by Riggs (1963) that 

accumulation of chemical substances is the result of a balance of different fluxes: uptake from 

food, uptake from the dissolved phase, and losses (Luoma and Rainbow, 2005). Although the 

model is based on the assumption of steady-state conditions, it can be used to assess 

accumulation of substances in temporally varying conditions (Wang and Fisher, 1999). 

Another assumption of the model is that the rate of these fluxes can be determined by realistic, 

controlled experiments at various exposure concentrations and in different conditions (Luoma 

and Rainbow, 2005). Therefore, site-specific exposure concentrations and conditions as well 

as empirical metal-specific physiological parameters can be integrated into the model in order 

to estimate metal concentrations in organisms (Luoma and Rainbow, 2005; Wang and Fisher, 

1999). As such, different bioaccumulation processes are distinguished, quantitatively 

modelled, and balanced to give an estimation of the site-specific bioaccumulation level 

(Luoma and Rainbow, 2005). Metal uptake from both the dissolved phase and the dietary 

source is taken into account and distinguished in the model. These sources can be further 

divided. Uptake from the dissolved phase, for example, can be from pore or overlying water. 

Food can include detritus, phytoplankton, inorganic particles, and sediments. Uptake from 

each pathway is quantified based on an assumed proportional relationship between the uptake 

and the metal concentration in that exposure phase (Wang and Fisher, 1999). Based on the 

concept of Riggs (1963), Thomann (1981) developed a model estimating accumulation of 

substances in aquatic food chains. In the model, the influx rate from the dissolved phase was 

determined by multiplying the substance concentration in water by the absorption rate 

constant (Factor 1 in Equation 1.1). The absorption rate constant is a function of the filtration 

rate of organisms and the absorption efficiency of the dissolved substance by the organisms. 

The influx rate from food was quantified as a product of the assimilation efficiency and the 

amount of substances ingested, which is a function of the concentration of the substance in the 

food and the ingestion rate (Factor 2 in Equation 1.1). The elimination rate of metals via both 

pathways and the growth dilution were also incorporated (Factor 3 in Equation 1.1). Metal 

uptake over time is presented by the first-order physiological process (Eqn. 1.1) (Wang and 

Fisher, 1997, 1999; Thomann, 1981; Landrum et al., 1992; Luoma and Fisher, 1997): 

CgkCIRAECk
dt

dC
efwu  )()()(  (1.1) 

where C (µg/g) is the metal concentration in the organism; ku (L/g/d) is the uptake rate 

constant from the dissolved phase (or the absorption constant); Cw (µg/L) is the metal 

concentration in water; AE (mg/g/d) is the metal assimilation efficiency from ingested 

particles; IR (g/g/d) is the ingestion rate of the organism; Cf (µg/mg) is the metal 

concentration in the ingested food; ke (1/d) is the efflux rate constant; and g (1/d) is the growth 

rate constant.  

However, the application of the kinetic models in extrapolating to different environmental 

conditions has been suggested to be limited. Particularly, several parameters describing 

physiological processes, e.g., the metal assimilation efficiency from ingested food, the metal 

absorption rate from water, the metal elimination rates, and the growth rate, which are highly 

influenced by environmental conditions, need to be empirically measured (Wang and Fisher, 

1999). Moreover, the measurements need to be carried out in environmentally realistic 

conditions for each combination of a particular metal and one species. This limitation in 

extrapolation potential can be avoided by integrating diverse phenomena into unifying 

concepts. The biokinetic models based on a unifying concept are considered “mechanistic” 

from the perspective that uptake and elimination kinetics are derived from chemical-specific 

properties and species-specific physiological characteristics (Hendriks and Heikens, 2001; 
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Veltman et al., 2008). For organic substances, fugacity is widely considered such a unifying 

concept as it provides insight into the extent of variability in bioaccumulation among 

organisms, chemicals, and environmental conditions as well as factors contributing to this 

variability (Mackay, 2004; Luoma and Rainbow, 2005). Consequently, the approach allows 

extrapolating to a number of chemicals, organisms, and environmental conditions, without the 

necessity for case-specific calibration. Accordingly, the octanol-water partition coefficient 

Kow that reflects the partitioning of lipophilic organic compounds into the fatty tissue is 

widely used together with the lipid content as inputs to first-order mechanistic 

bioaccumulation models (Gobas, 1993; Hendriks, 1995; Hendriks et al., 1998, 2001). 

Particularly, absorption and elimination rate constants are estimated based on these chemical- 

and species-specific properties.  

The development and validation of a mechanistic bioaccumulation model for metals based 

on metal-specific properties lag far behind the assessment for organic chemicals. This low 

progress is mainly caused by the complex and specific behaviour of metals in the environment 

and in organisms as mentioned in previous sections. Bioaccumulation of metals is influenced 

by metal species, environmental chemistry, and highly-specific physiological uptake 

mechanisms (Allen et al., 1980; Rainbow, 1991). For example, the metal assimilation 

efficiency varies widely, depending on food quantity and quality and chemical composition 

(Wang et al., 1995; Decho and Luoma, 1994; Wang and Fisher, 1996a,b; Wang and Kong, 

2003). The uptake rate constant is dependent on environmental chemistry, e.g., the 

concentration of dissolved organic carbon (DOC) and salinity, and species-specific features, 

e.g., the filtration rate (Wright, 1995; Wang et al., 1996; Wang and Fisher, 1999). Efflux rate 

constants are influenced by the exposure route (Wang and Fisher, 1998). Because of this high 

specificity, no generic value was found to be able to describe physiological parameters for 

each species-metal combination (Wang and Fisher, 1999). Metal uptake and elimination rate 

constants need to be quantitatively linked to metal-specific properties and species-specific 

physiological characteristics in order to facilitate extrapolation to a wide range of metals and 

species (Veltman et al., 2008). The influence of this metal specificity, environmental 

conditions, the exposure route, and species-specific characteristics on metal bioaccumulation 

cannot be explained by any simple generalisation (Luoma and Rainbow, 2005). 

Findings during the last two decades indicate potential for developing mechanistic models 

delineating metal bioaccumulation. In particular, metal absorption and elimination rates can 

be explained in relation to the filtration rate and the species weight, respectively (Baines et al., 

2006; Hendriks and Heikens, 2001). Furthermore, as presented in previous sections metal 

uptake involves different membrane transport proteins. The affinity of proteins is metal-

specific, i.e., depending on metal charge and atomic radius, and preferences for coordination 

and ligands (Bell et al., 2002; Handy and Eddy, 2004; Veltman et al., 2008). The uptake rate 

constant from the dissolved phase may therefore be a function of metal properties that show 

affinity for proteins (Veltman et al., 2008). This theory was supported by a correlation found 

between the absorption efficiency and the binding to membrane transport proteins (Bryan, 

1984). Although a quantitative explanation for this relationship is currently unavailable, 

efforts have been put into integrating metal affinity for biological ligands in bioaccumulation 

and toxicity models, e.g., quantitative structure-activity relationships (Veltman et al., 2008; 

Jones and Vaughn, 1978; Newman and McCloskey, 1996; McCloskey et al., 1996; Tatara et 

al., 1997; Walker et al., 2003). Significant relationships were found between the covalent 

index and metal toxicity (Newman and McCloskey, 1996; McCloskey et al., 1996; Tatara et 

al., 1997). Recently, the metal absorption rate constant was reported to be a function of the 

metal-specific covalent index and the species-specific filtration rate (Veltman et al., 2008). 
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These results imply potential for developing a mechanistic model to estimate bioaccumulation 

for a number of metals and species based on these metal- and species-specific characteristics.  

Although the kinetic-based bioaccumulation models may provide significant progress in 

predicting metal bioaccumulation, some disadvantages have been recognised. Firstly, the 

models do account for neither the influence of metal speciation on bioaccumulation nor the 

relationship between metal bioaccumulation and toxic effects (Paquin et al., 2002). Secondly, 

tissue compartmentalisation, which is of importance in metal bioavailability and toxicity, is 

excluded in the models (Fairbrother et al., 2007). In addition, detoxification, which influences 

the tolerance of organisms to metals, is ignored in the models. In other words, different 

fractions of metals accumulated, i.e., the detoxified metal fraction and the metabolically 

reactive fraction, are not distinguished by this approach. 

1.4.3. Biotic Ligand Models  

The Biotic Ligand Model (BLM) has been developed as a mechanistic-based approach for 

estimating metal bioavailability, taking into account interactions at the water-organism 

interface (Di Toro et al., 2001; Santore et al., 2001; US EPA, 2000). The conceptual 

framework for the BLM was developed from the gill surface interaction model and the FIAM 

model (Pagenkopf et al., 1974; Pagenkopf, 1983; Playle et al., 1992, 1993; Janes and Playle, 

1995; Hollis et al., 1996, 1997; Playle, 1998; Richards and Playle, 1998; Wood et al., 1999; 

Morel, 1983; Morel and Hering, 1993; Campbell, 1995). According to the BLM concept, 

together with chemical speciation in the environment, interactions of toxic metals with 

competing cations at target sites of toxicity influence metal toxicity (Pagenkopf, 1983; Meyer, 

1999). Therefore, both aquatic geochemistry and toxicology principles are integrated in 

defining the fraction of metals that produces adverse effects (Playle, 1998; McGeer et al., 

2000; Di Toro et al., 2001). Toxic effects occur as a result of the binding of free metal ions to 

physiologically active binding sites at the site of action, which is described by the formation 

of metal-biotic ligand complexes according to a normal mass reaction equation (Eqn. 1.2): 

]BL[]M[]MBL[ n

MBL  K  (1.2) 

where [MBL] (mol/L) is the concentration of the cation-biotic ligand complex; KMBL (L/mol) 

is the stability constant of the cation-biotic ligand binding; [M
n+

] (mol/L) is the concentration 

of the free metal ion in the solution; and [BL] (mol/L) is the concentration of unbound biotic 

ligands (Di Toro et al., 2001). 

On the one hand, the biotic ligand competes with aqueous ligands, especially dissolved 

organic matter, for metal ions. On the other hand, the toxic metal ions compete with other 

cations in the solution, e.g., H
+
, for binding to the biotic ligand. The extent of toxic effects is 

determined by the concentration of the metal-biotic ligand complex. Toxic effects occur when 

this concentration exceeds a critical level. As such, both chemical speciation and cationic 

competition for binding sites are integrated in estimating metal toxicity (Di Toro et al., 2001; 

Santore et al., 2001; Deleebeeck et al., 2007). The inclusion of these interactions distinguishes 

the BLM and the FIAM, which are both based on the assumption that free ions are the main 

reactive species of metals. For fish, the biotic ligand was suggested to be the Na
+
 or Ca

2+
–

channel proteins on the surface membrane of the gill as metal binding at the sites disrupts 

ionoregulatory processes, e.g., transport of sodium across the gill, and eventually results in 

adverse effects (McDonald et al., 1989). For a number of other species, methods allowing 

direct measurements of the density of the target sites of toxicity are not available. Therefore, 

the site of action of toxicity is generalised to the biotic ligand in order to facilitate the 

applicability to a variety of species (Di Toro et al., 2001). In other words, it is assumed that 

the toxicology principles for fish are applicable to any other species for which the target site 
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of toxicity is in direct contact with the external aqueous environment. The BLM parameters 

include the stability constants of binding of cations to the biotic ligand and the total density of 

binding sites. In fish, these parameters are available for several metals, including copper, 

cadmium, and silver, from direct empirical measurements while for other species they are 

determined by fitting the model to the experimental toxicity data (Playle et al., 1993; Janes 

and Playle, 1995; Di Toro et al., 2001). The most important criterion for the validity of the 

BLM is the constancy of the critical concentration over different environmental conditions (Di 

Toro et al., 2001). With the advantages mentioned above, the BLM is increasingly applied in 

setting water quality criteria and objectives (Fairbrother et al., 2007). The BLM has been 

successfully applied to a number of aquatic organisms, e.g., fish, algae, and water flea (De 

Schamphelaere and Janssen, 2002, 2004; De Schamphelaere et al., 2002, 2003, 2004; Di Toro 

et al., 2001; Heijerick et al., 2000, 2002; Santore et al., 2001; McGeer et al., 2000). 

A number of difficulties are encountered in developing and applying the BLM to plants as 

this approach was originally developed for aquatic organisms (Antunes et al., 2006). These 

challenges are met in the determination of concentrations of free ions in soil solutions and of 

ligands, incorporation of nonequilibrium dissociation into the equilibrium BLM, and metal 

estimation and speciation in plant roots. These difficulties are attributed to complications of 

chemical speciation as well as metal uptake by organisms in the terrestrial ecosystem 

(Steenbergen et al., 2005). Firstly, the uptake routes in terrestrial organisms are more 

complicated than those in aquatic biota. Uptake from the pore water and from soil particles 

can significantly contribute to metal accumulation in terrestrial organisms. Secondly, it is 

difficult to control the composition of the water phase as well as metal concentrations in the 

pore water because of the dynamic equilibrium. Any changes in the soil properties, such as 

additions of metal salts, will interrupt the equilibrium. Despite these difficulties, recent 

findings show that the application of the BLM is theoretically and empirically feasible to 

terrestrial organisms. In particular, the assumption that the free metal ion is the main reactive 

species is applicable to terrestrial ecosystems as it is empirically evident that responses of 

plants and other soil organisms to metal exposure can be explained by variations in the 

concentration of this metal species in the water phase of soil (Spark, 1995). Moreover, 

toxicity mechanisms of aquatic and terrestrial organisms are assumed to be similar 

(Peijnenburg et al., 2007; Steenbergen et al., 2005). Influence of the environmental chemistry 

on metal bioavailability and toxicity is dependent on the properties of metals and competing 

components in the water phase as well as root characteristics (Wu and Hendershot, 2009). The 

BLM is therefore suggested to be applicable to plants in which metal binding sites to roots of 

the apoplasm are considered biotic ligands (Steenbergen et al., 2005; Voigt et al., 2006; 

Antunes et al., 2006). The potential applicability of the BLM to terrestrial organisms was 

proven by recent studies on plants. For example, Thakali et al. (2006) found the median 

effective concentration predicted by the BLM within a factor of ± 2 of the measurements, 

demonstrating that this approach is a promising method in assessing metal toxicity to plants.  

With the principles mentioned above the BLM may result in significant progress in metal 

assessment. Firstly, interactions between ions with other abiotic ligands and biotic ligands are 

included in the predictions of metal bioavailability by this approach. The interactions between 

ions with these ligands influence metal bioavailability and toxicity. Specifically, the 

complexation of metals with abiotic ligands in the solution reduces the amount of metals in 

available species, i.e., environmental availability of metals. In addition, competition of toxic 

metals with other cations for binding sites at the biotic ligand leads to decreases in the 

accumulation of metal ions at these sites, i.e., potentially toxic bioavailability of metals. By 

including the interactions between metal ions with abiotic and biotic ligands, the BLM 

therefore provides more reliable estimations of metal bioavailability and toxicity. Secondly, 

1 



22 

 

the potentially toxic accumulation can be, in principle, distinguished from the total body 

burden and the environmental availability (Fairbrother et al., 2007). Thirdly, as environmental 

characteristics, e.g., pH and concentrations of DOC, K
+
, Na

+
, Ca

2+
, and Mg

2+
, are included in 

estimations of metal bioavailability and toxicity, the BLM allows extrapolation to different 

exposure conditions (Fairbrother et al., 2007). Furthermore, the BLM may offer mechanistic 

explanations about metal binding and more detailed analysis and interpretation of toxicity of 

metal mixtures (Playle, 2004). This approach possesses potential for addressing interactions 

among metals and predicting toxicity of metal mixtures because of its assumption about the 

competitive binding at the biotic ligands (Norwood et al., 2003; Chen et al., 2010). According 

to Norwood et al. (2003), interactions between metals can be predicted if their stability 

constants are known. If two metals compete for binding to the same site of toxic action, the 

total amount of metals bound to the site would be a key factor, determining mixture toxicity. 

Alternatively, if metals in mixtures bind to different target sites of toxicity, estimations of 

bioavailability of individual metals might be a reliable predictor of mixture toxicity through 

the response addition model. This potential was confirmed by higher predictive power of the 

BLM compared to the FIAM and the total metal concentration model in estimating toxicity of 

metal mixtures (Hatano and Shoji, 2008). Furthermore, the higher capacity of the BLM is 

ascribed to the inclusion of competition between different ions for binding to transport sites at 

the biotic ligands. However, the applicability of the BLM to toxicity of metal mixtures needs 

to be further investigated as the validity of applying equilibrium constants for metals 

determined from single exposure to the metals following exposure to their mixtures is not 

verified yet (Chen et al., 2010). 

A number of disadvantages of the BLM resulting from its assumptions have been 

recognised. According to the BLM concept, metal internalisation is a rate-limiting process 

because of the assumed equilibrium between metals in the bulk solution and metals bound to 

the biotic ligands (Antunes and Hale, 2006). In other words, transport of metal ions from the 

bulk solution to the biotic ligands is hypothesised to be faster than the actual uptake rate by 

organisms. This assumption is still unidentified, especially as metals can be resupplied by soil 

in response to decreasing concentrations of metals in the species of free ions surrounding the 

biotic ligand or in the bulk medium which are caused by rapid internalisation. In these cases, 

labile complexes may become a source of metals that eliminates diffusion restrictions and 

depletion in the bulk medium and consequently increases the total metal uptake. This 

possibility is supported by substantial contribution of metal complexes, e.g., metal-dissolved 

organic carbon, to the total uptake observed in both aquatic organisms and plants (Martin and 

Goldblatt, 2007; Ferreira et al., 2008; Pinheiro and van Leeuwen, 2001; Campbell et al., 2002; 

Pinheiro et al., 2004; McLaughlin et al., 1998; Antunes and Hale, 2006; Degryse et al., 2006). 

The exclusion of this source of metal uptake in the BLM led to inaccurate estimates of metal 

toxicity, e.g., large deviations between measurements and predictions of copper toxicity to 

Daphnia magna at low pH of 5.5 and high levels of Fe and Al (De Schamphelaere and 

Janssen, 2004). In addition, neither active regulations (controlling metal uptake) nor 

subcellular regulations (e.g., detoxification, homeostasis, and sequestration) were included in 

the model. Other limitations of the BLM are related to the assumption about the competitive 

binding at the biotic ligand. It is difficult to verify the assumption that toxicity occurs only 

when cations bind to the hypothetical ligand and alleviative effects, by H
+
 and Ca

2+
 for 

example, only happen when these cations and toxic ions bind to the same biotic ligand 

(Kinraide, 2006). According to the BLM principles, interactions among different metals occur 

only via competitive inhibition of binding of metals to the biotic ligands, ignoring other 

possibilities, such as non-competitive, anti-competitive, and mixed forms of inhibition 

(Laidler and Bunting, 1973). Relatively constant or increased accumulation of several metals 

with additions of others as reported by Norwood et al. (2007) cannot be interpreted in terms of 
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competition in the BLM. Among the different types of joint toxicity, i.e., additive, synergistic, 

or antagonistic, complete additivity and complete antagonism might be explained by the two- 

or single-binding-site BLM, respectively, but not synergistic interactions. Another 

disadvantage of the BLM is induced by the assumption about the independence of binding 

sites to each other while metals can be absorbed by organisms via various transport systems 

depending on physiochemical conditions. These assumptions potentially account for a number 

of observed deviations from the BLM predictions (Hassler et al., 2004; Campbell, 1995; 

Campbell et al., 2002; Wilkinson and Buffle, 2004; Slaveykova and Wilkinson, 2002).  

1.4.4. Electrostatic toxicity models 

The electrostatic approach is increasingly considered an alternative in estimating metal 

bioavailability and toxicity to plants. This method originates from the observation that there 

are considerable differences between ion concentrations at the root plasma membrane (PM) 

surface and concentrations in the external medium because of a negative charge at the PM 

surface (Wagatsuma and Akiba, 1989; Kinraide, 1998). The surface potential is affected by 

the ionic composition of the bulk-phase medium and plays an important role in the transport 

of ions through the membrane (Kinraide, 2001). Firstly, the potential has influence on the 

activity of ions at the PM surface via electrostatic attraction or repulsion. Secondly, the 

potential impacts the difference in the electrical potential across the membrane, which is a 

driving force for the transport of ions through the membrane. Effects of the electrical potential 

at the PM surface on cation uptake as well as on physiological effects have been reported in a 

number of studies (Gimmler et al., 1991a,b; Gimmler et al., 2001; Kinraide, 2001; Zhang et 

al., 2001; Nagata and Melchers, 1978; Wagatsuma and Akiba, 1989; Suhayda et al., 1990; 

Kinraide, 1994, 1998, 1999; Krab et al., 2000; Ahn et al., 2001). Recent developments in the 

measurement of the plant PM potential and the surface charge density facilitate the application 

of the surface potential in estimating metal toxicity (Nagata and Melchers, 1978; Moller et al., 

1984; Gibrat et al., 1985; Abe and Takeda, 1988; Oka et al., 1988; Obi et al., 1989a,b). 

Together with measurements of ion-PM binding affinities, these approaches allow the 

computation of the PM surface potential by the Gouy-Chapman-Stern model (Kinraide, 

1998). In the model, the PM potential ψ0 is determined based on the assumption of the 

existence of negatively charged and neutral sites at the membrane, which can bind to metal 

ion M
n+

 (Kinraide et al., 1998). The principal effect of the surface potential is controlling ion 

activities at the surface (Nobel, 1991). This effect can be computed by the Nernst Equation: 













 

TR

F 0
b

n

0

n n
exp}M{}M{


 (1.3) 

where {M
n+

}0 and {M
n+

}b (mol/L) are the activities of free ion M
n+

 at the PM surface and in 

the bulk phase medium, respectively; n (dimensionless) is the charge on the ion; F (J/mV) is 

the Faraday constant (F = 96.485); R (J/mol/K) is the universal gas constant (R = 8.314); and 

T (K) is the temperature (Nobel, 1991).  

Based on the above principles, the electrostatic approach shows both advantages and 

disadvantages in evaluating metal uptake and toxicity. By integrating electrical properties of 

the cell membrane, the electrostatic approach may lead to significant progress in assessment 

of metal toxicity to plants. Particularly, this method allows investigating plant-ion interactions 

and incorporating impacts of these interactions in predicting metal bioavailability, thus 

providing more reliable estimates of metal toxicity (Wang et al., 2010). Moreover, the 

interactions between different ions can be addressed by the electrostatic approach through 

determining changes in the surface potential with varying ionic composition of the solution. 

The varying electrical potential at the PM surface subsequently influences the partition of ions 
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between the PM surface and the bulk phase medium. For example, decreases in the negativity 

of the surface potential resulting from additions of cations reduce the activity of cations while 

increasing the activity of anions at the PM surface. This principle has been used to study 

effects of major cations, e.g., H
+
, Na

+
, Ca

2+
, and Mg

2+
, on toxicity of toxicants, e.g., Cu

2+
 and 

Zn
2+

 (Kinraide, 2006). As the addition of H
+
, Na

+
, Ca

2+
, or Mg

2+
 leads to a reduction in the 

negativity of the surface potential and subsequent decreases in the activity of the toxic cations 

at the PM surface, these major cations potentially have alleviative effects on metal uptake and 

toxicity (Kinraide, 2006). Opposite effects were reported on the uptake and toxicity of anions, 

e.g., SeO4
2- 

(Kinraide, 2003). Therefore, the electrostatic approach might provide additional 

explanations for the impact of ion-ion interactions on metal toxicity besides the competitive 

binding usually assumed in toxicological studies in general and in the BLM in particular. 

According to the electrostatic approach, three different mechanisms were found to account for 

ameliorative effects of Ca
2+

 on metal toxicity (Kinraide, 1998).  

1)  Mechanism 1: The reduction in metal toxicity occurs as a result of the electrostatic 

displacement of toxic cations at the PM surface by Ca
2+

 induced by the decreasing surface 

potential. Moreover, the intensity of effects caused by different cations on metal toxicity by 

this mechanism can be compared (Kinraide et al., 2004).  

2)  Mechanism 2: The alleviation results from the restoration of Ca
2+

 at the cell surface in 

response to low levels of surface Ca
2+

 since the low contents of Ca
2+

 at the cell surface 

inhibit the growth of plants.  

3)  Mechanism 3: This mechanism involves interactions between Ca
2+

 and the toxicant at the 

cell surface, but not the displacement interactions like mechanisms 1 and 2. For instance, 

effects of Na
+
 are caused by the blockade of the ion channel (Tyerman, 1997). 

 Although the relative importance of these mechanisms is toxicant- and cation- specific, 

generally mechanism 1 occurs in all cases and the contribution of mechanism 2 to the 

alleviation is minor (Kinraide, 1998). In addition, mechanism 3 is toxicant specific, e.g., H
+
 

has moderate alleviative effects while Al
3+

 does not affect toxicity of toxicants (Kinraide, 

1998). Relative influence of Ca
2+

 and Mg
2+

 on toxicity of toxic metal ions is ion- and species- 

specific (Kinraide, 1998). For example, in soybean, Ca
2+

 has higher alleviative effects on Al
3+

 

toxicity (Silva et al., 2001a,b). In wheat, Mg
2+

 is more effective than Ca
2+

 in inhibiting Zn
2+

 

toxicity while Mg
2+ 

does not influence Al
3+

 toxicity (Kinraide, 1998; Pedler et al., 2004). 

These findings demonstrate that the electrostatic approach is a promising method of 

quantitatively evaluating interactions between toxicants and ameliorative ions. Furthermore, it 

is implied that although competition may act as a mechanism of interactions between different 

ions, the surface potential should be included in assessment of metal toxicity. Another 

advantage of the electrostatic approach over the FIAM and the BLM is the potential for 

investigating effects of anions on metal toxicity (Kinraide, 2006). The activity at the PM 

surface is a more reliable predictor of the uptake and toxicity of selenate (SeO4
2-

) than the 

activity in the bulk phase medium (Kinraide, 2003). The increase in the toxicity of SeO4
2-

 

caused by Ca
2+

 cannot be interpreted in terms of competition for binding sites while this 

observation can be explained in relation to changes in the surface potential (Kinraide, 2006). 

Particularly, the presence of Ca
2+

 or Mg
2+

 reduces the negativity of the surface potential, 

therefore increasing the uptake and toxicity of SeO4
2-

. With these advantages, the electrostatic 

approach has been increasingly used to assess effects of common cations (e.g., H
+
, Na

+
, K

+
, 

Ca
2+

, and Mg
2+

) on metal toxicity through variations in the surface potential (Wang et al., 

2008, 2011; Kopittke et al., 2011). Yet, the approach has not been applied to predict 

interactions in and toxicity of metal mixtures. Moreover, the electrostatic approach has some 

limitations. For instance, regulations, which have profound influence on uptake kinetics as 

well as subcellular allocation of metals, are not addressed in the electrostatic approach. 
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Additionally, the amount of accumulated metals that produces toxic effects is not determined 

by this approach. 

1.4.5. Comparison of the different approaches 

Although interactions between metal species and biological materials are included in the 

mechanistic bioaccumulation model, the BLM, and the ETM as described in Sections 1.4.2–

1.4.4, there are fundamental differences in these models.  

1)  Endpoints: The final endpoint of the bioaccumulation model is the internal concentration 

of metals. In the BLM, the endpoint is toxic effects, which are linked to the accumulation 

of metals at the biotic ligands at the water-organism interface. In the electrostatic approach, 

toxicity is linked not only to the accumulation of free metal ions at the PM surface, but also 

to the transport of the ions via the membrane (Fig. 1.2).  

2)  Metal forms: In the BLM and the electrostatic approach, free ions are considered the main 

reactive species of metals, determining the extent of toxic effects whereas in the kinetic-

based bioaccumulation model, the total accumulation of metals in different species is 

estimated, excluding metal speciation in predicting metal bioavailability.  

3)  Expression of the affinity of metals for biological ligands: In the bioaccumulation models, 

the interactions between metals and biological materials are included in the determination 

of the rate constants of the physiological processes. In the BLM and the electrostatic 

approach, the affinity of metals for the biological ligands is included in the stability 

constant of the binding of metal ions to the biological ligands.  

4)  Mechanisms of interactions: In the BLM, effects of one metal ion on another are related to 

the competition for binding sites. In the electrostatic approach, these effects are assumed to 

be associated with electrical reactions that are induced by changes in the surface potential. 

 

1.5. Objectives of the thesis 

Understanding of metal bioaccumulation and toxicity is lagging behind the progress for 

organic chemicals. The limited development in metal assessment is ascribed to the complex 

physiological processes, which determine metal bioaccumulation, bioavailability, and toxicity. 

These processes lead to high specificity in metal bioaccumulation and toxicity among 

different metals, across different exposure conditions, and across different organisms. The 

metal-specific selectivity of biota results in difficulties in estimating metal bioaccumulation, 

bioavailability, and toxicity. In addition to the chemical speciation in the environment, 

interactions between metal ions and organisms at the biological surface and between different 

ions at different phases control metal bioavailability, and subsequently influence metal 

toxicity. While effects of environmental chemistry and the ion-ion interactions in the 

environment have been well assessed in speciation models, interactions between ions and 

biological ligands as well as interactions between different ions at toxicokinetic and 

toxicodynamic phases are usually poorly addressed. The general objective of this PhD thesis 

is to integrate the interactions between metals and biological materials in modelling 

bioaccumulation and toxicity of metal mixtures. The integration is carried out by modelling 

approaches that are based on the affinity of metals for the biological materials (ligands). This 

integration is expected to provide more accurate estimations of metal bioaccumulation and 

bioavailability, to allow extrapolation across different exposure conditions and to different 

metals, and to create significant progress in assessment of metal bioavailability and toxicity 

following exposure to metal mixtures. 
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The thesis aims to answer the central question: Can the variability in bioaccumulation and 

toxicity of metal mixtures be explained by the metal-specific affinity for biological ligands? 

To answer the central question, the following subquestions need to be addressed: 

1)  What are the relationships between kinetics of metal uptake and the covalent index and to 

what extent can the variability in metal bioaccumulation be explained by these 

relationships? (Chapter 2) 

2)  How do common cations, i.e., H
+
, Na

+
, K

+
, Ca

2+
, and Mg

2+
, interact with Cu

2+
 and 

subsequently affect Cu
2+

 toxicity and how could these effects be modelled based on the 

stability constant of the binding of these ions to biotic ligands? (Chapter 3) 

3)  How could the ion-ion interactions be integrated in estimating toxicity of metal mixtures 

by an assessment based on the free ion activity of metals in the solution (interactions 

between metal ions and the biological ligands are not addressed)? (Chapter 4) 

4)  How could the interactions between ions and biotic ligands at the water-organism interface 

be incorporated in predicting ion-ion interactions and toxicity of metal mixtures (Chapter 

5)? 

5)  How could the interactions between ions and the membrane surface be integrated in 

estimating ion-ion interactions and toxicity of metal mixtures? (Chapter 6) 

6)  Does the integration of interactions between ions and biological ligands in modelling ion-

ion interactions and toxicity of metal mixtures improve the estimation accuracy in metal 

assessment? (Chapter 7) 

7)  What are the relationships between ion-ion interactions and metal toxicity? (Chapter 7) 

 

1.6. Outline of the thesis 

In this chapter, the problem statement and goals of the PhD thesis have been outlined. A 

detailed description of different modelling approaches to obtain the objectives mentioned in 

Section 1.5 is given in next chapters (Chapters 2–6) (Fig. 1.3). In addition, a chapter 

synthesising results obtained by applying these methods is included (Fig. 1.3). 

In Chapter 2, the development and validation of a semi-mechanistic model delineating 

metal bioaccumulation based on a metal-specific property and a species-specific characteristic 

are presented. With the involvement of transporters and other metal-binding proteins, a metal-

specific property that reflects the affinity for these biological ligands may be able to explain 

the variability in metal bioaccumulation. Previous studies indicate significant relationships 

between metal bioaccumulation and toxicity with the covalent index, a metal-specific property 

(Newman and McCloskey, 1996; McCloskey et al., 1996; Tatara et al., 1997; Veltman et al., 

2008). In this PhD thesis, the metal-specific covalent index and the species-specific size-based 

filtration rate are integrated in developing a semi-mechanistic model simulating metal 

bioaccumulation. In other words, the covalent index is considered a unifying factor in 

modelling metal bioaccumulation. Different physiological processes, i.e., uptake, elimination, 

and growth, are included in estimating the internal concentrations of metals. Uptake and 

elimination of metals from both the dissolved phase and the dietary source are integrated in 

the accumulation model. The potential of the developed model for predicting metal 

bioaccumulation is then assessed by comparing estimations with field measurements. 

In Chapter 3, the development of a BLM for predicting Cu
2+

 toxicity to lettuce Lactuca 

sativa, taking into account effects of H
+
, Na

+
, K

+
, Ca

2+
, and Mg

2+
, is given. The BLM was 

originally developed and has been widely applied to aquatic organisms, considering protein 
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channels on the gills as the sites of action of toxicity. Recent findings indicate that the BLM is 

principally and empirically applicable to terrestrial organisms like plants. In Chapter 3, the 

BLM principles are used to assess Cu
2+

 toxicity to lettuce. According to the BLM concept, the 

accumulation of Cu
2+

 at the biotic ligands is a key indicator, determining Cu
2+

 toxicity. 

Moreover, H
+
, Na

+
, K

+
, Ca

2+
, and Mg

2+
 may compete with toxic metal ions for binding to 

transport sites at the biotic ligands. This competitive binding is expected to reduce the 

accumulation of Cu
2+

 at the biotic ligands, thus inhibiting Cu
2+

 toxicity. 

 

 

Figure 1.3. The main approaches for incorporating the affinity of metals for biological ligands 

in estimating toxicity of metal mixtures applied in this PhD thesis 

 

In Chapter 4, an approach for modelling ion-ion interactions and integrating these 

interactions in estimating toxicity of Cu
2+

–Ag
+
 and Cu

2+
–Zn

2+
 mixtures is demonstrated. 

Toxicity of metal mixtures 

(Chapter 1) 

Stability constants Surface potential 

Accumulation at the 

toxic sites  

(Chapters 3 and 5) 

Surface activity 

(Chapter 6) 

Metal-metal 

interactions 

Metal-organism 

interactions 

Affinity for 

biological materials 

Covalent index 

Physiological 

processes 

(Chapter 2) 

Metal-metal interactions at 

the biological ligands 

Environmental 

mixture toxicity 

(Chapter 4) 

Contribution of the integration of metal affinity for 

biological ligands in modelling mixture toxicity  

(Chapter 7) 

1 1 



28 

 

Interactions between different metal ions are usually excluded in current models for 

assessment of metal mixtures, e.g., concentration addition and response multiplication (or 

response addition). The concept of these models is based on the assumption that substances in 

mixtures do not interact with each other, i.e., the presence of one metal does not affect the 

toxicity of another. In Chapter 4, these models are extended to incorporate ion-ion 

interactions in predicting toxicity of the mixtures. 

In Chapter 5, a method of applying the BLM concept to mixture toxicity is shown. The 

interactions between different metal ions and between ions and the biotic ligands at the water-

organism interface are incorporated into the toxic equivalency factor (TEF) approach for 

modelling toxicity of binary metal mixtures (Cu
2+

–Ag
+
 and Cu

2+
–Zn

2+
). According to the 

BLM principle, the accumulation of metal ions at the biotic ligands is the key indicator of 

toxicity of single metals. Recent results indicate that this principle might be applicable to 

toxicity of metal mixtures. In Chapter 5, the fraction of the biotic ligands occupied by metal 

ions is used as the basic unit for the TEF approach. 

In Chapter 6, an application of the electrostatic approach (i.e., the electrostatic toxicity 

model) is presented in assessing interactions between major cations, e.g., Na
+
, K

+
, Ca

2+
, and 

Mg
2+

, and Cu
2+

 and interactions in mixtures of Cu
2+

–Ag
+
 and Cu

2+
–Zn

2+
. According to the 

electrostatic theory, a negative potential exists at the PM surface. This surface potential has 

dual effects on metal toxicity by influencing the activity of ions at the PM surface and the 

transport of ions via the membrane. The interactions between ions and plants are assessed at 

different levels. Firstly, interactions occur at the proximate outside of the membrane surface 

(surface interactions). Additions of one metal reduce the negativity of the surface potential, 

thus leading to decreasing activities of others at the PM surface. Secondly, interactions occur 

between ions adsorbed, affecting metal toxicity (internal interactions). These surface and 

internal interactions might be related to the two functions of the electrical potential at the PM 

surface. 

In Chapter 7, the main results of Chapters 2–6 are linked to each other and synthesised in 

order to give an overview about the contribution of the integration of the affinity of metals for 

biological ligands in modelling bioaccumulation and toxicity of metal mixtures. Furthermore, 

the predictive power of different approaches studied in this thesis is compared. Based on this 

synthesis, Chapter 7 accordingly provides recommendations for potential applications of the 

modelling approaches investigated in this thesis and for further research. 
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Abstract
___

The metal-specific covalent index and the species-specific size-based filtration 

rate were integrated into a biokinetic model estimating metal bioaccumulation in mussels 

from the dissolved phase and phytoplankton. The model was validated for zebra (Dreissena 

polymorpha) and quagga (Dreissena rostriformis bugensis) mussels in the rivers Rhine and 

Meuse, the Netherlands. The model performed well in predicting tissue concentrations in 

different-sized zebra mussels from various sampling sites for 
55

Mn, 
56

Fe, 
59

Co, 
60

Ni, 
82

Se, 
111

Cd, 
118

Sn, and 
208

Pb  (r
2 
= 0.71–0.99). Performance for 

52
Cr, 

63
Cu, 

66
Zn, 

68
Zn, and 

112
Cd was 

moderate (r
2 

< 0.20). In quagga mussels, approximately 73 to 94% of the variability in 

concentrations of 
82

Se, 
111

Cd, 
112

Cd, and 
208

Pb was explained by the model (r
2 

= 0.73–0.94), 

followed by 
52

Cr, 
55

Mn, 
56

Fe, 
60

Ni, and 
63

Cu (r
2 

= 0.48–0.61). Additionally, in both zebra and 

quagga mussels, average modelled concentrations were within approximately one order of 

magnitude of the measured values. In particular, in zebra mussels, estimations of 
60

Ni and 
82

Se concentrations were equal to 51 and 76% of the measurements, respectively. Higher 

deviations were observed for 
52

Cr, 
59

Co, 
55

Mn, 
56

Fe, 
111

Cd, 
63

Cu, and 
112

Cd (underestimation), 

and 
66

Zn, 
68

Zn, 
208

Pb, and 
118

Sn (overestimation). For quagga mussels, modelled 

concentrations of 
66

Zn and 
68

Zn differed approximately 14% from the measured levels.  

