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Abstract
We present an implementation of DIANA, a computational model of spoken word recognition, 
to model responses collected in the Massive Auditory Lexical Decision (MALD) project. DIANA 
is an end-to-end model, including an activation and decision component that takes the acoustic 
signal as input, activates internal word representations, and outputs lexicality judgments and 
estimated response latencies. Simulation 1 presents the process of creating acoustic models 
required by DIANA to analyze novel speech input. Simulation 2 investigates DIANA’s performance 
in determining whether the input signal is a word present in the lexicon or a pseudoword. 
In Simulation 3, we generate estimates of response latency and correlate them with general 
tendencies in participant responses in MALD data. We find that DIANA performs fairly well 
in free word recognition and lexical decision. However, the current approach for estimating 
response latency provides estimates opposite to those found in behavioral data. We discuss these 
findings and offer suggestions as to what a contemporary model of spoken word recognition 
should be able to do.
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1 Introduction

The question of how a listener understands the meaning of what is being said is central to the field 
of speech perception and spoken word recognition. After decades of research, it is clear that the 
process of spoken word recognition is very complex. The sheer number of moving parts affecting 
the processing of speech make it very difficult to keep track of all of them—let alone create precise 
predictions about particular situations—using a verbal model “stored” in one researcher’s mind. 
Computational models, however, allow (or rather, force) researchers to formalize their theories and 
generate measures or estimates that can be directly compared to behavioral data (see, for example, 
Perfors et al., 2011; Scharenborg & Boves, 2010; Tan et al., 2021 for similar arguments). 
Importantly, they allow researchers to observe the interplay of multiple relevant factors at the same 
time. By switching models, model characteristics, or model parameter values, we effectively 
change our assumptions about the process of spoken word recognition. We can observe the conse-
quences of alterations regarding any of a number of major points of contention in the field. For 
example, we can test the adequacy of different prelexical representations, compare the perfor-
mance of a model with and without top-down effects (or even fine-tune the impact of top-down 
information), pit against each other different ways of competitor activation and retention, and so 
on. Overviews of models of spoken word recognition and how they attempted to solve these vari-
ous problems are given in the works of Magnuson et al. (2012); McQueen (2007); Protopapas 
(1999); Scharenborg and Boves (2010); and Weber and Scharenborg (2012).

A crucial step in the process of spoken word recognition is isolating characteristics of the speech 
signal that act as reliable cues of its content. This particular problem has proven difficult due to 
lack of invariance, leading to a long debate and numerous explanations of how this process unfolds. 
Still, most abstract models of spoken word recognition, which are the focus of the present paper, 
sidestep the problem of analyzing the acoustic speech signal and “instead use an artificial, often-
hand crafted, idealised discrete (prelexical) representation of the acoustic signal as input” 
(Scharenborg & Boves, 2010, p. 144).

The main reason for eschewing the acoustic signal were technical limitations that all first- and 
second-generation models of spoken word recognition faced, not lack of understanding of its 
importance. Topics ranging from acoustic-phonetic invariance to prosodic cues were central in the 
development of the Lexical Access From Spectra (LAFS) model proposed by Klatt (1979). The 
acoustic-phonetic representation in bottom-up approaches to spoken word recognition is also dis-
cussed by Pisoni and Luce (1987) as they overview what are mostly considered first-generation 
models of spoken word recognition, and also the Cohort model (Marslen-Wilson & Tyler, 1980; 
Marslen-Wilson & Welsh, 1978) and TRACE (McClelland & Elman, 1986b). Where the more 
recent, second-generation models of spoken word recognition are concerned, TRACE I is built 
around the acoustic signal being used as input, but TRACE II, the model that was actually imple-
mented, employed acoustic pseudofeatures instead (McClelland & Elman, 1986b; Strauss et al., 
2007). Similarly, Shortlist (Norris, 1994) used phoneme strings as input, but Shortlist B (Norris & 
McQueen, 2008) made a step toward representing their variability better using sequences of pho-
neme probabilities calculated over time slices, which were obtained from a diphone gating study 
with human listeners. (Despite the differences in model input, note that both TRACE and Shortlist 
can provide information over time, i.e., as the signal unfolds.) One consequence of using pseudo-
acoustic input is difficulty of establishing a direct comparison between model output and human 
performance, that is, forming a linking hypothesis (see, for example, Magnuson et al., 2012; 
Tanenhaus, 2004).

However, although many of the technical limitations have since been alleviated, most abstract 
models of spoken word recognition continue to settle for pseudo-acoustic input. Even the more 
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recently developed time-invariant string kernel (TISK; Hannagan et al., 2013; You & Magnuson, 
2018) model uses phonemes as input, assuming that the process of phoneme recognition had 
already been successfully completed. This issue becomes even more acute when we take into 
account other domains within the broader field of speech perception. Classic models of speech 
perception focused on finding invariant acoustic cues in the speech signal, although these largely 
investigated recognition of individual speech sounds (for an early speech perception model focus-
ing on lexical access, see Klatt, 1979). Some of the earliest implementations of episodic models of 
speech perception also used actual sound recordings (Johnson, 1997). More recently, researchers 
have managed to computationally extract features or categories from the acoustic signal using 
unsupervised learning (see, for example, Lee et al., 2015; Schatz et al., 2021). Similarly, studies 
show that information collected from spectra can be used to successfully categorize speech sounds 
(e.g., McMurray & Jongman, 2011; Stevens & Blumstein, 1978). A large body of research has 
continued to focus on using actual phonetic input to describe and model a number of phenomena 
in speech perception, such as categorical perception (Kronrod et al., 2016), perceptual recalibration 
(Norris et al., 2003; Theodore & Monto, 2019; Xie et al., 2021), unsupervised and supervised 
adaptation (Clayards et al., 2008; Kleinschmidt & Jaeger, 2016), or foreign-accent adaptation 
(Hitczenko & Feldman, 2016; Tan et al., 2021); for a summary of recent progress, see Kleinschmidt 
and Jaeger (2015) and Kurumada and Roettger (2022).

Still, even if we restrict our discussion to the abstract models of spoken word recognition that 
mostly rely on the activation–competition process to determine what the target word is, there are 
notable exceptions to the trend of avoiding acoustic input (although these models of spoken word 
recognition do not always investigate or explain how low-level acoustic features influence the 
process of spoken word recognition). Two early examples are SpeM and Fine-Tracker (Scharenborg, 
2008, 2009; Scharenborg et al., 2005), while the other two examples are the most recent additions 
to the group of models of spoken word recognition, the discriminative lexicon approach to spoken 
word recognition (Baayen et al., 2019) and EARSHOT (Magnuson et al., 2020). Fine-Tracker 
maps the acoustic signal to a set of articulatory features, and it is capable of simulating durational 
and fine-phonetic detail effects captured in behavioral experiments (see, for example, Andruski 
et al., 1994; Salverda et al., 2003). The discriminative lexicon approach extracts frequency band 
summary features (Arnold et al., 2017) that are strings describing a particular frequency band of a 
temporal chunk of the signal in terms of its initial, final, median, and maximum amplitude. Both 
approaches are promising, but may require additional fine-tuning, as is the case with Fine-Tracker 
(see Scharenborg & Merkx, 2018), or additional testing, in case of frequency band summary fea-
tures. EARSHOT uses spectrographic input and a two-layer neural network architecture to connect 
the said input to pseudo-semantic vectors. Initial model accuracy in word recognition does show 
promise, but further model testing is necessary. Besides an inspection of the hidden units that 
showed similarities to human neural responses, EARSHOT’s output has for now only been com-
pared to the results of the visual world paradigm study performed by Allopenna et al. (1998) and 
previous simulations of that study using TRACE.

To the best of our knowledge, the only other model to also implement the acoustic signal as 
input is a process-oriented model, DIANA (ten Bosch, Boves, & Ernestus, 2015). Similarly to 
other notable models of spoken word recognition, DIANA is an activation and competition model. 
The current setup uses speech corpora to develop acoustic models (AMs), which are then used to 
calculate phone activations in novel acoustic signals presented to DIANA. What sets DIANA apart 
in comparison to models like Fine-Tracker, the discriminative lexicon approach, and EARSHOT is 
that it acts as an end-to-end model of spoken word recognition that is a computational approxima-
tion of (1) a general perceptual decision-making framework with a linking function for recognition 
and estimation of response latency, (2) which is based on word activation and competition 
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principles most models of spoken word recognition agree on, and (3) extends it to take raw acoustic 
inputs (shared with, for example, EARSHOT). Importantly, all of these features are an integral part 
of the model in the case of DIANA, so that the user does not have to rely on multiple different theo-
retical or computational models (or to choose from multiple different specifications of, for exam-
ple, decision-making) to simulate a behavioral task. DIANA is built upon the computational 
modeling of an interpretable interaction between two human cognitive functionalities (namely, 
activation and decision) in such a way that it can take acoustic input (thus supporting ecological 
validity) while being able to predict overt outcomes (such as response latency). In DIANA, esti-
mated response latencies are the result of underlying processes, rather than the focus of explicit 
modeling. Among all current computational models of spoken word recognition that can handle 
audio input, it is the only one that includes an explicit decision component. This decision compo-
nent overlaps with computational approaches of human decision-making, such as diffusion models 
and ballistic accumulation models (see, for example, Ratcliff et al., 2004). In the case of DIANA, 
the drift is nonlinear and hypothesis-dependent.

In the present paper, we first give a more detailed description of DIANA and previous simula-
tions of the auditory lexical decision and word repetition experiments performed using this model. 
We then motivate the present simulations, presenting the goal of the current study. The central part 
of the paper describes the simulations we performed and discusses the findings to both develop 
DIANA and further scrutinize the process of spoken word recognition.

1.1 DIANA

A coarse visual representation of DIANA’s components and parameters is given in Figure 1 
(adapted from ten Bosch, Boves, Tucker, & Ernestus, 2015). The first major component is the 
activation component: The model takes the speech signal as input and uses existing automatic 
speech recognition AMs (described in detail in later sections) to activate subword units, which are 

Figure 1. DIANA takes the acoustic signal as input and has three components (activation, decision, and 
execution). Word activation depends on the input signal, the acoustic models, and the impact of top-down 
information adjustable by changing the parameter γ . The decision component is affected by two thresholds 
(θwc for the decision that a word wins in comparison to all other word competitors and θlb for the word 
vs. pseudoword decision). If no decision is made prior to signal offset, parameter β determines the added 
decision time. The execution component represents the time needed to execute the decision.
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phones in the current setup, and words in the mental lexicon represented as phone strings. This 
aspect of DIANA was partly inspired by an observation made by Norris and McQueen (2008). In 
Shortlist B, the direct connection between the model and the input audio is lost due to the use of 
intermediate phone-phone confusion probability tables instead of the acoustic signal itself. That 
step was justified by stating that Shortlist B aims at modeling a part of the cascade from audio to 
word and that it was not clear how humans perform this step. To create a full end-to-end model, one 
has to bridge that gap in some way. One of the possible implementational options to close this gap 
is to use speech decoding techniques that (necessarily) operate from real audio, such as, for exam-
ple, those developed in research on automatic speech recognition. Importantly, automatic speech 
recognition is not a panacea to solve the problem of how humans make the connection from audio 
to phone-like or word-like symbols. Instead, speech decoding techniques can be used as a proxy to 
compute activations of symbolic representations based on their bottom-up support from the (sub-
symbolic) audio. The model can also weigh the activations using top-down information, such as 
word frequency. The impact of top-down information is controlled by changing the parameter γ.