Differences between predictions and measurements were higher for other metals. Environ. 

Toxicol. Chem. 2011;30:2825–2830. 
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2.1. Introduction 

Because of its widespread distribution and high efficiency in filtering particulate matter, 

the zebra mussel (Dreissena polymorpha) has been used in numerous monitoring programs 

(Kraak et al., 1991; Cope et al., 1999). Biomonitoring studies showed high metal 

concentrations in mussels from the rivers Rhine and Meuse (Kraak et al., 1991). Recently, 

attention has been drawn to the displacement of the zebra mussel by the quagga mussel 

(Dreissena rostriformis bugensis) (Zhulidov et al., 2010). Quagga mussels are more tolerant 

to unfavorable conditions, such as bad water quality or low availability of food, and metal 

pollution (Stoeckmann, 2003). Understanding metal bioaccumulation in these two species 

may provide insight into differences in tolerance to metal exposure. This may be one of the 

driving forces for the ongoing changes in the population structure of dreissenid mussels. This 

information is also useful in assessing potential effects on their predators, such as 

benthivorous fish and diving ducks. 

With recognized difficulties in assessing metal bioaccumulation and toxicity, kinetic-based 

models have been recommended as a potential method for predicting metal bioaccumulation 

(Fairbrother et al., 2007). The models also enable distinguishing accumulation from dissolved 

and dietary sources. This distinction is important because exposure type determines internal 

distribution and eventually toxicity (Borgmann and Norwood, 1997). In mechanistic 

bioaccumulation models for organic chemicals, absorption, assimilation, and elimination rate 

constants are usually related to substance-specific properties, such as the octanol–water 

partition coefficient, and physiological features such as size (Hendriks et al., 2001). The 

advantage of these models lies in the potential for extrapolation to a wide range of pollutants, 

species, and conditions without case-specific calibration (Veltman et al., 2008). Yet, similar 

models for metals are rare because of the complex chemistry of metals in the environment 

(Veltman et al., 2008; Rainbow, 2002; Luoma and Rainbow, 2005). So far, parameters in 

metal models, that is, the physiological rate constants, should be experimentally measured on 

a case-by-case basis. Relating these constants to metal-specific properties increases 
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extrapolation potential for a number of metals. Recent studies indicate possibilities of 

integrating the metal-specific covalent index into modeling metal bioaccumulation. In 

particular, significant relationships were found between the covalent index and metal 

bioaccumulation in mollusks (van Kolck et al., 2008). In addition, variability in metal 

absorption rate constants between mussels and other species was shown to be primarily a 

function of the filtration rate (Veltman et al., 2008). The integration of the species-specific 

filtration rate as well as other physiological processes may provide a better understanding of 

the differences in the sensitivities of the zebra and quagga mussels to metal exposure. 

In the present study, we aimed to integrate the covalent index and the size-based filtration 

rate into a kinetic model simulating metal bioaccumulation in zebra and quagga mussels in the 

rivers Rhine and Meuse. The developed model was then validated by using data from field 

measurements in these rivers. 

 

2.2. Methods 

2.2.1. Specification and parameterization of the model  

Trace metals can be accumulated in mussels from the dissolved phase and particulate 

matters or phytoplankton (Wang et al., 1996; Klerks and Fraleigh, 1997; Roditi et al., 2000). 

In the present study, phytoplankton was considered the main source of food for mussels. 

Metal concentrations in mussels Cm (mg/g dry wt) were regarded to be determined by uptake 

via water (the first factor) and food (the second factor) and by losses through elimination and 

growth dilution (the last factor) (Eqn. 2.1). These factors are specified later. 

      mfewfw
m AEIRFR

dt

d
CgkkCCp

C
e   (2.1) 

where p is the absorption efficiency; FR is the filtration rate; Cw is the dissolved metal 

concentration; IR is the ingestion rate; AE is the assimilation efficiency; Cf is the metal 

concentration in food; kew is the elimination rate via water; kef is the elimination rate via food; 

and g is the growth rate. A full list of all parameters included in the model is provided in 

Table S2.1, Supplementary information. 

Uptake of metals from the dissolved phase 

Metal uptake from water is a function of the dissolved metal concentration Cw (mg/L) and 

the absorption rate ku (L/g dry wt/d). The absorption rate was considered metal- and species-

specific (Borgmann and Norwood, 1997). It depends on biological factors, such as the 

filtration rate FR (L/g dry wt/d), and the metal-specific absorption efficiency p (%) (Roditi 

and Fisher, 1999; Thomann, 1981).  

At low food levels, the filtration rate is generally independent of food concentration 

(Fanslow et al., 1995). After reaching certain levels, the rate will decrease as a function of 

food availability (Fanslow et al., 1995; Sprung and Rose, 1988). Therefore, the filtration rate 

was considered to be a function of food concentration F (in phytoplankton biomass, g/L), the 

maximum filtration rate FRmax (L/g dry wt/d), and the saturation constant Km (g/L) (Eqn. 2.2). 

The saturation constant 0.04 g/L was derived from the value of 20 mg C/L determined by 

Descy et al. (2003) by using the conversion factor of 2 between organic carbon content and 

phytoplankton biomass suggested by Roditi et al. (1996). The filtration rate is mainly 

measured per individual (e.g., L/mussel/h) and depends on the mussel size, or dry weight, 

according to the power function a.W
b
 with various values of a and b reported (Kryger and 

Riisgard, 1988; Lei et al., 1996). For zebra mussels, the maximum individual-based filtration 
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rate FRm (L/mussel/h) and dry weight W (g) were taken from the widely applied relationships 

found by Kryger and Riisgard (1988) (Eqns. 2.3 and 2.4). The filtration rate found by Kryger 

and Riisgard (1988) was high because of the optimal experimental conditions (MacIsaac et al., 

1992) and therefore considered maximum in the present study. For quagga mussels, the 

allometric equations from the study by Baldwin et al. (2002) were used to determine the FRm 

(L/mussel/h) and dry weight W (g) (Eqns. 2.5 and 2.6). These individual-based filtration rates 

were transferred into the mass-specific form FRmax (L/g dry wt/d) applied in the model. The 

pseudo feces production, which may act as a mechanism to clear excess particles or to reject 

some particle types, was excluded in the current model (Sprung and Rose, 1988) (see 

Discussion section). 

FK

K






m

mmaxFR
FR  (2.2) 

88.0

m 82.6FR W  (2.3) 

42.25 SL1054.1  W   (2.4) 

6266.0

m 7866.0FR W  (2.5) 

53.2SL0209.0 W  (2.6) 

According to Wang and Fisher (1997), the metal absorption efficiency is independent of 

the filtration rate among mussels in different size classes. Available data on this efficiency for 

mussels, especially the quagga mussel, are limited. We therefore used the relationship 

between the metal absorption efficiency p and the covalent index ( rX 2

m ) developed by 

Veltman et al. (2008) (Eqn. 2.7). 

  37.457.0
1

log 2

m 









rX

p

p
 (2.7) 

Uptake of metals from food 

Metal uptake from food by mussels is a function of the ingestion rate IR (g/g dry wt/d), the 

metal assimilation efficiency AE (%), and the metal concentration in ingested food Cf (mg/g) 

(Thomann, 1981). All particles filtered by mussels were assumed to be ingested with greater 

than 90% retention efficiencies for different-typed particles (Roditi et al., 1996; Lei et al., 

1996; Jorgensen et al., 1984) The ingestion rate (g/g dry wt/d) therefore equaled the amount of 

food (g/L) contained in the filtered water (L/g dry wt/d) (Eqn. 2.8). 

F FRIR  (2.8) 

The assimilation efficiency is the percentage of ingested metals crossing gut lining. No 

statistically significant relationship was found between this parameter and the covalent index 

based on data from the study by Roditi et al. (2000). Therefore, available data collected from 

previous studies were applied directly to the model for Cd, Cr, Se, Co, Zn, and Pb (Table 

S2.2, Supplementary information). 

Metal concentrations in phytoplankton Cf (mg/g) were calculated from bioconcentration 

factors (BCF) of phytoplankton BCFp (L/kg) and dissolved metal concentrations Cw (mg/L) 

(Eqn. 2.9). The BCFp is metal-specific and dependent on exposure concentrations (Hendriks 

and Heikens, 2001). However, the dependence on exposure concentrations was not included 

in modeling BCFp to simplify the extrapolation for particular environmental conditions. To 

reduce uncertainties from this simplification, BCFp data were included only if the dissolved 
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metal concentrations did not differ considerably from measurements in the rivers Rhine and 

Meuse (Table S2.3, Supplementary information). Collected BCFp values were found not to be 

significantly correlated to the covalent index and, consequently, directly applied to the model. 

wpf BCF CC   (2.9) 

Elimination 

Metals may be lost via water and food with elimination rates kew and kef (1/d), respectively 

(Roditi et al., 2000; Roditi and Fisher, 1999). Elimination rates are inversely proportional to 

species weight by a factor of (–0.25) (Hendriks and Heikens, 2001). Weight-corrected 

elimination rates are metal-specific, but studies relating these rates to the mussel size are 

limited (Veltman et al., 2008). Therefore, in the present study, elimination rates reported by 

Roditi et al. (2000) were considered weight-corrected for mussels with the standardized dry 

weight. This standardized dry weight was assumed to correspond to 20-mm shell length. The 

weight-corrected elimination rates were related to the covalent index (Table S2.4 and Fig. 

S2.1, Supplementary information). The elimination rates were therefore expressed as follows: 

 
25.0

s

91.02

m

93.1

ew 10















W

W
rXk  (2.10) 

 
25.0

s

44.12

m

24.2

ef 10















W

W
rXk  (2.11) 

where Ws denotes the standardized dry weight. 

Tissue concentrations also may decrease by growth dilution, which is proportional to the 

growth rate g (1/d). The growth rate depends on, for example, initial size, temperature, and 

food availability (Juhel et al., 2006; Jantz and Neumann, 1998). At the relatively constant 

environmental conditions, it was assumed that the initial mussel size is the decisive factor, 

determining the growth rate. For zebra mussels, the relationship between the shell length 

added per day (SLA) and the initial shell length (SL; mm) developed by Stoeckmann and 

Garton (1997) was used because of the wide range of size classes studied (Eqn. 2.12). The 

mass-based growth rate applied in the model was derived from this increase in shell length by 

using Equation 2.4 relating dry weight to shell length. According to Baldwin et al. (2002), the 

growth rate of quagga mussels is 4 to 19 times higher than that of zebra mussels. The 

difference between their growth rates increases with a decrease in food availability. The 

chlorophyll a concentrations measured in the rivers Rhine and Meuse were similar to the 

highest levels studied by Baldwin et al. (2002). As a result, a fourfold higher growth rate 

compared with that of the zebra mussel was assumed for the quagga mussel. 

SL0.003470.0795SLA   (2.12) 

2.2.2. Sampling and chemical analysis 

Mussel and water samples 

Zebra and quagga mussels were collected from groyne stones at Lexkesveer in the River 

Rhine and at Middelaar in the River Meuse in April 2010. These sites were selected based on 

available evidence on the co-existence of the two species. At each site, river water samples 

were taken and filtered using a Whatman GFC Glass Microfiber Filter of 47 mm (cat. 1822-

047). Filters were then dried for 24 h at 60 
o
C to determine the dry weight of suspended 

solids. 
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Sample preparation and analysis 

In total, 424 and 688 individual mussels collected from the rivers Rhine and Meuse, 

respectively, were grouped into three size classes: small (< 15 mm), medium (15–22 mm), 

and large (≥ 22 mm). The fresh parts were separated and dried at 60 
o
C for 48 h. The dried 

fresh fraction was then digested with a mixture of HNO3 65% and H2O2 in the Milestone 

Ethos-D microwave. For each sample, 0.2 g of the dried fresh weight was digested by 4 mL of 

HNO3 and 0.5 mL of H2O2. Small- and medium-sized mussels showed higher abundance than 

larger ones. Therefore, for small- and medium-sized classes, two or three samples were 

measured to increase the representativeness of the examined samples. The cooled digests were 

made up to exactly 100 mL with high-quality deionized water. A similar procedure was 

performed for blank samples for corrections to determine metal concentrations in 

experimental samples. Diluted digests and filtered water samples were analyzed for 
52

Cr, 
55

Mn, 
56

Fe, 
59

Co, 
60

Ni, 
63

Cu, 
66

Zn, 
68

Zn, 
82

Se, 
111

Cd, 
112

Cd, 
118

Sn, and 
208

Pb by inductively 

coupled plasma-mass spectroscopy. 

2.2.3. Model validation 

The model was validated by combining the measurement data in the present study and 

monitoring data from the Netherlands Monitoring Waterstaatkundige Toestand des Lands. 

Monitoring data measured at upstream monitoring stations Lobith and Belfeld in 2008 and 

2009 were used for the sampling sites at Lexkesveer and Middelaar, respectively. Particularly, 

the measurements of suspended solids together with monitoring data about percentage of 

organic carbon in suspended matters (Table S2.5, Supplementary information) were used to 

calculate concentrations of organic carbon. Phytoplankton biomass was then derived from the 

organic carbon content using the conversion factor of 2 as described previously. Together 

with measurements of mussel shell length (Table S2.6, Supplementary information) and 

dissolved metal concentrations (Table S2.7, Supplementary information), the data on the 

phytoplankton biomass was used to determine modeled metal concentrations in mussel 

tissues. These results were compared with measured values for corresponding size classes 

(Table S2.8, Supplementary information). The explanatory power of the model was assessed 

by the coefficient of determination (r
2
) between modeled and measured tissue concentrations 

for each metal. Data on BCFp and assimilation efficiency were available for 
52

Cr, 
59

Co, 
66

Zn, 
68

Zn, 
82

Se, 
111

Cd, 
112

Cd, and 
208

Pb, so both the dissolved phase and food were taken into 

validation for these metals. For 
55

Mn, 
56

Fe, 
60

Ni, 
63

Cu, and 
118

Sn, only water was included in 

model validation, because no available or derived data of these parameters were found. The 

relative contribution from food Uf (%) was calculated as the percentage of the uptake from 

food in total uptake (Eqn. 2.13). 

%100
AEIRFR

AEIR

fw

f
f 






CCp

C
U  (2.13) 

 

2.3. Results 

2.3.1. Validation results 

Approximately 71 to 99% of the variability in tissue concentrations of 
55

Mn, 
56

Fe, 
59

Co, 
60

Ni, 
82

Se, 
111

Cd, 
118

Sn, and 
208

Pb in zebra mussels at different sampling sites and in various 

size classes was explained by the model (r
2
 = 0.71–0.99; Fig. S2.2 and Table S2.9, 

Supplementary information). The explained variance in tissue concentrations was lower for 
52

Cr, 
63

Cu, 
66

Zn, 
68

Zn, and 
112

Cd (r
2
 < 0.20). For different-sized quagga mussels taken from 
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various sites, the best performance of the model was noted for 
82

Se, 
111

Cd, 
112

Cd, and 
208

Pb (r
2
 

= 0.73–0.94), followed by 
52

Cr, 
55

Mn, 
56

Fe, 
60

Ni, and 
63

Cu (r
2
 = 0.48–0.61; Fig. S2.3 and 

Table S2.9, Supplementary information). In contrast, only 4 to 25% of the variability in tissue 

concentrations of 
59

Co, 
66

Zn, 
68

Zn, and 
118

Sn was explained by the model. 
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Figure 2.1. Comparison of modeled and measured metal concentrations in zebra mussels (A) 

and in quagga mussels (B) from the rivers Rhine and Meuse, the Netherlands 
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In general, average modeled concentrations for both the zebra and quagga mussels were 

below measured levels, except for 
66

Zn, 
68

Zn, 
208

Pb, and 
118

Sn, by approximately one order of 

magnitude (Fig. 2.1). In zebra mussels, estimations for 
60

Ni and 
82

Se concentrations agreed 

most, equaling 51 and 76% of the field measurements, respectively (Fig. 2.1A). Deviations 

between predictions and measurements were higher for other metals. Concentrations of 
52

Cr, 
59

Co, 
55

Mn, 
56

Fe, 
111

Cd, 
63

Cu, and 
112

Cd were underestimated, whereas those of 
66

Zn, 
68

Zn, 
208

Pb, and 
118

Sn were overestimated. For quagga mussels, modeled concentrations of 
66

Zn and 
68

Zn differed from the measured levels by approximately 14% (Fig. 2.1B). Higher differences 

were found between predictions and measurements for other metals. 

2.3.2. Metal bioaccumulation in mussels 

In both rivers Rhine and Meuse, highly significant relationships were found between metal 

concentrations in zebra mussels and in quagga mussels (p < 0.0001; Table 2.1). Metal 

concentrations in the mussels in the river Rhine were significantly lower than those in the 

river Meuse (p < 0.0001). In addition, the relative contribution from the two uptake pathways 

was metal-specific, with a dominant fraction from food for 
66

Zn and 
68

Zn and from water for 
52

Cr, 
82

Se, 
111

Cd, 
112

Cd, and 
208

Pb (Table S2.10, Supplementary information). 

Bioconcentration factors and bioaccumulation factors were calculated as the ratio between 

metal concentrations in organisms, without and with uptake from food, respectively, versus 

metal concentrations in water. In both species, significant relationships were found between 

the BCF and bioaccumulation factors values (p < 0.0001; Table S2.10, Supplementary 

information). Bioconcentration levels were highest for 
82

Se and 
208

Pb and lowest for 
95

Cr in 

both species. The BCF and bioaccumulation factors values of zebra mussels were 

significantly higher than those of quagga mussels (p < 0.0001). 

 

2.4. Discussion 

2.4.1. Metal bioaccumulation in zebra and quagga mussels 

Metal concentrations in mussels from the river Rhine were generally lower than those in 

the river Meuse. Similar results were found in a previous study by Hendriks et al. (1998) for 

Cd and Zn, but not for the other metals (Table 2.1). This change may be attributable to a more 

significant improvement in water quality in the river Rhine. Metal concentrations in the zebra 

mussels taken from the rivers Rhine and Meuse were in the range reported for the Lawrence 

River (Kwan et al., 2003), except for 
55

Mn and 
208

Pb, with higher levels found in the present 

study (Table 2.1). The level of bioaccumulation from food modeled in the present study was 

lower than that derived by Roditi et al. (2000). This may be attributed to differences in food 

items included. These authors modeled bioaccumulation from total particulate metal 

concentrations (labile and refractory fraction) while we integrated metal uptake from 

phytoplankton. 

The relative importance of uptake from the dissolved phase and from food, as reported in 

the literature, is inconclusive. DeForest et al. (2007) found inverse relations between the BCF 

and bioaccumulation factors and water concentrations, indicating a complex relationship 

between absorption and ingestion with metal levels in water and food. The metal-specific 

relative contribution of the two sources to tissue accumulation found in this study is consistent 

with results from some other studies (Wang et al., 1996; Klerks and Fraleigh, 1997; Roditi et 

al., 2000). The present study confirmed the findings by Mersch et al. (1993) that cadmium 

concentrations in zebra mussels were mainly determined by exposure to the aqueous phase. 
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Table 2.1. Average metal concentrations in zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels in the rivers 

Rhine and Meuse (average ± standard deviation; mg/g dry wt) (
a
Secondary data from Hendriks et al. (1998)) 

Metals 

Zebra mussels  Quagga mussels 

Rhine Meuse Rhine
a Meuse

a Lawrence  Rhine Meuse 

52
Cr 4.60 7.68 ± 2.60 5.00 2.73 0.46-9.45  4.98 ± 0.84 5.10 ± 0.55 

59
Co 1.76 7.88 ± 0.77     1.68 ± 0.21 4.23 ± 1.81 

66
Zn 124.41 269.52 ± 30.99 241.67 418.18 129-340  114.78 ± 10.22 170.82 ± 32.70 

68
Zn 123.76 269.32 ± 20.48     114.30 ± 10.29 170.06 ± 32.98 

82
Se 5.26 6.23 ± 0.46   4.05-7.4  5.69 ± 0.69 6.99 ± 0.34 

111
Cd 1.18 5.06 ± 0.45     1.12 ± 0.12 5.04 ± 0.43 

112
Cd 1.22 4.76 ± 0.42 1.33 3.86 1.8-7.43  1.11 ± 0.13 4.90 ± 0.41 

208
Pb 7.23 8.72 ± 1.15 3.92 2.91 0.31-1.78  6.75 ± 0.59 8.16 ± 1.18 

55
Mn 200.89 947.33 ± 214.21 158.33 81.82 35-96  165.87 ± 68.64 482.40 ± 379.90 

56
Fe 2,077.69 2,721.77 ± 88.95     2,107.57 ± 241.09 3,091.31 ± 384.24 

60
Ni 12.68 41.01 ± 7.17 20.83 10.00 8.84-55.2  11.95 ± 0.19 18.08 ± 2.32 

63
Cu 16.59 33.93 ± 10.94 22.50 17.27 14.2-35.9  17.91 ± 4.15 17.92 ± 2.78 

118
Sn 0.76 0.38 ± 0.14     0.62 ± 0.20 0.42 ± 0.01 

Study Present study Present study Hendriks et al. (1998) Hendriks et al. (1998) Kwan et al. (2003)  Present study Present study 
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2.4.2. Uncertainties 

Some assumptions included in our model resulted in uncertainties. Important sources of 

uncertainties are related to food items, filtration rate, the BCF of phytoplankton, and kinetic 

rate constants. These factors are discussed in the following sections. 

Food items 

Mussels can consume a variety of food items, ranging from phytoplankton to bacteria, 

detritus, and small zooplankton. According to Bruner et al. (1994), uptake via algae is more 

important at the same exposure concentrations of algae and suspended particles. However, the 

contribution of algae and suspended sediment to metal bioaccumulation is determined by both 

the metal concentrations in these food items as well as their availability. Zebra mussels are 

able to filter particles as small as 0.7 mm, and the maximum retention efficiency is obtained at 

sizes larger than 5 mm (Sprung and Rose, 1988). In the Lower Rhine, small centric diatoms 

with sizes that are effectively cleared by mussels were the major component of the algal 

community (LWA, 1989–1993). Moreover, shell growth rates were strongly related to the 

chlorophyll a concentration, indicating phytoplankton as an important food source (Jantz and 

Neumann, 1998). In contrast, the mussel growth was found not to be correlated to the 

dissolved organic matter, total organic content, or biomass of seston of the river Rhine water 

(Admiraal et al., 1990). Similarly, no correlations were found between biomass of bacterial 

populations and chlorophyll a concentrations (LWA, 1988). These results may indicate that 

the fraction of bacteria in foods for the zebra mussel is insignificant (Jantz and Neumann, 

1998). 

Filtration rate 

Filtration rate is an important physiological parameter, determining uptake from both water 

and food. Filtration is related to food selectivity and pseudofeces production, which were 

excluded in the present model. Similar filtration rates were found for different types of food as 

well as for various phytoplankton taxa in different sizes, suggesting that the influence of 

particle selection is negligible (Sprung and Rose, 1988; Roditi et al., 1996; Horgan and Mills, 

1997). The exclusion of food selectivity in terms of size and types is therefore expected not to 

cause large uncertainties. Another factor influencing the filtration rate is pseudofeces 

production suggested to clear excess particles or to reject some particle types (Sprung and 

Rose, 1988). Clearing excess particles only occurs when food concentrations exceed a certain 

level, the so-called incipient limiting concentration. Different values of this concentration 

have been reported, but all were substantially higher than food levels measured in the rivers 

Rhine and Meuse (Sprung and Rose, 1988; Lei et al., 1996). Although rejection of particles by 

pseudofeces production is known to occur even at low food concentrations (Sprung and Rose, 

1988), almost complete retention efficiency was reported for algae, the main food source in 

the present study (Lei et al., 1996; Jorgensen et al., 1984). As a result, uncertainties from the 

exclusion of the pseudofeces production in our model were assumed to be insignificant.  

BCF of phytoplankton 

The bioconcentration factor of phytoplankton, BCFp, determines metal concentrations in 

food. But its value may decrease with the exposure concentrations as reported by Hendriks 

and Heikens (2001). This was not integrated in our approach to keep the model simple. This 

simplification was justified by choosing BCFp values obtained at similar levels of metal 

exposure as in our sampling sites. 
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Kinetic rate constants 

In the present model, metal absorption and assimilation efficiencies as well as elimination 

and growth rates were considered independent of environmental conditions, particularly metal 

and food exposure concentrations. This assumption may not be completely justified in all 

cases. In addition, the physiological processes may be influenced by metal-specific biological 

regulations by mussels. For example, essential metals, such as Cu and Zn, can be taken up at 

high amounts, and their tissue concentrations can be regulated biologically (Secor et al., 

1993). However, measured concentrations of these essential metals did not deviate more from 

modeled levels than noted for other metals (Fig. 2.1). In addition, in the present study, the 

covalent index was used to model metal absorption efficiency and elimination rates. Yet, 

metal bioaccumulation is also related to other chemical properties, allowing further 

improvement of the estimations. For example, atomic weight was shown to considerably 

contribute to variations in metal tissue concentrations (Hendriks et al., 1998). 

2.4.3. Recommendations 

Validation in the present study showed the good potential of the model in estimating metal 

concentrations in zebra and quagga mussels. As noted by Veltman et al. (2008), integration of 

the covalent index thus may significantly improve modeling of metal bioaccumulation. By 

integrating this metal-specific property and the size-based filtration rate, metal 

bioaccumulation can be predicted for a number of metals without calibration for specific 

cases. Moreover, the difficulties and limitations in the application of bioaccumulation in metal 

risk assessment can be overcome because physiological processes influencing metal uptake 

kinetics can be included.  

However, caution should be taken in applying the model, because assumptions that apply 

to the rivers Rhine and Meuse may not hold in other water systems. The estimation potential 

of the model can be improved by considering some additional factors, specifically, 

dependence of physiological rate constants on exposure concentrations, other chemical 

properties, such as molecular weight, and metal-specific behavioral characteristics of mussels, 

for example, biological internal regulations and sequestration. 
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SUPPLEMENTARY INFORMATION 

Table S2.1. Parameters used in the model 

Parameters Label Unit Values/equations 

Metal concentration in mussels Cm µg/g dry wt  

Saturation constant Km g/L 0.04 

Shell length SL mm Experimentally measured 

Dry weight of the zebra mussel W g 42.25 SL1054.1  W  

Dry weight of the quagga mussel W g 53.2SL0209.0 W  

Maximum FR for zebra mussels 

(individual) 

FRm L/mussel/h 88.0

m 82.6FR W  

Maximum FR for quagga mussels 

(individual) 

FRm L/mussel/h 6266.0

m 7866.0FR W  

Mass-specific maximum FR FRmax L/g dry wt/d 

W

24FR
FR m

max


  

Food concentration F g/L F = organic carbon × 2 

Organic carbon concentration was determined 

by the monitoring programme 

Filtration rate FR L/g dry wt/d 

FK

K






m

mmaxFR
FR  

Absorption efficiency p % 

  37.4X57.0
1

log 2

m 









r

p

p
 

Absorption rate ku L/g dry wt/d FRu  pk  

Dissolved metal concentration Cw µg/L Experimentally determined 

Ingestion rate IR g/g dry wt/d F FRIR  

Assimilation efficiency AE % Data collected 

Bioconcentration factor of 

phytoplankton 

BCFp L/kg Data collected 

Metal concentration in food Cf mg/L 
wf BCF CC p   

Standardized dry weight Ws g Corresponding to SL = 20 mm 

Elimination rate via water kew 1/d 

 
25.0

s

91.02

m

93.1

ew X10















W

W
rk  
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Elimination rate via food kef 1/d 

 
25.0

s

44.12

m

24.2

ef X10















W

W
rk  

Shell length added per day for 

zebra mussels 

SLA mm 
SL0.003470.0795SLA   

Shell length after one day SLt mm SLASLSL t   

The mass-based growth rate for 

zebra mussels 

g 1/d 

W

W
g t  

The growth rate for quagga 

mussels 

g 1/d 4 times higher than the growth rate of zebra 

mussels 

 

Table S2.2. Assimilation efficiency AE (%) of zebra mussels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**Average values 

 

Metal AE References 

Cd 0.227 Roditi et al. (2000) 

Cr(III) 0.015 Roditi et al. (2000) 

Se(IV) 0.23 Roditi et al. (2000) 

Co** 0.23 Reinfelder and Fisher (1994) 

Reinfelder et al. (1997) 

Wang and Fisher (1997) 

Gagnon and Fisher (1997) 

Wang and Fisher (1996) 

Griscom et al. (2000) 

Fisher et al. (1996) 

Pb** 0.48 Thomann et al. (1995) 

Fisher et al. (1996) 

Zn** 0.37 Reinfelder and Fisher (1994) 

Reinfelder et al. (1997) 

Wang and Fisher (1997) 

Wang and Fisher (1996) 

Griscom et al. (2000) 

Lee and Luoma (1998) 

Blackmore and Wang (2002) 

Fisher et al. (1996) 
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Bioconcentration factor of phytoplankton (BCFp) used to develop the model 

The dependence of BCFp on exposure concentrations was excluded in the model. To reduce uncertainties 

from this simplification, only findings from studies without significant differences in metal concentrations in the 

investigated conditions from conditions in the rivers Rhine and Meuse were considered valid. These data were 

used in the current study. In particular, results from the study by Lewis et al. (2004) were considered invalid 

since no information about metal concentrations in water was presented. Neither BCFp values from the studies of 
Rick and Durselen (1995) nor of Goupta et al. (2001) were integrated because of considerably lower or higher 

metal exposure concentrations compared to measurements in the rivers Rhine and Meuse. Some BCFp values, 

which were obtained in the studies by Wang and Dei (1998) and Kawai et al. (1984) with experimental 

conditions relatively similar to the Rhine and Meuse in terms of dissolved metal concentrations, were considered 

valid (See table S2.3). All results by Deniseger et al. (1986) and Muller et al. (1993) were used as the studied 

metal concentrations were in the range measured in the present study. 

 

Table S2.3. Bioconcentration Factor of phytoplankton BCFp (L/kg) used to develop the model 

Study Ni Pb Zn Cu Cd Mn Cr Se Co 

Muller et al. (1993) 7900 8300 9200 13100 10800     

6800 3600 12800 9700 6800     

5800 7100 7600 21300 2200     

6900 1900 3900 16200 5500     

1400 1700 2800 1300 3000     

1600 2100 2900 1000 5500     

2100 5500 4000 900 1500     

3400  3100 1300      

Deniseger et al. (1986)   52000 32000      

  56000 25000      

  21000 34000      

  20000 24000      

Wang and Dei (1998)   10000       

Kawai et al. (1984)     10900 4200 2500 150  

      3100   

Garnham et al. (1992)         60 

Average 4487.5 4314.286 15792.31 14983.33 5775 4200 2800 150 60 
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Table S2.4. Standardised elimination rates via water and food (1/d) (from study by Roditi et al. (2000)) 

Element Ag Cd Cr(III) Cr(VI) Hg Se(IV) 

Covalent index 4.284 2.713 1.708 0.716 4.080 3.251 

Elimination rate via water 0.088 0.011  0.011  0.035 

Elimination rate via food 0.07 0.012 0.019  0.05 0.026 
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Figure S2.1. Relationships between elimination rates via water and via food versus the covalent index 

 

Table S2.5. Percentage of organic carbon (%) in suspended solids at two monitoring sites Lobith and Belfeld 

(from water base) 

Lobith (Rhine)  Belfeld (Meuse) 

Sampling date Percentage of organic 

carbon (%) 

 Sampling date Percentage of organic 

carbon (%) 

15-Jan-09 5  14-Jan-08 7.2 

29-Jan-09 4.3  10-Mar-08 6.3 

12-Feb-09 6.4  6-May-08 9.9 

24-Feb-09 4.8  30-Jun-08 7 

11-Mar-09 4.6  25-Aug-08 6.4 

26-Mar-09 5.3  20-Oct-08 7.3 
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09-Apr-09 4.7  15-Dec-08 6.5 

22-Apr-09 5.2    

06-May-09 5.2    

20-May-09 4.7    

03-Jun-09 4.9    

17-Jun-09 4.8    

01-Jul-09 4.7    

15-Jul-09 4.4    

29-Jul-09 3.9    

12-Aug-09 4.3    

26-Aug-09 4.3    

09-Sep-09 4.3    

23-Sep-09 4.4    

07-Oct-09 4.7    

20-Oct-09 4.7    

04-Nov-09 4.7    

Average 4.74  Average 7.23 

 

 

Table S2.6. Average shell length (mm) of the zebra and quagga mussels from the rivers Rhine and Meuse 

Species Size class Rhine (Lexkesveer) Meuse (Middelaar) 

Zebra mussel Small (S; < 15 mm) 14 9.01 

Medium (M; 15–22 mm) 18.44 16.25 

Large (L; ≥ 22 mm) - - 

Quagga mussel Small (S; < 15 mm) 12.07 8.20 

Medium (M; 15–22 mm) 17.21 17.91 

Large (L; ≥  22 mm) 23.35 22.17 
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Table S2.7. Total suspended solids (TSS; g/mL) and dissolved metal concentrations measured at two sampling 

sites (average ± standard deviation; µg/L) 

 Rhine (Lexkesveer) Meuse (Middelaar) 

TSS 8.
 10-6 6.4.

 10-6 

52Cr 1.226 0.829 (± 0.110) 

55Mn 46.44 38.615 (± 0.841) 

56Fe 41.83 100.72 (± 5.346) 

59Co 0.389 0.637 (± 0.001) 

60Ni 2.987 4.552 (± 0.054) 

63Cu 3.062 2.773 (± 0.040) 

66Zn 28.76 30.365 (± 12.155) 

68Zn 28.75 29.870 (± 10.889) 

82Se 0.872 0.567 (± 0.030) 

111Cd 0.030 0.070 (± 0.019) 

112Cd 0.078 0.100 (± 0.008) 

118Sn 0.761 0.649 (± 0.116) 

208Pb 0.373 0.468 (± 0.049) 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 



67 

Table S2.8. Measured metal concentrations in the zebra and quagga mussels from the rivers Rhine and Meuse (µg/g dry wt) 

Site Species Size 
52

Cr 
55

Mn 
56

Fe 
59

Co 
60

Ni 
63

Cu 
66

Zn 
68

Zn 
82

Se 
111

Cd 
112

Cd 
118

Sn 
208

Pb 

Rhine Zebra 

mussels 
M 4.597 200.892 2077.685 1.759 12.679 16.589 124.407 123.759 5.259 1.177 1.220 0.761 7.229 

Quagga 

mussel 

S 4.426 269.991 2396.440 1.828 10.844 17.956 112.298 111.499 5.794 1.117 1.155 0.417 7.485 

S 7.394 201.545 2292.389 1.828 13.059 19.673 121.556 120.906 5.999 1.208 1.178 1.278 7.018 

M 3.979 135.981 2059.926 1.594 10.668 16.135 114.646 113.909 6.158 1.173 1.156 0.735 6.271 

M 5.454 170.552 1821.783 1.748 13.859 18.826 136.561 136.858 6.546 1.294 1.240 0.340 6.605 

M 4.880 183.238 2465.870 1.942 11.906 29.614 120.067 119.767 6.037 1.189 1.213 0.410 7.827 

L 3.644 101.618 1710.600 1.411 10.708 13.345 91.564 90.581 4.477 0.860 0.868 1.074 6.213 

L 4.708 85.661 1925.110 1.438 12.448 13.025 109.907 109.506 5.052 1.021 0.985 0.206 6.030 

L 4.453 108.434 1951.608 1.483 12.128 13.778 109.503 109.502 5.214 1.091 1.023 0.276 6.067 

Meuse  Zebra 

mussel 

S 5.847 1098.797 2658.876 7.335 35.945 26.192 247.669 247.768 6.556 5.382 5.058 0.288 7.909 

M 9.518 795.866 2784.673 8.425 46.081 41.662 291.364 290.877 5.902 4.741 4.466 0.481 9.540 

Quagga 

mussel 

S 6.240 983.601 3380.775 6.497 18.603 19.134 183.918 183.423 5.958 4.520 4.398 0.462 8.876 

S 5.340 937.927 3637.716 6.270 18.377 22.187 232.600 233.849 8.028 5.234 5.196 0.263 10.041 

S 5.608 830.896 3564.535 6.073 19.101 21.418 206.117 203.116 7.132 5.082 4.906 0.524 9.497 

M 4.013 302.077 2371.010 3.661 18.237 17.041 151.923 151.328 7.209 5.272 5.080 0.403 6.510 

M 5.271 262.895 2667.366 3.318 19.732 18.260 159.479 160.723 7.587 5.545 5.521 0.409 7.362 
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Figure S2.2. Relationships between modelled metal concentrations and measured metal concentrations in zebra 

mussels 
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Figure S2.3. Relationships between modelled metal concentrations and measured metal concentrations in 

quagga mussels 
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Table S2.9. Relationships between modelled metal concentrations and measured metal concentrations expressed 

by r2 

r
2 52

Cr 
59

Co 
66

Zn 
68

Zn 
82

Se 
111

Cd 
112

Cd 
208

Pb 
55

Mn 
56

Fe 
60

Ni 
63

Cu 
118

Sn 

Zebra 0.16 0.71 0.12 0.08 0.93 0.72 0.13 0.82 0.97 0.90 0.72 0.08 0.99 

Quagga 0.54 0.25 0.06 0.04 0.81 0.94 0.77 0.73 0.61 0.48 0.56 0.59 0.20 

 

Table S2.10. Modelled metal bio-concentration factors (BCF; L/kg), bio-accumulation factors (BAF; L/kg) of 
zebra and quagga mussels, and average contribution of uptake from food to the total metal uptake (%) 

Metals 

BCF  BAF 
Average 

contribution 

from food (%) 
Zebra 

mussels 

Quagga 

mussels 

Zebra 

mussels 
 

Zebra 

mussels 

Quagga 

mussels 

Zebra 

mussels 

52Cr 1.57. 103 3.66. 102 3.0. 103  1.85. 103 4.27. 102 1.7. 104 14.43 

59Co 3.68. 103 9.22. 102   4.15. 103 1.04. 103  11.20 

66Zn 3.85.
 103 9.68. 102   2.24. 104 5.49. 103  82.33 

68Zn 3.85. 103 9.68. 102   2.24. 104 5.49. 103  82.33 

82Se 6.46. 103 1.66. 103   6.55. 103 1.68. 103 1.6. 104 1.30 

111Cd 4.99. 103 1.27. 103   8.75. 103 2.20. 103  42.30 

112Cd 4.99. 103 1.27.
 103   8.75. 103 2.20. 103 40.0. 104 42.30 

208Pb 2.12. 105 5.81. 104 0.15. 103  2.14. 105 5.86.
 104  0.79 

55Mn 1.53. 103 3.54. 102   1.53. 103 3.54. 102   

56Fe 2.58.
 103 6.32. 102   2.58. 103 6.32.