The decision component operates in parallel with the activation component, reassessing whether 
a winner can be found at each time step. As words in the lexicon gain activation, they compete 
without lateral inhibition. Conceptually, DIANA follows the approach used in the Cohort model 
(Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978) to determine plausible candi-
dates. Under this simplifying assumption, candidates that do not match with the input will be dis-
carded as the signal unfolds. Note, however, that in the cohort model early mismatches are heavily 
penalized as they depend on the strict and correct identification of individual phones. In DIANA’s 
current implementation, the match between the signal and the internal representations is probabil-
istic (as in Shortlist B) and early mismatches do penalize the word score, but do not necessarily 
exclude these words from competition. Activation changes and competition unfolds until a winner 
is selected based on the difference in activation between the leading candidate and the runner-up. 
This difference is determined by an adjustable threshold θwc. If no winner is clear before signal 
offset, parameter β  determines the added time required to make a decision depending on remain-
ing competition. DIANA also makes a word/pseudoword decision by examining whether word 
activation is similar enough to the string of phones that the model activates independently of the 
lexicon. If a string of phones not present in the mental lexicon (i.e., a possible pseudoword that 
happens not to be a lexical item) is activated much better than any phone string that is present in 
the mental lexicon (i.e., any word), then the input signal is categorized as a pseudoword. The dif-
ference in activation required to make a “pseudoword” decision is governed by an adjustable 
threshold θlb.

Finally, the third major component of the model is the execution component. The execution 
happens after the decision has been made and represents the time taken to actually respond (e.g., 
press a button). Usually, this time is set to 200 ms in our implementation of DIANA. This estimate 
of the execution time is based on existing measures of response times (RT) in different tasks (see 
Kosinski, 2008, for a review). Note, however, that increasing or reducing the execution time is a 
linear transformation that would not impact the correlation between model estimates and some 
existing behavioral measure. The more important question is whether an approximation that is a 
fixed number can represent the variability in human reaction time well—not all humans react 
equally fast. Since the intent of the model is to represent general tendencies in human behavior and 
since it is unclear how a distribution of execution times can be modeled, we employ the standard 
approach and use a fixed number.

Besides these integral processes of activation, decision, and execution, DIANA’s other elements 
could be replaced. For example, the analysis of the acoustic signal can be performed in many dif-
ferent ways or the representation of the lexicon could be made to match TRACE or the Distributed 
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Cohort Model (Gaskell & Marslen-Wilson, 1997, 1999, 2002). The current setup can then be 
viewed as a task architecture focusing on the process of spoken word recognition, primarily, in 
word repetition and auditory lexical decision tasks (but see ten Bosch, Giezenaar, et al., 2016, for 
a simulation of L2 listener errors in comprehension of reduced word forms in a sentence dictation 
task). We provide more technical detail about the current task architecture of DIANA when we 
describe the setup of our simulations.

The simulations of word repetition and auditory lexical decision task using DIANA were per-
formed almost exclusively in Dutch. The first such instance (ten Bosch et al., 2013) modeled audi-
tory lexical decision responses to 613 disyllabic monomorphemic Dutch words made by 20 
participants. The model showed comparable error rates to human participants as its accuracy was 
96% for the “word” (participant average: 94%) and 93% for the “not a word” (participant average: 
95%) response. Model estimates of when the decision should be made also correlated quite well 
with tendencies in participant response latency. The average correlation between the model esti-
mates and each of the human participants separately was r = .47 . In comparison, the correlations 
in response latencies between any two participants never exceeded r = .30 . This indicates that 
even though participant response latency on the same items is quite varied, DIANA corresponds 
well with some general tendency in participant response behavior, in a way mimicking an aver-
age participant. Although these results imply that DIANA is able to simulate general tendencies 
in participant responses, low correlations between participants themselves raise additional 
questions.

In a subsequent report describing a simulation of participant performance in a word repetition 
task using the same stimuli, ten Bosch et al. (2014) explain the lack of between-participant correla-
tion using the notion of “local speed effects” (Ernestus & Baayen, 2007). Local speed effects 
explain the tendency of response latencies to a certain stimulus to correlate with response latencies 
to a number of previous stimuli. It is assumed that these correlations are a product of, for example, 
learning, fatigue, or shifts in attention (see also Phaf et al., 1990, for an early example of a compu-
tational model taking participant attention into account). Since the variation induced by these fac-
tors can be treated as noise in comparison to long-term effects, such as general cognitive abilities, 
their effect should be attenuated, especially considering that a computational model of spoken 
word recognition is not susceptible to similar effects. Therefore, ten Bosch et al. (2014) took into 
account response latencies to five preceding stimuli when estimating the “true” response latency to 
a stimulus, similarly to taking into account previous RT in statistical modeling (see also ten Bosch 
et al., 2018). The number of relevant preceding stimuli was selected to achieve maximum partici-
pant-to-participant correlation in response latency. After local speed effects have been attenuated, 
the correlation between participants and the correlation of DIANA to the average participant 
response latency both increased. The highest correlation between DIANA and the average partici-
pant response latency recorded for this word repetition task dataset was r = .41 .

The same procedure that removed local speed effects was used in a later study (ten Bosch, 
Boves, & Ernestus, 2015) that again simulated participant responses to 613 Dutch words in the 
word repetition task. This time, however, different model parameters were also varied, showing 
that word frequency plays an important role in approximating participant response latencies, that 
the model should not just take the word with the highest activation score as the winner but also 
should add extra choice time if there is a close competitor at word offset, and that a word should in 
general have a substantial advantage to be selected as the winner. Applying these rules increased 
the average correlation between DIANA’s estimates and actual participant response latencies to 
r = .76 .

DIANA was also implemented outside of Dutch, albeit only once (ten Bosch, Boves, Tucker, & 
Ernestus, 2015). The dataset included responses from 10 to 12 native and non-native listeners of 
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English to 1,200 words. The results of the simulation still showed satisfactory performance of 
DIANA, with the correlation between model estimates and average participant response latency in 
an auditory lexical decision task being r = .45 . In general, it seems that DIANA achieved higher 
correlations with participant performance when simulating word repetition than auditory lexical 
decision data.

1.2 The present study

One of many advantages of studies with very large item and/or participant sample sizes, often 
called megastudies (see Balota et al., 2012), is that they enable testing how well model estimates 
correspond to human performance by providing a behavioral database for comparison. The results 
of these comparisons are necessary for further model development. An extensive overview of 
existing megastudies is given in the work of Keuleers and Balota (2015), while a more recent list 
is available at http://crr.ugent.be/archives/2141.

Most large studies investigate responses to visually presented, written stimuli. The number of 
existing databases and their sizes are smaller for the auditory domain. Still, such databases are 
instrumental in the development of many models of spoken word recognition. One of the first 
larger databases was created by Luce and Pisoni (1998) and the data gathered in this study were 
used in the development of the capitalize Neighborhood Activation Model (see also Luce, 1986). 
Another example is the study conducted by Smits et al. (2003), as the collected data were used in 
the development of Shortlist B (Norris & McQueen, 2008). Biggest Auditory Lexical Decision 
Experiment Yet (BALDEY; Ernestus & Cutler, 2015) collected responses to 5,541 Dutch content 
words and pseudowords from 20 young native Dutch listeners and was instrumental in testing 
DIANA (ten Bosch, Boves, & Ernestus, 2015, 2016).

Massive auditory lexical decision (MALD; Tucker et al., 2019) is a still ongoing project 
designed to provide an even larger database of responses to isolated words presented in the audi-
tory modality, with the goal of complementing the existing databases in the visual domain, such as 
the English Lexicon Project (Balota et al., 2007). One of the purposes of building a large database 
of MALD responses is to test existing computational models of spoken word recognition. The goal 
of the present study is to implement DIANA in English and test how well it matches participant 
performance in an auditory lexical decision task using MALD data. Although correspondence to 
actual participant behavior is only one of the criteria for estimating adequacy of models of spoken 
word recognition (see Scharenborg & Boves, 2010, for an extended discussion), an acceptable fit 
is still necessary for a model to be considered credible.

DIANA aims to be language-independent and, in our simulations, we want to investigate the 
challenges of implementing DIANA for the first time—the way any researcher would be using it 
for a language in which DIANA has not yet been tested. Therefore, although DIANA was already 
tested in English on a smaller scale (ten Bosch, Boves, Tucker, & Ernestus, 2015), we develop new 
AMs from spontaneous speech corpora, completing the entire process a researcher in any language 
would have to undertake to implement DIANA for their own purposes. These AMs are adapted for 
a single speaker, the same speaker that MALD participants listened to in the auditory lexical deci-
sion experiment. This approach restricts the model input variability to the variability present 
between segments produced by the same speaker in different words, not between different speak-
ers. Once the AMs are created, we test DIANA’s performance in recognizing words in novel speech 
signals by calculating between-word competition as a function of time, and, most importantly, by 
simulating the lexical decision task. In addition, we compare model estimates to actual participant 
performance in MALD on a large scale and test model adequacy in that way. Original data accom-
panied with DIANA and statistical analysis scripts are available as supplementary material at 
https://doi.org/10.7939/r3-jdpa-dn72.

http://crr.ugent.be/archives/2141
https://doi.org/10.7939/r3-jdpa-dn72
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2 Behavioral experiment

As we noted in the introduction, we compare DIANA model estimates to human performance in 
the MALD project database (Tucker et al., 2019). We use the first version of the dataset (MALD1) 
available at mald.artsrn.ualberta.ca. In the present paper, we provide only the necessary informa-
tion about the MALD experiment and the word and pseudoword recordings. More details about the 
stimuli and procedure are available in the work of Tucker et al. (2019).

2.1 Sample

The MALD1 dataset includes responses from 231 native monolingual English listeners (180 
females, 51 males; age M = 20.11, SD = 2.39). All participants were recruited from the University 
of Alberta, receiving partial course credit for their participation.

2.2 Stimuli

Stimuli recordings were made by one 28-year-old male speaker of western Canadian English. The 
speaker was recorded reading isolated words and pseudowords on a computer monitor. He was 
instructed to produce the words written in their standard spelling as naturally as possible. 
Pseudowords were presented in their International Phonetic Alphabet (IPA) phonemic transcrip-
tion and the speaker was instructed to read them as if they were words. All word and pseudoword 
recordings are available as separate wave files and have been aligned using the Penn Forced 
Aligner (Yuan & Liberman, 2008).

The recording procedure and post-processing of the stimuli yielded 26,800 words and 9,600 
pseudowords used in the experiment. The words were split into 67 sets, and the pseudowords 
were split into 24 sets. Each word and pseudoword set contains 400 unique items. A total of 134 
pairings of one word and one pseudoword set were made (i.e., each word list was paired sepa-
rately with two different pseudoword lists), creating 134 balanced 800-item lists used in the 
behavioral experiment.

The simulations described in the following sections have many steps and there was small word/
pseudoword loss between these steps for various technical reasons (mostly recording errors, mis-
matches between item lists, or missing MALD1 RT data). In the interest of clarity and brevity, we 
do not document all of these losses in the paper because they are minor and because we always 
maintain a high standard of hundreds or thousands of items used. We do provide the exact number 
of items used for critical simulations and comparisons to MALD data. Detailed information about 
the simulation process can be found in our supplementary materials, and following the scripts 
allows more detailed tracking of item loss.