 102   

60Ni 4.09. 103 1.03. 103   4.09. 103 1.03. 103   

63Cu 2.33. 103 5.67.
 102 3.4. 103  2.33. 103 5.67. 102   

118Sn 1.03. 104 2.70. 103   1.03. 104 2.70. 103   

Study 
Present 

study 
Present study 

Chevreuil et 

al. (1996) 
 Present study Present study 

Roditi et al. 

(2000) 
Present study 

(Data from other studies are for Cd and Zn in general) 
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Chapter 3 

Predicting effects of cations on copper toxicity to lettuce 

(Lactuca sativa) by the Biotic Ligand Model 
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Abstract—A biotic ligand model (BLM) was developed to estimate Cu
2+

 toxicity to lettuce 

(Lactuca sativa) in terms of root elongation after 4 d of exposure. Effects of H
+
, Na

+
, K

+
, 

Ca
2+

, and Mg
2+

 on Cu
2+

 toxicity were examined. The addition of these cations resulted in a 

50-fold difference in the copper median effective activity (EC50Cu). However, these variations 

could not be interpreted entirely as a function of the concentrations of these cations alone. In 

particular, only the relationship between EC50Cu and the activity of protons was found to be 

significant in the whole range of pH examined from 5.0 to 7.0. The addition of K
+
, Na

+
, Ca

2+
, 

and Mg
2+

 at concentrations up to 20 mmol/L resulted in a 16-fold difference in EC50Cu 

values. This difference was significant, as indicated by nonoverlapping standard deviations of 

the negative logarithm of EC50Cu (pEC50Cu) obtained with (7.37 ± 0.22) and without (6.76 ± 

0.22) additions of K
+
, Na

+
, Ca

2+
, and Mg

2+
. The variations were not statistically significantly 

related to concentrations of these cations; therefore, only protons can be integrated in the 

BLM predicting Cu
2+

 toxicity to lettuce Lactuca sativa with the important parameters: 

logKHBL = 6.27, logKCuBL = 7.40, and f50Cu = 0.36 at pH = 7. The lack of significant 

relationships between EC50Cu and concentrations of the cations was not in line with the main 

assumption of the BLM about the competition between cations for binding sites. Environ. 

Toxicol. Chem. 2012;31:355–359. 

 

Keywords — Biotic ligand model      Copper       Binding constant       Plants     Toxicity 

 

3.1. Introduction 

The biotic ligand model (BLM), combining metal speciation and interactions of metals at 

toxic sites, is gaining increased interest (Steenbergen et al., 2005; Lock et al., 2006). It has 

been incorporated into developing water quality criteria by the U.S. Environmental Protection 

Agency and proposed for use in European Union risk assessment. The BLM was originally 

developed to estimate toxicity to aquatic organisms, with the main assumption that metal 

toxicity results from the binding of free metal ions or other reactive metal species to 

physiologically active or transport sites at the organism–water interface (Steenbergen et al., 

2005; Lock et al., 2006). That is, the concentration of metal–biotic ligand complexes is 

expected to determine the extent of toxic effect. 

Antunes et al. (2006) noted significant difficulties in developing and applying the BLM to 

plants. They included determination of free ion concentrations in soil solutions and of ligand 

concentrations, incorporation of nonequilibrium dissociation into the equilibrium BLM, and 

metal estimation as well as speciation in plant roots. However, recent findings show that 

application of the BLM to terrestrial organisms is theoretically and empirically possible. In 

particular, the assumption that the free metal ion is the main reactive form may be met in 

terrestrial ecosystems; previous experimental findings show that responses of plants and some 

other soil organisms to metals can be explained by variations in this metal species in the water 

phase of soil (Spark, 1995). Moreover, toxicity mechanisms of aquatic and terrestrial 

organisms are assumed to be similar (Steenbergen et al., 2005; Peijnenburg et al., 2007). The 

influence of solution chemistry on metal bioavailability and toxicity depends on the properties 

of metals and competing components in the water phase as well as root characteristics (Wu 

and Hendershot, 2009). In the original BLM developed for fish, the gill was considered to be 

the biotic ligand. Analogous to the gill, metal binding sites to roots of the apoplasm are biotic 

ligands in terrestrial studies (Antunes et al., 2006). Recently, BLMs for plants such as barley 

have been developed (Thakali et al., 2006a,b). These studies indicated that the BLM is a 

promising method for estimating metal toxicity to terrestrial plants (Lock et al., 2007b). 
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According to the BLM assumption, cations (e.g., Ca
2+

, Mg
2+

, Na
+
, K

+
, and H

+
) are 

expected to compete with Cu
2+

 for binding sites, thus reducing Cu
2+

 toxicity to organisms (Di 

Toro et al., 2001). This ameliorative effect has been observed in studies on barley, beans, 

wheat, and lettuce (Lock et al., 2007a; Maksymiec and Baszynski, 1998; Parker et al., 1998; 

Cheng and Allen, 2001). 

Copper exposure at high concentrations deters plants from accessing water and nutrients, 

because root elongation and branching are sensitive to Cu (Wong and Bradshaw, 1982; 

Sheldon and Menzies, 2005). Metal accumulation in roots and in leaves of lettuce has been 

reported with higher amounts of metals retained in roots and changes in the tendency of 

accumulation at higher exposure concentrations (Garate et al., 1993). The present study aimed 

to estimate Cu
2+

 toxicity to lettuce (Lactuca sativa) in hydroponic solutions by developing a 

BLM, taking into account the effects of H
+
, Na

+
, K

+
, Ca

2+
, and Mg

2+
. 

 

3.2. Methods 

3.2.1. Test species, effect endpoints, experimental design  

Lactuca sativa was selected as the test species because of its hyperaccumulating potential 

for metals such as Cd and Zn (Garate et al., 1993). It was also recommended by the 

Organisation for Economic Cooperation and Development as a suitable test organism (OECD, 

2006). In the present study, Cu
2+

 toxicity to this species was assessed in terms of root 

elongation. 

The impact of various cations on Cu
2+

 toxicity was systematically assessed by varying 

concentrations of one cation at a time, whereas concentrations of other cations were kept 

constant. Different sets of copper toxicity tests were conducted, covering ranges of pH from 5 

to 7, and Na
+
, K

+
, Ca

2+
, and Mg

2+
 concentrations ranging from 0 to 20 mmol/L for each cation 

(Table S3.1, Supplementary information). At each set, Cu
2+

 activities varied, whereas 

concentrations of other components in the experimental solutions were the same. 

3.2.2. Preparation of test solutions 

Steiner solution was used as the test medium (Table S3.2, Supplementary information) 

(Steiner, 1961). The pH set included the same medium with pH in the range of 5 to 7, whereas 

for other sets, pH of the media was adjusted to 7 using 3-[N-morpholino] propane sulfonic 

acid at 0.75 g/L and NaOH (Lock et al., 2007a). The 3-[N-morpholino] propane sulfonic acid 

buffer was used because it does not form complexes with metals (Kandegedara and 

Rorabacher, 1999). This buffer was recommended by the U.S. Environmental Protection 

Agency, because it does not affect the toxicity of effluents and sediment pore waters (US 

EPA, 1991). Moreover, according to De Schamphelaere et al. (2004), metal toxicity to 

Daphnia magna and Pseudokirchneriella subcapitata was not influenced by 3-[N-

morpholino] propane sulfonic acid buffering at 0.75 g/L. In the range of 5 to 6, pH adjustment 

was performed using 2-[Nmorpholino] ethane sulfonic acid buffering at 0.75
.
 10

-3
 g/L and 

NaOH. The 2-[N-morpholino] ethane sulfonic acid is a good biological buffer with midrange 

pKa, maximum water solubility, chemical and enzymatic stability, and minimal salt effects 

(Good et al., 1966). 

The free Cu
2+

 activity and pH of the solutions were checked and adjusted daily. The free 

Cu
2+

 activity was controlled by adding Cu(NO3)2 to the Steiner nutrient solution, and pH was 

adjusted by the addition of HNO3 or KOH. All cations were added as nitrate salts. 

3 



74 

3.2.3. Toxicity assays 

Before commencing the test, seeds of Lactuca sativa were germinated for 4 d at 15 
o
C in 

the Steiner solution during a normal light cycle of 16: 8-h light: dark. During the toxicity tests 

with the nutrient solutions, four germinated plants were fixed in a parafilm strap that floated 

on the surface of a glass beaker with the roots immersed in the medium. For each medium, a 

toxicity test consisting of different treatments (control and various free Cu
2+

 activities) was 

carried out. The root growth was calculated by comparing root lengths at the first day and 

after 4 d of exposure, and then used to determine relative root elongation (RRE; %) according 

to Equation 3.1: 

%100
RG

RG
RRE

c

s   (3.1) 

where RGs (mm) is the average root growth of four plants in sample solutions and RGc (mm) 

is the average root growth of four plants in the control solution. 

3.2.4. Chemical measurements 

Free Cu
2+

 activities and pH of the solutions were measured by using hydrogen and copper 

ion–selective electrodes, respectively (Metrohm Switzerland). The copper ion–selective 

electrode was calibrated using a set of solutions with pH = 3, NaNO3 5 mol/L, and Cu(NO3)2 

at the concentration range from 10
-3

 to 10
-7

 mol/L. Total concentrations of Na
+
, K

+
, Ca

2+
, and 

Mg
2+

 were calculated as the total of the concentrations added and the concentrations of the 

Steiner solution. 

3.2.5. Data treatment and statistics 

Median effective activity of Cu
2+

 (EC50Cu) was determined by fitting a sigmoid curve to 

the relationships between pCu (i.e., negative of logarithm of free Cu
2+

 activity) and the 

normalized root growth response using Graphpad Prism software. 

3.2.6. Brief mathematical description of the BLM 

In this research, the effects of H
+
, Na

+
, Ca

2+
, Mg

2+
, and K

+
 on Cu

2+
 toxicity were 

investigated. These cations can form complexes with biotic ligands at a ratio expressed by the 

stability constants. At equilibrium, for example, the stability constant for Cu
2+

 binding to 

biotic ligands KCuBL (L/mol) can be expressed as a function of concentrations of cation–biotic 

ligand complexes [CuBL] (mol/L) and unoccupied biotic ligand sites [BL] (mol/L) 

[BL]}{Cu

[CuBL]
2CuBL





K  (3.2) 

where {Cu
2+

} is the free Cu
2+

 activity (mol/L). 

According to the BLM concept, Cu
2+

 toxicity is determined by the fraction of the total 

number of biotic ligand sites occupied by Cu (fCu), with the assumption that the complexation 

capacity is independent of water quality characteristics (De Schamphelaere and Janssen, 

2002). 

}Cu{]Mg[][K][Ca][Na}{H1

}Cu{

[BL]

[CuBL]

2

CuBL

2

MgBLKBL

2

CaBLNaBLHBL

2

CuBL

T

Cu











KKKKKK

K

f

 (3.3) 
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In the BLM approach, for each species this fraction is assumed to be constant at 50% effect 

(f50Cu), for example, independent of the water quality properties (Meyer et al., 1999). 

Equation 3.3 can be rewritten as the following equation: 

CuCuBL

2

MgBLKBL

2

CaBLNaBLHBL

CuCuBL

Cu

EC50]Mg[][K][Ca][Na}{H1

EC50

50







 KKKKKK

K

f

 (3.4) 

where EC50Cu is the free Cu
2+

 activity resulting in 50% growth reduction in lettuce roots after 

4 d of exposure. This value can be derived from Equation 3.4, as follows: 

 

 ]Mg[][K]Ca[][Na}H{1

501

50
EC50

2

MgBLKBL

2

CaBLNaBLHBL

CuBLCu

Cu
Cu

 






KKKKK

Kf

f

 (3.5) 

According to the BLM concept, a linear relationship between EC50Cu and the activity of 

one cation is expected when activities of other cations are constant. Therefore, KHBL, KNaBL, 

KCaBL, KKBL, and KMgBL could be calculated from the slope and intercept of the regression line 

between EC50Cu and concentrations of H
+
, Na

+
, Ca

2+
, K

+
, and Mg

2+
, respectively (Meyer et 

al., 1999). In addition, KCuBL was calculated based on the best fit of the logit of the root 

response versus fCu for varying KCuBL. The value of f50Cu was determined based on the logistic 

relationship between fCu and the root elongation at the obtained KCuBL. A detailed description 

of the derivation of BLM is presented in S3.3, Supplementary information. 

 

3.3. Results 

3.3.1. Effects of copper on root morphology and growth 

In addition to effects on the root growth of lettuce, copper modified both root branching 

and color. In particular, at lower Cu
2+

 activities, roots were white and side roots were more 

developed. At higher activities, the lower part or the whole root was black or brown, whereas 

almost all lateral roots either disappeared or were shortened. 

3.3.2. Influence of cations and protons on Cu
2+

 toxicity 

Copper toxicity was expressed as the exposure concentration reflecting 50% inhibition of 

root elongation (i.e., EC50Cu) and expressed in terms of Cu
2+

 activities. The negative 

logarithm of EC50Cu (pEC50Cu) for Lactuca sativa after 4 d of exposure was found to be in 

the range of 5.81 to 7.52 at varying pH and free concentrations of Na
+
, K

+
, Ca

2+
, and Mg

2+
 

(Figs. 3.1 and 3.2). Values of pEC50Cu decreased significantly with an increase in H
+
 activity 

(p = 0.002; r
2
 = 0.996) (Fig. 3.1). In particular, decreases in pH from 7 to 5 resulted in a 52-

fold increase in the 4-d EC50Cu: that is, at low pH, Cu
2+

 is less toxic to lettuce. Additions of 

Na
+
, K

+
, Ca

2+
, and Mg

2+
 to the Steiner solution at concentrations ranging from 0 to 20 

mmol/L resulted in a 16-fold difference in EC50Cu. These additions had significant effects on 

Cu
2+

 toxicity as shown by nonoverlapping standard deviations of pEC50Cu found with (7.37 ± 

0.22) and without (6.76 ± 0.22) additions of Na
+
, K

+
, Ca

2+
, and Mg

2+
. However, no consistent 

or statistically significant linear correlations were found between the total concentrations of 

Na
+
 (r

2
 = 0.26; p = 0.24), K

+
 (r

2
 = 0.18; p = 0.34), Ca

2+
 (r

2
 = 0.22; p = 0.29), and Mg

2+
 (r

2
 = 

0.51; p = 0.05), with pEC50Cu in the concentration range investigated (0–20 mmol/L) (Fig. 

3.2). A downward trend in Cu
2+

 toxicity was observed because of the additions of these 

cations at the lowest concentrations (Na
+
: 5 mmol/L; K

+
: 10 mmol/L; Ca

2+
: 1.3 mmol/L; 
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Mg
2+

: 15 mmol/L); however, further reduction was not shown at higher concentrations of Na
+
, 

K
+
, Ca

2+
, and Mg

2+
. The wide confidence intervals of pEC50Cu found at the highest 

concentrations of K
+
 may reflect high uncertainties at these levels because of the high ratio 

between K
+
 and Na

+
, which may negatively affect the plant growth (Chen et al., 2007). In 

addition, at high concentrations, Mg
2+

 may block the K
+
 channel, possibly contributing to 

wide confidence intervals of pEC50Cu at high Mg
2+

 concentrations (Wu et al., 1991). 
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Figure 3.1. The negative logarithm of the median effective activity of Cu
2+

 toxicity 

(pEC50Cu) for Lactuca sativa as a function of pH. The solid line represents the linear 

regression line, and the dotted lines represent the 95% confidence interval. Error bars indicate 

the standard deviation. 
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Figure 3.2. The median effective activity of Cu
2+

 (EC50Cu) as a function of Na
+
 (A), K

+
 (B), 

Ca
2+

 (C), and Mg
2+

 (D). Error bars indicate 95% confidence intervals. Solid lines represent 

average values. 
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3.3.3. Estimating BLM parameters 

The effects of H
+
 were incorporated in the BLM because its ameliorative influence was 

statistically significant (Eqn. 3.6). Using the slope and the intercept of the linear regression of 

EC50Cu versus the H
+
 activity (Fig. 3.1; Eqn. 3.6), the conditional binding constant of H

+
 was 

calculated as logKHBL = 6.27 (Table 3.1). Moreover, a value of logKCuBL of 7.40 resulted in 

the statistically best description of the relationship between the fCu and the logit of the 

normalized root responses. Another important BLM parameter is f50Cu of 0.36 at pH = 7 

(Table 3.1). This yielded the following equation to predict the pH dependence of Cu
2+

 toxicity 

to lettuce roots: 

8

Cu 108}H{0.149EC50    (r
2
 = 0.9957) (3.6) 

Because of insignificant relationships between EC50Cu and concentrations of Na
+
, K

+
, 

Ca
2+

, and Mg
2+

, the cations are not incorporated in the BLM equation. This is not in 

agreement with the theory of the BLM (Di Toro et al., 2001) in which these cations should 

have a competing effect with Cu
2+

. There was a 3-fold difference between the EC50Cu value 

calculated by Equation 3.6 and the value determined according to Equation 3.5 leaving out 

effects caused by Na
+
, K

+
, Ca

2+
, and Mg

2+
. This difference was also reported by De 

Schamphelaere and Janssen (2002) and attributed to substantial effects of Na
+
, K

+
, Ca

2+
, and 

Mg
2+

 on Cu
2+

 toxicity, which were not included in the BLM. 

 

Table 3.1. Binding constants for the biotic ligand model 

Studies Organisms 

Conditional binding constants (log) 

f50Cu
 

KCuBL KHBL 

Thakali et al. (2006a) Barley  

(Hordeum vulgare) 
7.41 ± 0.23 6.48 ± 0.26  

Luo et al. (2008) Wheat  

(Triticum aestivum) 
6.28  0.44 

De Schamphelaere and 

Janssen (2002) 

Water flea  

(Daphnia magna) 
8.02 5.4 0.33 

Present study Lettuce  

(Lactuca sativa) 
7.40 6.27 0.36 

 

3.4. Discussion 

The effects of Cu
2+

 on root morphology observed in the present study were consistent with 

previous studies by Arduini et al. (1995) on pines and by Mahmood et al. (2007) on cereal 

crops. These effects on the root branching and color as described, as well as on the root 

elongation, indicate that plant roots are sensitive to Cu
2+

 toxicity. 
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3.4.1. BLM parameters 

The conditional binding constant of Cu
2+

 and H
+
 (presented as logKCuBL and logKHBL) for 

lettuce, found in the present study, were in the range of values for barley Hordeum vulgare 

(Thakali et al., 2006a) (Table 3.1). However, the value of logKHBL is higher than the reported 

number for wheat Triticum aestivum (Luo et al., 2008). In addition, conditional binding 

constants of H
+
 for these plants are generally higher than binding constants found for 

daphnids Daphnia magna (De Schamphelaere and Janssen, 2002). Opposite results were 

found for conditional binding constants of Cu
2+

 (De Schamphelaere and Janssen, 2002). 

3.4.2. Cations competition for binding sites 

The inhibition of Cu
2+

 toxicity to lettuce by H
+
 found in the present study was reported in 

another study on lettuce by Voigt et al. (2006). However, studies on barley showed various 

findings (Thakali et al., 2006a; Lock et al., 2007a,b). In the present study, additions of K
+
, 

Na
+
, Ca

2+
, and Mg

2+
 resulted in considerable differences in EC50Cu values; however, these 

differences could not be explained by statistically significant correlations between EC50Cu and 

concentrations of these cations. Therefore, only protons could be included in the BLM as 

competing cations. This was consistent with findings from the study by Thakali et al. (2006a) 

on barley. Inconsistent and statistically insignificant effects of Ca
2+

 on Cu
2+

 toxicity to lettuce 

found in the present study were also reported in the study by Voigt et al. (2006). Similar to 

protons, findings on effects of these cations also diverge. For example, Cu
2+

 toxicity to sugar 

beet Beta vulgaris was not affected by Ca
2+

, Mg
2+

, or K
+
 (Saleh et al., 1999), whereas Ca

2+
 

and Mg
2+

 inhibited Cu
2+

 toxicity to wheat Triticum aestivum and barley Hordeum vulgare 

(Lock et al., 2007a; Parker et al., 1998; Wang et al., 2009). 

In addition, the lack of a consistent downward trend in pEC50Cu values at high 

concentrations of Na
+
, K

+
, Ca

2+
, and Mg

2+
 may result from saturation, which may be reached 

with certain additions of these cations. For example, the half saturation activity of K
+
 in wheat 

root happened at the concentration of 8.8 mmol/L (Gassmann and Schroeder, 1994; Schroeder 

and Fang, 1991). Mechanisms of metal bindings to biotic ligands, including the concentration 

of binding sites, should therefore be integrated in the BLM. Toxicity depends not only on the 

competition for binding sites, but also on the affinities and numbers of binding sites (Wu and 

Hendershot, 2009). For example, high-affinity ligands are not directly related to effects and 

can be saturated at low Cu
2+

 activities when the accumulation of Cu still occurs at the low-

affinity ligands (Antunes et al., 2007). Based on the binding constant found in the present 

study, ligands for Cu
2+

 binding in lettuce belong to the high-affinity group. This may be one 

of the reasons for the insignificant relationships between cation concentrations and Cu
2+

 

toxicity in the present study. Characteristics and concentrations of ligands, conversely, are 

influenced by conditions such as pH or exposure to metal mixtures (Niyogi and Wood, 2004; 

Boyle and Hale, 2006). 

The value of logKHBL found in the present study was in the range reviewed by Niyogi and 

Wood (2004) for aquatic organisms. However, the model developed by these authors may be 

not applicable to plants. Unlike in aquatic organisms, the presence of Na
+
-channels has not 

been reported and Na
+
 is dominantly taken up via Ca

2+ 
channels or K

+
-selective channels at 

the plasma membrane of root protoplasts (Lunevsky et al., 1993; Moran et al., 1984; 

Schachtman et al., 1991). This may be related to the differences about the transport sites for 

Cu
2+

 uptake. Particularly, according to the review by Niyogi and Wood (2004), Cu
2+

 blocked 

the Na
+
 channel. Competitive effects of Na

+
 on Cu

2+
 toxicity were expected for aquatic 

organisms; however, this was not shown in the present study. Therefore, mechanisms of 

competition for binding sites in plants may be different from those in aquatic organisms. 
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SUPPLEMENTARY INFORMATION 

Table S3.1. Bioassay set characteristics 

pH Na (mmol/L) K (mmol/L) Ca (mmol/L) Mg (mmol/L) 

7 0 0 0 0 

6.5 0.1 0.08 0.01 0.02 

6 2 2 1 1 

5.5 5 5 2 2 

5 10 10 5 5 

 15 15 10 10 

 20 20 15 15 

    20 

 

Table S3.2. The ionic composition of the Steiner solution 

Cations Na
+
 Mg

2+
 K

+
 Ca

2+
 Mn

2+
 Fe

2+
 Zn

2+ 

Concentrations (µmol/L) 4.48 182.62 700.32 281.75 1.16 0.88 0.17 

 

S3.3. Detailed description of the Biotic Ligand Model derivation 

In this research, effects of H+, Na+, Ca2+, Mg2+, and K+ on Cu2+ toxicity were taken into account. These 

cations can form complexes with biotic ligands (BLs) at a ratio expressed by the stability constants. At 

equilibrium for example, the stability constant for Cu2+ binding to biotic ligands KCuBL (L/mol) can be expressed 

as 

[BL]}{Cu

[CuBL]
2CuBL





K  (S3.1) 

where {Cu2+} is the free Cu2+ activity (mol/L). 

The concentration of the BL (mol/L) can be described as the total of concentrations of cation-BL complexes 

(mol/L) and unoccupied BL sites (mol/L). 

[CuBL][MgBL][KBL][CaBL][NaBL][HBL][BL][BL]T   (S3.2) 

The concentration of Cu-BL complex in the presence of other cations can be written as 

}{Cu][Mg][K][Ca][Na}H{1

[BL]}{Cu

[CuBL]

2

CuBL

2

MgBLKBL

2

CaBLNaBLHBL

T

2

CuBL











KKKKKK

K
     (S3.3) 

According to the BLM concept, copper toxicity is determined by the fraction of the total number of biotic 
ligand sites occupied by copper fCu with the assumption that the complexation capacity is independent of the 

water quality characteristics. 
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}{Cu][Mg][K][Ca][Na}{H1

}{Cu

[BL]

[CuBL]

2

CuBL

2

MgBLKBL

2

CaBLNaBLHBL

2

CuBL

T
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









KKKKKK

K

f

 (S3.4) 

In the BLM approach, it is assumed that for each species this fraction is constant at 50% effect (f50Cu), i.e. 

independent of the water quality properties (De Schamphelaere and Janssen, 2002). Equation S3.4 can be 

rewritten as: 

CuCuBL

2

MgBLKBL

2

CaBLNaBLHBL

CuCuBL

Cu

EC50][Mg][K][Ca][Na}{H1

EC50

50







 KKKKKK

K

f

 (S3.5) 

where EC50Cu is the free Cu2+ activity resulting in 50% growth reduction in lettuce roots after 4 d of exposure. 

This value can be derived from Equation S3.5: 

])[Mg][K][Ca][Na}{H(1

)50(1

50
EC50

2

MgBLKBL

2

CaBLNaBLHBL

CuBLCu

Cu
Cu

 






KKKKK

Kf

f

 (S3.6) 

Based on the assumptions of the BLM, there should be a linear relationship between EC50Cu and the activity 

of one cation when activities of other cations are constant. Therefore, KHBL, KNaBL, KCaBL, KKBL, and KMgBL can be 

calculated from the slope and intercept of the regression line between EC50Cu and activities of H+, Na+, Ca2+, K+, 

and Mg2+, respectively (De Schamphelaere and Janssen, 2002). For example, the slope and intercept of the 

relationships between EC50Cu and free ion activity of H+ can be written as follows: 

HBL

CuBLCu

Cu

H )50(1

50
slope K

Kf

f





 (S3.7) 

CuBLCu

Cu

H )50(1

50
intercept

Kf

f




 (S3.8) 

KHBL can be then calculated from these slope and intercept values. 







H

H
HBL

intercept

slope
K  (S3.9) 

KCuBL and f50Cu are calculated based on the best fit of the root growth response versus fCu for varying KCuBL. 
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Abstract—Toxicity of single metals and mixtures to lettuce Lactuca sativa in hydroponic 

solutions was determined based on the concepts of concentration addition (CA) and response 

addition (RA). On the basis of the conventional models assuming no interaction between 

mixture components, Ag
+
 was the most toxic, followed by Cu

2+
 and Zn

2+
. Furthermore, ion-

ion interactions were included in quantitatively estimating toxicity of Cu
2+

–Zn
2+

 and Cu
2+

–

Ag
+
 mixtures by linearly expanding the CA and RA models. About 80–92% of the variability 

in the root growth could be explained by this approach. Estimates by the extended models 

indicate significant alleviative effects of Zn
2+

 on Cu
2+

 toxicity whereas Cu
2+

 did not 

significantly affect Zn
2+

 toxicity. According to the extended CA model, Cu
2+

 significantly 

reduced Ag
+
 toxicity while Ag

+
 enhanced Cu

2+
 toxicity. Similar effects were not found by the 

extended RA model. These predictions could be explained by reported mechanisms of the 

uptake and toxicity of these metals. 

 

Keywords — Mixture        Toxicity        Interaction         Plant          Metal 

 

4.1. Introduction 

Metals are usually present in the environment in mixtures of varying composition. Toxicity 

of metal mixtures may vary widely while interactions in mixtures may deviate significantly 

from the biological actions of single metals (Norwood et al., 2003; Otitoloju, 2002; Manzo et 

al., 2010). Exposure to metal mixtures at concentrations below environmental quality 

guideline levels for individual components was reported to result in adverse effects, attributed 

to interactions between the constituents (Cooper et al., 2009). The reliability of toxicity 

estimations can thus be improved by taking into account interactions in mixtures (Otitoloju, 

2002). Such interactions occur at different levels, i.e., in the environment, at the root surface, 

and within the plant (Kabata-Pendias and Pendias, 1984; Pahlsson, 1989). Interactions outside 

organisms determine the environmental availability of metals depending on the 

physicochemical conditions. Subsequently, in the toxicokinetic phase, interactions between 

different metals influence the uptake of metals by organisms. In the toxicodynamic phase, 

interactions at ligands within organisms affect their joint toxicity. While metal-metal 

interactions in the environment have been predicted well by speciation modelling, interactions 

at the toxicokinetic and toxicodynamic phases are usually excluded in available models for 

assessment of mixture toxicity, e.g., concentration addition (CA) and response addition (RA) 

(Bliss, 1939; Hewlett and Plackett, 1979). The conventional concept of these models is based 

on the assumption that the presence of one substance does not affect the biological action of 

the others in their mixture. Accordingly, deviations from the ideal behaviour of mixtures, 

which result from the interactions, cannot be quantified by these models based on the 

conventional concept. In the assssments using these models, toxicity of mixtures is mainly 

predicted from toxicological data for single substances only (Manzo et al., 2010; Sharma et 

al., 1999). However, this approach may not accurately estimate mixture toxicity (Ren et al., 

2004). Instead, joint toxicity of multiple chemicals should be assessed by tests on mixtures 

(Frias-Espericueta et al., 2009). 

The present study aimed at modelling toxicity of metal mixtures taking into account 

potential interactions between their different components. This was achieved by developing 

mathematical relationships to express the interactions. Specifically, toxicity of single metals, 

i.e., Cu
2+

, Zn
2+

, and Ag
+
, was assessed by fitting the empirical data to mathematical 

expressions of the conventional concept of CA and RA assuming no interactions between 

these ions. Furthermore, toxicity of interactive mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 was 
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simulated through expansion of the conventional CA and RA models based on assumed linear 

interactions in the mixtures. Metal toxicity was assessed in terms of inhibition of the root 

elongation of lettuce Lactuca sativa. 

 

4.2. Methods 

4.2.1. Test species and toxic endpoint 

Metal toxicity was assessed on lettuce, Lactuca sativa, in hydroponic exposures, in order to 

allow for controlled modifications of the test media. Lettuce was selected as test species in 

view of its high capacity to accumulate metals and the presence of a protocol by the 

Organisation for Economic Cooperation and Development (McKenna et al., 1993; OECD, 

2006; Le et al., 2012). Root elongation was reported to be sensitive to metal exposure and has 

been widely used as toxic endpoint (Thakali et al., 2006; Lock et al., 2007; Voigt et al., 2006; 

Kinraide, 1999; Kinraide et al., 2004; Kopittke et al., 2011). Consequently, the root growth 

was used to evaluate metal toxicity in the present study. 

4.2.2. Preparation of the test solutions 

Steiner solution was used as test medium (Steiner, 1961). Metal ions Cu
2+

, Zn
2+

, and Ag
+
 

were added into the Steiner solution in the form of nitrate salts. This form was used because 

of negligible interference of NO3
-
 on the measurement of ion-selective electrodes compared to 

other anions such as Cl
-
. Solution pH was kept at 7.0 using 3-[N-morpholino] propane 

sulfonic acid at 0.75 g/L and NaOH (Le et al., 2012). Exposure solutions were daily renewed. 

The ratio between one exposure level expressed as the free metal ion activity and the next 

higher level was kept below 2 except for the exposure solution at the background level of the 

Steiner solution. 

4.2.3. Chemical measurements and speciation 

Free ion activities of H
+
, Cu

2+
, and Ag

+
 were measured by using hydrogen, copper, and 

silver sulfide ion-selective electrodes (Metrohm), respectively. These electrodes were 

calibrated by measurements at different concentrations of these ions in solution (Le et al., 

2012). Additionally, free Zn
2+ 

activities in the exposure solutions were determined from total 

zinc concentrations by the speciation model Windermere Humic-Aqueous Model VI with 

Steiner solution as the default medium (Tipping, 1998). The chemical composition of the 

Steiner solution used in the chemical speciation is given in Table S4.1, Supplementary 

information. The ranges of free ion activities of Cu
2+

, Zn
2+

, and Ag
+
 in the solutions studied 

were: Cu
2+

: 10
-10

–10
-6

 mol/L; Zn
2+

: 10
-6

–10
-3

 mol/L; and Ag
+
: 10

-8
–10

-7
 mol/L. 

4.2.4. Toxicity assays 

Seeds of Lactuca sativa were germinated for 4 d at 15 
o
C in the Steiner solution during a 

normal light cycle of 16: 8 hours light: dark. The germinated plants were then fixed in a 

parafilm strap with a surface area of around 30 cm
2
. The parafilm strap floated on the surface 

of a glass beaker (10 cm height and volume: 100 mL) with the roots immersed in the medium. 

Four plants were put in each beaker. The growth of lettuce (Growth; mm) exposed to a given 

exposure solution was calculated as the average of the increase of the root length of the 4 

plants after 4 d of exposure. The replication by repeating toxicity tests on the same solution 

was not carried out in the present study. However, this lack of replicates was expected not to 

undermine the statistical significance of the toxicological data generated because of the 

experimental design applied in the present study: small gap between the exposure levels as 
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described above and 4 plants grown in each solution. In total, 238 toxicity tests were carried 

out, including 122 tests performed without additions of Ag
+
 and 116 tests performed without 

additions of Zn
2+

 to the Steiner solution. 

4.2.5. Mathematical expression of metal toxicity 

Toxicity of metals following single exposure 

The response of plants in terms of root growth (Growth; mm) after single exposure to 

metal ion M
n+

 can be expressed in relation to its free ion activity in the solution {M
n+

} 

(µmol/L) according to the following equation 

]})M{exp[(
Growth

n dc

b


  (4.1) 

where coefficient b (mm) is the growth of lettuce roots in the medium free of the metal ion 

(i.e., {M
n+

} = 0); coefficient c (L/µmol) reflects the metal-specific toxicity strength. Metal 

toxicity increases with increasing strength coefficient; and coefficient d (dimensionless) 

describes the slope of the adjacent curve representing toxicity of the metal ion. This 

exponential equation was found to be the most suitable to describe the root elongation 

following metal exposure and has been applied in a number of studies investigating metal 

toxicity to plants (Kinraide and Parker, 1989; Kinraide, 1999; Kinraide et al., 2004; Kopittke 

et al., 2011). 

Toxicity of non-interactive mixtures 

If mixture components do not interact with each other, the growth of lettuce roots exposed 

to the mixture can be written according to the conventional concept of CA and RA assuming 

no interactions between mixture constituents. The CA model is based on the assumption that 

different substances in their mixture have the same modes of action (Bliss, 1939). 

Accordingly, the growth of lettuce roots (Growth; mm) following exposure to a non-

interactive mixture of Cu
2+

, Zn
2+

, and Ag
+
 can be written as 

]})Ag{}Zn{}Cu{exp[(
Growth

3

2

2

2

1

dccc

b
 

  (4.2) 

where b (mm) is the growth of lettuce roots in the medium free of Cu
2+

, Zn
2+

, and Ag
+
; 

coefficients c1, c2, and c3 (L/µmol) represent the strength of toxicity of Cu
2+

, Zn
2+

, and Ag
+
 in 

their non-interactive mixtures, respectively; d (dimensionless) is the slope parameter 

describing toxicity of these metals in non-interactive mixture; and {Cu
2+

}, {Zn
2+

}, and {Ag
+
} 

(µmol/L) are the free ion activity of Cu
2+

, Zn
2+

, and Ag
+
 in the solution, respectively 

(Kinraide, 1999). 

In the RA model, mixture components are supposed to have different modes of action of 

toxicity (Hewlett and Plackett, 1979). Therefore, based on the RA concept, the response of 

lettuce exposed to non-interactive mixtures can be expressed as a multiplicative function of 

the response of the plants following exposure to each constituent separately. For example, 

without interactions between Cu
2+

, Ag
+
, and Zn

2+
, the growth of lettuce roots exposed to a 

mixture of these metal ions can be expressed by the following equation 

]})Ag{(})Zn{(})Cu{exp[(
Growth

321

3

2

2

2

1

ddd
ccc

b
 

  (4.3) 

where coefficients b (mm), and c1, c2, and c3 (L/µmol) have the same meaning as in Equation 

4.2; coefficients d1, d2, and d3 (dimensionless) are slope parameters describing toxicity of 
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Cu
2+

, Ag
+
, and Zn

2+
 in their non-interactive mixtures, respectively; and {Cu

2+
}, {Zn

2+
}, and 

{Ag
+
} (µmol/L) are the free ion activity of Cu

2+
, Ag

+
, and Zn

2+
 in the exposure solution, 

respectively (Kinraide, 1999). 

Equations 4.2 and 4.3 are conventional expressions of CA and RA assuming that the 

presence of one metal does not affect the toxicity of the others in their mixtures. Accordingly, 

toxicity of metals in these non-reactive mixtures is similar to their toxicity following single 

exposure. Coefficients describing toxicity of Cu
2+

, Zn
2+

, and Ag
+
 individually as in Equation 

4.1, i.e., strength coefficient c and slope parameter d, were similar to the corresponding 

coefficients in Equations 4.2 and 4.3. Consequently, toxicity of single metals can be 

determined from toxicological data of non-interactive mixtures. Specifically, the 

determination of the strength coefficient and slope parameter describing toxicity of each metal 

can be done by fitting the toxicological data on mixtures to Equations 4.2 and 4.3 in multiple 

regression analyses. 

Toxicity of interactive mixtures 

If metals in mixtures interact with each other, i.e., the presence of one metal affects the 

toxicity of the others in the mixtures, the interactions can be taken into account in quantifying 

toxicity of the mixtures by expanding the conventional CA and RA models. In particular, 

expansion coefficients representing the interactions can be incorporated in the strength 

coefficients in Equations 4.2 and 4.3 in two different ways as described in S4.A, 

Supplementary information (Kinraide, 1999; Kinraide et al., 2004). The expansion approach 

that results in higher statistical significance was selected as the best simulation of the 

interactions. The comparison of the expansion coefficient with zero determines whether one 

substance reduces or increases the toxicity of another. In addition, the interactive effect was 

considered statistically significant if the 95% confidence interval (CI) of the expansion 

coefficient does not encompass zero. A full description of the equation derivation is presented 

in S4.A, Supplementary information.  

Mixtures of Cu
2+

 and Zn
2+

. An expansion coefficient c12 (L/µmol) representing interactive 

effects of Zn
2+

 on Cu
2+

 toxicity can be integrated into the strength coefficient of Cu
2+

 toxicity. 

Similarly, another expansion coefficient c21 (L/µmol) might be incorporated into the strength 

coefficient of Zn
2+

 toxicity to reflect effects of Cu
2+

 on Zn
2+

 toxicity. According to the CA 

model and based on the assumption of linear interactions, the response of lettuce exposed to 

Cu
2+

–Zn
2+

 mixtures expressed as the root growth (Growth; mm) could be fitted well to 

Equation 4.4 as all coefficients in this equation estimated by the regression analysis were 

statistically significant: 


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




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


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







d

c
c

c

b

}Zn{
}Zn{1

}Cu{
exp

Growth

2

22

12

2

1

 (4.4) 

where b (mm) is the growth of lettuce roots in the medium free of Cu
2+

 and Zn
2+

; c1 (L/µmol) 

is the strength coefficient of Cu
2+

 toxicity in the medium free of Zn
2+

; c2 (L/µmol) is the 

strength coefficient of Zn
2+

 toxicity in the medium free of Cu
2+

; c12 (L/µmol) is the expansion 

coefficient representing effects of Zn
2+

 on the toxicity of Cu
2+

; d (dimensionless) reflects the 

slope of the adjacent curve; and {Cu
2+

} and {Zn
2+

} (µmol/L) are the free ion activity of Cu
2+

 

and Zn
2+

 in the solution, respectively. 

Based on the assumption of linear interactions, in the RA model, the growth of lettuce 

roots (Growth; mm) in response to exposure to mixtures of Cu
2+

 and Zn
2+

 follows Equation 
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4.5 as coefficients in this equation estimated by the regression analysis were statistically 

significant: 

 
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d

c
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c

b
 (4.5) 

where coefficients b, c1, c2, and c12 have the same meaning as in Equation 4.4; coefficients d1 

and d2 (dimensionless) reflect the slope of the adjacent curve describing toxicity of Cu
2+

 and 

Zn
2+

 in their mixtures, respectively; and {Cu
2+

} and {Zn
2+

} (µmol/L) are the free ion activity 

of Cu
2+

 and Zn
2+

 in the solution, respectively. 

Mixtures of Cu
2+

 and Ag
+
. Interactive effects of Ag

+
 on Cu

2+
 toxicity can be represented by 

an expansion coefficient c13 (L/µmol) that is incorporated into the strength coefficient of Cu
2+

 

toxicity. A similar expansion coefficient c31 (L/µmol) reflecting effects of Cu
2+

 on Ag
+
 

toxicity can be integrated into the strength coefficient of Ag
+
 toxicity. The CA model can be 

extended as Equation 4.6 to express joint toxicity of Cu
2+

 and Ag
+
, taking into account effects 

of their interactions, because coefficients in this equation estimated by the regression analysis 

were statistically significant: 

 
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exp
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2

1

 (4.6) 

where coefficient b (mm) is the growth of lettuce roots in the medium free of Cu
2+

 and Ag
+
; c1 

(L/µmol) is the strength coefficient of Cu
2+

 toxicity in the medium free of Ag
+
; c3 (L/µmol) is 

the strength coefficient of Ag
+
 toxicity in the medium free of Cu

2+
; c13 (L/µmol) is the 

expansion coefficient representing effects of Ag
+
 on the toxicity of Cu

2+
; c31 (L/µmol) is the 

expansion coefficient describing effects of Cu
2+

 on the toxicity of Ag
+
; coefficient d 

(dimensionless) reflects the slope of the adjacent curve describing toxicity of Cu
2+

 and Ag
+
 in 

their mixtures; and {Cu
2+

} and {Ag
+
} (µmol/L) are the free ion activity of Cu

2+
 and Ag

+
 in 

the solution, respectively. 

By contrast, no expansion coefficient was found to be statistically significant to represent 

interactions between these metal ions according to the extended RA model. 

4.2.6. Statistical analyses 

Coefficients in Equations 4.2–4.6 were determined by multiple regression analyses using 

the SYSTAT software. Coefficients are considered statistically significant if their 95% CI is 

statistically deviating from zero, i.e., not encompassing zero. The strength of the significance 

increases with increasing absolute value of the ratio between the estimate of the coefficient 

and the asymptotic standard error, i.e., parameter/ASE in the regression results. All individual 

toxicity data generated in the present study were used to assess toxicity of Cu
2+

, Ag
+
, and Zn

2+
 

in non-interactive mixtures or toxicity of these single metals as the presence of one metal does 

not affect the biological actions of the others in the mixtures. Data from 122 tests without 

additions of Ag
+
 were used to assess toxicity of interactive mixtures of Cu

2+
 and Zn

2+
 as Ag

+
 

was not present in the solutions. Moreover, toxicity of interactive mixtures of Cu
2+

 and Ag
+
 

was evaluated using results from 118 tests with no Zn
2+

 added to the Steiner solution 

assuming negligible effects caused by Zn
2+

 at the background concentration in the default 

medium. Furthermore, Akaike’s information criterion (AIC) was calculated to compare 

different models developed for estimating toxicity of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 mixtures 
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(Burnham and Anderson, 2002). While the r
2
 value describes the potential of the model in 

explaining the variability in the toxic effect, the AIC value indicates the most suitable model, 

i.e., the lower AIC value the more suitable the model. 

 

4.3. Results 

4.3.1. Toxicity of Cu
2+

, Ag
+
, and Zn

2+
 individually 

Differences between the strength of single metal toxicity predicted by the non-interactive 

mixture models based on the concepts of CA and of RA were small (Table 4.1). Estimates of 

all coefficients and statistical parameters are given in Tables S4.2 and S4.3 (Supplementary 

information). There was no statistically significant difference between the estimates by the 

CA and RA models in predicting the strength coefficients of Cu
2+

 and Zn
2+

 toxicity as shown 

by an overlap between the 95% CIs of the strength coefficients of their toxicities (Table 4.1). 

An opposite observation was found in predicting toxicity of Ag
+
 (Table 4.1). The difference 

between the strength coefficients of Ag
+
 toxicity of the CA and RA models was small, but 

significant as shown by their non-overlapping 95% CIs. The assessment based on both models 

indicates that Zn
2+

 was far less toxic than Cu
2+

 and Ag
+
 while there were negligible 

differences between toxicities of Cu
2+

 and of Ag
+
 (Table 4.1). These findings suggest that the 

CA and RA models did not yield substantial differences in the estimates of toxicity of these 

single metals, based on the assumption of no interactions between them.  

 

Table 4.1. Estimates of strength coefficients of toxicity of Cu
2+

, Zn
2+

, and Ag
+
 individually 

found in the present study for Lactuca sativa according to the conventional concept of 

concentration addition (CA) and response addition (RA) models and in the study of Kopittke 

et al. (2011) for Vigna unguiculata following exposure to single metals. 95% confidence 

intervals (CI) are provided. 

Source Species Model 

Strength coefficient ci (L/µmol) 

Cu
2+

 Zn
2+

 Ag
+ 

c1 (95% CI) c2 (95% CI) c3 (95% CI) 

Present 

study 

Lactuca 

sativa 

CA 
2.92 

(2.54-3.30) 

6.15
.
 10

-3
 

(5.29
. 
10

-3
-7.01. 10

-3
) 

2.93 

(2.52-3.34) 

RA 
3.13 

(2.71-3.55) 

6.31
.
 10

-3
 

(5.41
.
 10

-3
-7.21

.
 10

-3
) 

3.79 

(3.50-4.08) 

Kopittke et 

al. (2011) 

Vigna 

unguiculata 

Single-metal 

exposure 
2.00 4.26

.
 10

-2
 25.9 

 

4.3.2. Toxicity of interactive binary mixtures 

Mixtures of Cu
2+

 and Zn
2+

. Based on the r
2
 value, the extended CA (Eqn. 4.4) and RA 

(Eqn. 4.5) models estimated the toxicity of Cu
2+

–Zn
2+

 mixtures at different exposure levels 
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equally well, i.e., approximately 92% of the variability in the root growth following exposure 

to different mixtures of Cu
2+

 and Zn
2+

 could be explained by the models (r
2
 = 0.92; Fig. 4.1).  
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Figure 4.1. The response of lettuce expressed as the root growth (Growth; mm) as a function 

of the free ion activity of Cu
2+

 ({Cu
2+

}; µmol/L) and the free ion activity of Zn
2+

 ({Zn
2+

}; 

µmol/L) in the solution according to the extended concentration addition (CA) model (A) and 

the extended response addition (RA) model (B): the surface describing the estimations based 

on the regression analysis by fitting experimental data to Equations 4.4 (extended CA model) 

and 4.5 (extended RA model) and dotted points representing the experimental data. 
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Table 4.2. Estimates of the coefficients in Equation 4.4 and statistical parameters, i.e., 

asymptotic standard error (ASE) and 95% confidence interval (95% CI), determined by the 

regression analysis representing toxicity of interactive Cu
2+

–Zn
2+

 mixtures as well as 

toxicological interactions between Cu
2+

 and Zn
2+

 according to the extended concentration 

addition model (n = 122; r
2
 = 0.92) 

Parameter Definition Estimate ASE 
Parameter/

ASE 

95% CI 

Lower Upper 

b (mm) Control growth 49.46 1.14 43.42 47.20 51.72 

c1 (L/µmol) 
Strength of 

Cu
2+

 toxicity 
3.88 0.40 9.65 3.09 4.68 

c12 (L/µmol) 
Effects of Zn

2+
 

on Cu
2+

 toxicity 
25.28

.
 10

-3
 8.23

.
 10

-3
 3.07 8.98

.
 10

-3
 41.57

.
 10

-3
 

c2 (L/µmol) 
Strength of 

Zn
2+

 toxicity 
6.53

.
 10

-3
 0.36

.
 10

-3
 18.29 5.82

.
 10

-3
 7.24

.
 10

-3
 

d (dimensionless) Slope 1.26 0.10 12.07 1.05 1.46 

 

Table 4.3. Estimates of the coefficients in Equation 4.5 and statistical parameters, i.e., 

asymptotic standard error (ASE) and 95% confidence interval (95% CI), determined by the 

regression analysis representing toxicity of interactive Cu
2+

–Zn
2+

 mixtures as well as 

toxicological interactions between Cu
2+

 and Zn
2+

 according to the extended response addition 

model (n = 122; r
2
 = 0.92) 

Parameter Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) Control growth 49.28 1.10 44.78 47.10 51.46 

c1 (L/µmol) 
Strength of Cu

2+
 

toxicity 
3.54 0.40 8.76 2.74 4.33 

c12 (L/µmol) 
Effects of Zn

2+
 

on Cu
2+

 toxicity 
14.31

.
 10

-3
 6.14 2.33 2.14

. 
10

-3
 26.47

.
 10

-3
 

d1 

(dimensionless) 

Slope of Cu
2+

 

toxicity curve 
1.08 0.12 9.11 0.84 1.31 

c2 (L/µmol) 
Strength of Zn

2+
 

toxicity 
6.68

.
 10

-3
 0.36 18.57 5.97

.
 10

-3
 7.39

.
 10

-3
 

d2 

(dimensionless) 

Slope of Zn
2+

 

toxicity curve 
1.36 0.13 10.47 1.10 1.62 
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However, the growth of lettuce roots exposed to mixtures of Cu
2+

 and Zn
2+

 at their low 

activities in solution was frequently underestimated. According to both extended CA and 

extended RA models, Zn
2+

 significantly reduced toxicity of Cu
2+

 as the 95% CI of the 

expansion coefficient c12 were statistically significantly deviating from zero (Tables 4.2 and 

4.3). By contrast, Cu
2+

 did not have significant effects on Zn
2+

 toxicity, i.e., no statistically 

significant value of the expansion coefficient c21 was found to represent these impacts. 

Mixtures of Cu
2+

 and Ag
+
. Approximately 80% of the variability in the growth of lettuce 

roots exposed to mixtures of Cu
2+

 and Ag
+
 at different free ion activities could be explained 

by the mathematical relationship expressed by Equation 4.6 (n = 116; r
2
 = 0.80; Fig. 4.2). The 

95% CIs of the expansion coefficients representing effects of Ag
+
 on Cu

2+
 toxicity (c13) and 

effects of Cu
2+

 on Ag
+
 toxicity (c31) deviated significantly from zero (Table 4.4). This 

indicates that Cu
2+

 and Ag
+
 interacted with each other, significantly affecting their toxicity to 

lettuce. Particularly, Ag
+
 significantly enhanced Cu

2+
 toxicity (c13 < 0) while Cu

2+
 

significantly reduced Ag
+
 toxicity (c31 < 0) (See S4.A, Supplementary information). 

 

Table 4.4. Estimates of the coefficients in Equation 4.6 and statistic parameters, i.e., 

asymptotic standard error (ASE) and 95% confidence interval (95% CI), determined by the 

regression analysis representing toxicity of interactive Cu
2+

–Ag
+
 mixtures as well as 

toxicological interactions between Cu
2+

 and Ag
+
 according to the extended concentration 

addition model (n = 116; r
2
 = 0.80) 

Parameter Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) Control growth 50.23 1.77 28.41 46.72 53.73 

c1 (L/µmol) 
Strength of Cu

2+
 

toxicity 
4.12 0.45 9.22 3.23 5.01 

c13 (L/µmol) 
Effects of Ag

+
 

on Cu
2+

 toxicity 
-2.14 0.45 -4.78 -3.03 -1.26 

c3 (L/µmol) 
Strength of Ag

+
 

toxicity 
3.53 0.26 13.71 3.02 4.04 

c31 (L/µmol) 
Effects of Cu

2+
 

on Ag
+
 toxicity 

-8.16 2.38 -3.43 -12.88 -3.44 

d 

(dimensionless) 
Slope 1.76 0.25 6.96 1.26 2.27 

 

4.3.3. Comparison of the different models 

Generally, the interactive models were better than the non-interactive models in estimating 

mixture toxicity, especially for mixtures of Cu
2+

 and Zn
2+

 (Table 4.5). This result indicates 

that interactions between different ions should be taken into account in modelling their joint 

toxicity and the incorporation will improve the estimations. Additionally, based on the 

assumption that mixture components do not interact with each other, the concept of RA was 
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better than the CA concept in predicting toxicity of the Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 mixtures 

(Table 4.5). By contrast, based on an assumption of interactive mixtures, negligible difference 

was found between the AIC values for the CA and RA models in estimating toxicity of Cu
2+

–

Zn
2+

 mixtures. 
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Figure 4.2. The response of lettuce expressed as the root growth (Growth; mm) as a function 

of the free ion activity of Cu
2+

 ({Cu
2+

}; µmol/L) and the free ion activity of Ag
+
 ({Ag

+
}; 

µmol/L) in the solution according to the extended concentration addition model: the surface 

describing the estimations based on the regression analysis by fitting experimental data to 

Equation 4.6 and dotted points representing the experimental data. 

 

Table 4.5. Akaike’s information criterion calculated for non-interactive and interactive 

models based on the concepts of concentration addition (CA) and response addition (RA) for 

predicting toxicity of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 mixtures 

Mixtures 

Non-interactive models  Interactive models 

CA RA  CA RA 

Cu
2+

–Zn
2+

 155 149  144 145 

Cu
2+

–Ag
+ 

192 183  190  

 

4.4. Discussion 

4.4.1. Toxicity of Cu
2+

, Zn
2+

, and Ag
+
 individually 

In the present study, toxicity to lettuce Lactuca sativa decreased in the sequence of Ag
+
 > 

Cu
2+

 > Zn
2+

, similar to the order reported by Kopittke et al. (2011) for cowpea Vigna 

unguiculata (Table 4.1). An inconsiderable difference was found in toxic potency of Cu
2+

 to 

4 



96 

the two plant species (Table 4.1). Yet, toxic potency of Ag
+
 and Zn

2+
 to Vigna unguiculata 

was about one order of magnitude higher than that to Lactuca sativa (Table 4.1). 

4.4.2. Toxicity of interactive mixtures of Cu
2+
–Ag

+
 and Cu

2+
–Zn

2+
 

Metal-metal interactions are complicated as single metals, e.g., Cu
2+

, Ag
+
, and Zn

2+
, 

separately may have toxic effects on plants via a number of mechanisms. These processes 

may account for the interactions in Cu
2+

–Ag
+
 and Cu

2+
–Zn

2+
 mixtures predicted in the present 

study. 

In general, modes of action of Cu
2+

 include increasing the membrane potential and 

subsequently affecting the membrane permeability, and blocking ion channels (Demidchik et 

al., 1997; Kiss and Osipenko, 1994; Salama et al., 1992; Gilly and Amstrong, 1982). 

Noticeably, Cu
2+

 does not affect the conductance of the K
+
-channel (Demidchik et al., 1997).  

Cu
2+

 can competitively replace other cations, e.g., Zn
2+

 and Ca
2+

, at their binding sites in plant 

cell protein and lipid compounds, disrupting the metabolism (Mierle and Stokes, 1976; 

Watkins and Ferguson, 1982; Lidon and Henriques, 1993). According to Coskun et al. (2012), 

Ag
+
 inhibited K

+
 influx by two different mechanisms: directly as a K

+
-channel blocker at 

lower concentrations and indirectly via membrane destruction, e.g., increased permeability, at 

higher concentrations. This is consistent with the observation by Hendrix and Higinbotham 

(1974) that in plants, Ag
+
 was able to substitute K

+
 in membranes, thus inhibiting the uptake 

of other cations by roots. Similar to Cu
2+

, elevated concentrations of Zn
2+

 rapidly result in 

changes in the membrane potential, i.e., depolarisation, of the root cell (Kenderesova et al., 

2012). In addition, both deficiency and excess of Zn
2+

 may increase membrane permeability 

(Michael and Krishnaswamy, 2011; Chen et al., 2009; Kaya and Higgs, 2000). Furthermore, 

the induction and expression of proteins, e.g., ZIP, at the plasma membrane involved in the 

transport of metals like Cu
2+

 and Zn
2+

 are increased under Zn
2+

 deficiency and inhibited under 

Zn
2+

 sufficiency (Grotz and Guerinot, 2006; Maser et al., 2001; Eckhardt et al., 2001; Ramesh 

et al., 2003; Ishimaru et al., 2005; Eide et al., 1996; Desbrosses-Fonrouge et al., 2005). 

Based on the modes of action of Cu
2+

, Ag
+
, and Zn

2+
 as mentioned above, some 

interactions are expected to occur following exposure to their mixtures and might explain the 

predictions obtained in the present study by the extended CA and RA models. If Cu
2+

 and Ag
+
 

act in the same ways, i.e., reducing the membrane potential or blocking the K
+
-channel, they 

may interact with each other, determining their toxicities. Particularly, either of these two 

mechanisms leads to the inhibition of the transport and subsequent toxicity of Cu
2+

 and Ag
+
 

by the other. As such, Cu
2+

 reduces Ag
+
 toxicity. Other mechanisms additionally contribute to 

the alleviative effects of Cu
2+

 on Ag
+
 toxicity. In particular, Cu

2+
-induced compounds can 

detoxify Ag
+
 and this mechanism was found to contribute to the alleviative effects of Cu

2+
 on 

Ag
+
 toxicity (Howe and Merchant, 1992). In addition, the decline in the induction of non-

selective uptake mechanisms, e.g., polypeptides, that results from the elevated exposure level 

of Cu
2+

 further reduces Ag
+
 uptake and toxicity (Howe and Merchant, 1992). Additionally, 

Ag
+
 leads to damage to the cell membrane, increasing Cu

2+
 uptake and subsequently 

enhancing Cu
2+

 toxicity. These interactions potentially account for the interactions predicted 

in the present study according to the CA model, i.e., Cu
2+

 reduced Ag
+
 toxicity while Ag

+
 

enhanced Cu
2+

 toxicity. Considering the possibility that Cu
2+

 and Ag
+

 have different modes of 

action (RA model), e.g., Ag
+
 blocks the K

+
-channel while Cu

2+
 does not affect the 

conductance of the K
+
-channel, it would be expected that Cu

2+
 and Ag

+
 do not affect toxicity 

of the other as predicted in the present study. 

The prediction of alleviative effects of Zn
2+

 on Cu
2+

 toxicity to lettuce Lactuca sativa in 

the present study is consistent with reported results for cress Lepidium sativum, duckweed 

Lemna minor, and pigeon pea Cajanus cajan in other studies (Montvydiene and 
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Marciulioniene, 2007; Ince et al., 1999; Dirilgen et al., 1994; Sresty and Rao, 1999). This 

common inhibition can be explained by interactions between these metals as follows. 

Possessing similar physical properties as noted by Weast (1976), Cu
2+

 and Zn
2+

 share main 

modes of actions and transport mechanisms as described above and reported previously 

(Arguello, 2003; Rensing et al., 1999; Axelsen and Palmgren, 1998). Consequently, their 

uptake can be inhibited by each other due to their direct interactions at the plasma membrane 

(Bowen, 1969; Giordano et al., 1974; Kausar et al., 1976; Hawf and Schmid, 1967; Chaudhry 

and Loneragan, 1972). As such, elevated Zn
2+

 may reduce Cu
2+

 transport, alleviating Cu
2+

 

toxicity. Moreover, at high levels of Zn
2+

, the decline in the synthesis and expression of 

transporter proteins as reviewed above reduces Cu
2+

 uptake further. Zn
2+

 can be replaced by 

Cu
2+

 due to higher affinity of Cu
2+

 for exchangeable sites on the root cell walls compared to 

Zn
2+

 (Nishizono et al., 1987; Ernst et al., 1992; Franco et al., 2002). The inhibition of Zn
2+

 

toxicity is additionally caused by changes in the structure of transporter proteins, which are 

induced by binding of Cu
2+

 to amino acids in the proteins (Bal et al., 1993; Freedman et al., 

1982; Lopez-Millan et al., 2004; Orfei et al., 2003; Ooi et al., 1996; Petris et al., 2003; 

Stephens et al., 2011). However, under Zn
2+

 deficiency, the enhanced induction of proteins 

associated with the transport of Zn
2+

 as mentioned above increases Zn
2+

 uptake, compensating 

for the inhibition of Zn
2+

 uptake caused by Cu
2+

. These mechanisms potentially contribute to 

the insignificant effects of Cu
2+

 on Zn
2+

 toxicity as well as alleviative effects of Zn
2+

 on Cu
2+

 

toxicity predicted in the present study. Another mode of action that contributes to the 

interactions between Cu
2+

 and Zn
2+

 is their effects on decreasing the membrane potential, 

which subsequently reduce uptake of these metals. As a result of this change in the surface 

potential, Zn
2+

 may alleviate Cu
2+

 toxicity as found in the present study. The effects of these 

cations on the membrane potential vary, depending on their concentrations, affinity, and mode 

of action (Kenderesova et al., 2012). Cu
2+

 is more effective than Zn
2+

 in decreasing negative 

charge (Irving and Williams, 1948; Bowen, 1966; Isermann, 1979). However, the Cu
2+

 

activities in the solution tested in the present study were some orders of magnitude lower than 

the Zn
2+

 activities, contributing to insignificant effects of Cu
2+

 on the membrane potential as 

well as on Zn
2+

 uptake toxicity as reported in the present study. 

4.4.3. Modelling metal-metal interactions by mathematical equations 

The results of the present study demonstrate that the equations used predict interactions 

between different metals ions and their joint toxicity well, explaining around 80–92% of the 

variability observed. The underestimation of the root growth of lettuce exposed to mixtures of 

Cu
2+

 and Zn
2+

 at their low activities in the exposure solution might be related to their 

essentiality. The different interactions in mixtures of Cu
2+

 and Ag
+
 predicted by the extended 

CA and RA models indicate that the conclusion about interactions is strongly influenced by 

the mathematical relation used, consistent with the observation of Hernandez and Blazer 

(2006). Linearity as applied in the present study has been widely used to express interactions 

between different chemicals (Kinraide et al., 2004; Preacher et al., 2006). Linear relationships 

provide a simple description of the data from the perspective that the contribution of each 

predictor is summarised in a single coefficient (Hastie and Tibshirani, 1990). However, the 

use of linearity as in the present study to interpret interactions between different metals may 

lead to particular uncertainties. For example, linear relationships imply an increase in toxic 

effects with increasing exposure levels that does not hold under conditions of deficiency of 

essential metals. In addition, the dependence of the interactions between different metal ions 

on their doses as demonstrated above is not included in the linear relationship. Besides the 

linearity, interactions between differrent substances may follow other patterns and accordingly 

be expressed by other mathematical relations (Hamm et al., 2005). The use of linearity only 

while excluding other relationships does not necessarily reflect the actual interaction between 
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variables (Lubinski and Humphresys, 1990; Cohen, 1978; Birnbaum, 1973; Busemeyer and 

Jones, 1983). Particularly, the statistical significance of the interaction found by the linear 

regression may be mainly due to an overlap with unchecked, but significant, nonlinear 

relations (Cortina, 1993; Lubinski and Humphresys, 1990). 

In short, interactions among metals should be investigated at different plant cell 

compartments separately because of a variety of involved mechanisms affecting both 

toxicokinetics and toxicodynamics. The type of interactive effects on metal toxicity, e.g., 

alleviative or enhancing, depends on the comparison of these different mechanism. Moreover, 

the method of using mathematical relationships as applied in the present study shows good 

predictive power in incorporating metal-metal interactions in quantifying toxicity of metal 

mixtures. Additionally, the regression analyses reveals a full dose-response curve, describing 

toxicity as a function of the free ion activity of all mixture components, instead of providing 

only one single value of the concentration or activity at a certain response level, e.g., 50%. 

Furthermore, the mathematical extension of the CA and RA models provides quantitative 

estimates of toxicity of interactive mixtures while the application of conventional concept of 

the models only offer qualitative estimations (higher or lower than additive effects). 
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SUPPLEMENTARY INFORMATION 

S4.1. Ionic composition of the Steiner solution used for chemical speciation 

Metals Na
+ 

Mg
2+ 

K
+ 

Ca
2+ 

Mn
2+ 

Fe
2+ 

Zn
2+ 

Concentration (mol/L) 1.02
.
 10

-6
 1.83

.
 10

-3
 6.98

.
 10

-3
 2.82

.
 10

-3
 1.16

.
 10

-5
 4.96

.
 10

-5
 1.72

.
 10

-6
 

 

S4.A. Derivation of mathematical equations describing toxicity of interactive and non-interactive metal 

mixtures 

Toxicity of non-interactive mixtures 

The response of plants expressed as the root growth (Growth; mm) after exposure to single metal M can be 

expressed in relation to its free ion activity in the solution {Mn+} (µmol/L) according to the following equation 

(Kinraide and Parker, 1989; Kopittke et al., 2011) 

]})M{exp[(
Growth

n dc

b


  (S4.1) 

where coefficient b (mm) is the growth of lettuce in the medium free of the metal ion (i.e., {Mn+} = 0); 

coefficient c (L/µmol) reflects the metal-specific strength of toxicity. Its value increases with increasing strength 

of metal toxicity. When {Mn+}=c-1, Growth = 36.8% b; and coefficient d (dimensionless) is the slope parameter 

that reflects sigmoidality when its values is greater than 1. 

If mixture components do not interact to each other, the growth of plants exposed to the mixture can be 

written according to the conventional concept of concentration addition (CA) and response addition (RA) models 

assuming no interactions between the mixture constituents. According to the CA model, mixture components 

have the same modes of action of toxicity (Bliss, 1939). In other words, the presence of one substance can be 
considered as a simple dilution of others. Therefore, according to the CA concept, response of lettuce exposed to 

non-interactive mixtures in terms of root growth can be written as follows (Kinraide, 1999): 





]}))M{(exp[(

Growth
n dc

b  (S4.2) 

For instance, the growth of lettuce roots (Growth; mm) following exposure to a non-interactive mixture of 

Cu2+, Zn2+, and Ag+ is determined by the following equation according to the CA model: 

])}Ag{}Zn{}Cu{exp[(
Growth

3

2

2

2

1

dccc

b
 

  (S4.3) 

where b (mm) is the growth of lettuce roots in the medium free of Cu2+, Zn2+, and Ag+; coefficients c1, c2, and c3 

(L/µmol) represent the strength of toxicity of Cu2+, Zn2+, and Ag+ individually as well as in non-interactive 

mixtures, respectively; d (dimensionless) is the slope parameter describing toxicity of these metals individually 

as well as in non-interactive mixtures; and {Cu2+}, {Zn2+}, and {Ag+} (µmol/L) are the free ion activity of Cu2+, 
Zn2+, and Ag+ in the solution, respectively. 

In the RA model, mixture components are supposed to have different modes of action of toxicity (Hewlett 

and Plackett, 1979). Therefore, based on the RA concept, the response of lettuce exposed to non-interactive 

mixtures can be expressed as a multiplicative function of the response of the plants following exposure to each 

constituent separately (Eqn. S4.4) (Kinraide, 1999): 


 





]})M{(exp[]})M{exp[(

Growth
nn ii d

i

d

i c

b

c

b  (S4.4) 

For example, when Cu2+, Ag+, and Zn2+ do not affect toxicity of one another, the growth of lettuce exposed to 

mixtures of these three metal ions can be written as a multiplication of the responses of lettuce following 

exposure to these metal ions individually (Eqn. S4.5): 

]})Ag{(})Zn{(])Cu{exp[(
Growth

321

3

2

2

2

1

ddd
ccc

b
 

  (S4.5) 

where coefficient b (mm) is the growth of lettuce roots in the medium free of Cu2+, Ag+, and Zn2+; coefficients 
c1, c2, and c3 (L/µmol) represent strength of toxicity of Cu2+, Ag+, and Zn2+ individually as well as in non-
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interactive mixtures, respectively; d1, d2, and d3 (dimensionless) are slope parameters describing toxicity of Cu2+, 

Ag+, and Zn2+ individually as well as in their non-interactive mixtures; and {Cu2+}, {Zn2+}, and {Ag+} (µmol/L) 

are the free ion activity of Cu2+, Ag+, and Zn2+ in the exposure solution, respectively. 

Equations S4.2-S4.5 are based on the conventional concepts of the CA and RA models assuming no 

interactions between mixture components, i.e., the presence of one metal does not affect the toxicity of another. 

In other words, toxicity of metals following exposure to these non-interactive mixtures is similar to the toxicity 
of these metals individually. 

Toxicity of interactive mixtures 

When metals in the mixtures are interactive, the interactions can be taken into account in determining the 

mixture toxicity by expanding the conventional CA and RA models. In particular, strength coefficients c1, c2, and 

c3 in Equations S4.3 and S4.5 are linearly extended to include expansion coefficients. For example, based on an 

assumed linear interaction between Cu2+ and Zn2+, the expanded strength coefficient describing the Cu2+ toxicity 

in interactive mixtures with Zn2+ (c1
*) can be expanded as in Equation S4.6 or S4.7 (Kinraide et al., 2004): 

})Zn{1( 2

1211


 ccc  (S4.6) 

or 

}Zn{1 2

12

1
1 






c

c
c  (S4.7) 

where c12 (L/µmol) is the expansion coefficient, representing interactive effects of Zn2+ on Cu2+ toxicity. In 

Equation S4.6, Zn2+ enhances toxicity of Cu2+
 if c12 is positive while in Equation S4.7, Zn2+ increases Cu2+

 

toxicity if c12 is negative. By contrast, alleviative effects of Zn2+ on Cu2+ toxicity occur when c12 in Equation 

S4.6 is negative or when c12 in Equation S4.7 is positive. The interactive effects are found to be statistically 

significant when the 95% confidence interval (CI) of c12 does not encompass zero. Similar equations can be 

written to integrate ion-ion interactions in modelling toxicity of Zn2+ in mixtures with Cu2+. If interactions only 
affect toxicity of one component of the mixture, the strength coefficient of only this substance is extended. All 

the coefficients were determined by multiple nonlinear regression analyses using the SYSTAT software. 

 

Table S4.2. Estimates of the coefficients in Equation 4.2 and statistical parameters, i.e., asymptotic standard 

error (ASE) and 95% confidence interval (95% CI), determined by the regression analysis representing toxicity 

of Cu2+, Zn2+, and Ag+ in non-interactive mixtures according to the concentration addition model (n = 238; r2 = 

0.83)  

Coefficient Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) 
Control 

growth 
50.02 1.23 40.87 47.78 52.62 

c1 (L/µmol) 
Strength of 

Cu2+ toxicity 
2.92 0.19 15.23 2.54 3.30 

c2 (L/µmol) 
Strength of 

Zn2+ toxicity 
6.15. 10-3 0.44. 10-3 14.12 5.29. 10-3 7.01. 10-3 

c3 (L/µmol) 
Strength of 

Ag+ toxicity 
2.93 0.21 13.95 2.52 3.34 

d 

(dimensionless) 
Slope 1.30 0.11 11.43 1.07 1.52 
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Table S4.3. Estimates of the coefficients in Equation 4.3 and statistical parameters, i.e., asymptotic standard 

error (ASE) and 95% confidence interval (95% CI), determined by the regression analysis representing toxicity 

of Cu2+, Zn2+, and Ag+ in non-interactive mixtures according to the response addition model (n = 238; r2 = 0.86) 

Coefficient Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) Control growth 49.12 0.92 53.39 47.31 50.93 

c1 (L/µmol) 
Strength of Cu2+ 

toxicity 
3.13 0.21 14.75 2.71 3.55 

d1 

(dimensionless) 

Slope of Cu2+ 

toxicity curve 
1.02 0.11 10.56 0.83 1.21 

c2 (L/µmol) 
Strength of Zn2+ 

toxicity 
6.31. 10-3 0.46. 10-3 13.80 5.41. 10-3 7.21. 10-3 

d2 

(dimensionless) 

Slope of Zn2+ 

toxicity curve 
1.45 0.17 8.49 1.11 1.79 

c3 (L/µmol) 
Strength of Ag+ 

toxicity 
3.79 0.15 25.99 3.50 4.08 

d3 

(dimensionless) 

Slope of Ag+ 

toxicity curve 
2.89 0.38 7.58 2.14 3.65 
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Abstract—The Biotic Ligand Model (BLM) was applied to predict metal toxicity to lettuce 

Lactuca sativa. Cu
2+

 had the lowest median effective activity (EA50M), compared to Ag
+
 and 

Zn
2+

 (EA50Cu = 2.60
.
 10

-8
 mol/L; EA50Ag = 1.34

.
 10

-7
 mol/L; EA50Zn = 1.06

.
 10

-4
 mol/L). At 

the 50% response level, the fraction of the total number of biotic ligands occupied by ions 

(f50M) was lowest for Ag
+
 among the metals (f50Ag = 0.22; f50Cu = 0.36; f50Zn = 0.42). Cu

2+
 

had the highest affinity for biotic ligands compared to Ag
+ 

and Zn
2+

 as shown by stability 

constants of the cation-biotic ligand binding, expressed as logKMBL (logKCuBL = 7.40; 

logKAgBL = 6.39; logKZnBL = 4.00). Furthermore, the BLM was combined with the toxic 

equivalency factor approach in predicting toxicity of mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
. 

The fraction of biotic ligands occupied by ions was used to determine the relative toxic 

potency of metals and the toxic equivalency quotient (TEQ) of mixtures. This approach 

allowed including interactions in estimating mixture toxicity and showed good predictive 

power (r
2
 = 0.64–0.84). The TEQ at the 50% response level (TEQ50; Cu

2+
 equivalents) for 

Cu
2+

–Zn
2+

 mixtures were significantly lower than the value for Cu
2+

–Ag
+ 

mixtures. Joint 

toxicity depended on both TEQ and specific composition of the mixture. The present study 

supports using the accumulation of metal ions at the biotic ligands as a predictor of toxicity of 

single metals and mixtures. Environ. Toxicol. Chem. DOI 10.1002/etc.2039. 

 

Keywords 
___ 

Metal mixtures         Plants    Biotic Ligands  Toxic Equivalency Factor 

Stability Constant 

 

5.1. Introduction 

The Biotic Ligand Model (BLM) is usually applied to predict toxicity of single metals, 

taking into account effects of common cations, e.g., H
+
, Ca

2+
, and Mg

2+
. According to the 

BLM concept, ions compete with each other for transport sites at the biotic ligands and this 

competition acts as a mechanism for ion-ion interactions (Niyogi and Wood, 2004; Di Toro et 

al., 2001). This assumption is based on physiological findings, which indicate that toxic 

cations, e.g., Cu
2+

 and Ag
+
, may inhibit the uptake of Na

+
 or Ca

2+
 for specific binding sites at 

the fish gill, leading to adverse effects (Morgan et al., 1997; Bury et al., 1999; Wood et al., 

1996). Furthermore, the assumption potentially allows taking into account interactions 

between different metal ions in assessment of mixture toxicity (Niyogi and Wood, 2004; 

Norwood et al., 2003; Borgmann et al., 2008). In particular, it is possible to predict how 

different metals interact with one another if their stability constants are known. If two metals 

compete for binding to the same site of toxic action, the total amount of the metals bound to 

the site would be a key property, determining mixture toxicity. Alternatively, if competitive 

binding does not occur following exposure to metal mixtures, bioavailability of each 

component estimated by the BLM can be a reliable predictor of mixture toxicity through the 

effects addition model. 