2.3 Procedure

The participants were seated in a sound-attenuated booth for the experiment. A single 800-item list 
of stimuli was presented using the E-Prime experimental software (Schneider et al., 2012). Stimuli 
order was randomized. After a visual fixation cross lasting 500 ms, a word or a pseudoword was 
presented over headphones and the task for the participants was to decide whether the signal was a 
word of English or not by pressing the “yes” or “no” button on the button box. Responding during 
stimulus presentation would interrupt it and the experiment would proceed to the next trial. If no 
response was made within 3 seconds, the following trial was presented. The participants had the 
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option of returning for another session and a new experimental list up to three times. Some partici-
pants, therefore, completed more than one list (but never the same word or pseudoword set), and a 
total of 284 responses to experimental lists were recorded.

3 Simulation 1—AMs

The first goal of Simulation 1 was to follow the process of setting up DIANA from scratch. We 
developed our own AMs and compared their performance with the performance of existing AMs 
for English in a free word recognition test. We do not compare model estimates to participant data 
in this simulation.

3.1 Simulation setup

Acoustic models can be trained using careful (read) speech corpora, such as TIMIT (Garofolo 
et al., 1993) or LibriSpeech (Panayotov et al., 2015), which was used in the development of 
Montreal Forced Aligner (McAuliffe et al., 2017). AMs can be also trained using spontaneous 
speech corpora, such as SCOTUS (Yuan & Liberman, 2008), which was used in the development 
of the Forced Alignment and Vowel Extraction (FAVE; Rosenfelder et al., 2014) suite. We used two 
unpublished spontaneous speech corpora as a baseline for creating AMs. The WCE spontaneous 
speech corpus contains telephone call recordings made by 11 speakers, while the Corpus of 
Spontaneous Multimodal Interactive Language (CoSMIL) contains conversation recordings of 
eight pairs of speakers. We decided to use WCE and CoSMIL to train AMs for three reasons. First, 
many languages do not have extensive support in terms of previously available speech corpora. 
Using our own corpora, we show that an independent researcher could create a spontaneous speech 
corpus for their language of interest and use it to create AMs for DIANA. Second, the speakers in 
WCE and CoSMIL speak the western Canadian variety of English, same as the MALD speaker. 
Third, human listeners are more often exposed to spontaneous, conversational speech than to care-
ful enunciations. It is best when a model of spoken word recognition can be presented with the 
same input as the human listener; in our study, both are presented with MALD items in the test 
phase. However, we also wanted to represent the kind of “practice” human listeners receive as 
faithfully as possible, so that we used spontaneous speech in the training phase.

In our implementation of DIANA, similar to previous implementations, we trained the AMs 
using automatic speech recognition training in the Hidden Markov Model Toolkit (HTK; Young 
et al., 2006). HTK is a modular open source system for speech decoding. The process of creating 
the AMs described below is time-consuming. In ideal circumstances, starting from a few hundreds 
of hours of speech, this process may be completed in several days with computational time 
included. However, the amount of time will vary depending on a number of factors, one of them 
being familiarity with the technicalities involved. This estimate does not include the process of 
creating and organizing acoustic recordings and compiling reference data about this material.

WCE and CoSMIL recordings were separated into brief speech intervals, and we further split 
the longer transcribed intervals to create speech chunks shorter than 10 seconds. We excluded 
speech chunks that entirely consisted of silent pauses, laughter, or other non-speech noise. In total, 
just over 9 hours of speech were isolated and split into 20,086 speech chunks each shorter than 
10 seconds. We downsampled the speech chunks to 16 kHz, and excluded 31 speech chunks due to 
potential sound clipping.

The first step in the training procedure takes the speech chunk input and creates estimates for all 
transcribed units (in this case, phones) as three-state hidden Markov models (HMMs), while the 
acoustic characteristics of phones are represented by Gaussian mixture models (GMMs). An HMM 
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is a classical, elegant, and computationally feasible solution for representations that correspond to 
time varying signals, such as words and syllables. An HMM is a network (often a linear sequence 
with self-loops) of nodes or “states”; each state in an HMM is then associated with a statistical 
distribution of a collection of very short speech sounds (e.g., all transients into an /a/, stable por-
tions of an /u/, spectral properties of the burst of a /t/). Those statistical distributions can be mod-
eled by a GMM or by other statistical models (nowadays, deep neural networks have become more 
widely used; see Abdel-Hamid et al., 2014). Allophonic variation is encoded in terms of deviations 
from acoustic trajectories matched by an HMM and individual Gaussians in a GMM may carry a 
short stretch in such an allophonic trajectory. The HMM is then a truly representational structure, 
while the Gaussians or the deep network is a mathematical construct used to associate the audio 
signal with the HMM states. The HMMs themselves do not have a cognitive status, but they act as 
an operational computational unit that simulates the activation between audio and representational 
units. The modeling power of an HMM depends on its topology (linear, or multiple paths in paral-
lel, number of nodes per path, and the number of statistical distributions used to link the acoustical 
statistics with each node). The number of Gaussians per node is indirectly related to the number of 
allophones.

Speech chunks from conversational speech corpora often included two or more connected 
words. Therefore, we expanded the created AMs to also include estimates for short pauses in 
speech, that is, we created the so-called “sp models” (for more information, see Young et al., 2006).

Increasing the number of GMMs per state may reliably reduce error rate in word recognition 
(Vertanen, 2006), so in the second step of creating the AMs, we increased the number of GMMs 
per HMM state from 1 to 2, then 4, 8, 16, and finally to the usually recommended 32 GMMs. The 
currently employed monophone system assumes that phones are context-independent. In reality, 
they are not, so with larger training material triphone models can be created to take into account 
phonetic context. We kept our models simple due to our limited training material, and also because 
HTK is just a technical mechanism to bridge audio on one hand and activations of words as items 
in a dictionary on the other.

The third and final step in creating the AMs was speaker adaptation. In this step, recordings 
from the MALD speaker (the speaker that the model will be tested on) are introduced to realign 
AM estimates. This process enables the AM to perform substantially better when recognizing 
speech recorded by a particular individual. Besides being a technical necessity, speaker adaptation 
is also cognitively relevant; inter-talker variability is high (see, for example, Kleinschmidt, 2019; 
Magnuson et al., 2021) and humans too show improved performance upon adapting or being 
exposed to particular speakers or speaker groups (see, for example, Bradlow & Bent, 2008; Eisner 
& McQueen, 2005; Xie et al., 2021).

Using a portion of speakers’ recordings for training purposes limits the amount of material 
remaining for the test phase. Considering that the amount of material from the same speaker used 
in a behavioral experiment may be small to begin with, we wanted to test how much material is 
required to create adequate AMs. Starting with the “sp model” described above, we created sepa-
rate speaker-adapted models differing in the number of MALD word recordings used for adapta-
tion. Pseudoword recordings were not used in training. The smallest adaptation set included only 
three MALD word lists with a total of 1,200 words. Larger adaptation sets were created in incre-
ments of three (six lists, nine lists, 12 lists, etc.) up to 45 MALD word lists with a total of 18,000 
words. Each list includes approximately just under 4 minutes of speech.

We compared speaker-adapted models in their ability to recognize the input signal from a list of 
candidates comprised all 26,000 MALD words. In other words, all MALD words were used as the 
lexicon and we used six MALD lists (46–51) as test (input) material. In the current implementation 
of DIANA, the activation component analyzes the acoustic input by converting it into vectors of 
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mel-frequency cepstral coefficients (MFCCs), while the acoustic characteristics of every phone in 
the lexicon, as we stated above, are represented by GMMs specifying the distribution of MFCC 
vectors for the three states in an HMM that each phone has. MFCCs are built upon the characteris-
tics of the human auditory pathway (critical bands, energy compression) and are since the nineties 
the dominant audio representation in many analyses based on audio (and speech in particular, 
Rabiner & Juang, 1993) as well as in computational psycholinguistics. The MFCC representation 
is a representation of the audio signal in terms of a sequence of low-dimensional vectors. The 
MFCC vector contains a number of coefficients, each representing an aspect of the spectrum of a 
small portion of the speech signal. The MFCC vector sequence is computed using a sliding win-
dow—an analysis window of 25 ms is standard, as it is considered long enough to cover both 
steady and transient portions in the speech signal—with a window shift of 10 ms. The number of 
MFCCs mentioned in the literature may differ: while certain studies mention the use of 12 coeffi-
cients, other studies mention 13. Often 12 MFCCs (c1, . . ., c12) are combined (augmented) with 
log(E) (i.e., log energy) resulting in log(E), c1, c2, . . ., c12, while studies using 13 MFCCs always 
refer to the additional use of the “zeroth coefficient” (c0) which is also a measure of energy, result-
ing in c0, c1, . . ., c12. The matching is performed using a Bayesian framework that is often 
employed in conventional automatic speech recognition. Briefly, the probability that a certain 
sequence (word) is observed given the acoustic signal depends both on the probability that such an 
acoustic signal would be created for that sequence (this first factor is related to the AM) and on the 
probability that such a sequence would occur at all (this second factor is related to the language 
model and captures effects of expectations based on, for example, frequency of previous occur-
rence). Therefore, the activation values are scaled log probabilities. Calculations are performed for 
every 10 ms of input, as per the HTK default settings. Since the goal was to assess the quality of 
the AMs, activation values were not weighted by word frequency (γ = 0). Furthermore, we did not 
use the decision component of DIANA; we simply observed whether the correct, target word has 
the highest activation value.

To further assess AM quality, we also compared our AMs based on spontaneous speech corpora 
with FAVE AMs (Rosenfelder et al., 2014), likewise adapted for the MALD speaker. In addition, 
one may be concerned whether the obtained model performance is a consequence of which MALD 
lists were used for training and which for testing. For that reason, we created another set of AMs 
based on CoSMIL and WCE which were adapted on MALD lists 67–23, again in steps of three lists 
(i.e., the model adapted on three lists used lists 67–65, the model adapted on six lists used lists 
67–62, etc.), and tested the performance of these models on MALD lists 22–17.

Finally, we created n-best lists to show the top candidates and their activations at word offset. 
These lists allow us to see whether the competitors considered alongside the word with top activa-
tion are sensible, and also inspect the cases in which the wrong winner is selected. We created 
20-best lists, that is, observed top 20 candidates for every target word. The choice of the number of 
candidates considered was arbitrary and made to ascertain that no important candidates will be 
omitted, and also to allow feasible computation and data manipulation. The number of retained 
candidates is comparable to those used in established measures, such as orthographic Levenshtein 
distance 20 and phonological Levenshtein distance 20 (OLD20 and PLD20; Yap & Balota, 2009; 
Yarkoni et al., 2008).

3.2 Results

Free word recognition results are presented in Figure 2. We can see that free word recognition 
accuracy is relatively low when models unadapted to the MALD speaker are used. In this initial 
step, the FAVE model performs slightly better than our own models. Adapting the AMs on more 
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MALD words leads to a large improvement in free word recognition at first, but this effect is 
reduced for adaptations performed on more than nine MALD word lists, especially for models 
based on WCE/CoSMIL. AMs created based on WCE and CoSMIL (circles) slightly outperform 
those based on FAVE AMs (triangles), but this difference becomes smaller as more words are 
added and disappears when the adaptation is performed on 40 MALD word lists or more. AMs 
trained and tested using a different set of MALD word lists (squares) show that the obtained free 
word recognition accuracy (circles) is not an artifact of the training/test set used; in fact, these 
models even have slightly higher accuracy. As another point of comparison, the AMs used by ten 
Bosch, Boves, Tucker, and Ernestus (2015) in the pilot DIANA simulations of MALD data had an 
accuracy of 82% when 500 words were tested with a lexicon of 36,000 word competitors.

We selected the model adapted on (MALD word lists 1–30), henceforth referred to as AM30, 
for all subsequent simulations. The difference in average accuracy between AM30 and the AM 
adapted on 45 MALD lists is only 1%. The model adapted on 33 MALD lists is the first model 
where we see a slight decline rather than an increase in free word recognition accuracy, indicating 
that any additional realigning may be volatile. The model still offers a bit more (1.4%) than the 
model adapted on 15 MALD word lists, as well as a smaller difference in accuracy across the six 
test lists. Choosing AM30 as the model to be used leaves 37 MALD word lists available for testing 
purposes.

Figure 2. Accuracy in free word recognition on six MALD word lists. The number of MALD word lists 
used for speaker adaptation is given on the x-axis. Average recognition accuracy and confidence intervals 
across six MALD word lists used for testing are given on the y-axis. The legend distinguishes between 
models based on WCE and CoSMIL and adapted on MALD word lists 1–45 (circles), models based on the 
FAVE AM and adapted on MALD word lists 1–45 (triangles), and models based on WCE and CoSMIL and 
adapted on MALD word lists 67–23 (squares).
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We also used AM30 to extract 20-best candidates for the target words in the six MALD test lists. 
We noted sensible competitors in all cases, regardless of whether the correct word was selected as 
the winner or not. Table 1 shows the winning word and the top 3 competitors for target words tales 
and proceed. For the first word, the string of phones was correctly recognized although the target 
word shares the same activation level as its heterographic homophone tails. The correct word was 
selected as the winner because it appears earlier in an alphabetized list of words. (Note that weigh-
ing activation using word frequency would change activation values of the homophones so the 
more frequent homophone would be selected as the winner; regardless, in later simulations we treat 
a win by any of the homophones to the target word as correct.) High activations of rhyme competi-
tors pales and hails indicate that the model is considering candidates with initial phone mismatches. 
The remaining candidates not shown in Table 1 for the word tales, in order of decreasing activa-
tion, were fails, sales, sails, bales, trails, veils, nails, ails, jails, rails, wails, whales, feels, Brailles, 
males, and scales. The word proceed was incorrectly recognized as precede by a very small differ-
ence in activation, indicating that small differences in vowel characteristics may be difficult for the 
model to tease apart. Other close competitors include words that have the same lemma as the target 
word, while the remaining candidates were preceded, perceived, proceeding, preceding, poppy-
seed, airspeed, proceedings, preseason, and concede (in some cases, the output presents fewer than 
20 candidates as there are not as many suitable options).

Out of 2,403 words considered, only 14 were not one of the top 20 candidates for their signal: 
bow, curb, dear, tongues, desirous, boors, brazier, juggle, bairn, beer, betrothed, croquette, mow-
ing, and priority. We found no errors in the recordings of these words and no commonalities 
between them, except perhaps that they all begin with an oral or a nasal stop. The 20 closest can-
didates for these words still seemed sensible, at least based on a subjective assessment made by the 
authors. In all other cases, even when the correct word is not selected as the winner, it is at least a 
close competitor. In 59% of the remaining cases the correct word is the runner-up and in 88% it is 
within the top 5 competitors. A closer (manual) inspection of errors showed that some of them were 
made because there is a heterographic homophone among the competitors, such as in urns and 
earns or genes and jeans. Other errors mainly occur due to uncertainty whether there should be an 
initial stop or not (e.g., breast winning instead of arrest and aiding winning instead of bathing), 
due to omitting the final stop (individualize instead of individualized), or due to the wrong vowel 
being activated (cake instead of kick). Complete information on 20-best lists can be found in our 
supplementary material.

Table 1. Activation of Top 4 Candidates at Word Offset for Two Example Words.

Target word Competitor Activation

TALES (correct winner) TALES −2,861
TAILS −2,861
PALES −2,870
HAILS −2,880

PROCEED (incorrect winner) PRECEDE −5,093
PROCEED −5,095
PROCEEDS −5,148
PROCEEDED −5,153

Higher values indicate higher activation (e.g., −100 is better than −200). Activation level is also dependent on signal 
length, with longer words reaching lower negatives than shorter words. For the word tales the correct phone string 
was detected and selected as the winner. For the word proceed, precede was incorrectly detected as the winner, with 
the target word being a close second.
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3.3 Discussion

Setting up the HTK AMs required for DIANA simulations was relatively successful. It seems that 
approximately 9 hours of transcribed and labeled spontaneous speech is sufficient to create AMs 
that will, after speaker adaptation, perform on par with certain existing AMs. Where speaker adap-
tation itself is concerned, we selected the model trained on 30 MALD word lists (AM30), that is, 
we used slightly less than 2 hours of careful speech from the MALD speaker. It also seems that 
similar results in free word recognition can be obtained with the equivalent of 40 minutes of speech 
(approximately, 10 MALD word lists).

Currently, DIANA certainly requires more adaptation to a particular speaker than a human lis-
tener does. Humans are capable of understanding even those speakers they have never heard before 
despite the fact that the speech signal is highly varied between speakers (see, for example, Johnson 
& Sjerps, 2018; Kleinschmidt, 2019; Magnuson et al., 2021; Peterson & Barney, 1952; Weatherholtz 
& Jaeger, 2016). Still, DIANA performs well without years of experience humans have with 
speech, and it seems that the amount of required recording material for training is not unfeasibly 
high.

Free word recognition accuracy never exceeded 93% in any of the AMs for any of the test 
lists—we see that free word recognition accuracy is roughly between 85% and 90%. This is a result 
that could perhaps be improved using a larger, more varied training set or by providing the AM 
with transitional probabilities between segments. However, the competition process included 
26,000 competitors for every word and even when a mistake was made, the target word was often 
among the closest competitors. Therefore, we decided to use AM30 in subsequent DIANA simula-
tions of the auditory lexical decision task.

4 Simulation 2—lexical decision

When simulating the auditory lexical decision task, DIANA’s task architecture treats the process as 
containing two distinct decisions—(1) the decision of whether the signal is a word or a pseudoword 
and (2) the decision of which word is the winning candidate and when it is selected as the winner. 
In Simulation 2, we use DIANA to simulate the first decision: whether a signal is a word or a pseu-
doword. We also compare DIANA errors to MALD1 participant errors.

4.1 Simulation setup

The end result of the activation process in DIANA is a string of phones (one or more) that align 
with the acoustic input to some degree. When a lexicon of words is presented for the model to 
choose from, the model only uses strings of phones that exist in the lexicon (i.e., that are stored as 
words) as valid options. In those cases, the signal is placed in a kind of a Procrustean bed, as it is 
forced to align with the presented options. The best of these options, that is, the word whose string 
of phones best matches the acoustic input, will have the highest activation. We have seen this in 
Simulation 1 as one word is selected as the winner for having the highest activation, while other 
candidates have lower activation values. We refer to this kind of activation as word activation.

However, there may be a string of phones that would fit the acoustic signal better than any of 
those present in the mental lexicon. This can be tested using a language model that does not include 
a mental lexicon with a list of word candidates. Instead, it only contains phones, and, optionally, 
probabilities of moving from one phone to the other. In our simulation, we treated all possible 
phone transitions as equally probable. Note that this is not likely the case for real listeners, as they 
show a tendency to learn and use phonotactic constraints or transitional probabilities in behavioral 
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tasks (e.g., Bailey & Hahn, 2001; Warker & Dell, 2006). When there is no mental lexicon of words, 
there is no Procrustean bed for the signal to forcefully fit; the model simply chooses the string of 
phones that yields highest possible activation level. We refer to this activation as free phone 
activation.

Since free phone activation is the highest activation obtainable for a particular acoustic input 
(given existing phone AMs), word activation can never exceed free phone activation. Words 
form a subset of the set of all word-like, phonotactically licensed phone sequences: even if a 
particular word activation is indeed optimal for a signal, free phone activation would simply 
yield that same phone string (the same word) and match the activation level registered. 
Conversely, if the signal does not have a perfect match with any of the words in the lexicon, 
forceful attempts to adapt to one lead to imperfect matching and therefore lower word activation 
levels, while free phone activation would still come up with the optimal string of phones and 
would remain high.

DIANA uses this difference between word activation and free phone activation to perform lexi-
cal decision. The decision whether a signal is a word or a pseudoword is made by comparing the 
best possible activation of a word candidate present in the mental lexicon (best word activation) to 
the best possible activation achieved if any phone sequence is allowed (free phone activation). The 
larger the difference in word activation and free phone activation, the less the signal resembles the 
given word (though keep in mind that the same result in word activation and free phone activation 
does not necessarily mean that the model recognized the correct, intended word). When a pseu-
doword is presented to the model, free phone activation should be significantly higher than word 
activation for any word in the mental lexicon, simply because phone strings comprising pseudow-
ords are not present in the mental lexicon. Words, in turn, should have similar free phone and word 
activations. This should yield two distinct distributions of differences between free phone and 
word activation, forming a group in which the difference is 0 or close to 0 (words) and a group in 
which the difference is larger (pseudowords).

Ideally, there would be no overlap between these two groups of stimuli, allowing the model to 
perfectly distinguish between them. However, this would require AMs that perform perfectly, in 
addition to all word and pseudoword recordings having very careful enunciations of every phone 
in the word that align well with the AM. Instead, DIANA employs a threshold θlb that specifies 
the difference between free phone activation and word activation that is small enough for a signal 
to be considered a word. This threshold is adjustable and we investigate what value leads to best 
accuracies in word and pseudoword classifications. We test what word vs. pseudoword accuracy 
levels are registered for a range of θlb values and compare them to those recorded in human 
responses.

Besides calculating free phone activation and introducing pseudowords, we made additional 
changes in comparison to Simulation 1. We performed the simulation on all MALD words from 
lists 31 to 67 (i.e., all lists that were not used in adapting the model AM30, a total of 14,800 words) 
and on all MALD pseudowords. Instead of using all of the MALD words as the lexicon of candi-
dates, we created separate lexicons for every word and pseudoword. Since DIANA conceptually 
endorses a Cohort-like competition (Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 
1978), the lexicon included all short words (three phones or fewer) and all words that share the first 
three phones with the target word. The competitors were selected from the Carnegie Mellon 
University Pronouncing Dictionary (CMU; Weide, 2005). This procedure yielded lexicons of 
approximately 25,000 words mostly comprised words with three phones or fewer. In other words, 
the intention was to limit the competitor list under the assumption that the first three phones would 
be correctly recognized as the signal unfolds, but expand the number of close competitors by 
including more similarly sounding words.
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We noticed in Simulation 1 that sometimes the wrong word is selected as the winner because the 
target word had a heterographic homophone in the lexicon (as in the urns vs. earns example men-
tioned previously). Using the entire CMU dictionary to create separate lexicons of competitors for 
each target word introduced many such heterographic homophones. To avoid this issue, we treated 
all cases in which a homophone of the target word was selected as the winner to be accurate, given 
that homophones have identical activations in DIANA and that in an auditory task where single 
words are recognized both are technically correct.