In the present study, the assumption of competitive binding was applied to metal mixtures, 

i.e., metals following exposure to their mixtures may compete for transport sites at the biotic 

ligands. This assumption is supported by the observation that the uptake of metals usually 

involves transporter proteins (Simkiss and Taylor, 1995). Furthermore, based on the functions 

of the transporters, the physiological mechanism of metal binding can be classified into three 

categories (Niyogi and Wood, 2003). According to this classification, Cu
2+

 and Zn
2+

 may bind 

to the same transporters, which are responsible for the uptake of divalent cations, while the 

uptake of Ag
+
 is related to the participation of transporters for monovalent cations. 

Consequently, mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 were chosen in the present study as an 

5 



109 

attempt to model toxicity of both competitive and non-competitive mixtures with the 

assumption that Cu
2+

 and Zn
2+

 compete for binding sites at the biotic ligands whereas this 

competition does not occur between Cu
2+

 and Ag
+
. 

According to the BLM concepts, toxic effects result from binding of metal ions to biotic 

ligands. In other words, the extent of toxic effects is determined by the fraction of the biotic 

ligands occupied by metal ions in the total number of biotic ligands. This fraction was used as 

a basic unit in the toxic unit approach for estimating toxicity of metal mixtures to duckweed 

Lemna paucicostata by Hatano and Shoji (2008) and to bacteria Vibrio fishcheri by Jho et al. 

(2011). This modelling approach was found to result in higher predictive potential than the 

free ion activity model and the total metal concentration model. In other words, the 

accumulation of metal ions at the biotic ligands was a better indicator of toxicity of metal 

mixtures compared to metal concentrations or activities in the solution. As both the BLM and 

the free metal ion activity model are based on the assumption that free ions are the main 

reactive species of metals determining metal toxicity, these authors further suggested that the 

advantage of the BLM over the other models was attributed to the integration of competitive 

binding of metal ions to biotic ligands. 

The toxic equivalency factor (TEF) approach has been widely used in assessment of 

mixture toxicity. In this approach, a substance is used as a reference compound (TEF = 1) to 

which others are related (Birnbaum and DeVito, 1995). The TEF of each mixture component 

reflects its toxic potency relative to the reference compound. This approach is usually 

performed based on concentrations of substances in mixtures. Particularly, the toxic 

equivalency quotient (TEQ) of mixtures is calculated as the sum of the equivalency 

concentration of each component which is a product of the concentration and the TEF of the 

compound. Therefore, the exposure level can be expressed by a single concentration of the 

reference substance, which represents the overall toxicity of the mixture assuming no 

interactions between different components. However, the concentration of metals in the 

solution might not be a reliable predictor of their toxicity as chemical properties of the 

exposure medium, such as chelators and pH, affect binding of the metals with biotic and 

abiotic ligands, influencing metal uptake (Cheng and Allen, 2001). 

The present study aimed to predict toxicity of binary metal mixtures (Cu
2+

–Zn
2+

 and Cu
2+

–

Ag
+
) to lettuce, Lactuca sativa, by combining the BLM and the TEF approach for the first 

time. In particular, the accumulation of metals at the biotic ligands, which determines toxicity 

of the metals following single exposure according to the BLM principle, was used to 

determine the TEF of the metals in mixtures. The accumulation of metals at the biotic ligands 

is, in turn, influenced by interactions between the metals and other competing cations. As 

such, interactions between different metal ions in mixtures at the biotic ligands can be 

integrated in estimating toxicity of metal mixtures, overcoming disadvantages of the 

conventional TEF approach based on metal concentrations. 

 

5.2. Methods 

5.2.1. Toxicity assays 

Metal toxicity was assessed in terms of relative root elongation (RRE; %) in hydroponic 

experiments using Steiner solution as the test medium (Le et al., 2012). Cu
2+

, Zn
2+

, and Ag
+
 

were added to the Steiner solution as nitrate salts while the concentrations of other cations in 

the solution were kept at the background level of the default medium. The solution pH was 

kept at 7 by using the 3-[N-morpholino] propane sulfonic acid buffering (Le et al., 2012). 
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5.2.2. Metal measurements and speciation 

Free Zn
2+

 activities in solutions were derived from the total Zn
2+

 concentrations in the 

exposure solution, which were the sum of the Zn
2+

 concentration in Steiner solution and the 

Zn
2+

 concentration added. The determination of free Zn
2+

 activities was performed by the 

speciation model Windermere Humic-Aqeous Model VI with Steiner solution as the default 

medium (Tipping, 1998). The chemical composition of the Steiner solution used for chemical 

speciation is given in Table S5.1, Supplementary information. In addition, free ion activities 

of H
+
, Cu

2+
, and Ag

+
 were measured by using Hydrogen, Copper, and Silver sulfide ion-

selective electrodes (Metrohm, Switzerland) which had been calibrated at different 

concentrations of these cations in the solution (Le et al., 2012). The ranges of free ion 

activities of Cu
2+

, Zn
2+

, and Ag
+
 in the solutions tested in the present study were: Cu

2+
: 10

-10
–

10
-6

 mol/L; Zn
2+

: 10
-6

–10
-3

 mol/L; and Ag
+
: 10

-8
–10

-7
 mol/L. 

5.2.3. Toxicity of single metals 

Free metal ions were considered the main reactive species, determining toxicity of the 

metals. As reviewed in a previous study, different results were reported on the effects of 

common cations, e.g., Na
+
, K

+
, Ca

2+
, and Mg

2+
, on toxicity of Cu

2+
 (Le et al., 2012). This 

difference may be related to the species and the exposure levels investigated. The present 

study and the study of Le et al. (2012) were carried out on the same plant species and with the 

same test medium. As a result of these similarities, the findings reported in the study of Le et 

al. (2012) were applied in the present research. According to these authors, Cu
2+

 toxicity to 

lettuce Lactuca sativa was significantly inhibited by protons (Le et al., 2012). The study also 

indicated that effects of Na
+
, Ca

2+
, Mg

2+
, and K

+
 on Cu

2+
 toxicity to this plant species could 

not be quantified by the BLM as the pattern of these impacts was inconsistent at the 

concentration range studied. Therefore, in the present study, we assumed that H
+
 competes 

with toxic cations, i.e., Cu
2+

, Ag
+
, and Zn

2+
, for binding sites at the biotic ligand while 

keeping concentrations of all other cations at the background level of the default medium. In 

other words, the accumulation of these toxic ions, which determines their toxicities according 

to the BLM principle, is influenced by binding of H
+
 with biotic ligands. Accordingly, the 

faction of the total number of biotic ligands that is occupied by metal ion M
n+

, i.e., Cu
2+

, Ag
+
, 

or Zn
2+

, (fM) is determined as follows: 

}{M}{H1

}{M

[BL]

[MBL]
n

MBLHBL

n

MBL

T

M 








KK

K
f  (5.1) 

where [BL]T (mol/L) is the total number of biotic ligands; KHBL and KMBL (L/mol) are stability 

constants of binding of H
+
 and M

n+
 to biotic ligands, respectively; and {H

+
} and {M

n+
} 

(mol/L) are free ion activities of H
+
 and M

n+
 in the solution, respectively. 

The free ion activity of metal ion M
n+

 in the solution that results in a 50% reduction in the 

growth of lettuce roots is termed as the median effective activity EA50M. A detailed 

description of the derivation of a BLM for single metals, e.g., determination of the stability 

constant KMBL and the fraction of the total number of biotic ligands occupied by metal ions at 

the 50% response level f50M, were presented in a previous study (Le et al., 2012). 

Specifically, f50M was determined by fitting a sigmoid curve to the relationships between fM 

and the RRE using Graphpad Prism software according to the following equation: 





)50( MM101

100
RRE

ff
  (5.2) 
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5.2.4. Toxicity of binary metal mixtures (Cu
2+
–Zn

2+
 and Cu

2+
–Ag

+
) 

Toxicity of mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 was modelled from the toxicological data 

for the single metals, i.e., KMBL and f50M, by combining the BLM and the TEF approach. 

Particularly, the TEF of metals in mixtures as well as the TEQ of mixtures were determined 

based on the fraction of the total number of biotic ligands occupied by metal ions. Cu
2+

 was 

considered the reference metal ion to which toxicity of Zn
2+

 and Ag
+
 was related. This 

selection was used because of the presence of Cu
2+

 in both mixtures studied and high concern 

about its environmental effects and subsequent large availability of toxicological data. 

Accordingly, the TEF of metals in mixtures (TEFM; M denotes Cu
2+

, Zn
2+

, or Ag
+
) was 

determined according to the following equation: 

M

Cu
M

50

50
TEF

f

f
  (5.3) 

where f50M and f50Cu are the fractions of the biotic ligands occupied by M
n+

 and Cu
2+

 in the 

total number of biotic ligands at the 50% response level following exposure to these metal 

ions individually, respectively (Le et al., 2012). TEFM represents the comparative toxic 

potency of metal ion M
n+

 in mixtures. Furthermore, the TEQ of mixtures (Cu
2+

 equivalents), 

which reflects the overall toxicity of the mixture, was calculated from the TEFM of mixture 

components and the fraction of the total number of biotic ligands occupied by metal ions in 

the mixture fM according to Equation 5.4: 

   MM TEFTEQ f  (5.4) 

Equations 5.3 and 5.4 were derived from the common expression of the TEF approach 

based on substance concentrations (Birnbaum and DeVito, 1995). According to the BLM, fM 

is determined based on assumed independence of the complexation capacity of ions on water 

quality characteristics (Le et al., 2012; De Schamphelaere and Janssen, 2002). The calculation 

of fM following exposure to metal mixtures was based on the stability constant KMBL 

determined from the toxicological data following exposure to single metals as presented 

below. Toxic effects, in terms of root growth represented by RRE (%), were expressed in 

relation to the TEQ (Cu
2+

 equivalents) according to the following equation: 

β


TEQ)(TEQ50101

100
RRE   (5.5) 

where TEQ50 (Cu
2+

 equivalents) is the TEQ of the mixture at the 50% response level and β 

(dimensionless) is the slope parameter. Estimates of these coefficients and statistic 

parameters, e.g., 95% confidence interval (CI), were determined by fitting the empirical data 

on toxicity of metal mixtures to Equation 5.5 using the GraphPad Prism software. 

Mixtures of Cu
2+

 and Zn
2+

 

Taking into account competition between Cu
2+

 and Zn
2+

 and between Cu
2+

/Zn
2+

 with H
+
, 

the fraction of the total number of biotic ligands occupied by Cu
2+

 and Zn
2+

 (fCu and fZn, 

respectively) can be determined as a function of their stability constants and their free ion 

activities in the solution as follows: 

}{H}{Cu}{Zn1

}{Cu

HBL

2

CuBL

2

ZnBL

2

CuBL
Cu 








KKK

K
f  (5.6) 

}{H}{Cu}{Zn1

}{Zn

HBL

2

CuBL

2

ZnBL

2

ZnBL
Zn 








KKK

K
f  (5.7) 
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where KHBL, KCuBL, and KZnBL (L/mol) are stability constants of binding of H
+
, Cu

2+
, and Zn

2+ 

to biotic ligands, respectively, and were determined by toxicological data for single metals; 

and {H
+
}, {Cu

2+
}, and {Zn

2+
} (mol/L) are free ion activities of H

+
, Cu

2+
, and Zn

2+
 in the 

exposure solution, respectively. 

Mixtures of Cu
2+

 and Ag
+
 

As it was assumed that Cu
2+

 and Ag
+
 bind to different transporters, binding of these metal 

ions to transport sites at the biotic ligands is only influenced by H
+
 (Eqns. 5.8 and 5.9): 

}{H}{Cu1

}{Cu

HBL

2

CuBL

2

CuBL
Cu 








KK

K
f  (5.8) 

}{H}{Ag1

}{Ag

HBLAgBL

AgBL

Ag 








KK

K
f  (5.9) 

where KHBL, KCuBL, and KAgBL (L/mol) are stability constants of binding of H
+
, Cu

2+
, and Ag

+ 

to biotic ligands, respectively, and were estimated by experimental data on toxicity of single 

metals; and {H
+
}, {Cu

2+
}, and {Ag

+
} (mol/L) are free ion activities of H

+
, Cu

2+
, and Ag

+
 in 

the exposure solution, respectively. 

 

5.3. Results 

5.3.1. Toxicity of Cu
2+

, Ag
+
, and Zn

2+
 individually 

Generally, Zn
2+

 had the lowest affinity for binding sites at the biotic ligands as shown by 

its lowest stability constant as compared to Cu
2+

 and Ag
+
 (i.e., logKZnBL < logKAgBL < 

logKCuBL; Table 5.1). This indicates that the formation of complexes of the biotic ligands with 

Zn
2+

 occurred at a lower extent than the formation of complexes with Cu
2+

 or Ag
+
. At the 

same time, the highest fraction of the total number of biotic ligands occupied by Zn
2+

 was 

required to result in a 50% inhibition of the root growth (Table 5.1 and Fig. 5.1A), i.e., at the 

same concentration, the Zn
2+

-biotic ligand complex resulted in the lowest toxic effects in 

comparison with the complexes of Cu
2+

 and Zn
2+

. Consequently, Zn
2+

 had the highest value of 

the median effective activity among the three metal ions studied (Table 5.1 and Fig. 5.1B). By 

contrast, Cu
2+

 had the highest affinity for binding sites at the biotic ligands and the lowest 

median effective activity compared to Zn
2+

 and Ag
+
 (Table 5.1 and Fig. 5.1B). Additionally, 

the fraction of the total number of biotic ligands occupied by Ag
+
 to inhibit the root growth by 

50% was lower than the corresponding fraction occupied by Cu
2+

 or Zn
2+

 (i.e., f50Ag < f50Cu < 

f50Zn; Table 5.1 and Fig. 5.1A). In other words, the Ag
+
-biotic ligand complex led to the 

highest toxic effects compared to the complexes of Cu
2+

 and Zn
2+

, contributing to the highest 

slope of the curve describing the relationship between the RRE and fM for Ag
+
 (Fig. 5.1A and  

Table S5.2, Supplementary information). 

5.3.2. Toxicity of binary metal mixtures (Cu
2+
–Zn

2+
 and Cu

2+
–Ag

+
) 

Generally, the combination of the BLM and the TEF approach using the TEF values for 

Cu
2+

, Ag
+
, and Zn

2+
 calculated from f50M (Table 5.2) performed equally well in estimating the 

toxicity of Cu
2+

–Zn
2+

 and of Cu
2+

–Ag
+
 mixtures as indicated by a negligible difference 

between the values of r
2
 (Fig. 5.2 and Table 5.2). Approximately, 70% of the variability in the 

toxicity of mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 could be explained by the TEQ based on the 

fraction of the total number of biotic ligands occupied by metal ions (r
2
 = 0.65–0.69). 
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Table 5.1. Toxicity of Cu
2+

, Zn
2+

, and Ag
+
 individually to plants as expressed by the median effective activity (EA50M; mol/L) and BLM 

parameters, i.e., the fraction of the total number of biotic ligands occupied by metal ions at the 50% response level (f50M) and the stability 

constant (logKBML; L/mol) as found in the present study and in other literature reports. 95% confidence interval (CI) is shown. Toxic equivalency 

factor (TEFM; Cu
2+

 equivalents) is determined according to Equation 5.3 based on the determined values of f50M. 

Metals 

Vigna unguiculata  Lactuca sativa  Hordeum vulgare 

EA50M (mol/L) 
 EA50M  

(mol/L; 95% CI) 

f50M  

(95% CI) 
logKMBL TEFM  f50M logKMBL logKMBL f50M logKMBL 

Cu
2+

 2.90
.
 10

-7
 

 2.60
.
 10

-8
  

(1.87
.
 10

-8
-3.61

.
 10

-8
) 

0.36  

(0.29-0.43) 
7.40 1    7.4±0.2 0.44 6.28 

Ag
+
 2.4

.
 10

-8
 

 1.34
.
 10

-7
  

(1.19
.
 10

-7
-1.50

.
 10

-7
) 

0.22  

(0.20-0.24) 
6.39 1.64       

Zn
2+

 1.6
.
 10

-5
 

 1.06
.
 10

-4
  

(9.11
.
 10

-5
-1.24

.
 10

-4
) 

0.42  

(0.38-0.44) 
4.00 0.86  0.38 4.06    

Source Kopittke et al. (2011) 
 

Present study  Wang et al. (2010) 
Thakali et 

al. (2006) 
Luo et al. (2008) 
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Figure 5.1. Dose-response curves describing toxicity of Cu
2+

, Ag
+
, and Zn

2+
 individually are 

expressed by the relationship between the relative root elongation (RRE; %) and the fraction 

of the total biotic ligands occupied by metal ions (fM) (A) and the free metal ion activity in the 

solution (log{M
n+

}; mol/L) (B) 
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Figure 5.2. Toxic effects of the mixtures of Cu
2+

–Zn
2+

 (A) and of Cu
2+

–Ag
+
 (B) are expressed 

as the relative root elongation (RRE; %). The RRE is plotted as a function of the toxic 

equivalency quotient (TEQ; Cu
2+ 

equivalents) according to Equation 5.5 

 

Moreover, the TEQ50 (Cu
2+

 equivalents) of the Cu
2+

–Zn
2+

 mixture was lower than the 

corresponding value for the Cu
2+

–Ag
+
 mixture (Fig. 5.2 and Table 5.2). This difference is 

significant since the 95% CIs of the TEQ50 for the two mixtures were statistically 

significantly deviating from each other (Table 5.2). These results indicate that mixtures of 

Cu
2+

 and Zn
2+

 were significantly more toxic than mixtures of Cu
2+

 and Ag
+
 based on Cu

2+
 

equivalents.  Additionally, no significant difference was found between the slopes of the dose-

response curves describing the toxicity of the mixtures of Cu
2+

–Zn
2+

 and of Cu
2+

–Ag
+
 (Fig. 

5.2 and Table 5.2). This similarity in the slopes for the two mixtures was explained by the 

similar meaning of the two curves, i.e., representing the changes in the RRE with the changes 

in Cu
2+

 equivalents. This explanation is supported by the overlapping 95% CIs of these slopes 

with the slope of the curve describing the relationship between fCu and RRE (Table 5.2 and 

Table S5.2, Supplementary information). 
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Table 5.2. Estimations of coefficients, i.e., toxic equivalency quotient at the 50% response 

level TEQ50 (Cu
2+

 equivalents) and slope parameter β (dimensionless), in Equation 5.5 and 

statistical parameters representing the toxicity of mixtures of Cu
2+

–Zn
2+

 and of Cu
2+

–Ag
+
. 

95% confidence intervals (CI) are shown. 

Parameters Cu
2+
–Zn

2+
 Cu

2+
–Ag

+
 

Cu
2+
–Ag

+
  

{Cu
2+

} > 2
.
 10

-8
 mol/L 

Cu
2+
–Ag

+
 

{Cu
2+

} < 2
.
 10

-8
 mol/L 

TEQ50  

(95% CI) 

0.56  

(0.51-0.60) 

0.82  

(0.76-0.87) 

0.88  

(0.82-0.93) 

0.61  

(0.58-0.64) 

β  

(95% CI) 

-1.534  

(-1.82 to -1.25) 

-1.599  

(-1.93 to -1.27) 

-1.896  

(-2.46 to -1.33) 

-3.701  

(-4.56 to -2.84) 

n 111 107 62 45 

r
2
 0.65 0.69 0.64 0.84 
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Figure 5.3. The response of lettuce roots exposed to mixtures of Cu
2+

 and Ag
+
 expressed as 

the relative root elongation (RRE; %) is plotted as a function of the toxic equivalency quotient 

of mixtures (TEQ; Cu
2+

 equivalent) at two levels of the free ion activity of Cu
2+

 in the 

exposure solution: {Cu
2+

} > 2
.
 10

-8
 (mol/L) (A) and {Cu

2+
} < 2

.
 10

-8
 (mol/L) (B) 

 

Noticeably, substantial deviations were found in measurements from predictions for a 

number of mixtures of Cu
2+

 and Ag
+
 (Fig. 5.2B). These deviated data points correspond to 

mixtures in which the free Cu
2+

 activities in these mixtures are all below 2
.
 10

-8
 (mol/L). 

Additionally, a shift in the trend of toxic effects over this exposure level of Cu
2+

 was shown in 

the dose-response curve describing toxicity of Cu
2+

 following single exposure (Fig. 5.1B). 

Particularly, at the free Cu
2+

 activities below 2
.
 10

-8
 (mol/L), toxic effects of Cu

2+
 did not 

increase with an increase in the exposure level of Cu
2+

. These results may be related to the 

fact that copper is an essential element and apparently, 2
.
 10

-8
 (mol/L) is the lower level of the 

optimal activity range, i.e., at which the growth of lettuce roots is not inhibited. Therefore, we 

divided the exposure solutions containing Cu
2+

–Ag
+
 mixtures into two categories on the basis 
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of the free ion activity of Cu
2+

 in the solution: {Cu
2+

} > 2
.
 10

-8
 (mol/L) (Fig. 5.3A) and {Cu

2+
} 

< 2
.
 10

-8
 (mol/L) (Fig. 5.3B). A similar cut-off value was not found for the mixtures of Cu

2+
 

and Zn
2+

. 

The above method of classifying the mixtures of Cu
2+

 and Ag
+
 based on the cut-off value 

of 2
.
 10

-8
 (mol/L) led to substantial improvement in estimating toxicity of the Cu

2+
–Ag

+
 

mixtures at low free ion activities of Cu
2+

 in the exposure solution (r
2
 = 0.84; Fig. 5.3B and 

Table 5.2). Moreover, a statistically significant difference was found between the estimated 

toxicities of the two classified mixture groups as shown by non-overlapping 95% CIs of the 

TEQ50 (Table 5.2). This indicates that the toxicity of Cu
2+

–Ag
+
 mixtures did not depend on 

their TEQ only, but also on the exact amount of their components (Fig. 5.3 and Table 5.2). 

With the same TEQ below approximately 0.8, mixtures with lower free ion activities of Cu
2+

 

in the solution (i.e., {Cu
2+

} < 2
.
 10

-8
 mol/L) were statistically significantly more toxic than 

mixtures with higher {Cu
2+

}. This is additionally indicated by a statistically significantly 

steeper dose-response curve describing toxicity of the mixture with {Cu
2+

} < 2
.
 10

-8
 mol/L 

compared to the curve with {Cu
2+

} > 2
.
 10

-8
 mol/L (Figs. 5.3A and 5.3B and Table 5.2). This 

is in support of the above suggestion that the value of 2
.
 10

-8
 mol/L may be the lower level of 

the optimal activity range. 

 

5.4. Discussion 

5.4.1. Toxicity of Cu
2+

, Zn
2+

, and Ag
+
 individually 

The results found in the present study indicate that the BLM parameters are better 

indicators of the intrinsic toxicity of single metals than EA50M. The BLM parameters provide 

a mechanistic explanation for the difference in comparison of toxicity of Cu
2+

 and Ag
+
 based 

on EA50M and f50M as shown in the Results section. In particular, as the Ag
+
-biotic ligand 

complex resulted in higher effects than the Cu
2+

-biotic ligand complex, the lower affinity of 

Ag
+
 for binding sites at the biotic ligands accounts for the higher median effective activity of 

Ag
+
 compared to the corresponding value for Cu

2+
. In other words, the inclusion of 

interactions between ions and biotic ligands at the environment-organism interface contributes 

to the different orders of toxicity of Cu
2+

 and Ag
+
 based on EA50M and on f50M. These 

observations strongly indicate that the BLM parameters provide better insight into 

mechanisms of metal binding and toxicity compared to one single value of EA50M. 

Based on the median effective activity EA50M, substantial differences were found between 

the sensitivity of cowpea Vigna unguiculata reported by Kopittke et al. (2011) and of lettuce 

Lactuca sativa found in the present study (Table 5.1). On the basis of the estimations of 

EA50M, Lactuca sativa had higher tolerance to Zn
2+

 and Ag
+
, but was more sensitive to Cu

2+
 

than Vigna unguiculata. Moreover, the BLM parameters reflecting the toxicity of Cu
2+

 and 

Zn
2+

 individually obtained in the present study on lettuce Lactuca sativa were, in general, in 

the ranges reported in other studies on barley Hordeum vulgare (Wang et al., 2010; Thakali et 

al., 2006; Luo et al., 2008) (Table 5.1). This indicates inconsiderable differences in the 

sensitivity of Lactuca sativa and Hordeum vulgare to Cu
2+

 and Zn
2+

 based on the BLM 

parameters. 

5.4.2. Toxicity of binary metal mixtures (Cu
2+
–Zn

2+
 and Cu

2+
–Ag

+
) 

The present study shows strong dependence of mixture toxicity on the composition and 

proportion of the metal mixture, i.e., the TEQ of the mixture and the specific amount of Cu
2+

 

in the mixture. This observation was previously reported by Sharma et al. (1999) and Hamm 

et al. (2006). This dependence is potentially attributed to physiological processes, which are 
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highly specific, depending on the exposure level. For example, for essential metals like Cu
2+

, 

their presence above certain exposure levels is vital and beneficial for plant growth. By 

contrast, exposure to extremely low or extremely high concentrations of these elements is 

toxic to the growth of plants. This explanation potentially accounts for the observations on 

Cu
2+

 toxicity found in the present study, e.g., higher toxic effects caused by the mixtures with 

lower activities of Cu
2+

 among mixtures with the same TEQ below 0.8. Similarly, 

physiological responses of plants exposed to Zn
2+

 highly vary depending on the exposure 

level, ranging from changes in the plant cell vacuolization or in membrane permeability to 

damages to enzyme systems, respiration, or to photosynthetic apparatus (Luo and Rimmer, 

1995; Kabata-Pendias and Pendias, 1984). 

5.4.3. The integration of ion-ion interactions in estimating metal toxicity 

In the present study, 64–84% of the variability in the toxicity of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 

mixtures could be explained by TEQ (r
2
 = 0.64–0.84). Together with the study of Hatano and 

Shoji (2008) and Jho et al. (2011), findings in the present study support the assumption that 

the fraction of the biotic ligands bound to metal ions in mixtures in the total number of biotic 

ligands might be indicative of toxicity of metal mixtures. As presented in the present study, 

the incorporation of the BLM into the extended TEF approach allows integrating interactions 

between different metal ions in estimating their joint toxicity based on particular assumptions 

about metal binding. However, an exact understanding of metal binding is usually lacking, 

causing difficulties in applying the BLM to predict toxicity of metal mixtures. Diverse 

binding of metals to a variety of biotic sites further complicates the issue. Moreover, in the 

BLM, ion-ion interactions are interpreted in terms of competition for binding sites at the 

biotic ligands. However, previous studies indicate that effects of the interactions on 

bioaccumulation and toxicity of single metals and mixtures could not be completely 

interpreted in terms of competitive binding to biotic ligands (Le et al., 2012; Thakali et al., 

2006; Norwood et al., 2007). Apart from competition for binding sites, joint toxicity of 

multiple metals is influenced by a number of other mechanisms, e.g., the production of metal-

binding proteins like metallothionein, changes in the permeability of the plasma membrane 

induced by exposure to metal mixtures, and interactions between essential and non-essential 

metals (Manzo et al., 2010; Pavicic et al., 1994;  MacFarlane and Burchett, 2002; Belyaeva et 

al., 2004; Llamas et al., 2000; Viarengo, 1985; George, 1990). These mechanisms are not 

taken into account in estimating toxicity of metal mixtures by the BLM approach, potentially 

contributing to deviations of predictions from measurements. 

In summary, the present study is in support of the BLM principle that the fraction of the 

total number of biotic ligands occupied by metal ions is a key indicator, determining metal 

toxicity. The BLM parameters provide a better understanding of metal binding and intrinsic 

toxicity of single metals. More importantly, the present study indicates the potential 

applicability of the BLM principle to metal mixtures. This was shown by a good predictive 

power of the combination of the BLM and the TEF approach, using the TEQ based on the 

fraction of the total number of biotic ligands bound to metal ions in estimating toxicity of 

metal mixtures. This modelling approach additionally allows integrating assumed ion-ion 

interactions in predicting joint toxicity of multiple metals, which are usually excluded in 

models estimating mixture toxicity. Furthermore, this method of integrating the fraction of 

biotic ligands occupied by metal ions to the TEF approach is applicable to mixtures of more 

than two substances, consisting of metals binding to the same or different sites at the biotic 

ligands. 
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SUPPLEMENTARY INFORMATION 

Table S5.1. Chemical composition of the Steiner solution used for chemical speciation 

Metals Na
+ 

Mg
2+ 

K
+ 

Ca
2+ 

Mn
2+ 

Fe
2+ 

Zn
2+ 

Concentration 

(mol/L) 
1.02. 10-6 1.83. 10-3 6.98. 10-3 2.82. 10-3 1.16. 10-5 4.96. 10-5 1.72. 10-6 

 

Table S5.2. The slopes (β; dimensionless) of the curves describing the relationships between the fraction of the 

total number of biotic ligands occupied by Cu2+, Zn2+, and Ag+ (fCu, fZn, and fAg, respectively) and the growth of 

lettuce roots expressed by the relative root elongation (RRE; %). 95% confidence intervals (CI) are given. 

Metals β 95% CI 

Cu2+ -3.307 -5.256 to -1.359 

Zn2+ -3.636 -4.354 to -2.918 

Ag+ -17.94 -27.60 to -8.284 
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Abstract—Effects of ion-ion interactions on metal toxicity to lettuce Lactuca sativa were 

studied based on the electrical potential at the plasma membrane (PM) surface (ψ0). Ions 

interact with each other at the proximate outside of the membrane, affecting their activities at 

the PM surface ({M
n+

}0) (surface interactions). Additions of Na
+
, K

+
, Ca

2+
, and Mg

2+
 reduced 

{Cu
2+

}0 substantially. Additions of Zn
2+

 also reduced {Cu
2+

}0, but Cu
2+

 and Ag
+
 at the 

exposure levels tested had negligible effects on the activity of each other at the PM surface. 

Subsequently, interactions occurred between the free ions adsorbed, affecting metal toxicity 

(internal interactions). Metal toxicity was expressed by the strength coefficient and based on 

{M
n+

}0. Estimates of strength coefficients indicated a decrease of toxicity in the order of Ag
+
 

> Cu
2+

 > Zn
2+

. Furthermore, the strength coefficient was expanded to assess internal 

interactions. Na
+
, K

+
, Ca

2+
, and Mg

2+
 adsorbed to the membrane had significant and dose-

dependent effects on Cu
2+

 toxicity in terms of osmolarity. Internal interactions between Cu
2+

 

and Zn
2+

 and between Cu
2+

 and Ag
+
 were modelled by expanding the strength coefficient of 

concentration addition (CA) and response addition (RA) models. These extended models 

consistently indicated that Zn
2+

 significantly reduced Cu
2+

 toxicity. According to the extended 

CA model, Ag
+
 significantly increased Cu

2+
 toxicity while Cu

2+
 significantly reduced Ag

+
 

toxicity. In contrast, the RA model predicted insignificant effects of adsorbed Cu
2+

 and Ag
+
 

on the toxicity of each other. These results were interpreted using ψ0, demonstrating its role in 

modelling multiple ion interactions and metal toxicity. 

 

Keywords — Electrical potential    Membrane surface    Toxicity   Metal mixtures   Model 

 

6.1. Introduction 

Besides chemical speciation in the environment, interactions of ions with organisms are 

important in controlling metal bioavailability (Worms et al., 2006; Fairbrother et al., 2007). 

The interactions are therefore of high concern and increasingly integrated in estimating 

bioavailability and toxicity of metals. Interactions between ions and biotic ligands at the 

organism-water interface, for example, were integrated in predicting metal bioavailability in 

the Biotic Ligand Model (De Schamphelaere and Janssen, 2002). 

Similar to interactions between ions and organisms at the biological surface, interactions 

between different ions influence metal bioavailability and toxicity. Biological actions of metal 

ions in mixtures might deviate from their actions singly (Manzo et al., 2010). For example, 

exposure to metal mixtures, e.g., Cu, Pb, and Zn, at concentrations below their individual 

environmental quality guideline levels resulted in adverse effects due to the interactions 

among these metals (Cooper et al., 2009). However, ion-ion interactions are usually excluded 

from the current models for mixtures. For example, in the concepts of concentration addition 

(CA) and response addition (RA or response multiplication), it was assumed that the presence 

of one substance does not have effects on the biological action of others (Loewe and 

Muischnek, 1926; Bliss, 1939; Kinraide, 1999). Consequently, deviations from ideal 

behaviour of mixtures (i.e., additivity) cannot be quantified by these models without 

modification of the conventional concepts. 

The electrostatic approach has been applied in assessment of metal bioavailability and 

toxicity, taking into account plant-ion interactions at the cell membrane surface (Kinraide, 

2006). The basis of this method is the importance of the electrical potential at the plasma 

membrane (PM) surface (denoted as ψ0) in the uptake and transport of ions. ψ0 is induced by 

the intrinsically negative charge at the PM surface and influences the interactions between 

ions and plants (Kinraide et al., 2004; Hassler et al., 2004; Kinraide, 2001, 2006; Yermiyahu 
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PM 

Internal 

Bathing 

medium 

1 2 

Cytoplasm 

and Kinraide, 2005; Kinraide and Wang, 2010; Wang et al., 2011). The significance of ψ0 is 

usually assessed through their dual roles in metal toxicity: effects on the ion distribution 

between the PM surface and the bathing medium (BM) and on the electrical driving force for 

ion transport through the PM (Kinraide et al., 2001; Wang et al., 2011). The ability to 

compute ψ0 potentially enables investigation of ion-ion interactions by determining changes in 

the activity of ions at the PM surface with varying ionic composition of the BM. This method 

has been recently used to assess effects of common cations (e.g., Na
+
, K

+
, Ca

2+
, and Mg

2+
) on 

metal toxicity (Wang et al., 2008, 2011; Kopittke et al., 2011b). Yet, the approach has not 

been applied to mixtures of toxic metal ions. 

Interactions between Cu
2+

 and Ag
+
 have not been explicitly investigated previously. 

Although some studies demonstrated effects of Cu
2+

 and Zn
2+

 on the toxicity of each other to 

plants, a mechanistic delineation of the interactions at different biological surfaces is lacking 

(Otitoloju, 2002; Montvydiene and Marciulioniene, 2007; Ince et al., 1999; Dirilgen et al., 

1994; Sresty and Rao, 1999; Luo and Rimmer, 1995). The present study aimed at integrating 

ψ0 into the assessment of ion-ion interactions and metal rhizotoxicity to the root growth of 

lettuce, Lactuca sativa. The interactions were incorporated in estimating Cu
2+

 toxicity in the 

presence of common cations, i.e., Na
+
, K

+
, Ca

2+
, and Mg

2+
, and in predicting toxicity of 

mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
. Interactions are distinguished as surface interactions (1) 

and internal interactions (2) (Fig. 6.1). Surface interactions occur between ions at the 

proximate outside of the membrane, affecting the activity of ions at the PM surface. These 

interactions are directly responsive to ψ0, i.e., the ionic composition of the BM influences the 

activity of ions at the PM surface through changes in ψ0. Internal interactions occur between 

free ions adsorbed and affect metal toxicity. The role of ψ0 in these interactions was indirectly 

expressed by the use of free metal ion activity at the PM surface as a key factor determining 

metal toxicity. The surface interactions were explicitly delineated by determining changes in 

ψ0 while the internal interactions following exposure to metal mixtures were predicted by 

mathematically expanding models simulating concepts of CA and RA. 

 

 

 

Figure 6.1. Interactions between free 

ions (denoted by the circles with a plus 

sign) at the proximate outside of the 

membrane (surface interactions) and 

between free ions adsorbed (internal 

interactions). PM stands for plasma 

membrane. 

 

 

6.2. Methods 

6.2.1. Test species and toxic endpoint 

Toxic effects of metals were assessed on lettuce, Lactuca sativa, in terms of the inhibition 

of the root elongation after 4 d of exposure. This plant species was chosen because of its high 

capacity to accumulate metals (Garate et al., 1993; McKenna et al., 1993). Additionally, 
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Lactuca sativa was recommended by the Organisation for Economic Cooperation and 

Development (OECD, 2006). 

6.2.2. Preparation of the test solutions 

Steiner solution was used as the test medium (Steiner, 1961). The solution pH was 

stabilised by MOPS (3-[N-morpholino] propane sulfonic acid) buffering at 0.75 g/L and 

NaOH (Le et al., 2012). The MOPS buffer was used because of its negligible effects on biotic 

and non-biotic factors. Specifically, this chemical does not form complexes with metals 

(Kandegedara and Rorabacher, 1999). It does not affect the toxicity of effluents and sediment 

pore waters and, consequently, was recommended by the U.S. Environmental Protection 

Agency (US EPA, 1991). Moreover, at the concentration of 0.75 g/L, the MOPS-buffering 

does not influence metal toxicity to Daphnia magna and Pseudokirchneriella subcapitata (De 

Schamphelaere et al., 2004). Metal ions investigated (Cu
2+

, Ag
+
, and Zn

2+
) were added into 

the Steiner solution as nitrate salts. 

In copper and silver toxicity tests, pH and Cu
2+

/Ag
+
 activities in the exposure solutions 

were checked daily and adjusted by adding HNO3/KOH and Cu(NO3)2/AgNO3 during the 

exposure period. In addition, in zinc toxicity tests, solutions were renewed daily as Zn
2+

 

activities were not measured empirically in the present study. The same approach was applied 

for mixture toxicity tests to avoid interferences of different metal ions on the measurements of 

the free metal ion activity by the ion-selective electrodes. 

6.2.3. Metal measurements and speciation in the hydroponic solution 

Free ion activities of H
+
, Cu

2+
, and Ag

+
 were measured with ion-selective electrodes 

(Metrohm). Copper and silver sulfide ion-selective electrodes were calibrated by using a set of 

measurements at different concentrations of Cu
2+

 and Ag
+
 in solution (Le et al., 2012). Free 

Zn
2+

 activities were computed from the total Zn
2+

 concentrations in the solution by using the 

Windermere Humic Aqueous model (WHAM) VI with Steiner solution as the default medium 

(Tipping, 1998). A disadvantage of the WHAM VI is the exclusion of Ag
+
 in this version. A 

survey was performed to investigate effects of Ag
+
 at the activity range studied on the 

activities of other cationic constituents of the Steiner solution by using the Chemical 

Equilibria in Aquatic Systems (CHEAQS) model (Verweij, 2004). The results from this 

survey indicated a negligible influence of Ag
+
 on activities of other cations. Consequently, 

activities of cations in solution (except for Cu
2+

 and Ag
+
) were specified by the WHAM VI 

model although Ag
+
 is excluded in this speciation model. Ionic composition of the Steiner 

solution used for the chemical speciation is given in Table S6.1, Supplementary information. 

6.2.4. Toxicity assays 

Seeds of Lactuca sativa were germinated in the Steiner solution for 4 d under a normal 

light cycle of 16: 8 hours light: dark at 15 
o
C, which is in the range of the average temperature 

in the Netherlands. Germinated plants were fixed in parafilm straps that floated on the surface 

of a glass beaker with the roots immersed in the medium for 4 d. For each beaker, 4 plants 

were put in. The root growth (Growth) of lettuce exposed to each solution was determined as 

the average of the increases in the root length of the 4 plants grown in the solution after 4 d of 

exposure compared to the initial length. In total, 180 toxicity tests were carried out to 

investigate effects of Na
+
, K

+
, Ca

2+
, and Mg

2+
 on Cu

2+
 toxicity. Na

+
, K

+
, Ca

2+
, and Mg

2+
 were 

added to the Steiner solutions up to the concentrations of 10, 20, 10, and 20 mmol/L, 

respectively. With each combination of these cations, 8–10 toxicity tests were carried out at 

varying free ion activities of Cu
2+

 in solution. Additionally, 238 toxicity tests were performed 

in the assessment of joint toxicity of Cu
2+

, Zn
2+

, and Ag
+
, including 122 tests without 
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additions of Ag
+
 and 116 tests without additions of Zn

2+
 to the Steiner solution. The free ion 

activities of Cu
2+

, Zn
2+

, and Ag
+
 in solution studied varied in the ranges: Cu

2+
: 10

-10
–10

-6
 

mol/L; Zn
2+

: 10
-6

–10
-3

 mol/L; and Ag
+
: 10

-8
–10

-7
 mol/L. These ranges were selected from 

preliminary toxicity tests carried out at different activities of these cations in solution varying 

from the background level of the Steiner solution to the extremely toxic level. 

6.2.5. Metal ion activity at the plasma membrane surface 

ψ0 was calculated from free ion activities of all cations in the solution by using the model 

developed by Kinraide and Wang (2010). The calculated surface potential was then used to 

determine free ion activities of metals at the PM surface according to the Nernst Equation 

(Eqn. 6.1): 













 

TR

ψF 0
b

n

0

n n
exp}{M}{M  (6.1) 

where {M
n+

}0 and {M
n+

}b (mol/L) are free ion activities of metal ion M
n+

 at the PM surface 

and in the BM, respectively; n (dimensionless) is the charge of metal ion M
n+

; F (J/mV) is the 

Faraday constant (F = 96.485); R (J/mol/K) is the universal gas constant (R = 8.314); and T 

(K) is the experimental temperature (288 K in the present study). 

6.2.6. Derivation of mathematical equations describing metal toxicity 

Toxicity of single metals was found to follow the Weibull Equation (Kinraide and Parker, 

1989). Accordingly, the response of lettuce exposed to single metals expressed by the root 

growth (Growth; mm) can be related to {M
n+

}b (Eqn. 6.2) or {M
n+

}0 (µmol/L) (Eqn. 6.3) as: 

])}M{exp[(
Growth

b

n dc

b


   (6.2) 

])}M{exp[(
Growth

0

n dc

b


   (6.3) 

where coefficient b (mm) is the growth of lettuce roots when the metal ion is not present in 

the solution (i.e., {M
n+

}b = 0) or at the PM surface (i.e., {M
n+

}0 = 0); coefficient c (L/µmol) 

reflects the metal-specific strength of toxicity. Its value increases with increasing strength of 

metal toxicity; and coefficient d (dimensionless) is a shape parameter; when coefficient d is 

greater than 1, the curves are sigmoidal (see illustrations in Kinraide et al., 2004). 

Toxicity of Cu
2+

 in the presence of Na
+
, K

+
, Ca

2+
, and Mg

2+
 

Common cations, e.g., Na
+
, K

+
, Ca

2+
, and Mg

2+
, were assumed to act as osmoticants, i.e., 

intoxication resulted from the reduction in water potential (Kinraide, 1999). Consequently, in 

the present study, their effects on Cu
2+

 toxicity were evaluated by a common term 

“osmolarity”. Osmotic effects of these major cations on Cu
2+

 toxicity were evaluated by 

incorporating expansion coefficients into the strength coefficient in Equation 6.3. Osmolarity 

was calculated based on the osmotic coefficients and the total concentrations of salts in the 

solution (Robinson and Stoke, 2002). Furthermore, the relationship between root elongation 

and osmolarity followed a sigmoidal curve (Kinraide, 1999). Therefore, toxicity of Cu
2+

 

expressed by the root growth (Growth; mm) can be written as a function of the surface 

activity of Cu
2+

 ({Cu
2+

}0; µmol/L) and osmolarity (Os; µmol/L) as follows: 

   d
ccc

b

0

22

20101 }Cu{OsOs1exp
Growth


   (6.4) 
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where coefficients c10 and c20 represent osmotic effects on Cu
2+

 toxicity. The effects were 

considered statistically significant if the estimate of the 95% confidence interval (CI) of these 

strength coefficients determined by the regression analysis did not encompass zero. 

Toxicity of Cu
2+

, Zn
2+

, and Ag
+
 in non-interactive mixtures 

If mixture components do not interact with each other, the growth of lettuce roots exposed 

to the mixture can be written according to the conventional concepts of CA and RA assuming 

no interactions between the mixture constituents. According to the CA, mixture substances are 

supposed to act by the same mechanism (Bliss, 1939). Subsequently, the growth of lettuce 

roots (Growth; mm), following exposure to a non-interactive mixture of Cu
2+

, Zn
2+

, and Ag
+
, 

can be determined based on the free ion activity of these metals at the PM surface according 

to the following equation 

  d
ccc

b

030

2

20

2

1 }Ag{}Zn{}Cu{exp
Growth

 
   (6.5) 

where c1, c2, and c3 (L/µmol) are the strength coefficients of toxicity of Cu
2+

, Zn
2+

, and Ag
+
 in 

their non-reactive mixtures, respectively; d (dimensionless) is the shape coefficient of the 

dose-response curve describing toxicity of these metal ions according to the CA model 

(Kinraide, 1999). 

The RA model is based on the assumption that mixture components have different modes 

of action of toxicity (Loewe and Muischnek, 1926). Therefore, the response of organisms 

exposed to non-interactive mixtures can be expressed as a multiplicative function of the 

response of the organisms following exposure to each constituent separately (Kinraide, 1999). 

Accordingly, the root growth of lettuce (Growth; mm) in response to the exposure to a non-

interactive mixture of Cu
2+

, Zn
2+

, and Ag
+
 can be written as Equation 6.6 according to the 

concept of RA: 

      321

030

2

20

2

1 }Ag{}Zn{}Cu{exp
Growth

ddd
ccc

b

 
  (6.6) 

where  c1, c1, and c3 (L/µmol) are the strength coefficients of toxicity of Cu
2+

, Zn
2+

, and Ag
+ 

in their non-reactive mixtures, respectively; and d1, d2, and d3 (dimensionless) are the shape 

coefficients of the dose-response curves describing toxicity of Cu
2+

, Zn
2+

, and Ag
+
 according 

to the RA model, respectively (Kinraide, 1999). 

Equations 6.5 and 6.6 are based on the conventional concept of CA and RA, i.e., the 

presence of one metal at the membrane surface does not affect the toxicity of another. In other 

words, toxicity of metals following exposure to the non-interactive mixtures of Cu
2+

, Zn
2+

, 

and Ag
+
 is similar to the toxicity of these metals following single exposure. As a result, the 

strength coefficient and the slope parameter describing toxicity of single metals as in Equation 

6.3 can be determined by the regression analysis using toxicological data on metal mixtures. 

Toxicity of interactive mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 

If metals adsorbed following exposure to mixtures interact with each other, i.e., the 

presence of one metal affects the toxicity of another metal, the interactions can be taken into 

account in estimating the joint toxicity by expanding the conventional CA and RA models. In 

particular, expansion coefficients that describe interactive effects can be integrated into the 

strength coefficients in Equations 6.5 and 6.6 (S6.A, Supplementary information). The 

strength coefficient can be extended in two different ways and accordingly expressed by two 

different Equations S6.6 and S6.7 in S6.A, Supplementary information. The comparison of 
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the expansion coefficient with zero indicates whether one substance reduces or increases the 

toxicity of the others. In addition, the interactive effect was considered statistically significant 

when the 95% CI of the expansion coefficient does not encompass zero. Of the two expansion 

equations available (Equations S6.6 and S6.7 in S6.A, Supplementary information), the one 

with higher statistical significance was used to simulate the interactions. 

Mixtures of Cu
2+

 and Zn
2+

. Coefficient c12 (L/µmol) that describes effects of Zn
2+

 on Cu
2+

 

toxicity can be incorporated into the strength coefficient of Cu
2+

 toxicity. Similarly, 

coefficient c21 (L/µmol) can be integrated into the strength coefficient of Zn
2+

 toxicity to 

represent effects of Cu
2+

 on Zn
2+

 toxicity. Toxicity of interactive mixtures of Cu
2+

 and Zn
2+

 

expressed by the root growth (Growth; mm) can be written as Equations 6.7 and 6.8 according 

to the extended CA and RA models, respectively, as coefficients in these equations are 

statistically significant (See Results): 


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where c1 (L/µmol) is the strength coefficient of Cu
2+

 toxicity in the solution without Zn
2+

; c2 

(L/µmol) is the strength coefficient of Zn
2+

 toxicity in the solution free of Cu
2+

; d 

(dimensionless) represents the slope of the curve describing toxicity of Cu
2+

 and Zn
2+

 in their 

interactive mixtures according to the extended CA model; and d1 and d2 (dimensionless) are 

slope parameters representing toxicity of Cu
2+

 and Zn
2+

, respectively, in their interactive 

mixture on the basis of the extended RA model. 

Mixtures of Cu
2+

 and Ag
+
. Toxicity of Cu

2+
 following exposure to its mixtures with Ag

+
 

can be expressed by including coefficient c13 (L/µmol) that describes effects of Ag
+
 on Cu

2+
 

toxicity in the strength coefficient of Cu
2+

 toxicity. Similarly, coefficient c31 (L/µmol) can be 

incorporated into the strength coefficient of Ag
+
 toxicity to represent effects of Cu

2+
 on Ag

+
 

toxicity. Based on the extended CA model, the growth of lettuce roots (Growth; mm) 

following exposure to interactive mixtures of Cu
2+

 and Ag
+
 can be written by Equation 6.9 as 

coefficients in this equation were estimated to be statistically significant (See Results): 

 
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
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013
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}Ag{1

}Cu{
exp

Growth  (6.9) 

where c1 (L/µmol) is the strength coefficient of Cu
2+

 toxicity in the medium free of Ag
+
; c3 

(L/µmol) is the strength coefficient of Ag
+
 toxicity in the solution without Cu

2+
; and d 

(dimensionless) is the slope parameter describing toxicity of Cu
2+

 and Ag
+
 to lettuce exposed 

to their interactive mixtures according to the extended CA model. 

By contrast, expansion coefficients could not be integrated into the strength coefficient of 

Cu
2+

 and Ag
+
 toxicity based on the extended RA model as no expansion coefficient was found 

to be statistically significant. A full description of the derivation of Equations 6.5–6.9 is 

presented in S6.A, Supplementary information. 
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6.2.7. Regression analyses 

Coefficients in all above equations were determined by multiple nonlinear regression 

analyses using the SYSTAT software. A coefficient is considered significant if its 95% CI 

statistically significantly deviates from zero, i.e., not encompassing zero (S6.A, 

Supplementary information). Additionally, the strength of the significance increases with an 

increase in the absolute value of the ratio between the estimate of the parameter and the 

asymptotic standard error, i.e., parameter/ASE in the regression result. Toxicity data 

generated from all tests of mixture toxicity were used to assess toxicity of Cu
2+

, Ag
+
, and Zn

2+
 

in non-interactive mixtures as the presence of one metal does not affect the biological actions 

of the other metals in the mixtures. Toxicological data from 122 tests without additions of Ag
+
 

were used to assess toxicity of interactive mixtures of Cu
2+

 and Zn
2+

 as Ag
+
 was not present in 

the solutions. Moreover, toxicity of the interactive Cu
2+

–Ag
+
 mixtures was evaluated using 

116 tests without additions of Zn
2+

 assuming negligible effects of Zn
2+

 at the background 

concentration in the default medium. Furthermore, Akaike’s information criterion (AIC) was 

calculated to compare different models developed for estimating toxicity of Cu
2+

–Zn
2+

 and 

Cu
2+

–Ag
+
 mixtures (Burnham and Anderson, 2002). The r

2
 value indicates the potential of the 

model in explaining the variability in the response of lettuce exposed to metal mixtures 

whereas the AIC value represents the suitability of the model. The model with the lowest 

value of AIC is the most appropriate model. 

 

6.3. Results 

6.3.1. Surface interactions affect the activity of ions at the plasma membrane surface 

Interactions between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and Mg

2+
 

Additions of Na
+
, K

+
, Ca

2+
, and Mg

2+
 at the concentrations in solution tested increased ψ0 

from –18 to –4.0 mV (Fig. S6.1, Supplementary information). This variation in ψ0 then 

resulted in a decrease of about half of an order of magnitude of {Cu
2+

}0 at a given exposure 

level expressed by {Cu
2+

}b (Fig. S6.1, Supplementary information). Moreover, a statistically 

significant relationship was found between {Cu
2+

}b (µmol/L) and {Cu
2+

}0 (µmol/L) (Fig. 

S6.1, Supplementary information; p < 0.0001; F = 2910; n = 180; r
2
 = 0.94). Furthermore, in 

the presence of varying common cation concentrations, {Cu
2+

}0 (n = 180; r
2
 = 0.79) was a 

better indicator of Cu
2+

 toxicity compared to {Cu
2+

}b (n = 180; r
2
 = 0.65) according to 

nonlinear regression with the Weibull Equation (Table S6.2, Supplementary information). 

Interactions in mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
  

At the exposure levels studied, surface interactions also occur between metals following 

exposure to their mixtures, influencing their activities at the PM surface. The effects were 

metal-specific and dose-dependent. Additions of Zn
2+

 substantially reduced {Cu
2+

}0 as shown 

by a difference of around half of an order of magnitude of {Cu
2+

}0 at a given {Cu
2+

}b with 

varying concentrations of Zn
2+

 added (Fig. S6.2A, Supplementary information). In contrast, 

Cu
2+

 did not substantially affect {Zn
2+

}0 as indicated by negligible variations in {Zn
2+

}0 at a 

given {Zn
2+

}b in mixtures with different {Cu
2+

}b (Fig. S6.2B, Supplementary information). 

This difference was attributed to a larger decrease in the negativity of ψ0 induced by the 

addition of Zn
2+

 than the reduction caused by the addition of Cu
2+

 at the exposure levels tested 

(Fig. S6.2A, Supplementary information). {Zn
2+

}0 decreased with an increase in {Zn
2+

}b at 

the lowest exposure levels in the solution from 1 to 10 µmol/L as the increase in {Zn
2+

}b was 

compromised by a reduction in the negativity of ψ0 induced by Cu
2+

 added (Fig. S6.2B, 

Supplementary information). Similar {Zn
2+

}0 was found for the treatment with the lowest (1 
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µmol/L) and highest (100 µmol/L) activity of Zn
2+

 in the solution (Fig. 6.2B, Supplementary 

information). These results demonstrate the significance of ψ0 in determining {Zn
2+

}0, even 

with small variations in ψ0. A similar important role of ψ0 in determining {Cu
2+

}0 following 

exposure to Cu
2+

–Ag
+
 mixtures was observed (Fig. S6.3A, Supplementary information). 

Moreover, the presence of Cu
2+

 and Ag
+
 in solution in the toxicity tests in the present study 

only resulted in small variations in the negativity of ψ0 (Fig. S6.3, Supplementary 

information). Consequently, there were only negligible variations in {Cu
2+

}0 and {Ag
+
}0 with 

varying additions of Ag
+
 or Cu

2+
 into the solution (Fig. S6.3, Supplementary information). 

6.3.2. Internal interactions affect metal toxicity 

Interactions between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and Mg

2+
  

Osmolarity had statistically significant effects on Cu
2+

 toxicity as expansion coefficients 

c10 and c20 in Equation 6.4 deviated statistically significantly from zero (Table 6.1). 

Approximately 72% of the variability in the growth of lettuce roots can be explained by 

Equation 6.4 (Fig. 6.2 and Fig. S6.4, Supplementary information; n = 180; r
2
 = 0.72). 

Moreover, the opposite signs of these coefficients (c10 is negative and c20 is positive) indicate 

dependence of these effects (alleviation or enhancement) on the value of osmolarity or on the 

concentrations of Na
+
, K

+
, Ca

2+
, and Mg

2+
 in solution in other words. The osmotic effects of 

adsorbed Na
+
, K

+
, Ca

2+
, and Mg

2+
 on Cu

2+
 toxicity were negligible as the strength coefficient 

of Cu
2+

 toxicity in the medium free of these cations (i.e., c1 in Equation 6.4) was 5 and 10 

orders of magnitude higher than expansion coefficients c10 and c20, respectively (Table 6.1). 

This accounts for a lack of improvement in predicting Cu
2+

 toxicity from incorporating the 

internal interactions between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and Mg

2+
 (r

2
 = 0.72; Table 6.1) 

compared to the exclusion of these interactions (r
2
 = 0.79; Table S6.2, Supplementary 

information). 

 

Table 6.1. Estimates of coefficients and statistical parameters, i.e., asymptotic standard error 

(ASE) and 95% confidence interval (CI), in Equation 6.4 integrating effects of Na
+
, K

+
, Ca

2+
, 

and Mg
2+

 adsorbed in terms of osmolarity in estimating Cu
2+

 toxicity (n = 180; r
2
 = 0.72) 

Parameter Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) 
Control 

growth 
42.42 2.50 16.95 37.48 47.36 

c1 (L/µmol) 
Strength of 

Cu
2+

 toxicity 
4.57 0.96 4.79 2.69 6.46 

c10 (L/µmol) 

Linear 

expansion 

coefficient 

-0.39
.
 10

-4 
0.02

.
 10

-4
 -18.76 -0.44

.
 10

-4
 -0.35

.
 10

-4
 

c20 (L/µmol) 

Sigmoidal 

expansion 

coefficient 

0.44
.
 10

-9
 0.04

.
 10

-9
 11.94 0.36

.
 10

-9
 0.51

.
 10

-9
 

d (dimensionless) Slope 0.66 0.10 6.67 0.47 0.86 
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Figure 6.2. The root growth of lettuce (Growth; mm) exposed to Cu
2+

 in the presence of Na
+
, 

K
+
, Ca

2+
, and Mg

2+
 is plotted as a function of the free Cu

2+
 activity at the PM surface 

({Cu
2+

}0; µmol/L) and the osmolarity (Os; µmol/L): the surface represents the estimations 

based on the regression analysis according to Equation 6.2 and dotted points represent the 

experimental data. 

 

Toxicity of Cu
2+

, Zn
2+

, and Ag
+
 in non-interactive mixtures  

The conventional concepts of CA and RA models, which assumes no interactions in 

mixtures, as expressed by Equations 6.5 and 6.6, respectively, performed equally well in 

estimating toxicity of Cu
2+

, Zn
2+

, and Ag
+
 in non-interactive mixtures with r

2
 values of 0.83 

and 0.86, respectively (Tables S6.3 and S6.4, Supplementary information). Based on the 

strength coefficients estimated by both CA and RA models, Ag
+
 and Cu

2+
 were far more 

rhizotoxic than Zn
2+

 while Ag
+
 was slightly more toxic than Cu

2+
 (Table 6.2). Estimates of the 

strength coefficient of toxicity of Cu
2+

 and Zn
2+

 predicted by the CA model were not 

statistically significantly different from those predicted by the RA model, i.e., the 95% CI of 

the strength coefficients estimated by these models overlapped (Table 6.2). In addition, the 

strength coefficient of toxicity of Ag
+
 predicted by the RA model was slightly higher than the 

estimation by the CA model (Table 6.2). 

Interactions in mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
  

According to the extended CA model, adsorbed Cu
2+

 and Zn
2+

 had significant effects on 

the toxicity of each other as the 95% CIs of the expansion coefficients c12 and c21 did not 

encompass zero (Table 6.3). Particularly, Zn
2+

 significantly reduced Cu
2+

 toxicity (c12 > 0) 

and Cu
2+

 significantly increased Zn
2+

 toxicity (c21 < 0). Based on the extended RA model, 

Zn
2+

 significantly reduced Cu
2+

 toxicity as c12 deviated significantly from zero while Cu
2+

 did 

not have significant effects on Zn
2+

 toxicity as no statistically significant value of this 

coefficient was found (Table 6.4). Moreover, the predictive powers of the extended CA and 

RA models were similar in estimating toxicity of interactive mixtures of Cu
2+

 and Zn
2+

 (Figs. 

6.3A, 6.3B and Fig. S6.5, Supplementary information; n = 122; r
2
 = 0.92). 
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Table 6.2. Estimates of coefficients describing strength of toxicity of Cu
2+

 (c1; L/µmol), Zn
2+

 

(c2; L/µmol), and Ag
+
 (c3; L/µmol) individually found in the present study for Lactuca sativa 

according to the conventional concept of concentration addition (CA) and response addition 

(RA) models and in the study of Kopittke et al. (2011a) for Vigna unguiculata following 

exposure to single metals. 95% confidence intervals (CI) are provided. 

Source Species Model 

Strength coefficient (L/µmol) 

Cu
2+

 

(c1, 95% CI) 

Zn
2+

 

(c2, 95% CI) 

Ag
+
 

(c3, 95% CI) 

Present study 
Lactuca 

sativa 

CA 
0.67 

(0.59-0.76) 

1.66
.
 10

-3
 

(1.45
.
 10

-3
-1.87

.
 10

-3
) 

1.43 

(1.24-1.63) 

RA 
0.73 

(0.63-0.83) 

1.75
.
 10

-3
 

(1.54
.
 10

-3
-1.95

.
 10

-3
) 

1.81 

(1.68-1.95) 

Kopittke et al. 

(2011a) 

Vigna 

unguiculata 

Single-metal 

exposure 
0.154 3.68

.
 10

-3 
6.71 

 

Table 6.3. Estimates of the coefficients and statistical parameters, i.e., asymptotic standard 

error (ASE) and 95% confidence interval (95% CI), in Equation 6.7 estimating toxicity of 

interactive mixtures of Cu
2+

 and Zn
2+

 according to the extended concentration addition model 

(n = 122; r
2
 = 0.92) 

Parameter Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) 
Control 

growth 
49.40 1.15 42.90 47.12 51.68 

c1 (L/µmol) 
Strength of 

Cu
2+

 toxicity 
1.02 0.13 8.21 0.78 1.27 

c12 (L/µmol) 

Effects of 

Zn
2+

 on Cu
2+

 

toxicity 

0.01 0.01 2.56 0.003 0.02 

c2 (L/µmol) 
Strength of 

Zn
2+

 toxicity 
1.75

.
 10

-3 
0.09

.
 10

-3 
20.43 1.58

.
 10

-3 
1.92

.
 10

-3 

c21 (L/µmol) 

Effects of 

Cu
2+

 on Zn
2+

 

toxicity 

-0.17 0.05 -3.25 -0.27 -0.07 

d 

(dimensionless) 
Slope 1.33 0.12 11.51 1.10 1.55 
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Figure 6.3. The root growth of lettuce (Growth; mm) as a function of the free ion activity of 

Cu
2+

 ({Cu
2+

}0; µmol/L) and the free ion activity of Zn
2+

 ({Zn
2+

}0; µmol/L) at the plasma 

membrane surface according to the extended concentration addition (CA) model (A) and the 

extended response addition (RA) (B) model: the surfaces represent the estimations based on 

the regression analysis and dotted points represent the experimental data. 
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Table 6.4. Estimates of the coefficients and statistical parameters, i.e., asymptotic standard 

error (ASE) and 95% confidence interval (95% CI), in Equation 6.8 estimating toxicity of 

interactive mixtures of Cu
2+

 and Zn
2+

 according to the extended response addition model (n = 

122; r
2
 = 0.92) 

Parameter Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) 
Control 

growth 
48.99 1.07 45.80 46.87 51.11 

c1 (L/µmol) 
Strength of 

Cu
2+

 toxicity 
0.81 0.09 8.67 0.62 0.99 

c12 (L/µmol) 

Effects of 

Zn
2+

 on Cu
2+

 

toxicity 

2.89
.
 10

-3 
1.40

.
 10

-3 
2.07 0.12

.
 10

-3 
5.65

.
 10

-3 

d1 

(dimensionless) 

Slope of 

Cu
2+

 toxicity 

curve 

1.07 0.12 9.06 0.84 1.31 

c2 (L/µmol) 
Strength of 

Zn
2+

 toxicity 
1.82

.
 10

-3 
0.08

.
 10

-3 
21.58 1.65

.
 10

-3 
1.98

.
 10

-3 

d2 

(dimensionless) 

Slope of 

Zn
2+

 toxicity 

curve 

1.57 0.15 10.68 1.28 1.86 

 

In the assessment based on the extended CA model, the statistically significant deviation of 

expansion coefficients c13 (L/µmol) and c31 (L/µmol) from zero as shown in Table 6.5 

indicates significant effects of Cu
2+

 and Ag
+
 adsorbed on the toxicity of each other. 

Specifically, Ag
+
 significantly increased Cu

2+
 toxicity while Cu

2+
 had significant alleviative 

effects on Ag
+
 toxicity. Moreover, about 80% of the variability in the growth of lettuce roots 

(Growth; mm) following adsorption of Cu
2+

 and Ag
+
 to the membrane surface could be 

explained by Equation 6.6 in relation to {Cu
2+

}0 (µmol/L) and {Ag
+
}0 (µmol/L) (Fig. 6.4 and 

Fig. S6.6, Supplementary information; n = 116; r
2
 = 0.80). By contrast, according to the 

extended RA model, Cu
2+

 and Ag
+
 adsorbed to the membrane surface did not have significant 

effects on the toxicity of each other as no statistically significant value of the expansion 

coefficients was found. 

6.3.3. Comparison of the different models 

Both the concepts of CA and RA were integrated into the interactive and non-interactive 

models in the present study. In other words, these concepts were combined with the 

assumptions that biological actions of one substance affect or do not affect the biological 

actions of the other. 
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Table 6.5. Estimates of the coefficients and statistical parameters, i.e., asymptotic standard 

error (ASE) and 95% confidence interval (95% CI), in Equation 6.9 describing toxicity of 

interactive mixtures of Cu
2+

 and Ag
+
 according to the extended concentration addition model 

(n = 116; r
2
 = 0.80) 

Parameter Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) Control growth 50.22 1.77 28.42 46.72 53.73 

c1 (L/µmol) 
Strength of Cu

2+
 

toxicity 
0.95 0.10 9.22 0.74 1.15 

c13
 
(L/µmol) 

Effects of Ag
+
 

on Cu
2+

 toxicity 
-1.03 0.22 -4.79 -1.45 -0.60 

c3 (L/µmol) 
Strength of Ag

+
 

toxicity 
1.69 0.12 13.71 1.45 1.93 

c31 (L/µmol) 
Effects of Cu

2+
 

on Ag
+

 toxicity 
-1.87 0.55 -3.43 -2.96 -0.79 

d 

(dimensionless) 
Slope 1.76 0.25 6.96 1.26 2.27 
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Figure 6.4. The root growth of lettuce (Growth; mm) as a function of the free ion activity of 

Cu
2+

 ({Cu
2+

}0; µmol/L) and the free ion activity of Ag
+
 ({Ag

+
}0; µmol/L) at the plasma 

membrane surface according to the extended concentration addition model: the surface 

represents the estimations based on the regression analysis and dotted points represent the 

experimental data 
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Table 6.6. The value of Akaike’s information criterion calculated for non-interactive and 

interactive models based on the concepts of concentration addition (CA) and response 

addition (RA) for predicting toxicity of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 mixtures to lettuce Lactuca 

sativa 

Mixtures 

Non-interactive models  Interactive models 

CA RA  CA RA 

Cu
2+

–Zn
2+

  156 148  144 143 

Cu
2+

–Ag
+ 

191 182  190  

 

Based on the value of AIC calculated, generally the RA model was better than the CA 

model while the interactive models were more suitable than the non-interactive models for 

estimating toxicity of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 mixtures (Table 6.6). However, the 

differences in the AIC value of different models were not substantial. The lower AIC value 

for the interactive model compared to the non-interactive model, especially in predicting joint 

toxicity of Cu
2+

 and Zn
2+

, clearly demonstrate that ion-ion interactions should be integrated in 

estimating mixture toxicity and the integration of these interactions would improve the 

predictions. 

 

6.4. Discussion 

6.4.1. Toxicity of Cu
2+

, Zn
2+

, and Ag
+
 individually 

The order of strength of toxicity of Cu
2+

, Zn
2+

, and Ag
+
 found in the present study, i.e., Ag

+
 

> Cu
2+

 > Zn
2+

, was consistent with the findings of Kopittke et al. (2011a) (Table 6.2). While 

Vigna unguiculata was more sensitive to Cu
2+

 than Lactuca sativa, Lactuca sativa had lower 

tolerance to exposure to Zn
2+

 and Ag
+
 than Vigna unguiculata (Table 6.2). Moreover, based 

on the assumption of no interactions among Cu
2+

, Zn
2+

, and Ag
+
, the CA and RA models 

resulted in negligible differences in estimating toxicity of these metals. In other words, if 

metals do not interact with each other, their (dis)similar actions do not have substantial effects 

on their strength of toxicity in mixtures. 

6.4.2. Ion-ion interactions and metal toxicity 

According to Kabata-Pendias and Pendias (1984), interactions occur at the PM surface and 

within organisms as well. This observation is confirmed by results in the present study. 

Surface interactions influence the free ion activity at the PM surface, thus affecting metal 

uptake. Therefore, the free metal ion activity at the PM surface is a better indicator of metal 

uptake than the free metal ion activity in the solution (Kinraide, 2001; Wang et al., 2011; 

Kopittke et al., 2011b). Internal interactions directly determine metal toxicity. Surface 

interactions are directly quantified through ψ0 while ψ0 may contribute to explain the internal 

interactions predicted in the present study. Moreover, ψ0 provides an alternative for site-

specific competition for binding sites in interpreting ion-ion interactions (see below). Both 

surface and internal interactions contribute to explain metal uptake and toxicity as presented 

below. 
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Interactions between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and Mg

2+
 

The higher predictive power of {Cu
2+

}0 over {Cu
2+

}b in estimating Cu
2+

 toxicity in the 

presence of Na
+
, K

+
, Ca

2+
, and Mg

2+
, as reported in the present study, emphasizes the 

significance of integrating the surface interactions in estimating metal toxicity. The variation 

in ψ0 induced by additions of these common cations as calculated in the present study is 

substantially lower than the level reported in previous studies (Kinraide et al., 2004; Wang et 

al., 2011). This was due to high background concentrations of cations in the Steiner solution, 

which led to an electrical potential of around –20 mV at the PM of lettuce exposed to the 

default medium. Additionally, the small variation in ψ0 accounts for the significant 

relationship presented above between {Cu
2+

}b and {Cu
2+

}0 when Na
+
, K

+
, Ca

2+
, and Mg

2+
 

were added. The reduction in {Cu
2+

}0 following the decrease in the negativity of ψ0 

potentially contributes to the decreasing toxicity of Cu
2+

 with additions of the common cations 

reported in a previous study (Le et al., 2012). This observation is consistent with the results in 

a recent study investigating toxicities of Cu and Pb to cowpea (Vigna unguiculata) (Kopittke 

et al., 2011b). Particularly, the effects of the common cations, e.g., Na
+
, K

+
, Ca

2+
, and Mg

2+
, 

on {Cu
2+

}0 were attributed to the decrease in ψ0 with the additions of these common cations 

(Kinraide, 1998; Wang et al., 2008). However, effects of the common cations on Cu
2+

 toxicity 

cannot be completely explained based on the reduction in {Cu
2+

}0 with additions of the 

common cations while excluding the internal interactions. Specifically, if effects of Na
+
, K

+
, 

Ca
2+

, and Mg
2+

 on Cu
2+

 toxicity are determined only by the decreasing {Cu
2+

}0, a consistent 

decline in Cu
2+

 toxicity with increasing concentrations of these common cations would be 

expected, contrasting with the results reported by Le et al. (2012). Moreover, the inconsistent 

effects of the common cations on Cu
2+

 toxicity found by these authors cannot completely be 

explained in terms of competitive binding (Le et al., 2012). In contrast, the interactive effects 

of Na
+
, K

+
, Ca

2+
, and Mg

2+
 on Cu

2+ 
toxicity can be interpreted taking into account internal 

interactions between Cu
2+

 and these common cations. Particularly, the dependence of the type 

of internal effects (i.e., increasing or decreasing) on the concentration of Na
+
, K

+
, Ca

2+
, and 

Mg
2+

 potentially accounts for the inconsistent trend of Cu
2+

 toxicity with varying 

concentrations of the major cations reported. As such, the modelling approach applied in the 

present study provides an alternative for competition for binding sites in explaining ion-ion 

interactions. Cu
2+

 toxicity in the presence of Na
+
, K

+
, Ca

2+
, and Mg

2+
 is therefore influenced 

by both surface and internal interactions between Cu
2+

 and these common cations. As 

presented in Results, surface interactions significantly reduced {Cu
2+

}0 while effects of 

internal interactions on the strength of Cu
2+

 toxicity were negligible. Therefore, generally, 

Na
+
, K

+
, Ca

2+
, and Mg

2+
 had alleviative effects on Cu

2+
 toxicity as found in the previous study 

(Le et al., 2012). 

Interactions in metal mixtures 

Toxicity of metal mixtures is influenced by both surface and internal interactions between 

mixture components. The relative importance of these interactions is metal-specific and dose-

dependent. Following exposure to Cu
2+

–Zn
2+

 mixtures, Zn
2+

 substantially reduced {Cu
2+

}0. 

After exposure to mixtures of Cu
2+

 and Ag
+
, these metals had considerable internal effects on 

the toxicity of each other as shown by small differences between strength coefficients and 

expansion coefficients (Table 6.5). Therefore, both surface and internal interactions should be 

incorporated in estimating toxicity of metal mixtures. 

In terms of electrical reactions, the surface interactions between Cu
2+

 and Zn
2+

 as well as 

between Cu
2+

 and Ag
+
 observed in the present study could be interpreted based on their 

binding constants in combination with the exposure levels tested. For example, the substantial 

decrease in {Cu
2+

}0 as well as in the negativity of ψ0 induced by Zn
2+

 is ascribed to 

substantially higher exposure levels of Zn
2+

 in the test solutions compared to the exposure 
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concentrations of Cu
2+

 together with similar affinity constants of these metal ions to the 

membrane surface as reported by Kinraide and Wang (2010). This impact declines with 

decreasing differences between their activities in the solution. Moreover, the presence of Cu
2+

 

at activities some orders of magnitude lower than the levels of Zn
2+

 did not lead to substantial 

changes in ψ0. Furthermore, these results indicate a strong dependence of the surface 

interactions between different metals on the exposure level tested. Additionally, these dose-

dependent interactions potentially account for different effects of Cu
2+

 on Zn
2+

 uptake 

reported in previous studies at different exposure levels studied, which cannot be explained by 

competition for binding sites (Beckett and Davis, 1978; Luo and Rimmer, 1995; Sanders et 

al., 1987; Tani and Barrington, 2005; Kabta-Pendia and Pendias, 1984). 

Moreover, ψ0 may provide insight into the potential mechanisms in which different metals 

interact with each other within organisms. Specifically, alleviative effects of Zn
2+

 adsorbed on 

Cu
2+

 toxicity are potentially related to the reduction in the negativity of ψ0 induced by the 

additions of Zn
2+

. Particularly, the decline in the negativity of ψ0 results in depolarisation, and 

subsequent decreases in internal metal transport and metal toxicity (Wang et al., 2011).  In 

contrast, the lack of interactive effects of Cu
2+

 on Zn
2+

 toxicity are due to negligible variations 

in ψ0 with additions of Cu
2+

 at the exposure levels tested in the present study. A similar 

explanation is applicable to explain the internal interactions between Cu
2+

 and Ag
+
. These 

results demonstrate that ψ0 should be taken into account in modelling ion-ion interactions. 

In summary, the electrostatic modelling approach as presented in the present study allows 

explicitly delineating surface interactions on the one hand and predicting potential internal 

interactions on the other hand. Metal toxicity occurs as a result of both surface and internal 

interactions. Consequently, these interactions should be included in predicting joint toxicity of 

multiple metals. Furthermore, these interactions could be interpreted in terms of the electrical 

potential at the PM surface. In other words, the surface potential provides a mechanistic 

understanding of metal-metal interactions and should be included in assessment of metal 

toxicity and ion-ion interactions, consistent with findings by Kinraide (1998, 2006). 
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SUPPLEMENTARY INFORMATION 

Table S6.1. Ionic composition of the Steiner solution used for chemical speciation 

Metals Na
+ 

Mg
2+

 K
+ 

Ca
2+ 

Mn
2+ 

Fe
2+ 

Zn
2+ 

Concentration 

(mol/L) 

1.02. 10-6 1.83. 10-3 6.98. 10-3 2.82. 10-3 1.16. 10-5 4.96. 10-5 1.72. 10-6 

 

S6.A. Derivation of mathematical equations describing toxicity of interactive and non-interactive metal 

mixtures 

Toxicity of non-interactive mixtures 

The response of plants expressed as the root growth (Growth; mm) after exposure to metal ion Mn+ singly can 
be expressed in relation to its free ion activity at the PM surface {Mn+}0 (µmol/L) according to the following 

equation (Kinraide and Parker, 1989) 

])}M{exp[(
Growth

0

n dc

b


  (S6.1) 

where coefficient b (mm) is the growth of lettuce in the medium free of the metal ion (i.e., {Mn+}0 = 0); 
coefficient c (L/µmol) reflects the metal-specific strength of toxicity. Its value increases with increasing strength 

of metal toxicity; and coefficient d (dimensionless) is the slope parameter. 