The activation scores for words were still left unaffected by word frequency weighted by the 
parameter γ. The decision whether a signal is a word or a pseudoword compares the activation of 
a single top word candidate and the best free phone activation, meaning that relative positioning of 
word competitors is insignificant. Furthermore, participants in an auditory lexical decision experi-
ment quickly learn that the number of words is roughly equal to the number of pseudowords: any 
given signal has an equal chance of being a word or a pseudoword and these prior probabilities 
cancel each other out.

4.2 Results

For word recordings, the maximum difference between word and free phone activations was 
371.87, recorded for the word depopulation. Mean difference in activation was 29.64, while the 
median was 16.93. A total of 3,303 words (22.26%) had the activation difference of 0, meaning that 
free phone activation perfectly matched word activation. For pseudoword recordings, the differ-
ences between word and free phone activations were expectedly higher. The highest difference was 
1,482.45 and it was recorded for the pseudoword /εkmɪsieɪskləɹoʊsiz/, which the model fitted as 
Izzy’s—competitors with more than three phones beginning with /εkm/ were rare and not similar 
to this pseudoword. The mean difference in activations for pseudoword recordings was 222.34 and 
the median was 184.38. Still, 337 pseudowords (3.5%) had the activation difference value of 0, 
meaning that the model incorrectly interpreted them in a way that perfectly matched with a word 
in the lexicon.

Figure 3 shows the distribution of word and free phone activation differences for word and 
pseudoword recordings. We set the x-axis limit to activation difference of 500 to make the distribu-
tion in the lower values more visible, but the long tail of differences continues for pseudoword 
recordings up to 1,482.45. In the case of words, as the activation difference increases, the number 
of words with that difference between word and free phone activation decreases; most words tend 
to have a small difference between word and free phone activation. For pseudowords, this trend 
can also be noted, but with a much smaller slope, as the distribution is, especially toward the lower 
hundreds, nearly uniform.

We then examined the ratio of “word” versus “pseudoword” responses and model accuracy in 
predicting whether the input signal is a word or a pseudoword as a function of θlb  (i.e., the differ-
ence in free phone vs. word activation required to make a “pseudoword” decision). To make a 
balanced list of words and pseudowords for our computational simulation, we randomly selected a 
subset of words that matched the number of MALD pseudowords retained at this point in the simu-
lation process (9,591). The activation difference was equal in words that were selected and words 
that were not selected for the subset, confirmed by a Wilcoxon rank sum test with continuity cor-
rection (W = 25,096,000, p = .87). We varied θlb in increments of 10, starting from 0, meaning that 
only a perfect match between word activation and free phone activation yields a “word” response, 
and ending with 200, leaving out only 66 words (0.004%) with an activation difference higher than 
this number.
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The percent of “word” responses increases as the θlb increases. When θlb is 0 only 13.01% of the 
stimuli are selected as real words. With θlb of 150, the percent of “word” responses in all stimuli 
rises to 70.44%. Figure 4 shows this relationship and also includes three points of special interest 
on the curve. These points mark the quartiles of the percent of “word” responses in all experimental 
sessions in MALD1. The middle half of MALD1 sessions (the interquartile range) are found 
between points Q1 (48.12% “word” responses) and Q3 (54.83% “word” responses). These results 
indicate that in most sessions MALD1 participants had a fairly balanced response regime, making 
roughly an equal number of “word” versus “pseudoword” responses. Since DIANA aims to simu-
late general tendencies in participant behavior, it seems that θlb  should be set in the range between 
approximately 50 and 70. This threshold is dependent on the choice of features (in our case, 
MFCCs), the quality of the speech recordings, and the speaker—θlb needs to be adjusted for each 
new experiment.

DIANA’s accuracy in classifying words versus pseudowords is also dependent on θlb. As the 
threshold rises, so does the percent of word signals correctly recognized as words. At the same 
time, the number of false alarms increases, as more and more pseudowords are mistakenly taken 
for words. Figure 5 shows how accuracy for words and pseudowords changes as a function of θlb 
and again includes quartiles from MALD1 sessions for comparison. We see that in our current 

Figure 3. Histogram of differences in word activation and free phone activation for MALD words (lists 
31–67) given in dark gray and MALD pseudowords given in light gray. The x-axis is limited to activation 
difference of 500, but the same trend continues to the maximum activation difference recorded which is 
1,482.45.
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setup DIANA inevitably performs worse than an average MALD1 participant, as it cannot have a 
performance higher than the value of Q1 for both words and pseudowords. Since the focus of our 
simulations was responses to words and since we wanted to match the participants’ balanced 
response regime, we settled for θlb value of 70. With this threshold value the model made 55.65% 
of “word” responses and had an accuracy of 87.92% when responding to words and 76.44% when 
responding to pseudowords.

Cross-tabulation of lexical decision and winner selection accuracy at word offset showed that 
78.46% of word items were both selected as a word by the lexical decision process and the target, 
correct word won at signal offset. In 10.57% of the cases, the correct word was the winner based 
on word activation, but the word activation was still smaller than free phone activation by more 
than 70, so these signals were incorrectly flagged as pseudowords. In 9.45% of the cases, the signal 
was accurately selected as a word (the difference between word and free phone activation was less 
than 70), but the wrong word had the highest activation at word offset. Only 1.52% of word record-
ings were both mistakenly marked as pseudowords and the wrong word had the highest activation 
at word offset. Words tend to be misinterpreted as another word rather than a pseudoword if they are 
shorter in duration (Welch’s unequal variances t test: t(2736.2) = 47.62− , p < .001) and have fewer 

phones (Welch’s unequal variances t test: t(2471.3) = 56.18− , p < .001 ), as these words have more 
close competitors.

As noted in Simulation 1, longer recordings reach lower negative activation values. One con-
cern that we had is whether higher differences between word activation and free phone activation 

Figure 4. The relationship between threshold θlb and the percent of “word” responses DIANA makes. 
Points Q1, Q2, and Q3 are added for comparison and represent quartiles of the percent of “word” 
responses in MALD1 sessions.
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would simply be a product of longer signals and a higher opportunity of mismatch between the 
two. Figure 6 shows that this is indeed the case, but mostly for pseudowords ( )r = .76 , not words 
( )r = .33 . Only 8.16% of pseudowords split into more than 50 frames (approximately 520 ms in 
duration or longer) are incorrectly recognized as words, and this percent drops further to only 
0.58% for pseudowords with more than 70 frames (720 ms). In turn, words of any length can have 
an activation difference of less than θlb = 70 and therefore be recognized as a word by DIANA. 
Still, the error rate for words does increase as their duration increases: it is 16.50% for words longer 
than 50 frames and 26.24% for words longer than 70 frames. In other words, longer signals are 
more likely to be labeled as pseudowords and especially so if they indeed are pseudowords.

We do not see such a strong correlation between duration and accuracy in MALD1 participants. 
There is no correlation between word duration and the proportion of correct responses to that word 
( )r = .03 . For pseudowords, the correlation between pseudoword recording duration and the pro-
portion of correct responses to that pseudoword is much lower than the one recorded in DIANA 
(being r = .27  in MALD1 data). The relationship between the proportion of correct responses to 
words and the activation difference in DIANA is also practically non-existent ( )r = .08− , but 
pseudowords with higher activation differences are also recognized as pseudowords by partici-
pants more often ( )r = .29 .

4.3 Discussion

The goal of Simulation 2 was to test DIANA’s approach to modeling lexical decision, that is, the 
word/pseudoword decision all human participants make in an auditory lexical decision experiment. 

Figure 5. DIANA’s accuracy in lexical decision for words and pseudowords as a function of threshold 
θlb. Points Q1, Q2, and Q3 connected to word and pseudoword curves represent quartiles from MALD1 
session data. The vertical dashed line marks the value of θlb selected as optimal in the present simulations.
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Specifically, we wanted to establish the best value of the threshold θlb which determines whether a 
stimulus will be recognized as a word by DIANA. We found that the approach can distinguish 
between the two types of stimuli fairly well, although the model in our current setup does perform 
somewhat worse than an average MALD1 participant. It is important to note that DIANA’s response 
accuracy could be increased by selecting an unrealistic response strategy—in our case, by increas-
ing the number of “word” responses the model makes. However, this is a poor approach if the goal 
of the simulation is matching participant behavior. The goal of cognitive simulation is to explain a 
process, such as spoken word recognition in humans using plausible solutions, not to maximize 
model performance.

Where words are concerned, although we changed the lexicon of candidates, tailoring them for 
every target stimulus, word recognition accuracy remained as high as in Simulation 1. However, in 
a portion of cases, a pseudoword has higher activation than the target word. In addition, among 
correct lexical decisions, there are cases in which the wrong word had the highest activation. Both 
of these kinds of errors in DIANA’s word recognition stem from the same root cause—relatively 
low activation of the target word.

The reasons for making mistakes are only partly shared between DIANA and human partici-
pants. Both can “mishear” the signal, taking a pseudoword for a word, a word for a pseudoword, 
or mistaking the word for some other word. However, participants also make mistakes because 

Figure 6. The relationship between the number of frames (duration) of a stimulus and the difference 
between word and free phone activation for that stimulus presented separately for words and 
pseudowords. The black dashed line marks the selected difference value of θlb = 70. The eventual score 
a hypothesis (phone string) receives is based on the summation of local scores that are associated with 
individual MFCC frames—in principle, the longer the stimulus, the larger the deviations will be between 
the scores of competing candidates.
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they do not know a word, whereas DIANA has all the MALD/CMU words stored in its lexicon. In 
addition, a human participant can simply lose attention and press the wrong button (Prins, 2012; 
ten Bosch et al., 2019), whereas DIANA always performs on the same level. In the current simula-
tion, DIANA’s performance fully depends on the quality of the AMs, the characteristics of the 
incoming novel acoustic signal, and the available competitors in the mental lexicon.

In the case of pseudowords, we note a trend in which longer pseudowords are more accurately 
categorized by DIANA. We explain this finding in terms of cumulative activation and lexicon 
structure. There are more opportunities for longer pseudowords to mismatch with an existing word. 
In addition, the number of plausible word candidates is smaller for longer pseudowords and with 
that so are the odds of the pseudoword signal being mistakenly taken for an existing word. Still, 
due to imperfect AMs, we see that certain short pseudowords are mistaken for words using the 
threshold θlb = 70.

Although a similar relationship between pseudoword duration and accuracy exists in the 
MALD1 data, it is much less pronounced. But why are not MALD1 participants benefiting (as 
much) from more opportunities for mismatch and fewer plausible word candidates when listening 
to longer pseudowords? We argue that, unlike our current DIANA setup, MALD1 participants are 
aware of the morphological and even semantic characteristics of pseudowords, making certain 
long pseudowords more word-like to a human listener. MALD pseudowords were created from 
actual words of English by replacing a third of their subsyllabic constituents with another phono-
tactically licit and probable segment, yielding pseudowords with some apparent morphological 
complexity (Tucker et al., 2019). One example is the pseudoword /εnspeɪzd/ that was correctly 
classified in only 36% of occurrences in MALD1 sessions. Morphologically, this word may resem-
ble a combination of en plus spaced, as in, for example, encircled (although we do note that the 
final sounds are voiced in the pseudoword, unlike in the word spaced /speɪst/). Another example is 
the pseudoword /trænzvɑɹmɪŋ/. Although there are differences in comparison to existing words, 
such as transforming, or a potential “word” transwarming, the prefix trans and the suffix ing in 
conjunction with the central part of the word that sounds like existing words are likely the reason 
why this pseudoword was correctly responded to in only 27% of its MALD1 trials. DIANA is not 
sensitive to this kind of similarity and the top word competitor to /εnspeɪzd/ is the word inspires, 
while the top competitor for the pseudoword /trænzvɑɹmɪŋ/ is tensiometer. Furthermore, process-
ing written pseudowords is not free of item-level frequency or semantic effects, as pseudowords do 
not necessarily have a frequency of 0 and as form-meaning patterns learned from words can extend 
to pseudoword processing to yield pseudoword positions in a semantic space (Cassani et al., 2020; 
Hendrix & Sun, 2021).