If mixture components do not interact to each other, the growth of plants exposed to the mixture can be 

written according to the conventional concept of concentration addition (CA) and response addition (RA) models 

assuming no interactions between the mixture constituents. According to the CA model, mixture components 

have the same modes of action of toxicity (Kinraide, 1999). In other words, the presence of one substance can be 

considered as a simple dilution of others. Therefore, according to the CA concept, response of lettuce exposed to 

non-interactive mixtures in terms of root growth can be written as follows (Kinraide, 1999): 





]))}M{(exp[(

Growth
0

n dc

b  (S6.2) 

For instance, the growth of lettuce roots (Growth; mm) following exposure to a non-interactive mixture of 

Cu2+, Zn2+, and Ag+ is determined by the following equation according to the CA model: 

])}Ag{}Zn{}Cu{exp[(
Growth

030

2

20

2

1

dccc

b
 

  (S6.3) 

where b (mm) is the growth of lettuce roots in the medium free of Cu2+, Zn2+, and Ag+; coefficients c1, c2, and c3 

(L/µmol) represent the strength of toxicity of Cu2+, Zn2+, and Ag+ individually as well as in non-interactive 

mixtures, respectively; d (dimensionless) is the slope parameter describing toxicity of these metals individually 

as well as in non-interactive mixtures; and {Cu2+}0, {Zn2+}0, and {Ag+}0 (µmol/L) are the free ion activity of 

Cu2+, Zn2+, and Ag+ at the PM surface, respectively. 

In the RA model, mixture components are supposed to have different modes of action of toxicity (Kinraide, 

1999). Therefore, based on the RA concept, the response of lettuce exposed to non-interactive mixtures can be 

expressed as a multiplicative function of the response of the plants following exposure to each constituent 

separately (Eqn. S6.4) (Kinraide, 1999): 


 





])}M{(exp[])}M{exp[(

Growth
0

n

0

n ii d

i

d

i c

b

c

b  (S6.4) 

For example, when Cu2+, Ag+, and Zn2+ do not affect toxicity of one another, the growth of lettuce exposed to 

mixtures of these three metal ions can be written as a multiplication of the responses of lettuce following 

exposure to these metal ions individually (Eqn. S6.5): 

])}Ag{()}Zn{()}Cu{exp[(
Growth

321

030

2

20

2

1

ddd
ccc

b
 

  (S6.5) 
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where coefficient b (mm) is the growth of lettuce roots in the medium free of Cu2+, Ag+, and Zn2+; coefficients 

c1, c2, and c3 (L/µmol) represent the strength of toxicity of Cu2+, Ag+, and Zn2+ individually as well as in non-

interactive mixtures, respectively; d1, d2, and d3 (dimensionless) are slope parameters describing toxicity of Cu2+, 

Ag+, and Zn2+ individually as well as in their non-interactive mixtures; and {Cu2+}0, {Zn2+}0, and {Ag+}0 

(µmol/L) are the free ion activity of Cu
2+

, Ag
+
, and Zn

2+
 at the PM surface, respectively. 

Equations S6.2-S6.5 are based on the conventional concepts of the CA and RA models assuming no 
interactions between mixture components, i.e., the presence of one metal does not affect the toxicity of another. 

In other words, toxicity of metals following exposure to these non-interactive mixtures is similar to the toxicity 

of these metals individually. 

Toxicity of interactive mixtures 

When metals in the mixtures are interactive, the interactions can be taken into account in determining the 

mixture toxicity by expanding the conventional CA and RA models. In particular, strength coefficients c1, c2, and 

c3 in Equations S6.3 and S6.5 are linearly extended to include expansion coefficients. For example, based on an 

assumed linear interaction between Cu2+ and Zn2+, the expanded strength coefficient describing the Cu2+ toxicity 

in interactive mixtures with Zn2+ (c1
*) can be expanded as in Equation S6.6 or S6.7 (Kinraide et al., 1999): 

)}Zn{1( 0

2

1211


 ccc  (S6.6) 

or 

0

2

12

1
1

}Zn{1 






c

c
c  (S6.7) 

where c12 (L/µmol) is the expansion coefficient, representing interactive effects of Zn2+ on Cu2+ toxicity. In 

Equation S6.6, Zn2+ enhances toxicity of Cu2+ if c12 is positive while in Equation S6.7, Zn2+ increases Cu2+ 

toxicity if c12 is negative. By contrast, alleviative effects of Zn2+ on Cu2+ toxicity occur when c12 in Equation 

S6.6 is negative or when c12 in Equation S6.7 is positive. The interactive effects are found to be statistically 
significant when the 95% confidence interval (CI) of c12 does not encompass zero. Similar equations can be 

written to integrate ion-ion interactions in modelling toxicity of Zn2+ in mixtures with Cu2+. If interactions affect 

toxicity of only one component of the mixture, the strength coefficient of only this substance is extended. The 

expansion approach that results in all statistically significant coefficients will be chosen in predicting toxicity of 

metal mixtures, taking into account interactions between different mixture components. 
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Figure S6.1. Surface interactions between Cu2+ and Na+, K+, Ca2+, and Mg2+ affect the Cu2+ activity at the 

plasma membrane (PM) surface: The free Cu2+ activity at the PM surface ({Cu2+}0; µmol/L) is plotted as a 

function of the free Cu2+ activity in the bathing medium ({Cu2+}b; µmol/L) in toxicity tests and the electrical 

potential at the PM surface (ψ0; mV), taking into account effects of major cations (i.e., Na+, K+, Ca2+, and Mg2+). 

The surface potential ψ0 (mV) was calculated according to the model developed by Kinraide and Wang (2010). 
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Table S6.2. Estimates of coefficients describing the root growth (Growth; mm) of lettuce exposed to Cu2+ in the 

presence of Na+, K+, Ca2+, and Mg2+ according to the Weibull Equation based on the free Cu2+ activity in the 

bulk-phase medium ({Cu2+}b; µmol/L) (Equation 6.2) and the free Cu2+ activity at the plasma membrane surface 

({Cu2+}0; µmol/L) (Equation 6.3): b (mm) is the root growth in the medium free of Cu2+; c (L/µmol) represents 

the strength of Cu
2+

 toxicity; and d (dimensionless) is the slope parameter; and statistical parameters, 95% 

confidence intervals (CI), determined by the regression analysis. 

Parameter {Cu
2+

}b (µmol/L) {Cu
2+

}0 (µmol/L) 

b (mm; 95% CI) 40.43 (34.86-46.00) 37.28 (29.56-45.00) 

c (L/µmol; 95% CI) 2.94 (1.93-3.95) 0.769 (0.49-1.05) 

d (dimensionless; 95% CI) 0.65 (0.42-0.89) 0.751 (0.55-0.95) 

n 180 180 

r2 0.65 0.79 
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Figure S6.2. Surface interactions between Cu
2+ 

and Zn
2+

 affect their activities at the plasma membrane (PM) 

surface through changes in the surface potential (ψ0): (A) The activity of Cu2+ at the PM surface ({Cu2+}0; 
µmol/L) is plotted as a function of the free activity of Cu2+ in the solution ({Cu2+}b; µmol/L) and the surface 

potential (ψ0; mV) which is influenced by the free Zn2+ activity in the solution; and (B) The activity of Zn2+ at 

the PM surface ({Zn2+}0; µmol/L) is plotted as a function of the free activity of Zn2+ in the solution ({Zn2+}b; 

µmol/L) and the surface potential (ψ0; mV) which is influenced by the free Cu2+ activity in the solution. 
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Figure S6.3. Surface interactions between Cu2+ and Ag+ affect their activities at the plasma membrane (PM) 

surface through changes in the surface potential (ψ0): (A) The activity of Cu2+ at the PM surface ({Cu2+}0; 

µmol/L) is plotted as a function of the free activity of Cu2+ in the solution ({Cu2+}b; µmol/L) and the surface 

potential (ψ0; mV) which is influenced by the free Ag+ activity in the solution; and (B) The activity of Ag+ at the 

PM surface ({Ag+}0; µmol/L) is plotted as a function of the free activity of Ag+ in the solution ({Ag+}b; µmol/L) 

and the surface potential (ψ0; mV) which is influenced by the free Cu2+ activity in the solution. 
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Figure S6.4. The relationship between the measured growth and the predicted growth of lettuce roots exposed to 

Cu2+ in the presence of Na+, K+, Ca2+, and Mg2+. The solid line presents a 1:1 relationship. 

 

Table S6.3. Estimates of the coefficients and statistical parameters, i.e., asymptotic standard error (ASE) and 

95% confidence interval (95% CI), in Equation 6.5 describing the toxicity of non-interactive mixtures of Cu2+, 

Zn2+, and Ag+ according to the concentration addition model and determined by the non-linear regression 
analysis (n = 238; r2 = 0.83)  

Parameter Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) 
Control 

growth 
49.99 1.19 42.11 47.65 52.33 

c1 (L/µmol) 
Strength of 

Cu2+ toxicity 
0.67 0.04 15.71 0.59 0.76 

c2 (L/µmol) 
Strength of 

Zn2+ toxicity 
1.66. 10-3 0.11. 10-3 15.81 1.45. 10-3 1.87. 10-3 

c3 (L/µmol) 
Strength of 

Ag+ toxicity 
1.43 0.10 14.69 1.24 1.63 

d 

(dimensionless) 
Slope 1.38 0.12 11.65 1.14 1.61 
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Table S6.4. Estimates of the coefficients and statistical parameters, i.e., asymptotic standard error (ASE) and 

95% confidence interval (95% CI), in Equation 6.6 describing the toxicity of non-interactive mixtures of Cu2+, 

Zn2+, and Ag+ according to the response addition model and determined by the non-linear regression analysis (n 

= 238; r2 = 0.86) 

Parameter Definition Estimate ASE Parameter/ASE 

95% CI 

Lower Upper 

b (mm) Control growth 49.95 0.90 54.33 47.27 50.83 

c1 (L/µmol) 
Strength of Cu2+ 

toxicity 
0.73 0.05 14.88 0.63 0.83 

d1 

(dimensionless) 

Slope of Cu2+ 

toxicity curve 
1.03 0.10 10.63 0.84 1.21 

c2 (L/µmol) 
Strength of Zn2+ 

toxicity 
1.75. 10-3 0.11. 10-3 16.65 1.54. 10-3 1.95. 10-3 

d2 
(dimensionless) 

Slope of Zn2+ 
toxicity curve 

1.65 0.19 8.85 1.28 2.02 

c3 (L/µmol) 
Strength of Ag+ 

toxicity 
1.81 0.07 26.14 1.68 1.95 

d3 

(dimensionless) 

Slope of Ag+ 

toxicity curve 
2.92 0.38 7.59 2.16 3.67 
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Figure S6.5. The relationship between the measured growth and the predicted growth of lettuce roots exposed to 

interactive mixtures of Cu2+ and Zn2+. The estimated growth was determined based on the extended 

concentration addition (CA) and response addition (RA) models. The solid line represents a 1:1 relationship. 
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Figure S6.6. The relationship between the measured growth and the predicted growth of lettuce roots exposed to 

interactive mixtures of Cu2+ and Ag+. The solid line represents a 1:1 relationship. 
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7.1. Introduction 

In this PhD thesis, the affinity of metals for biological ligands was used as the unifying 

factor for modelling bioaccumulation and bioavailability of metal mixtures. Bioaccumulation 

of metals (i.e., the net accumulation of the metals in a particular tissue or in the whole 

organism) results from exposure to different pathways, e.g., environmental media (e.g., air, 

water, soil, sediment) and diet, and is the result of a mass balance between uptake and 

elimination (SAB, 2006). Bioavailability of metals represents the amount of the metals that 

absorb onto, or into, and across the biological membrane of organisms (Fairbrother et al., 

2007). The generalisation of metal bioaccumulation and bioavailability by using the affinity 

of metals for biological ligands as applied in this thesis is based on: 

1)  The involvement of the biological ligands, e.g., transporters and other metal-binding 

proteins, in uptake and subcellular partitioning of metals and the metal-specific affinity of 

the ligands (Simkiss and Taylor, 1995; Fairbrother et al., 2007; Roesijadi and Robinson, 

1994; Rainbow, 2007; Sokolova and Lannig, 2008; Flemming, 1995; Kapoor and 

Viraraghavan, 1997; Tsezos et al., 1997; Diels et al., 1995; Kratochvil and Volesky, 1998; 

Hall and Willams, 2003; Yang et al., 2005) 

2)  The metal-specific affinity for the biological ligands as a determinant of metal uptake and 

toxicity (Seregin and Kozhevnikova, 2006; Rudakova et al., 1988; Merce et al., 2001) 

The generalisation of metal bioaccumulation and bioavailability on the basis of the affinity 

of metals for biological ligands might result in significant progress in modelling metal toxicity 

in several aspects: 

1)  The integration of the metal-specific affinity for biological ligands may provide a better 

understanding of ion-ion interactions and may allow integrating the interactions in 

modelling joint toxicity of multiple metals. 

2)  This approach facilitates the incorporation of the interactions between ions and organisms 

at the biological surface into estimating metal bioavailability. This integration may then 

increase the reliability of metal risk assessments as in addition to chemical speciation, 

interactions between metals and biological ligands determine metal bioavailability 

(Fairbrother et al., 2007; Pagenkopf et al., 1974; McGeer et al., 2003; Chapman, 1996; 

Newman and Jagoe, 1994; Langston and Bryan, 1984; Pagenkopf, 1983; Playle, 1998; 

Worms et al., 2006; Ahlf et al., 2009). The integration of ion-ion and ion-organism 

interactions will result in more reliable estimations of bioaccumulation and toxicity of 

metal mixtures. 

3)  The development of models based on the affinity of metals for biological ligands, which is 

an intrinsic property of the metals, enables extrapolation to other metals in different 

conditions. 

The contribution of the integration of the affinity of metals for biological ligands to 

modelling toxicity of metal mixtures was evaluated by comparing assessments based on the 

free metal ion activity in the solution (Chapter 4), the Biotic Ligand Model (BLM) (Chapter 

5), and the electrostatic toxicity model (ETM) (Chapter 6). 

A semi-mechanistic model was developed to estimate bioaccumulation for a number of 

metals simultaneously present in the environment in various species and across different 

exposure conditions (Chapter 2; Sub-question 1 in the Introduction Chapter). The 

accumulation of metals from both dissolved and dietary sources is included in the model. The 

development of the model is based on the relationship between metal uptake and the covalent 

index initiated by Veltman et al. (2008). The model simulates the accumulation of metals 
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mechanistically as a function of a metal-specific property, i.e., the covalent index, and a 

species-specific characteristic, i.e., the size-based filtration rate. Particularly, kinetics of metal 

uptake and elimination were modelled based on the covalent index of the metal and the 

species-specific size-based filtration rate. The development of the model based on the intrinsic 

properties facilitates a wide extrapolation to a variety of metals and exposure conditions. The 

use of the metal-specific covalent index that reflects the specificity of metal affinity for 

proteins to simulate metal bioaccumulation in mussels is the most important feature of the 

model developed in the present study, distinguishing it from previously-developed kinetic 

models. The model developed was then validated by field measurements of mussels from the 

Rhine and Meuse rivers. 

The affinity of ions for biotic ligands at the water-organism interface was used to study 

effects of major cations, i.e., H
+
, Na

+
, K

+
, Ca

2+
, and Mg

2+
, on Cu

2+
 toxicity to lettuce Lactuca 

sativa (Chapter 3; Sub-question 2 in the Introduction Chapter). Specifically, a BLM was 

developed to predict Cu
2+

 toxicity in the presence of these cations. According to the principle 

of the BLM, the toxicity of Cu
2+

 was determined by the accumulation of Cu
2+

 at the biotic 

ligands expressed by the fraction of the total number of biotic ligands occupied by Cu
2+

. This 

fraction depends on the stability constants of binding of Cu
2+

 and the major cations to the 

biotic ligands. Effects of H
+
, Na

+
, K

+
, Ca

2+
, and Mg

2+
 on Cu

2+
 toxicity were assessed 

separately. The stability constants for the binding of each major cation to the biotic ligand 

were determined using a linear relationship between the median effective concentration of 

Cu
2+

 and the concentration of the competing cation while keeping the concentrations of other 

cations constant. 

Interactions between different ions were modelled based on the free ion activity in the 

solution and integrated in estimating toxicity of binary metal mixtures (Cu
2+

–Ag
+
 and Cu

2+
–

Zn
2+

) (Chapter 4; Sub-question 3 in the Introduction Chapter). Interactions between metal 

ions and biological ligands were excluded in this assessment. Metal toxicity was expressed by 

the strength coefficient of toxicity, calculated on the basis of the relationship between the 

response of lettuce and the free ion activity of metals in the solution. According to the 

conventional concepts of concentration addition (CA) and response addition or response 

multiplication (RA or RM, respectively), mixture substances do not interact with each other. 

In Chapter 4, the interactions were predicted and incorporated in estimating toxicity of the 

mixtures by extending the strength coefficient of toxicity. This was obtained by using 

mathematical relationships to express assumptions of non-interactions and linear interactions 

in binary metal mixtures. 

The affinity of ions for biotic ligands at the water-organism interface was included in 

estimating toxicity of mixtures of Cu
2+

–Ag
+
 and Cu

2+
–Zn

2+
 to lettuce, Lactuca sativa, and 

thus allows integrating interactions between ions and interactions of ions with organisms in 

predicting toxicity of these mixtures (Chapter 5; Sub-question 4 in the Introduction Chapter). 

In particular, the BLM was combined with the toxic equivalency factor (TEF) approach to 

predict toxicity of the metal mixtures, integrating interactions between different mixture 

components in terms of their competition for binding sites at the biotic ligands. According to 

the BLM concept, toxic effects are determined by the fraction of the biotic ligands occupied 

by metal ions. In Chapter 5, the applicability of this principle to assessment of metal mixtures 

was examined. The fraction of the total number of biotic ligands bound to metal ions was 

applied to determine the TEF for each metal as well as the toxic equivalency quotient of metal 

mixtures. As such, the interactions between different metal ions as well as between metal ions 

and the biotic ligands are integrated in predicting toxicity of the binary metal mixtures. 

The affinity of ions for biological ligands at the membrane surface was integrated in 

modelling ion-ion interactions and effects of the interactions were incorporated in predicting 
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joint toxicity of multiple metal ions in the Electrostatic Toxicity Model (ETM) (Chapter 6; 

Sub-question 5 in the Introduction Chapter). This was performed by assessing the activity of 

ions at the plasma membrane (PM) surface and modelling metal toxicity based on the free 

metal ion activity at the PM surface. Moreover, this approach allows investigating interactions 

at different levels. Firstly, ions interact with each other in the proximity of the outside of the 

membrane (surface interactions). These surface interactions affect the activity of ions at the 

PM surface and were assessed by the electrostatic approach. Secondly, interactions occur 

within the cells between adsorbed ions, directly affecting metal toxicity (internal interactions). 

These internal interactions were quantified and integrated in modelling toxicity of metal 

mixtures by fitting the experimental data to mathematical equations similar to the approach 

applied in Chapter 4, but based on the free metal ion activity at the PM surface rather than the 

free metal ion activity in the exposure solution. 

Based on the results described in each of the chapters, the contribution of the incorporation 

of metal affinity for biological ligands is synthesised in the following sections of this chapter. 

This is carried out for toxicity assessment of single metals in the presence of common cations 

(Section 7.2) and for toxicity assessment of metal mixtures (Section 7.3). Furthermore, 

possibilities for application of the developed models as well as recommendations for further 

research are given (Section 7.4). 

 

7.2. Affinity of metals for biological ligands in modelling toxicity of single metals 

7.2.1. Quantitatively estimating toxicity of single metals 

In this thesis, single metal toxicity of Cu
2+

, Zn
2+

, and Ag
+
 was assessed by the BLM, the 

ETM, and the free ion activity model (FIAM) and expressed by different parameters (Table 

7.1). The BLM parameters include the fraction of the total number of biotic ligands occupied 

by metal ions at the 50% response level (f50M; dimensionless) and corresponding affinity 

constants (KMBL; L/mol) (Chapter 5). In the FIAM, toxicity is expressed by the free ion 

activity of metals in the solution that results in a 50% inhibition in the growth of lettuce roots 

(EA50{M
n+

}b; µmol/L) (Chapter 5). In the ETM, toxicity of single metals is presented by the 

free ion activity of the metals at the PM surface at the 50% response level (EA50{M
n+

}0; 

µmol/L) predicted by the CA and RA models (Chapter 6). 

According to the BLM (based on f50M) and the electrostatic approach (based on 

EA50{Cu
2+

}0), toxicity decreased in the sequence of Ag
+
 > Cu

2+
 > Zn

2+
 (Table 7.1). 

However, the assessment based on the free ion activity of metals in the solution indicated that 

Cu
2+

 was the most toxic, followed by Ag
+
 and Zn

2+
 (Table 7.1). All three models were based 

on the same assumption, namely that free ions are the main reactive species of metals 

determining metal toxicity, where the difference is attributed to the inclusion of ion-organism 

interactions in estimating metal toxicity in the BLM and the electrostatic approach. 

Furthermore, these two latter approaches provide a mechanistic understanding of metal 

binding and toxicity. Particularly, the BLM parameters indicate that the lowest fraction of the 

total biotic ligands occupied by metal ions was required to result in a 50% reduction in the 

root growth of lettuce was in case of Ag
+
. Moreover, Cu

2+
 had the strongest affinity for 

binding sites at the biotic ligands, contributing to the lowest activity of Cu
2+

 in the solution at 

the 50% response level. A similar explanation can be derived for the electrostatic approach. 

According to this method, Cu
2+

 (logKCu = 2.76) had a stronger affinity for binding sites at the 

PM surface compared to Ag
+
 (logKAg = 0.8). These results underpin the significance of 

integrating the interactions between metal species and the biological ligands in assessing 
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intrinsic toxicity of single metals. This inclusion is of importance for a mechanistic 

understanding of metal binding and toxicity. 

 

Table 7.1. Toxicity of Cu
2+

, Ag
+
, and Zn

2+
 individually was assessed by the Biotic Ligand 

Model (BLM), the Free Ion Activity Model (FIAM), and the Electrostatic Toxicity Model 

(ETM). The most important BLM parameters describing toxicity of single metals include the 

fraction of the total number of biotic ligands occupied by metal ions at the 50% response level 

(f50M; dimensionless) and the stability constant of the metal ion-biotic ligand binding (KMBL; 

L/mol). In the FIAM, toxicity of metals is expressed by the free ion activity of the metals in 

solution at the 50% response level (EA50{M
n+

}b; µmol/L). In the ETM, metal toxicity is 

represented by the free ion activity of the metals at the plasma membrane that results in a 50% 

inhibition in the root elongation (EA50{M
n+

}0; µmol/L). This value was predicted according 

to the concepts of concentration addition (CA) and response addition (RA) models. 95% 

confidence intervals are provided. 

Metals 

Biotic Ligand Model 

(Chapter 5) 
 

Free Ion Activity 

Model (Chapter 5) 
 

Electrostatic Toxicity 

Model (Chapter 6) 

f50M 

(dimensionless) 

logKMBL 

(L/mol) 
 

EA50{M
n+

}b 

(µmol/L) 
 

EA50{M
n+

}0 

(µmol/L) (CA) 

EA50{M
n+

}0 

(µmol/L) (RA) 

Cu
2+

 
0.36 

(0.29-0.43) 
7.40  

2.60
.
 10

-2
 

(1.87
.
 10

-2
-3.61

.
 10

-2
) 

 1.14 0.96 

Zn
2+

 
0.42 

(0.38-0.44) 
4.00  

1.06
.
 10

2
 

(9.11
.
 10

1
-1.24

.
 10

2
) 

 461.90 457.61 

Ag
+ 

0.22 

(0.20-0.24) 
6.39  

1.34
.
 10

-1
 

(1.19 10
-1

-1.50
.
 10

-1
) 

 0.54 0.49 

 

7.2.2. Interactions between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and Mg

2+
 

Both BLM and ETM allow incorporation of interactions between toxic ions, e.g., Cu
2+

, 

with competing cations, e.g., H
+
, Na

+
, Ca

2+
, K

+
, and Mg

2+
, at the biological surface in 

modelling metal toxicity in principle. As a result of this integration, the accumulation of metal 

ions at the biological surface (biotic ligands in the BLM and the PM surface in the ETM) 

might be a better indicator of metal toxicity in the presence of common cations than the 

exposure level in the environment. In this PhD thesis, interactions between Cu
2+

 and Na
+
, K

+
, 

Ca
2+

, and Mg
2+

 were modelled by these two approaches (Table 7.2). 

The integration of the affinity of ions for biological ligands in modelling Cu
2+

 toxicity in 

the presence of common cations, i.e., Na
+
, K

+
, Ca

2+
, and Mg

2+
, results in substantial progress 

in studying interactions between Cu
2+

 and these major cations. For example, the free ion 

activity of Cu
2+

 at the PM surface {Cu
2+

}0 was found to be a better indicator of Cu
2+

 toxicity 

in the presence of these common cations than the free ion activity of Cu
2+

 in the solution 

{Cu
2+

}b (Chapter 6). This was caused by the integration of surface interactions between Cu
2+

 

and Na
+
, K

+
, Ca

2+
, and Mg

2+
 in estimating Cu

2+
 toxicity. 
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Table 7.2. Assessment of interactions between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and Mg

2+
 by the 

Biotic Ligand Model (BLM) and the Electrostatic Toxicity Model (ETM). According to the 

BLM concept, these major cations may compete with Cu
2+

 for binding sites at the biotic 

ligands, affecting Cu
2+

 toxicity. In the ETM, effects of Na
+
, K

+
, Ca

2+
, and Mg

2+
 on Cu

2+
 

toxicity may result from surface and internal interactions between these major cations and 

Cu
2+

. Surface interactions are expressed as effects of these major cations on the free ion 

activity of Cu
2+

 at the plasma membrane {Cu
2+

}0 through changes in the surface potential ψ0 

(mV) and calculated by the Nernst Equation (Eqn. 7.1). ψ0 is determined by the ionic 

composition of the bathing medium (Eqn. 7.2). Internal interactions are represented by the 

osmotic effects of Na
+
, K

+
, Ca

2+
, and Mg

2+
 adsorbed (Os; µmol/L) on Cu

2+
 toxicity (Growth; 

mm) (Eqn. 7.3). 

Biotic Ligand 

Model 

(Chapter 3) 

Electrostatic Toxicity Model (Chapter 6) 

Interactions  Quantification 

Interactive 

effects cannot 

be modelled 

Surface  












 

TR

ψF 0
b

n

0

n n
exp}{M}{M                               (7.1

*
) 

ψ0 = f({Na
+
}b, {K

+
}b, {Ca

2+
}b, {Mg

2+
}b)                          (7.2

*
) 

Internal  
])}{Cu)OsOs1(exp[(

Growth
0

22

20101

dccc

b


 (7.3
*
) 

(7.1
*
) {M

n+
}0 and {M

n+
}b (mol/L) are the activities of free ion M

n+
 at the PM surface and in 

the bulk phase medium, respectively; ψ0 (mV) is the electrical potential at the PM surface; n 

(dimensionless) is the charge on the ion; F (J/mV) is the Faraday constant (F = 96.485); R 

(J/mol/K) is the universal gas constant (R = 8.314); and T (K) is the temperature. 

(7.2
*
) {Na

+
}b, {K

+
}b, {Ca

2+
}b, and {Mg

2+
}b (mol/L) are the free ion activities of Na

+
, K

+
, 

Ca
2+

, and Mg
2+

 in solution, respectively; ψ0 (mV) is calculated as a function of the ionic 

composition of the bathing medium according to the model developed by Kinraide and Wang 

(2010). 

(7.3
*
) The response of lettuce following metal exposure was assessed in terms of the root 

growth (Growth; mm); b (mm) is the growth of lettuce roots without Cu
2+

 adsorbed on the 

membrane surface or osmotic effects caused by Na
+
, K

+
, Ca

2+
, and Mg

2+
; c1 (L/µmol) is the 

strength coefficient of Cu
2+

 toxicity without osmotic effects caused by Na
+
, K

+
, Ca

2+
, or Mg

2+
; 

c10 and c20 (L/µmol) are expansion coefficients representing osmotic effects of Na
+
, K

+
, Ca

2+
, 

and Mg
2+

 on Cu
2+

 toxicity; Os (µmol/L) is the osmolarity that is determined by the common 

cations in solution; {Cu
2+

}0 (µmol/L) is the free ion activity of Cu
2+

 at the PM surface; and d 

(dimensionless) is the slope of the adjacent curve describing Cu
2+

 toxicity under the influence 

of the osmotic effects. 

 

Moreover, the inclusion of the affinity of ions for biological ligands allows investigating 

interactions and accumulation of metal ions at the biological surface. The BLM predicts the 

accumulation of metals at biotic ligands at the water-organism interface, while the ETM 

provides estimations of the adsorption of free metal ions at the PM surface. In this PhD thesis, 

the ETM was shown to have a higher capacity than the BLM in quantifying the interactions 

between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and Mg

2+
 (Table 7.2). Particularly, the effects of Na

+
, K

+
, 
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Ca
2+

, and Mg
2+

 could not be modelled by the BLM due to the lack of a significant relationship 

between Cu
2+

 toxicity and the concentrations of the common cations in solution. According to 

the BLM investigated in this thesis, only H
+
 effectively competes with Cu

2+
 for binding sites 

at the biotic ligand, significantly affecting Cu
2+

 toxicity. By applying the ETM, surface 

interactions can be explicitly quantified while the free metal ion activity at the PM surface 

could explain about 70% of the internal interactions. However, similar to the BLM, the 

assessment of the internal interactions by the ETM strongly depends on experimental data, 

e.g., the conclusion that whether the interactive effects are found to be statistically significant 

or not depends on the fitting of the experimental data and certain mathematical relationships. 

The limitations of the BLM in modelling interactions between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and 

Mg
2+

 might be attributed to the exclusion of specific physiological processes that involve the 

major cations. For instance, a number of processes may affect tolerance of organisms to toxic 

metals while according to the BLM principle, only competition for binding sites is included in 

determining metal accumulation at the biotic ligands and toxicity is completely determined by 

this accumulation (Chapter 3). In the ETM, the dependence of its contribution in integrating 

internal interactions in modelling metal toxicity on the fit between the experimental data and 

mathematical equations results from the exclusion of kinetic mechanisms. 

 

7.3. Contribution of the integration of affinity of metals for biological ligands to 

modelling toxicity of metal mixtures 

7.3.1. Modelling bioaccumulation of metal mixtures 

In this thesis, a semi-mechanistic model was developed based on the covalent index and 

the size-based filtration rate (Chapter 2). In both the zebra and quagga mussels, modelled 

concentrations of all test metals were within one order of magnitude of the measurements. In 

addition, for a number of metals including Mn, Fe, Co, Ni, Se, Cd, Sn, and Pb, 71–99% of the 

variance in their accumulation in zebra mussels at different locations could be explained by 

the model (r
2
 = 0.71–0.99). Furthermore, the integration of the affinity of metals for biological 

ligands in the model allows for extrapolation to a number of metals without the necessity for 

case-specific validation. In previous studies, kinetic bioaccumulation models were usually 

only able to estimate concentrations of a limited number of metals for which experimental 

data about physiological processes such as the uptake constant and the ingestion rate are 

available (Luoma and Rainbow, 2005). The semi-mechanistic bioaccumulation model 

developed in this PhD thesis results in reliable estimations of concentrations of a variety of 

metals, e.g., 13 elements in two different species and various exposure conditions in the 

present study as described above. Additionally, the uptake rate constant, that is modelled 

based on the covalent index and the size-based filtration rate in this thesis, is comparable to 

experimental data of Roditi et al. (2000). However, the exclusion of some physiological 

processes in the model developed in this PhD thesis accounts for over- or underestimations for 

some metals, e.g., Cu
2+

 (Chapter 2). 

7.3.2. Interactions in mixtures of Cu
2+
–Ag

+
 and Cu

2+
–Zn

2+
 and toxicity of the mixtures 

By integrating interactions between different ions at the biological surface in estimating 

metal bioavailability, the BLM and the ETM possess potential to investigate interactions 

between metals in mixtures. But the application of these two approaches in assessment of 

toxicity of metal mixtures is limited. In this PhD thesis, these methods were applied in 

modelling interactions between Cu
2+

 and Zn
2+

 and between Cu
2+

 and Ag
+
 besides the 

assessment based on the free metal ion activity in the solution (Table 7.3). 
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Table 7.3. Assessment of interactions in mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 by the  Biotic Ligand Model, the Free Ion Activity Model for 

mixtures, and the Electrostatic Toxicity Model based on the concepts of concentration addition (CA) and response addition (RA) 

Mixture 

Biotic Ligand 

Model 

(Chapter 5) 

Free Ion Activity Model for mixtures 

(Chapter 4) 
Electrostatic Toxicity Model (Chapter 6) 

Cu
2+

 –Zn
2+

 

Interactions 
Competitive 

binding 

CA  
Zn

2+
 significantly reduced Cu

2+
 

toxicity 
Surface 

Zn
2+

 reduced {Cu
2+

}0; Cu
2+

 did not substantially 

affect {Zn
2+

}0 

RA 
Zn

2+
 significantly reduced Cu

2+
 

toxicity 
Internal 

CA 
Zn

2+
 significantly reduced Cu

2+
 toxicity; Cu

2+
 

increased Zn
2+

 toxicity 

RA 
Zn

2+
 significantly reduced Cu

2+
 toxicity; Cu

2+
 

did not affect Zn
2+

 toxicity 

Mixture 

toxicity 
r

2
 = 0.65 r

2
 = 0.92 r

2
 = 0.92 

Cu
2+

 –Ag
+
 

Interactions 

Non-

competitive 

binding 

CA 
Cu

2+
 significantly reduced Ag

+
 

toxicity; Ag
+
 increased Cu

2+
 toxicity  

Surface No substantial interactive effects  

RA No significant interactive effects Internal 

CA 
Cu

2+
 reduced Ag

+
 toxicity; Ag

+
 increased Cu

2+
 

toxicity  

RA No significant interactive effects 

Mixture 

toxicity 
r

2
 = 0.69 r

2
 = 0.80 r

2
 = 0.80 
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Based on the affinity of metal ions for biological ligands as expressed by the stability 

constant of binding of metal ions to biotic ligands (BLM) and by the binding constant of metal 

ions to ligands on the membrane surface (ETM), the BLM and the ETM allow to 

quantitatively integrate interactive effects in estimating the concentration of metal ion-biotic 

ligand complexes at the water-organism interface and in estimating the accumulation of free 

metal ions at the PM surface. While in the ETM this estimation can be always achieved, in the 

BLM this can be carried out only provided that certain assumptions are included, i.e., the 

main assumption being that metal ions in the mixture bind to either the same or to different 

binding sites. The BLM facilitates predicting the accumulation of different components in 

metal mixtures at the biotic ligands based on toxicological data for single metals, i.e., the 

stability constants of binding of metals to biotic ligands. However, an understanding of the 

relationship between this accumulation and metal toxicity following exposure to mixtures is 

lacking. In this thesis, the principle of toxic equivalency was applied, i.e., the equivalent 

fraction of the biotic ligand occupied by Cu
2+

, Zn
2+

, and Ag
+
 results in similar effects. In the 

FIAM for mixture and the ETM, a direct link between the free ion activity of metals in the 

solution and at the PM surface, respectively, and metal toxicity is not available following 

exposure to metal mixtures. In this PhD thesis, the experimental data were fit to the 

mathematical equations based on assumptions about ion-ion interactions. The justification of 

this approach is not confirmed yet because of a limited understanding of metal binding and 

toxicity, especially following mixture exposure. The approach of expressing ion-ion 

interactions by mathematical equations in the FIAM for mixture and the ETM shows better 

predictive power than the combination of the BLM and the TEF approach in estimating 

toxicity of metal mixtures (Table 7.3). 

Compared to the approach based on the free metal ion activity in the solution, the ETM 

allows explicitly delineating surface interactions. Although the ETM does not explicitly 

delineate internal interactions, the correlation between the variations in the electrical potential 

at the PM surface and the internal interactions provides a potential explanation and 

interpretation of ion-ion interactions within the organism. In the present study, modelling 

approaches based on the free ion activity in the solution and based on the free metal ion 

activity at the PM surface performed equally well in estimating mixture toxicity as shown by 

the same value of r
2
 (Table 7.3). This similarity is related to statistically significant 

relationships between the free ion activity of metals in the solution and the activity at the PM 

surface resulting from negligible variations in the electrical potential at the PM surface. These 

small variations in the surface potential as found in this thesis are ascribed to a high ionic 

strength of the nutrient solution used. Furthermore, in this PhD thesis, the ETM based on the 

role of the electrical potential at the PM surface provides additional explanations in 

interpreting ion-ion interactions, besides competition for binding sites as assumed in the 

BLM. 

 

7.4. Comparison of the Biotic Ligand Model and the Electrostatic Toxicity Model in 

modelling metal toxicity 

In both the BLM and the ETM, interactions between metal ions and organisms are included 

in estimating metal bioavailability, allowing predicting metal accumulation at the biological 

surface. However, there are substantial differences between the two approaches, each leading 

to their own advantages and disadvantages in metal assessment. 

The advantage of the BLM is the direct link between metal accumulation at the biotic 

ligands and metal toxicity. However, effects of one competing cation, e.g., H
+
, Na

+
, or Ca

2+
, 

on the accumulation of one toxic metal at the biotic ligand could be modelled only if the 
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variations in the toxicity of the toxic metal with varying concentrations of the competing 

cation are significantly related to the variations in the concentration of the competing cation. 

In addition, effects of the common cations on metal toxicity can only be assessed separately. 

Another disadvantage of the BLM is its assumption of competition between ions for binding 

sites at the biotic ligands, excluding other mechanisms of ion-ion interactions.  