5 Simulation 3—response latency

The goal of Simulation 3 was to test how well DIANA’s estimates of when a word is recognized 
match general tendencies in participant response latency from MALD1 data.

5.1 Simulation setup

Statistical modeling of participant response latencies collected in auditory lexical decision tasks 
ordinarily only considers trials in which the participant responded correctly. Our approach to esti-
mating response latency using DIANA was the same, as we only considered the words that were 
correctly classified as words in Simulation 2 for response latency estimation in Simulation 3. 
However, when a participant makes the correct lexical decision to a word in a behavioral task, we 
cannot know whether they actually accessed the correct, target word or some other word. DIANA, 
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in turn, outputs information about the winning word. The researcher needs to decide whether words 
that were correctly classified, but incorrectly recognized will be included in the simulation.

We conducted separate simulations and considered both possibilities. The results were not 
qualitatively different in any way. The results of the simulation using all the words that were 
correctly classified as words in Simulation 2 (even if the wrong word won) are presented in the 
supplementary material. In the remainder of the text we present the results of the simulation in 
which we only considered the words that were both correctly recognized at word offset and 
treated as words (not pseudowords) by DIANA in Simulation 2. This number was further 
reduced by approximately 100 words to the final number of 11,465 words when the simulation 
results were merged with MALD1 data due to missing or skewed data or technical issues in 
item matching. We used the same lexicons of competitors to these target words as in Simulation 
2. However, in Simulation 3 we calculated word activation using a gating procedure. We split 
all word recordings into 20 ms frames. Model estimates were made upon addition of every new 
frame. Since the process is computationally demanding and since the initial stages of word 
competition are uninformative, we only observed the activation of top 20 candidates in the last 
300 ms of the sound signal. In effect, the gating procedure allows us to estimate candidate acti-
vation and observe the activation–competition process as the signal unfolds. In addition, 
DIANA’s decision component can make a decision at every selected point in time during the 
signal presentation.

The activation at the final phase of the gating procedure (word offset) is identical to the activa-
tion used in the lexical decision simulation from Simulation 2. We already determined the value 
of the lexical decision threshold θlb based on the difference in free phone and word activation 
when the entirety of the signal was available to the model. The majority of responses in auditory 
lexical decision experiments are made after signal offset, and our reasoning was that one viable 
strategy for the listener would be to make the best possible decisions when all of the information 
is available. In addition, varying all parameters in DIANA at the same time would create too many 
combinations for feasible computation and analysis of results, so we determined θlb indepen-
dently from γ  (determines the impact of top-down, frequency information), θwc (determines the 
difference in activation between the leading candidate and the runner-up required to select the 
leading candidate as the winner), and β (determines the added time required to make a decision 
depending on remaining competition).

We followed similar reasoning when determining plausible values for parameter γ  that controls 
the contribution of top-down (frequency) effects; value of the γ  needs to be determined experimen-
tally because it depends on the type of word material used. Since we only selected words that were 
correctly recognized in Simulation 2, accuracy in selecting the right word at word offset is 100% 
with no contribution of word frequency. However, modifying acoustic activation using word fre-
quency may change the order of top candidates if a runner-up has a much higher frequency than the 
top candidate and a high weight is assigned to the top-down effect, that is, a high γ is used. As 
shown in Equation 1, a candidate’s total activation (TA) was calculated as a sum of its acoustic 
activation from the AM and logged frequency count ( )f  from the Corpus of Contemporary 
American English (COCA; Davies, 2009) weighted by parameter γ.

 TA AM f= ( )+ ×γ log  (1)

We assessed which values of parameter γ  are acceptable as weights for logged frequency so 
that word recognition accuracy is not severely reduced. The word recognition process in the audi-
tory lexical decision task is primarily guided by acoustic information, not prior probabilities or 
context; as Norris and McQueen (2008) state: “Once the perceptual evidence becomes completely 
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unambiguous, frequency should never override it” (p. 371). Although we do not believe that any 
auditory evidence ever reaches the state of being completely unambiguous, we opted for an 
approach that increases the difference between the top competitor and other competitors if the top 
competitor is a high-frequency word, and reduces this difference if the top competitor is a low-
frequency word, but ultimately does not determine which word is heard in too many cases. This 
should yield results in which high-frequency words are isolated and recognized sooner, while low-
frequency words are more difficult to isolate and are recognized later. It should also be stressed that 
the word frequency effect in the current setup is further limited because it only modifies the activa-
tions of up to the top 20 acoustic candidates.

The decision of which word is the winning candidate in DIANA is regulated by a threshold θwc 
determining the required difference in activation between the leading candidate and the runner-up. 
Since there are many heterographic homophones in the dictionary that will have identical activa-
tion (e.g., tails and tales), we only considered non-homophone competitors when we determined 
the difference between the leading candidate and the runner-up. We calculated this difference at 
every step in the gating procedure. When determining the range of acceptable values for threshold 
θwc, we again used MALD1 responses as a benchmark. Increasing θwc increases the required differ-
ence between the top candidate and the runner-up for a winner to be selected, and therefore 
increases the number of word signals which do not have a clear winner before word offset. A very 
low value of θwc will in turn yield many winners before word offset—which can also lead to many 
wrong competitors being selected as winners based on early activation. We decided to adjust the 
value of θwc so that the percent of words that win before word offset is roughly equal to the percent 
of word responses that happen before word offset in MALD1 data. When determining this percent 
for MALD1, we added 200 ms to word duration to take into account the time required to execute 
the response, as assumed by DIANA.

In this simulation, we only selected words that were correctly recognized at signal offset in 
Simulation 2 (but see the supplementary material for the alternative option). However, a wrong 
word may be the leading candidate prior to signal offset, especially considering that top-down 
information now affected competitor activation. Therefore, we also tested which word is the lead-
ing candidate at the time frame when the winner is selected.

When a winner is selected prior to word offset, DIANA takes the time at which it was selected 
and adds the aforementioned 200 ms for execution. In the case when the required difference 
between the top candidate and the runner-up (controlled by threshold θwc) is not attained at stimu-
lus offset, a controllable parameter β estimates the added time for the final winner decision. The 
time needed to decide on the final winner depends on the number of remaining plausible competi-
tors, that is, all the words with an activation difference of less than θwc from the top candidate. 
However, when simulating the lexical decision task, DIANA assumes that the listener is at this 
stage also considering viable phone strings which are not present in the mental lexicon. In other 
words, pseudowords are also competing with real words, increasing the perplexity of the decision 
at signal offset. Unlike for highly activated word competitors, we cannot obtain the activation val-
ues for all potential pseudowords. The number of pseudoword competitors at word offset is 
approximated by raising 3 to the power of the number of phones of the target word. The formula 
for estimating choice reaction time then follows the Hick–Hyman law (Hick, 1952; Hyman, 1953) 
by calculating the logarithm of the total number of remaining word and pseudoword competitors 
weighted by parameter β (Equation 2). Choice reaction time is finally added to the total duration 
of the signal, in addition to the 200 ms required for execution.

 RT N
N

choice words
phoneslog= ( 3 )β× +  (2)
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We note that this formula is a rough estimation in itself that also assumes that these non-word 
competitors are still plausible competitors at stimulus offset. Also note that the plausible pseudow-
ord competitors retained using this formula would likely highly outnumber the remaining word 
competitors, especially for longer target words and if phoneme recognition is precise so that most 
word competitors are excluded as implausible. However, the formula is based on a deeper concep-
tual idea about the (virtual) role of pseudowords during decoding. DIANA is based on the idea that 
the total reaction time that is the empirical outcome of a lexical decision experiment is composed 
of three parts: (1) the time it takes for the stimulus to unfold and to build activations, (2) the time 
it takes to make a decision based on these activations, and (3) some additional time (here assumed 
constant) for the signal to travel from the motor cortex to the finger muscles along the neural path-
way. The contribution from (1) is dependent on the stimulus, and primarily on stimulus duration. 
Contribution from (2) is directly related to Hick’s law, which says that the time it takes to make a 
decision is approximated by the expression a N b* ( )log + , in which a  and b  denote constants 
that depend on the exact task, while N  denotes the number of items to choose from. This contribu-
tion is sometimes referred to by “choice RT” (or RTchoice ). The expression for RTchoice  mentioned 
above is an approximation of the actual (but unobservable) RTchoice , based on an estimation of the 
number of viable candidates (words and pseudowords) at stimulus offset. The number “3” which 
is raised to the number of pseudowords comes from the fact that, on average, each phone has about 
three similar phones in its broad phonetic class. This number is an approximation—its exact value 
will depend on the phonetic-phonological structure of the language. Observe that the expression in 

the formula is 3
N
phones , which is a proxy for the number of possible pseudowords that might play a 

role. Admittedly, this is a rather simplistic expression, especially given the fact that various pro-
sodic factors (stress patterns) and morphological factors (prefix and suffix structure, compound-
ing) are not taken into account. In this direction, there is still substantial room for improvement and 
precision in the present task architecture. On the other hand, it makes the assumptions very explicit 
and it clearly defines the way how this approximation could be improved once more data become 
available.

With acceptable ranges for parameter γ  and threshold θwc determined, we adjusted the value of 
parameter β, which determines the added time required to make a decision depending on remaining 
competition, to maximize the match in mean response latency between DIANA and MALD1. We 
then observed the correlation between logged DIANA’s response latency estimates per word cal-
culated using the selected values of γ , θwc, and β and mean logged MALD1 response latency per 
word. We followed the procedure from ten Bosch et al. (2018) to de-trend MALD1 response laten-
cies, limiting the degree of local speed effects (Ernestus & Baayen, 2007). Maximum between-
participant correlation on the entirety of MALD1 data ( )r = .19  was achieved when ten previous 
responses were taken into account to determine the “true” current response latency. The code for 
MALD1 data de-trending is available alongside all other data and scripts in our supplementary 
material and is described in more detail in the work of Nenadić and Tucker (2020).

5.2 Results

We first tested how word recognition accuracy at signal offset changes when top-down frequency 
effects are introduced to the model. We tested γ  values from 0 (no frequency effect) to 21, in steps 
of 3. With γ = 21 , word recognition accuracy dropped to 89%, meaning that in 11% of the cases a 
more frequent competitor won instead of the less frequent target word. We decided to stop with γ  
of 21 as that would further increase the number of incorrectly recognized words at word offset. In 
addition, this number of incorrectly recognized words could further increase when we introduce 
the possibility of responding before word offset, creating a situation in which the model too often 
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recognizes the wrong word. Of course, how much is too much is debatable as we cannot know 
whether the listener in the auditory lexical decision task recognized the right word when they make 
a correct lexical decision. We return to this issue in the “Discussion” section.

We then assessed plausible ranges for threshold θwc by comparing the percent of decisions made 
before word offset in DIANA and MALD1. When making this comparison, we decided to take into 
account only the percent of correct responses made before word offset per MALD1 session (to 
remind, a MALD1 experimental session includes a single participant completing a single 800-stim-
ulus MALD1 list). This was done for two reasons. First, the correlation between the percent of 
responses made before word offset with 200 ms added for execution time and the percent of correct 
lexical decisions made to word stimuli was very low in MALD1 sessions ( )r = .10− . Second, in 
the present simulation, we only considered words correctly recognized by DIANA and compared 
their estimates to response latency in correct trials from MALD1.

Figure 7 shows how the number of winner selections that happen before word offset decreases 
as the required difference in activation between the top competitor and the runner-up (θwc) increases. 
This relationship is nearly identical for all considered levels of γ  if θwc is larger than approxi-
mately 200. For lower θwc values, there is some impact of top-down information on early winner 
selection. For example, when θwc is 150, the percent of winners chosen before word offset ranges 
between 33.91% (γ = 0)  and 37.57% (γ = 21) . MALD1 data include a wide distribution of percent 
of responses made before word offset when 200 ms are deducted from the response latency to 

Figure 7. DIANA’s percent of decisions made prior to word offset as a function of threshold θwc. 
Separate lines are drawn for different parameter γ  values (0–21, in steps of 3). Higher values of γ  are 
associated with a larger percent of winners being chosen before signal offset, at least for low values of θwc. 
Points Q1, Q2, and Q3 represent quartiles from MALD1 session data.
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account for execution time. This indicates a wide range of participant strategies: while some opt to 
make practically no (correct) responses before they heard the entirety of the signal, certain other 
participants make up to 80% of their responses at least slightly before the signal ended. A portion 
of this variability may be attributed to simple differences in speed, as it is likely that not all partici-
pants take exactly 200 ms to execute a response to every stimulus. The mean percent of correct 
responses made before word offset in MALD1 sessions was 26%, while the median was 24%. 
Since our goal was to match general tendencies in participant performance, it would be reasonable 
to opt for θwc values that would yield 16% (Q1) to 35% (Q3) of responses made before word offset. 
As can be seen in Figure 7, θwc values between 150 and 220 fit that range.

However, making a decision prior to word offset also introduces the risk of choosing the wrong 
word as the winner: at some point during the activation–competition process, a candidate may get 
highly activated and win, even though the remainder of the signal would reduce its activation. 
(Remember that we previously excluded all the words that were incorrectly recognized in 
Simulation 2, so all words are correctly recognized at word offset.) Therefore, we tested how accu-
racy in selecting the right word as the winner changes as a function of θwc. Figure 8 shows that the 
number of wrong selections for responses prior to word offset decreases as θwc increases. When the 
model is more conservative in selecting the winning word and fewer words are recognized before 
word offset, there is less of a chance that the wrong word will be selected as the winner. Frequency 

Figure 8. DIANA’s percent of accurate responses prior to word offset as a function of threshold θwc. 
Separate lines are drawn for different parameter γ  values (0–21). Higher values of γ  are associated with a 
larger percent of winners being chosen before signal offset, at least for low values of θwc. The two vertical 
dashed lines delineate the value range of θwc that yields a percent of responses made before offset equal to 
the values between the first and third quartile in MALD1 session data.
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again plays only a minor role when the value of θwc is high. However, for θwc of 150, the range of 
correctly recognized words ranges between 77.78% ( γ  = 21) and 84.82% ( γ  = 0). Simply put, 
higher values of γ somewhat increase both the number of responses before word offset and the 
number of incorrectly recognized words. The vertical dashed lines in Figure 8 represent the mar-
gins within which the average MALD1 session operates (16% and 35% of word responses before 
signal offset). According to DIANA, that would indicate that for approximately 8%–20% (also 
depending on the value of γ ) of the responses before word offset the participants actually heard the 
wrong word. We cannot know whether this is true as the standard auditory lexical decision task 
does not require the participant to state which word they heard. However, this is not entirely 
implausible: listeners may be opting for a strategy that introduces some risks, but enables them to 
complete the task quickly, by responding when they are “fairly certain” that the stimulus is a word 
and ending the competition process prematurely. Such behavior is recognized in a number of deci-
sion-making or speed–accuracy trade-off models (see, e.g., Foraker & McElree, 2011; Ratcliff 
et al., 2004). Furthermore, data from a word repetition task (ten Bosch, Boves, & Ernestus, 2015) 
show that approximately 10% of repetitions are wrong, but that the worst participant made as many 
as approximately 19% errors after reporting they understood the word. We also found that target 
words for which DIANA selects the winner before word offset have relatively earlier phonological 
uniqueness points (when γ = 0 and θwc = 150, and the total number of phones in the word are taken 
into account), confirmed by a Wilcoxon rank sum test with continuity correction (W = 21,033,820, 
p < .001). This finding indicated that the selection of words for which a response was made before 
offset by DIANA is plausible.

We considered θwc values between 140 and 240 in steps of 20 for estimating response latency in 
DIANA. We excluded very early DIANA estimates of a word winning (before 420 ms pass with 
200 ms for response included) as unrealistic. We also excluded words that were RT outliers in 
MALD1 data. As stated above, the final number of words used to correlate DIANA’s response 
latency estimates with response latency from MALD1 data was 11,465. DIANA estimates of when 
the target word should be selected were compared to de-trended MALD1 data from Sessions 31 to 
67. As before, γ  values ranged between 0 and 21 in steps of 3. If the decision was made prior to 
word offset, we took the time when the slice ends and added 200 ms to account for execution time. 
In all other cases, we adjusted the value of β to maximize the similarity of estimated response 
latency between the model and behavioral data.

To adjust plausible levels of β, we assessed the final response latency estimate in milliseconds 
provided by DIANA and observed whether this duration fits within the general time frame of 
responses in MALD1. Figure 9 shows how the average response latency estimate by DIANA 
changes as a function of β (ranging from 0 to 100 in steps of 10) for different levels of γ  and θwc. 
We see that the estimated RT increases as β increases, which is expected given that β governs how 
much additional time will be spent on each remaining competitor past word offset. DIANA’s esti-
mated RT also increases as θwc increases because more words are not responded to until word offset 
and have choice reaction time added to their estimate. The effect of frequency (γ ) is more humble 
in comparison, but we see that for lower values of θwc lower values of γ  are associated with longer 
RT. The dashed line represents the mean MALD1 response latency for the 11,465 MALD1 words 
(949 ms). Similarly, the mean RT of correct response to word stimuli calculated per MALD1 ses-
sion is 941 ms. Therefore, a plausible value of parameter β ranges between 25 and 60, depending 
on the values of γ  and θwc.

However, for the range of β values between 25 and 60, we noticed that the correlation between 
logged DIANA’s estimated RT and participant de-trended RT (dRT) decreases as β increases. We 
decided to use a broader range of β values to better explore this trend. Figure 10 represents the 
change in the correlation between DIANA and MALD1 response latency for values of β ranging 



Nenadić et al. 591

from −50 to 100 in steps of 10. Different lines stand for different γ  values, while different points 
represent different θwc values. The highest correlation between logged DIANA’s estimates and 
MALD1 dRT was r = .42  and it was obtained in negative values of β. Although the highest cor-
relation was observed for highest values of γ  and θwc, the variation in these parameters never made 
a difference larger than 1.1%, as long as β was kept at this optimal value. In other words, the best 
result was obtained when RT was subtracted from word offset rather than added to it. Different 
values of γ  and θwc have a larger impact for other values of β, especially positive, but in that case 
the correlation with MALD1 dRT gets significantly reduced, as can be seen in Figure 10.

5.3 Discussion

The goal of Simulation 3 was to simulate participant response latency when responding to words 
in the auditory lexical decision task. We used words that were correctly classified as words and 
correctly recognized in Simulation 2 (although note that the results do not change if all the words 
that are correctly classified are used; see the supplementary material) and adjusted the values of 
parameters γ and β and threshold θwc to calculate DIANA estimates of participant response latency. 
Crucially, we developed parameter and threshold values that lead to plausible model behavior by 
comparing model performance to human performance.

Increasing γ , which would increase the impact word frequency has on final DIANA estimates, 
lead to an increase in the number of wrong words winning instead of the target word. It remains an 
open question of how we should assess the number of correct lexical decisions made based on an 
incorrect word recognition. Still, our results show a relatively small effect of word frequency on 
simulation outcome. Once the ranges of θwc and β values are adjusted, and their values are varied 
within those ranges, the variation of γ  has a very small relative impact. In other words, DIANA 

Figure 9. DIANA’s estimated RT as a function of parameter β for different values of γ  and θwc. The 
horizontal dashed line is set at 949 ms and is equal to the mean MALD1 RT for the same 11,465 words 
considered by DIANA.
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estimates of participant response latency in the current setup perform best when they are almost 
exclusively based on bottom-up, acoustic information.

Varying the threshold θwc leads to conceptually similar results. A lower threshold leads to an 
increased percent of wrong word selections prior to word offset, where some of the decisions are 
made implausibly early. In addition, all correlations of MALD1 participant response latency with 
DIANA estimates favored the highest θwc we used (240), which indicates that better matching with 
participant RT is achieved if more decisions are made after the entirety of the word signal had been 
presented to the model.

DIANA also includes a parameter θwc, which weighs the formula accounting for choice reaction 
time—once the signal has reached its end, the model calculates added time needed to make a deci-
sion between the remaining plausible candidates. DIANA assumes that in the lexical decision task 
(but not word repetition task) the set of plausible candidates at word offset includes the remaining 
word competitors whose activation is within the threshold θwc from the activation of the leading 
candidate. The correlations obtained with MALD1 response latency were moderate, reaching the 
value of r = .42 . Although this correlation with participant data is not by any means low, the con-
tribution of choice reaction time to the overall correlation between model estimates and MALD1 
data was very modest. More importantly, the highest correlation between DIANA’s estimates of 
response latency and MALD1 response latency was registered when using negative values of β. 
DIANA’s assumption is that an increase in the number of remaining competitors should lead to 
longer choice reaction times. Instead, given that negative β values were optimal, a higher number 
of remaining competitors was connected to shorter response latency. Furthermore, negative values 
of β lead to removing time from the total duration of the signal to estimate the duration of the deci-
sion process after that signal had already completed. It is clear that such a procedure is in collision 
with the physical reality in which human listeners operate.

Figure 10. Correlation between DIANA estimates and MALD1 dRT as a function of parameter β for 
different values of γ  and θwc when both words and pseudowords are considered as plausible competitors 
at word offset. Not all values of parameters γ  and θwc are shown for clarity; the lines for these values can 
be interpolated as they follow the same pattern as above.
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Simulating MALD1 response latency data show a shortcoming of DIANA in the sense that the 
transformation from choice entropy to choice RT is not precise enough. This could indicate that 
either Hick–Hyman’s law is not applicable in its full form, or that the computation of the entropy 
is not precise enough—for example, due to the quite rough estimation of the number of pseudow-
ord competitors at stimulus offset. We offer a more thorough discussion of the theoretical implica-
tions of these findings in the following section.

6 General discussion

In this study, we used DIANA (ten Bosch, Boves, & Ernestus, 2015) to simulate participant 
performance in an auditory lexical decision task. In three simulations, we (1) created new AMs 
for western Canadian English, (2) simulated the lexical decision, and (3) correlated DIANA’s 
estimates of when the winning word is selected with general tendencies in participant responses 
from the MALD project (Tucker et al., 2019). The results of these simulations can be used to guide 
future development of models of spoken word recognition and inform the theory regarding the 
process of spoken word recognition.