In modelling toxicity of metal mixtures, the BLM allows estimating the accumulation of 

one metal in mixtures taking into account effects of other components, which determine metal 

toxicity. However, this prediction must be based on certain assumptions about competitive or 

non-competitive binding, which are usually not verified because of a limited understanding of 

modes of action of metals, especially following exposure to metal mixtures. The binding of 

metals to multiple sites adds another disadvantage of the application of similar or dissimilar 

binding sites in the BLM. In other words, different metal ions may have both similar and 

dissimilar binding sites and the patterns of interaction will be different for metals sharing the 

same biotic ligands as compared to metals interacting with different ligands. These 

phenomena cannot be expressed by the BLM on forehand. Moreover, the validity of the 

application of the stability constants of metal ions as determined by means of single exposure 

assessments to the assessment of metal mixtures is not verified.  

The ETM shows both advantages and disadvantages in studying interactions between Cu
2+

 

and common cations and interactions in metal mixtures. This modelling approach allows 

including effects of multiple common cations into modelling metal toxicity simultaneously 

and might provide insight into additional mechanisms in simulating ion-ion interactions, i.e., 

through changes in the electrical potential at the PM surface, besides the competitive binding. 

Moreover, the accumulation of toxic metals at the PM surface taking into account interactions 

with major cations or with other toxiciants in the mixture can be always estimated. However, 

the ETM does not provide a mechanistic link between the accumulation of metal ions at the 

PM surface and metal toxicity. Therefore, the capacity of the ETM for taking into account 

internal interactions between different ions in estimating metal toxicity depends on the fit of 

the experimental data and mathematical equations.  

 

7.5. Conclusions 

From the results presented in the previous chapters and the synthesis of these chapters as 

shown in the previous sections, the following main conclusions can be distilled. 

1) The covalent index might be used as a unifying factor in generalisation of metal 

bioaccumulation (Chapter 2). Metal accumulation levels predicted by the semi-mechanistic 

model developed based on this property in this thesis were within about one order of 

magnitude of the measurements. In addition, 70% to 99% of the variability in the 

concentrations in mussels of a number of metals could be explained by the model. 

2) Common cations, e.g., H
+
, Na

+
, K

+
, Ca

2+
, and Mg

2+
, reduce Cu

2+
 toxicity (Chapter 3). For 

H
+
, this alleviation might result from competition between H

+
 and Cu

2+
 for binding sites at 

the biotic ligands as assumed by the BLM. In other words, competition for binding sites 

might be a mechanism by which ions interact with each other, influencing metal 

accumulation at the biotic ligands and subsequently affecting metal toxicity. However, ion-

ion interactions cannot be completely interpreted by the competitive binding only. 

Interactions between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and Mg

2+
 cannot be modelled by their 

competition for transport sites at the biotic ligands as assumed in the BLM. 
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3)  The free ion activity of metals at the root surface is a better indicator than the metal activity 

in solution when assessing bioavailability and toxicity of single metals (Chapters 5–6). The 

BLM parameters are better predictors of intrinsic toxicity of single metals than the median 

effective activity expressed by the exposure level in the solution (Chapter 5). The free 

metal ion activity at the PM surface is a better indicator than the free metal ion activity in 

the solution in estimating toxicity of Cu
2+

 in the presence of the common cations (r
2
 = 0.79 

compared to 0.65, respectively; Chapter 6). This advantage is caused by the possibility to 

include the interactions between ions at the biological ligands in the predictions. 

4)  The free metal ion activity at the membrane surface and the free metal ion activity in 

solution perform equally well in estimating metal mixture toxicity as shown by similar 

values of the coefficient of determination (r
2
 = 0.80–0.92; Chapters 4 and 6). This might 

be deduced from the statistically significant relationship between the free metal ion activity 

at the PM surface and the free metal ion activity in solution. This correlation, in turn, 

results from small variations in the electrical surface potential with varying free ion activity 

of metals in the bathing medium, which are related to a high ionic strength of the Steiner 

default solution. 

5)  Approximately 65% of the variability in toxic effects of mixtures of Cu
2+

–Zn
2+

 and 64–

84% of the variability in toxicity of mixtures of Cu
2+

–Ag
+
 could be explained by a 

combination of the BLM and the TEF approach (Chapter 5). This result indicates that the 

assumption that metal accumulation at the biotic ligands determines metal toxicity might 

be applicable to metal mixtures. 

6)  Interactions between different ions may occur at different levels, i.e., surface and internal 

interactions (Chapter 6). While surface interactions can be quantified, the possibility to 

integrate internal interactions in modelling metal toxicity is limited, depending on the fit 

between the experimental data and mathematical equations. This disadvantage is 

encountered because a mechanistic link between the accumulation of metal ions at the PM 

surface and metal toxicity is still lacking. 

7)  Electrostatic interactions as expressed by variations in the electrical potential at the PM 

surface may provide an alternative mechanism for competition for binding sites in 

interpreting interactions between different ions (Chapter 6). Dose-dependent internal 

interactions between Cu
2+

 and Na
+
, K

+
, Ca

2+
, and Mg

2+
, as predicted based on the free 

metal ion activity at the PM surface, might contribute to explain the inconsistent trend in 

Cu
2+

 toxicity with varying concentration of these major cations. Moreover, internal 

interactions between metals in mixtures might be related to changes in the electrical 

potential. 

 

In general, this PhD thesis shows substantial contribution of incorporating the affinity of 

metals for biological ligands in metal assessment. The accumulation of metals at the biotic 

ligands at the water-organism interface and the activity at the membrane surface are better 

indicators than the exposure level in solution in estimating toxicity of single metals. Although 

the free metal ion activity at the PM surface and the activity in the solution perform equally 

well in estimating metal mixture toxicity, the electrostatic toxicity model allows delineating 

ion-ion interactions and integrating the ion-biological ligand interactions in the predictions of 

metal bioavailability and toxicity. In addition, the accumulation of metals at the biotic ligands, 

which is influenced by ion-ion interactions, might be a potential predictor of toxicity of metal 

mixtures. These results and conclusions indicate that the use of metal affinity for biotic 

ligands as a unifying factor in generalisation of metal bioaccumulation and bioavailability 

might result in considerable progress in assessments of metal toxicity and ion-ion interactions. 
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7.6. Recommendations 

The results in this PhD thesis open possibilities for further research as well as potential 

application of the approaches applied. The different modelling approaches applied in this 

thesis might be integrated in current regulations and research on risk assessment, especially 

for metal mixtures. 

7.6.1. Recommendation for an integrated approach 

As presented in Chapter 4, metal ions interact with each other via two main ways. Ions 

may lead to changes in the electrical surface at the membrane surface, which is accompanied 

by alterations in the membrane permeability (indirect interactions). Alternatively, direct 

interactions occur between different metal ions that bind to the same biotic ligands, e.g., 

protein transporters, i.e., replacement of one metal ion by another. Both mechanisms influence 

toxicity of metal mixtures and should be therefore considered in combination in predicting 

ion-ion interactions. Indirect interactions could be quantified by the electrostatic toxicity 

model while direct interactions could be estimated by the BLM. Consequently, an approach 

integrating these two methods potentially allows taking into account both indirect and direct 

interactions between different ions in predicting joint toxicity of multiple metals. 

Furthermore, these two mechanisms are related to each other. On the one hand, the changes in 

the membrane permeability caused by alterations in the surface potential have effects on the 

stability constant of the metal ion-biotic ligand binding. On the other hand, direct interactions 

between different ions at the biological surface determine activities of metal ions at the PM 

surface, and consequently influence the ionic composition of the exposure compartment in 

direct contact with the biological surface. These observations emphasise the importance and 

create possibilities of combining the BLM and the ETM in investigating interactions between 

different metals and modelling their joint toxicity. In particular, in the current application of 

the BLM, effects of one metal ion on the toxicity of another can be modelled only if 

statistically significant relationships are found between the exposure level of one cation and 

the toxic effects of another expressed by the median effective concentration/activity. 

However, as reported in Chapter 3 of this PhD thesis, although common cations, i.e., Na
+
, K

+
, 

Ca
2+

, and Mg
2+

, led to a substantial difference in the median effective activity of Cu
2+

, these 

effects could not be taken into account in the BLM of Cu
2+

 toxicity. Moreover, negligible 

changes in the electrical potential at the PM surface do not necessarily indicate weak 

interactions between different ions. Particularly, metals with similar physicochemical 

properties may strongly interact with each other, i.e., replacement by each other at binding 

sites while the surface potential is relatively constant because of their similar properties. 

These disadvantages of the BLM and the ETM could be overcome by combining these two 

approaches, for example, integrating the electrical potential of the membrane surface in 

modelling the stability constant of the metal ion-biotic ligand binding. As such, effects of 

cations on the toxicity of another can be always modelled. The stability constant of binding to 

biotic ligands for one cation when no other cations are present in solution can be considered 

as the intrinsic affinity. When other cations are added to the solution, the “conditional” 

stability constant of the metal can be determined by both the intrinsic affinity and the varied 

electrical potential at the PM surface. Furthermore, this conditional stability constant can be 

integrated into calculating the fraction of the total number of biotic ligands occupied by the 

metal ion, which is the key indicator determining toxicity of the metal. This modelling 

approach potentially allows taking into account both direct and indirect interactions between 

different ions in estimating joint toxicity of multiple metal ions. 

7 



161 

7.6.2. Recommendations for management 

Integration of the mechanistic bioaccumulation model in exposure assessment. Results in 

this PhD thesis demonstrate that the covalent index is potentially a suitable unifying factor for 

estimating metal bioaccumulation in mussels (Chapter 2). Because of the similarities in 

uptake mechanisms of terrestrial and aquatic organisms especially in terms of the transport 

proteins involved (Chapter 1), a mechanistic bioaccumulation model based on the covalent 

index might be developed and able to accurately estimate metal accumulation in plants. 

Furthermore, this model may be integrated in the exposure analysis in risk assessment. For 

instance, the application of the mechanistic accumulation model may improve the current 

approach for human exposure assessment. Consumption of crops is an important pathway of 

metal uptake in humans and estimations of metal concentrations in crops are therefore 

required to assess human exposure (Swartjes, 2007). The bioaccumulation model can be 

integrated in, e.g., the CSOIL model, as an alternative for the current approach of using single 

and generic experimental values of the bioconcentration factor or empirical relationships 

between the bioconcentration factor and soil characteristics in estimating metal accumulation 

in vegetables (Brand et al., 2007). 

Application of the BLM and the ETM for setting environmental quality standards for single 

metals. The current approaches of setting environmental quality standards for single 

substances (e.g., benchmark doses, NOAEL/NOEC) strongly depend on critical values, e.g., 

EC50 for individual metals obtained at specific conditions. This disadvantage can be 

overcome by using the BLM and the ETM to link critical values to environmental conditions, 

e.g., pH, alkalinity, and hardness of water. Additionally, the accuracy of the BLM in 

estimating toxicity of single metals to plants indicates possibilities of the model for use in 

setting soil quality criteria. 

Application of the TEF approach in assessments of metal mixtures. The conventional TEF 

approach based on environmental critical values, e.g., median effective concentration EC50 

expressed by the exposure level in solution, has been integrated in REACH in the assessment 

of the risks of dioxins, furans, and dioxin-like PCBs in the EU (EC, 2008a). So far, one of the 

reasons for not applying this approach to metal mixtures is the large variability in metal 

bioavailability. The determination of TEF values based on the accumulation of metal ions at 

the biotic ligands may overcome this limitation. This may provide the “intrinsic” relative toxic 

potency of different metal ions. 

Integration of uncertainty factors in mixture assessment. Uncertainty factors are often used 

in risk assessment to cover inter- and intra- species variability. It has been suggested that the 

uncertainty factor currently applied in risk assessment does not sufficiently cover mixture 

effects (Kortenkamp et al., 2009). In addition, a specific mixture assessment factor is not 

employed in the current chemical-by-chemical risk assessment. The main reason is the lack of 

a validated approach for derivation of such a factor. Metal toxicity, as applied in this thesis, is 

determined by the accumulation of metals at the biological surface, which is a function of the 

stability constants of the metals and other metals in the environment. Consequently, effects of 

one metal on the accumulation of another metal at the biological surface are influenced by the 

difference in their stability for biological ligands. Therefore, an uncertainty factor based on 

the difference in the affinity constants between different metals in mixtures may improve the 

risk assessment of metal mixtures. 

Integration of both whole mixture and component-based approaches in a tiered approach. 

Generally, in the present risk assessment, two approaches have been applied in studying 

mixture toxicity: whole mixture and component-based approaches. In the whole mixture 

approach, the toxicity of given mixtures is empirically assessed in particular conditions (EC, 
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2008b). Therefore, any synergistic and antagonistic interaction between mixture components 

is inherently included in the measured response of the organism. However, this approach is 

usually not suitable for developing environmental quality standards or extrapolation to 

different environmental conditions (Gennings et al., 2000). In the component-based approach, 

toxicity of mixtures is predicted based on the response of the organism to individual 

components using common models such as CA and RA. In this PhD thesis, both whole 

mixture and component-based approaches were used. Particularly, the combination of the 

BLM and the TEF approach is component-based while the whole mixture approach is 

included in the method of fitting toxicological data on metal mixtures to mathematic 

equations. Both whole mixture and component-based approaches have their own specific 

advantages and disadvantages and should be combined, instead of being used as alternatives 

to each other (Kortenkamp et al., 2009). This thesis provides possibilities to improve current 

approaches in assessment of metal mixtures. Although the approach of fitting empirical data 

to mathematical equations is based on assessment on metal mixtures, the concepts of CA and 

RA are included in this method, potentially allowing extrapolation to different conditions. 

Moreover, the methods applied in this thesis might be combined in a tiered approach to 

include both whole mixture and component-based methods. In the first step, the whole 

mixture approach is applied to determine whether the interactive effects are significant or not. 

If the effects are insignificant, conventional approaches of using the CA and RA models can 

be applied in the second step to predict toxicity of metal mixtures. If the interactive effects are 

significant, some approaches integrating the interactions as applied in the present study may 

be applied. 

7.6.3. Recommendations for further research 

Combination of the covalent index and other metal-specific properties to improve the 

predictive power of the mechanistic bioaccumulation model. The affinity of membrane 

transport proteins is metal specific, depending on metal charge and atomic radius, and 

preferences for coordination and ligands (Bell et al., 2002; Handy and Eddy, 2004; Veltman et 

al., 2008). Metal charge and radius are included in the covalent index. However, other factors 

should be combined with the covalent index to develop a better unifying factor for 

generalisation of metal bioaccumulation. For example, it was found that molecular weight can 

explain approximately 70% of the variability in metal bioaccumulation (Hendriks et al., 

1998). A combination of the molecular weight and the covalent index may improve the 

predictive power of the model further. In the bioaccumulation model developed, a relation of 

the assimilation efficiency to the covalent index was not included in because of the lack of a 

statistically significant relationship between these two parameters, hindering the development 

of a mechanistic model. Therefore, other metal-specific properties should be considered in 

order to increase the potential for predicting the metal assimilation efficiency. A correlation 

between the assimilation efficiency and metal properties facilitates the development and 

validation of a mechanistic model in which metal accumulation is predicted without necessity 

for experimental measurements of physiological parameters. 

Application of the covalent index and/or other chemical properties in modelling metal 

subcellular distribution. The internal fate of metals may vary substantially, due to the 

intracellular transport and trafficking of metals. These processes also involve proteins and 

other metal-binding ligands. Consequently, chemical properties that represent the affinity for 

these ligands like the covalent index considered in this thesis might also contribute to 

determine the subcellular partitioning of metals and might consequently be useful to estimate 

the subcellular distribution of the metals. 
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Application of the combination of the BLM and the TEF approach as well as the ETM 

approach for mixtures of more than two metals. The principle of these approaches may be 

applicable to mixtures of more than two metal ions. Particularly, in the BLM it is possible to 

incorporate effects of several metal ions in estimating the accumulation of one given metal 

assuming that these ions have the same or different binding sites at the biotic ligands. In the 

ETM, it is possible to estimate accumulation of one metal ion at the PM surface in the 

presence of a number of other metal ions if their binding constants are available, which allow 

computation of the electrical potential at the PM surface. With the development in the 

measurements of PM surface potential and the surface charge density, the number of metal 

ions for which the binding constants with the PM surface are available is increasing. 

Investigation of the application of different mathematical relationships to express ion-ion 

interactions. In this PhD thesis, ion-ion interactions in metal mixtures were assumed to follow 

linearity. However, non-linear relationships may occur. Moreover, the conclusion about the 

interactions depends on the mathematical equations used. Therefore, the possibility that 

interactions between different metal ions follow non-linear patterns should be examined as 

well. 

Investigation of effects of the surface potential in the transport of ions via the membrane. 

In the present study, negligible variations in the surface potential were observed. Therefore, 

the effects of the variations in the surface potential were not included in modelling internal 

interactions as well as toxicity of metal mixtures based on the activity of metal ions at the PM 

surface. In other words, effects on the free metal ion activity at the PM surface are the main 

consequences of the changes in the surface potential. However, besides effects on the surface 

activity, the electrical potential at the PM surface affects the transport of ions via the 

membrane (Wang et al., 2011). Therefore, methods aiming at integrating the influence of the 

electrical potential at the PM surface on the internal transport of ions should be developed, 

amongst others including studies in media of low ionic strength. 

The results presented in this thesis show evident advantages of integrating the interactions 

between ions and biological ligands into the estimations of metal bioaccumulation, 

bioavailability, and toxicity. Moreover, different approaches applied in this PhD thesis show 

substantial potential in predicting toxicity of metal mixtures, integrating ion-ion interactions. 

These approaches may be integrated into present regulations in risk assessment, increasing the 

reliability and reducing uncertainties in the analysis. 
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SUMMARY 

There are a number of challenges in modelling metal bioavailability and toxicity resulting 

from the highly specific behaviour of metals in the environment and in organisms. Metal 

bioavailability and toxicity are further complicated because of interactions between different 

metals and between metals with organisms. Consequently, a unifying factor, which allows 

generalisation of metal bioaccumulation, bioavailability, and toxicity, is not well validated. 

Moreover, proteins and other metal-binding ligands play an important role in metal uptake 

and subcellular trafficking. Therefore, affinity of metals for the biological ligands may be able 

to describe the variability in metal bioaccumulation, bioavailability, and toxicity (Chapter 1). 

This method may improve the reliability of estimations, facilitate assessment of metal-metal 

interactions and metal mixture toxicity, and increase the potential for extrapolation to a 

number of metals. The affinity of metals for the biological ligands was expressed by the 

covalent index (semi-mechanistic bioaccumulation model), by the stability constant of binding 

of metals with biotic ligands at the water-organism interface (Biotic Ligand Model, BLM), 

and by the stability constant of binding of metals and the membrane (Electrostatic Toxicity 

Model, ETM). 

The covalent index, which was suggested to represent the affinity of metals for proteins, 

was used to develop a semi-mechanistic model simulating metal bioaccumulation in zebra 

(Dreissena polymorpha) and quagga (Dreissena bugensis) mussels (Chapter 2). Particularly, 

kinetics of metal uptake and elimination via food and water were modelled based on the 

covalent index and the size-based filtration rate. This modelling approach increases the 

potential for extrapolation to a variety of metals, species, and exposure conditions without the 

need for case-by-case calibration. The estimated internal concentrations of 13 metals studied 

in zebra and quagga mussels were approximately within one order of magnitude of the 

measurements. For several metals, 70–99% of the variability in the internal metal 

concentrations in differently-sized mussels and at various sampling locations could be 

explained by the model. These results demonstrate that the covalent index is a potential 

unifying factor in the generalisation of metal bioaccumulation. 

A BLM was developed to investigate effects of common cations, i.e., H
+
, Na

+
, K

+
, Ca

2+
, 

and Mg
2+

, on Cu
2+

 toxicity to lettuce Lactuca sativa (Chapter 3). According to the BLM 

principle, toxic cations, e.g., Cu
2+

, may compete with the common cations for binding sites at 

the biotic ligands on the water-organism interface. Consequently, cations like H
+

 are expected 

to have alleviative effects on the Cu
2+

 toxicity. H
+
, Na

+
, K

+
, Ca

2+
, and Mg

2+
, in deed, were 

found to reduce toxicity of Cu
2+

 to lettuce. However, only effects of H
+
 could be described by 

the BLM, i.e., toxicity of Cu
2+

 at different solution pH conditions could be predicted based on 

the BLM parameters. More than 95% of the variability in the toxic effects of Cu
2+

 with 

varying solution pH could be explained by the BLM. Moreover, the inconsistent trend in the 

effects of Na
+
, K

+
, Ca

2+
, and Mg

2+
 may be related to specific physiological processes caused 

by these elements that are not included in the BLM. 

The contribution of the incorporation of the affinity of metals for biological ligands to 

modelling toxicity of metal mixtures was evaluated by separate assessments based on the free 

metal ion activity in the solution (Chapter 4), the accumulation of metal ions at the biotic 

ligands (Chapter 5), and the free metal ion activity at the membrane surface (Chapter 6). 

Interactions in mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 were incorporated in estimating their 

toxicity. This was obtained by extending the conventional models of concentration addition 

(CA) and response addition (RA). About 80–92% of the variability in the toxicity of the 

mixtures could be explained by the mathematical equations developed. Based on the 

assumption of the absence of interactions in the metal mixtures, Zn
2+

 was found to be the least 
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toxic element compared to Cu
2+

 and Ag
+
 while there was no significant difference in toxicity 

of Cu
2+

 and Ag
+
. On the basis of an assumption of potential interactions in the metal mixtures, 

Zn
2+

 significantly reduced Cu
2+

 toxicity while Cu
2+

 did not significantly affect Zn
2+

 toxicity. 

In addition, Cu
2+

 had significant alleviative effects on Ag
+
 toxicity while Ag

+
 enhanced Cu

2+
 

toxicity according to the extended CA model. The most important disadvantage of the method 

applied is the lack of underlying mechanisms of the mathematical relationships developed 

because of a limited and controversial understanding of metal binding. 

The BLM was combined with the toxic equivalency factor (TEF) approach in order to 

estimate toxicity of mixtures of Cu
2+

–Zn
2+

 and Cu
2+

–Ag
+
 to lettuce (Chapter 5). In particular, 

the fraction of the total number of biotic ligands occupied by metal ions was used to 

determine the relative toxic potency of Cu
2+

, Zn
2+

, and Ag
+
 expressed by TEF and the toxic 

equivalency quotient (TEQ) of metal mixtures. In other words, both TEF and TEQ were 

expressed based on the fraction of the total number of biotic ligands occupied by metals in 

mixtures. This approach allows integrating metal-metal interactions in terms of competition 

for binding sites at the biotic ligands in predicting toxicity of metal mixtures. 60–84% of the 

variability in toxic effects of the mixtures could be explained by TEQ. Moreover, toxicity of 

metal mixtures depended not only on their TEQ, but also specific composition of the 

mixtures. This finding is attributable to metal properties, e.g., essentiality, that lead to dose-

specific physiological effects. 

The accumulation of ions at the biological interface expressed by the free metal ion activity 

at the membrane surface was used to model interactions between Cu
2+

 and common cations, 

i.e., Na
+
, K

+
, Ca

2+
, and Mg

2+
, and between Cu

2+
 with Zn

2+
 and with Ag

+
 (Chapter 6). This 

approach explicitly revealed ion-ion interactions at the proximate outside of the membrane 

surface (surface interactions) and allowed investigating interactions between cations adsorbed 

(internal interactions). The major cations reduced the free ion activity of Cu
2+

 at the 

membrane surface while effects of the internal interactions on Cu
2+

 toxicity (i.e., reducing or 

enhancing) were dose-dependent. At the exposure levels studied, Zn
2+

 substantially reduced 

the accumulation of Cu
2+

 at the membrane surface while Cu
2+

 did not affect the surface 

activity of Zn
2+

. Additionally, the exposure levels of Cu
2+

 and Ag
+
 tested were not sufficient 

to result in substantial effects on the surface activity of each other. Furthermore, significant 

internal interactions following exposure to the metal mixtures were predicted by expanding 

the conventional concepts of CA and RA. Particularly, according to extended models of these 

concepts, Zn
2+

 adsorbed significantly reduced Cu
2+

 toxicity. The extended RA model also 

revealed significant effects of the interactions between Cu
2+

 and Ag
+
 on their toxicity, i.e., 

Ag
+
 increased Cu

2+
 toxicity while Cu

2+
 alleviated Ag

+
 toxicity. 

The contribution of the affinity of metals for biological ligands to estimating 

bioaccumulation, bioavailability, and toxicity of metals was summarised and synthesised 

(Chapter 7). The affinity of metals for proteins as expressed by the covalent index was shown 

to potentially contribute to the metal bioaccumulation. The accumulation of metal ions at the 

biotic ligands or the membrane surface is a better indicator of toxicity of single metals than 

the level in the exposure solution. The assumption that toxic effects are determined by the 

concentration of ion-biotic ligand complexes may be applicable to toxicity of metal mixtures. 

In spite of a lack of an advantage of the free metal ion activity at the membrane surface 

compared to the exposure level in the solution in estimating toxicity of metal mixtures, the 

affinity of metals for the membrane allows distinguishing surface and internal interactions. 

Moreover, effects of internal interactions on toxicity of metal mixtures might be explained in 

relation to the surface potential, which is influenced by the affinity of metals for the 

membrane. 
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In summary, using the affinity of metals for biological ligands as a unifying factor in 

generalisation of metal bioaccumulation and toxicity has substantial significance for metal 

assessment. Firstly, this approach allows including interactions between metals and organisms 

in the predictions of metal bioavailability. The accumulation of metals at the biological 

surface is a better predictor of intrinsic toxicity than the exposure level in the environment. 

Secondly, the modelling method based on the affinity of metals for biological ligands enables 

incorporating metal-metal interactions in estimations of metal bioaccumulation, 

bioavailability, and toxicity, especially following exposure to metal mixtures. Thirdly, this 

approach facilitates extrapolation potential. Consequently, the generalisation of metal 

assessment based on the affinity of metals for biological ligands may create considerable 

progress in risk assessment of metals. 
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SAMENVATTING 

Het gedrag van metalen in het milieu en in organismen verschilt sterk van het gedrag van 

organische stoffen. Deze constatering heeft geleid tot een aantal uitdagingen in het modelleren 

van de biobeschikbaarheid en de toxiciteit van metalen. De modellering van de biologische 

beschikbaarheid en de toxiciteit van metalen wordt verder gecompliceerd door specifieke 

interacties tussen metalen en tussen metalen en organismen. Als gevolg hiervan is er nog geen 

verbindende factor bekend die het mogelijk maakt om bioaccumulatie, biologische 

beschikbaarheid en de toxiciteit van metalen te generaliseren. Eiwitten spelen een belangrijke 

rol in de opname en het subcellulaire transport van metalen. Daarom zou de affiniteit van 

metalen voor eiwitten de variatie in metaal bioaccumulatie, biobeschikbaarheid en toxiciteit 

kunnen verklaren (hoofdstuk 1). Een nieuw ontwikkelde methode die gebaseerd is op de 

affiniteit van metalen voor eiwitten kan de betrouwbaarheid van schattingen van 

metaalopname, biobeschikbaarheid en toxiciteit verhogen. Tevens kunnen met behulp van 

deze methode de interacties tussen metalen worden gekwantificeerd en kunnen beperkt 

beschikbare gegevens over opname, biobeschikbaarheid en effecten van metalen naar andere 

metalen worden geëxtrapoleerd. De affiniteit van metalen voor eiwitten is uitgedrukt door de 

covalentie index (mechanistisch bioaccumulatie model), door de stabiliteitsconstante van 

binding van metalen met biotische liganden aan het water-organisme interface (Biotische 

Ligand Model; BLM) en door de stabiliteitsconstante van binding van metalen aan 

membranen (Elektrostatisch Toxiciteits Model; ETM). 

De covalentie index, die de affiniteit van metalen voor eiwitten weergeeft, is gebruikt om 

een semi-mechanistisch model te ontwikkelen dat de bioaccumulatie van metalen in 

driehoeksmosselen (Dreissena polymorpha) en in quaggamosselen (Dreissena bugensis) 

voorspelt (hoofdstuk 2). De kinetiek van metaal-absorptie en -eliminatie via voedsel en water 

zijn gemodelleerd op basis van de covalentie index en de filtratiesnelheid. Deze modelmatige 

benadering verhoogt de potentie voor extrapolatie naar andere metalen, soorten en 

blootstellingsomstandigheden, zonder de noodzaak om van geval tot geval de kinetiek te 

valideren. De geschatte interne concentraties van de 15 bestudeerde metalen in de driehoeks- 

en quaggamosselen waren ongeveer binnen een orde van grootte van de metingen. Voor 

verschillende metalen wordt 70-99 % van de variatie in de interne metaalconcentraties in 

mosselen van verschillende grootte en van verschillende locaties verklaard door het model. 

Deze resultaten demonstreren dat de covalentie index een mogelijke verbindende factor is in 

de generalisatie van metaal bioaccumulatie. 

Een BLM is ontwikkeld om de effecten van belangrijke kationen, zoals  H
+
, Na

+
, K

+
, Ca

2+
 

en Mg
2+

, op Cu
2+

 toxiciteit voor sla (Lactuca sativa) te onderzoeken (hoofdstuk 3). Volgens 

het principe van het BLM kunnen toxische kationen zoals Cu
2+

 concurreren met deze kationen 

voor binding aan de bindingsplaatsen op de biotische liganden op het water-organisme 

grensvlak. Zoals verwacht is gevonden dat kationen zoals H
+
 de Cu

2+
 toxiciteit verminderen. 

Ook Na
+
, K

+
, Ca

2+
 en Mg

2+
 blijken de toxiciteit van Cu

2+
 voor sla te verminderen. Echter, 

alleen de effecten van H
+
 kan worden beschreven door het BLM, hetgeen wil zeggen dat het 

nieuw ontwikkelde model de toxiciteit van Cu
2+

 bij verschillende pH-waardes accuraat kan 

voorspellen. Het BLM verklaart meer dan 95% van de variabiliteit in de toxische effecten van 

Cu
2+

 onder de verschillende pH-condities. De inconsistente trend in de effecten van Na
+
, K

+
, 

Ca
2+

 en Mg
2+

 is gerelateerd aan specifieke fysiologische processen die niet in het BLM 

worden meegenomen. 

De integratie van de affiniteit van metalen voor biologische liganden in de modellering van 

de toxiciteit van metaalmengsels is geëvalueerd door afzonderlijke bepalingen van de 

activiteit van vrije metaalionen in de oplossing (hoofdstuk 4), van de accumulatie van 
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metaalionen op biotische liganden (hoofdstuk 5) en door het meenemen van de activiteit van 

het vrije metaalion op het membraanoppervlak van de slawortels (hoofdstuk 6). Interacties in 

mengsels van Cu
2+

-Zn
2+

 en Cu
2+

-Ag
+
 zijn meegenomen bij het schatten van de toxiciteit van 

mengsels. Dit is gedaan door het uitbreiden van de gebruikelijke basismodellen voor 

mengseltoxiciteit van concentratie additie en (CA) en response additie (RA). Ongeveer 80-

92% van de variabiliteit in toxiciteit van de mengsels wordt verklaard door de ontwikkelde 

wiskundige vergelijkingen. Op basis van de aanname van afwezigheid van interacties tussen 

Cu
2+

, Zn
2+

 en Ag
+
, blijkt Zn

2+
 het minst toxische element te zijn, terwijl er geen significant 

verschil in toxiciteit is gevonden tussen Cu
2+

 en Ag
+
. Door mogelijke interacties tussen de 

metaalionen in de mengsels mee te nemen, werd gevonden dat Zn
2+

 de Cu
2+

-toxiciteit 

significant verminderde terwijl Cu
2+

 geen significante invloed had op de toxiciteit van Zn
2+

. 

Verder verminderde Cu
2+

 de Ag
+
 toxiciteit, terwijl Ag

+
 op zijn beurt de Cu

2+
 toxiciteit juist 

versterkte. De evaluatie van de resultaten toont aan dat het belangrijkste nadeel van de 

ontwikkelde methode het gebrek aan kennis over de onderliggende bindingsmechanismen is. 

Het ontwikkelde BLM werd in hoofdstuk 5 gecombineerd met de toxische equivalentie 

factor (TEF)-aanpak om de toxiciteit van mengsels van Cu
2+

-Zn
2+

 en Cu
2+

-Ag
+
 voor sla te 

schatten. Met name de fractie van het totale aantal biotische liganden dat bezet was met 

metaalionen werd gebruikt om de relatieve toxiciteit van Cu
2+

, Zn
2+

 en Ag
+
 te bepalen, 

uitgedrukt als TEF en als het toxische equivalentie quotiënt (TEQ) van metaalmengsels. Met 

andere woorden: TEF en TEQ werden uitgedrukt op basis van de fractie van het totale aantal 

biotische liganden dat bezet was door de in de mengsels aanwezige metalen. Deze aanpak 

maakt het mogelijk om metaal-metaal interacties in termen van competitie voor 

bindingsplaatsen op de biotische liganden te integreren in het voorspellen van de toxiciteit van 

metaalmengsels. 60-84% van de variabiliteit in de toxische effecten van de mengsels kon 

worden verklaard door het TEQ. Bovendien is aangetoond dat de toxiciteit van 

metaalmengsels niet alleen afhangt van hun TEQ, maar ook van de specifieke samenstelling 

van de mengsels. Deze bevinding is toe te schrijven aan specifieke metaaleigenschappen die 

leiden tot verschillende fysiologische effecten op verschillende niveaus van blootstelling, 

zoals bijvoorbeeld metaalessentialiteit. 

De accumulatie van ionen aan het membraanoppervlak, uitgedrukt als de activiteit van de 

vrije metaal ionen op het membraanoppervlak, werd gebruikt om interacties tussen Cu
2+

 en de 

belangrijkste kationen in het medium, zoals Na
+
, K

+
, Ca

2+
 en Mg

2+
, en tussen Cu

2+
 en Zn

2+
 en 

Ag
+
 te modelleren (hoofdstuk 6). Deze benadering toonde expliciet de aanwezigheid aan van 

ion-ion interacties aan de buitenkant van het membraanoppervlak (oppervlakte-interacties) en 

maakte het mogelijk om interacties tussen de aan het membraan geabsorbeerde kationen te 

onderzoeken. De belangrijkste kationen verminderden de activiteit van Cu
2+

 aan het 

membraan oppervlak, terwijl effecten van de interne interacties op Cu
2+

 toxiciteit (dat wil 

zeggen, het verminderen of vergroten van de interacties) dosisafhankelijk waren. Bij de in 

deze studie toegepaste blootstellingsniveaus verminderde Zn
2+

 de accumulatie van Cu
2+

 aan 

het membraan oppervlak sterk, terwijl Cu
2+

 geen invloed had op de vrije metaalion activiteit 

van Zn
2+

 op het membraanoppervlak. Daarnaast werd gevonden dat de gebruikte 

blootstellingsniveau’s van Cu
2+

 en Ag
+
 onvoldoende waren om hun wederzijdse 

oppervlakteactiviteiten substantieel te beïnvloeden. Verder werden significante interacties in 

mengsels voorspeld door de concepten van concentratie additie en respons additie uit te 

breiden. In het bijzonder toonden de aangepaste modellen van deze concepten aan dat aan het 

membraan geadsorbeerd Zn
2+

 de Cu
2+

 toxiciteit aanzienlijk verminderde. Het aangepaste 

respons-vermenigvuldigingsmodel bleek ook significante effecten van de interacties tussen 

Cu
2+

 en Ag
+
 op hun toxiciteit te verklaren, dat wil zeggen: Ag

+
 verhoogde de Cu

2+
 toxiciteit, 

terwijl Cu
2+

 de Ag
+
-toxiciteit verminderde. 
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De bijdrage van de affiniteit van metalen voor biologische liganden op de schatting van 

bioaccumulatie, biologische beschikbaarheid en toxiciteit van metalen is samengevat in 

hoofdstuk 7. De affiniteit van metalen voor eiwitten, zoals uitgedrukt door de covalentie-

index, is bepalend voor de bioaccumulatie van metalen. De accumulatie van metaalionen op 

biotische liganden of op het membraanoppervlak is een betere indicator van de toxiciteit van 

een metaal dan de totaalconcentratie van het metaal in het testmedium. De aanname dat 

toxische effecten bepaald worden door de concentratie van complexen tussen het metaal ion 

en het biotische ligand kan worden toegepast voor het bepalen van de toxiciteit van mengsels 

van metalen. Ondanks het feit dat het gebruik van de vrije metaalion activiteit op het 

membraanoppervlak geen significante verbetering levert van schattingen van de toxiciteit van 

mengsels van metalen ten opzichte van het uitgaan van het blootstellinsniveau van de metalen 

in het testmedium, wordt geconcludeerd dat het meenemen van de affiniteit van metalen voor 

het membraan het toelaat om interacties aan het membraanoppervlak en interne interacties te 

onderscheiden. Bovendien kunnen op deze manier de effecten van interne interacties op de 

toxiciteit van mengsels van metalen worden verklaard in relatie tot de oppervlaktepotentiaal 

die wordt beïnvloed door de affiniteit van metalen voor het membraan. 

Samenvattend is het gebruik van de affiniteit van metalen voor biologische liganden als 

verbindende factor in de veralgemening van metaal bioaccumulatie en toxiciteit, van aan-

zienlijke betekenis voor de beoordeling van de risico’s van metalen in het milieu. Ten eerste, 

laat deze benadering het toe om interacties tussen metalen en organismen mee te nemen in de 

voorspelling van de biobeschikbaarheid van metalen. De accumulatie van metalen op 

biologische membranen is hierbij een betere indicator van de intrinsieke toxiciteit van de 

metalen dan de blootstellings-concentratie van de metalen. Ten tweede laat de hier ont-

wikkelde modelleringsmethodiek op basis van de affiniteit van metalen voor biologische 

liganden het toe om metaal-metaal interacties mee te nemen in schattingen van de 

bioaccumulatie, biologische beschikbaarheid en toxiciteit van metalen. Ten derde 

vergemakkelijkt deze benadering de mogelijkheden voor extrapolatie van testgegevens tussen 

verschillende blootstellingsmedia en tussen verschillende metalen. De generalisatie van de 

beoordeling van de risico’s van metalen op basis van de affiniteit van metalen voor 

biologische liganden wordt beschouwd als een belangrijke innovatie van de risicobeoordeling 

van metalen. 
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