6.1 Model input

In Simulation 1, we show that setting up DIANA in a new language is possible even without exist-
ing AMs: we used our own, relatively small, in-house spontaneous speech corpora to make new 
AMs. This process is labor-intensive, as it requires recording and annotating a speech corpus, train-
ing AMs, and recording enough additional material by the speaker whose recordings are used in 
experiments to adapt these AMs. Although possible, it would be time-consuming for an independ-
ent researcher to take DIANA as an off-the-shelf model even with existing AMs, given that speaker 
adaptation must be performed regardless. We provide the AMs we developed and adapted for the 
MALD speaker as part of our supplementary materials. These adapted AMs should allow research-
ers to perform DIANA simulations using MALD recordings as material.

DIANA is not isolated with regards to model setup complexity. SpeM and Fine-Tracker 
(Scharenborg, 2008; Scharenborg et al., 2005) require similar preparatory work. Shortlist B (Norris 
& McQueen, 2008) depends on a large database of listener responses to gated diphones, which is 
likely the reason this model has only been implemented in Dutch. For comparison, using instantia-
tions of the TRACE model, jTRACE (Strauss et al., 2007) and the TISK model (You & Magnuson, 
2018), requires installations that can be completed in a matter of hours. However, the additional 
work yields a crucial advantage: DIANA deals with actual acoustic input (but see Norris & McQueen, 
2008, for criticism of spoken word recognition models based on automatic speech recognition).

One consequence of a good representation of the variability in the acoustic signal is that DIANA 
performs well in free word recognition. Accuracy in selecting the correct word as the winner from 
a corpus of approximately 26,000 words was between 85% and 90%. This level of word recogni-
tion accuracy is much higher than those we obtained using TISK, where lexicons with close com-
petition never yielded word recognition accuracy higher than approximately 30% (Nenadić & 
Tucker, 2020, but note that the competitor structure was different in TISK simulations). DIANA 
also exceeds the accuracy recorded in the initial tests of the EARSHOT model, which was 67% 
when novel items from trained-on speakers where presented to the model (Magnuson et al., 2020). 
Shortlist and SpeM never exceeded 75% recognition accuracy in free word recognition, although 
it is important to note that these values were obtained for spontaneous speech recordings and mul-
tiple speakers (see Scharenborg et al., 2005). At the same time, DIANA was tested using a larger 
lexicon. Shortlist and SpeM were tested on 10,509 utterances representing 2,398 unique lexicon 
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entries, while EARSHOT used a lexicon of 1,000 words. Word recognition accuracy using the 
discriminative lexicon approach yielded accuracy of up to 25%, although that simulation analyzed 
word recordings isolated from spontaneous speech and human participants generally did not per-
form better on the same material (Arnold et al., 2017). Finally, our AMs work on par with the AMs 
based on the FAVE suite (Rosenfelder et al., 2014). Even higher accuracy may be obtained with 
improved base AMs or extended model adaptation. A high standard of model performance in terms 
of input (free word) recognition is crucial for simulations that involve large word sets—that is, for 
any simulation that aims to be more than a proof of concept using a toy example.

Another important advantage of using the acoustic signal as input is that candidate activation is 
dependent on the characteristics of the sound signal, not on preconceptions about which words 
should sound similar (see, for example, Hawkins, 2003, for an extended discussion). For example, 
TRACE (McClelland & Elman, 1986b; Strauss et al., 2007) relies on acoustic pseudofeatures to 
determine phoneme identity. A phoneme always has the same pseudofeature values, meaning that 
every occurrence of a phoneme is always the same (barring some pseudofeature overlap of neigh-
boring phonemes that accounts for coarticulation, see also Salverda et al., 2014). DIANA, in turn, 
can analyze any number of unique recordings of the same word, each time generating a different 
activation–competition pattern. Besides providing much better estimates of what words the signal 
actually resembles most, this allows researchers to explore and simulate phenomena that were not 
part of our simulation, such as subphonemic, acoustic effects (e.g., Andruski et al., 1994; Marslen-
Wilson & Warren, 1994), effects of prosody (e.g., Kemps et al., 2005; Salverda et al., 2003), or 
effects related to processing reduced variants of a word (Dilley & Pitt, 2010; Ernestus & Baayen, 
2007; Ernestus & Warner, 2011; Tucker, 2011; Tucker & Ernestus, 2016). Although DIANA’s AMs 
are currently necessarily adapted for a particular speaker, models that use actual acoustic input 
have the potential of also probing at inter-speaker or inter-group differences (see, for example, 
Kleinschmidt & Jaeger, 2015; Liu & Jaeger, 2018; McMurray & Jongman, 2011; Theodore & 
Monto, 2019; Theodore et al., 2020; Xie & Jaeger, 2020), as was recently attempted with the 
EARSHOT model (Magnuson et al., 2020).

6.2 Competitor selection

We noticed that even toward the end of a signal, many competitors had high activation despite 
initial mismatch with the target word. For example, pales and hails are the highest activated com-
petitors for the recording of word tales. This model performance is in contrast to the Cohort-like 
competition endorsed by DIANA, but is in line with human performance. Listener flexibility when 
analyzing an ambiguous initial part of a signal to make it match with its later parts is the baseline 
for the well-established Ganong (1980) effect. The fact that listeners maintain more than just 
categorical information from preceding signal was also shown in various studies utilizing the 
visual world paradigm (see, for example, Allopenna et al., 1998). Although we deal with isolated 
word recognition in our simulation, it is worth mentioning that these effects apparently extend even 
beyond word boundaries (see, for example, Burchill et al., 2018; Connine et al., 1991; Falandays 
et al., 2020; Szostak & Pitt, 2013). A recent experiment using magnetoencephalography also 
supports the claim that subsequent contextual information influences the perception of preceding 
segments as subphonemic detail is preserved in the auditory cortex and reanalyzed as additional 
signal becomes available (Gwilliams et al., 2018).

Models of spoken word recognition in general attempt to include this kind of flexibility in word 
recognition and not discard a candidate based on differences in early phonemes the way it was done 
in the original Cohort model (Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978). 
Cohort II (Marslen-Wilson, 1987; Marslen-Wilson et al., 1988) was specifically adapted to be able 
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to recognize the correct word despite initial mismatch (see also Weber & Scharenborg, 2012). 
TRACE (McClelland & Elman, 1986b) also retains candidates even if there is some initial mis-
match, as besides cohorts (words sharing the first two phonemes with the target word), the model 
also considers rhymes (words sharing the last two phonemes with the target word) and embeddings 
(words that are fully embedded in the target word) to be close competitors to a target word. The 
authors of Shortlist B (Norris & McQueen, 2008) also make a point of that model successfully 
recognizing words despite some (initial) mismatch with the target.

Although DIANA’s current implementation allows creation of lexicons including as many 
as 36,000 words, this implementation still cannot deal with lexicons the size of the entire CMU 
dictionary (approximately 135,000 words). Therefore, the initial set of plausible competitors 
needed to be decided by the researcher. DIANA, conceptually, endorses a Cohort-like competition 
so we created separate lexicons in Simulations 2 and 3 to include all words with up to three phones 
and all words that share the first three phones with the target word. The assumption behind this 
procedure was that DIANA should resolve initial inconsistencies for longer words and that only 
the closest of competitors will matter toward word offset. However, since the AMs and the 
enunciations of every segment in MALD recordings are not perfect, we have seen in Simulation 1 
that DIANA made mistakes in recognizing the correct word due to, i.a., initial stop elision. The 
approach currently endorsed by DIANA, which we used to preselect competitors, seems to be 
faulty as it disqualifies words that could have won instead of the target word. In addition, even if 
the model successfully resolves initial inconsistencies, that does not mean that competitors with 
initial mismatch are not some of the closest competitors to the target word. By pre-excluding com-
petitors based on initial phone mismatch we inevitably affected both the potential winner of the 
activation–competition process and the structure of close competitors (which may be relevant for 
response latency estimation).

Then how should we select which competitors should be included in the limited lexicon of 
competitors created for every target word? It is important to note that competitor selection depends 
on the task the model of spoken word recognition is simulating. An example is the visual world 
paradigm where limiting the lexicon to include only the competitors that are visually presented on 
the screen may be justified (see, for example, Allopenna et al., 1998), although Dahan et al. 
(2001) show evidence that a close competitor to the target word may be activated and compete 
even if it is not visually presented. In many other tasks—such as the word repetition or the audi-
tory lexical decision task with unrestricted stimulus selection—the constraints of competitor 
selection are even laxer as any word in the lexicon could be activated if a fitting acoustic signal 
is presented. If we continue to think of close competitors to words in terms of the phonemes 
they share, using competitor selection criteria from TRACE (McClelland & Elman, 1986b) seems 
like a better approach. Note that the criteria from TRACE encompass word neighbors from the 
Neighborhood Activation Model (Luce & Pisoni, 1998) and word cohorts from the Cohort model 
(Marslen-Wilson & Welsh, 1978).

Still, it is possible (although not too probable) for a word competitor to be highly activated and 
not belong to any of these three groups of TRACE competitors, especially prior to word offset. 
This issue may be solved through brute force, that is, by the sheer size of the lexicon that the cur-
rent implementation of DIANA can handle. The number of TRACE close competitors extracted 
from the CMU dictionary for 442 English words ranges from 17 to 2,243, with the average of 605 
close competitors (Nenadić & Tucker, 2020). DIANA, in turn, can handle quite sizable lexicons. 
Therefore, we propose using the competitor selection approach from TRACE but also capitalizing 
on DIANA’s capacity for large lexicons by selecting 30,000 words that have the lowest phone edit 
distances from the target word. This approach is yet to be tested, but all cohorts, rhymes, and 
embeddings should be present in these 30,000 selected competitors—in fact, it should be true that 
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most of the words that are not within 30,000 most similar competitors to the target word (based on 
phonemic transcription) are indeed not very similar to the target word. One downside of that 
approach is that it is more computationally demanding to use large lexicons of 30,000 words than 
to build smaller, targeted lexicons.

However, relying on categories such as the phoneme, as we have previously noted, misses 
a lot of variability present in the fine-phonetic detail and stemming from reduction or other pro-
nunciation variants in words. The close competitors could instead be determined using similarity 
in the acoustic signal, rather than generalized categories. For example, with our MALD word set, 
we could calculate acoustic distances between word recordings and use those to form sets of com-
petitors for each word (Kelley, 2018). An even better alternative would be to calculate acoustic 
distances between many recordings of many words—although this would require a very large 
(truly, representative) set of word recordings—and use those as a benchmark.

We also note that the necessity of preselecting competitors in a model of spoken word recogni-
tion has been at least as much a question of its technical implementation as it has been of its theory. 
If a model always considers all the options stored in the mental lexicon, there would be no need to 
discard a candidate before the activation–competition process has even started. Our implementa-
tion of DIANA relied on the HTK (Young et al., 2006) and the lexicon limitations we had were a 
matter of technique: the model could be implemented using, for example, KALDI (Povey et al., 
2011), allowing for better performance and a much more fine-grained view of unfolding activa-
tions. The lexicon size could also be dramatically increased to hundreds of thousands of words, 
removing the issue of candidate preselection. Technical limitations and novel advances will cer-
tainly continue to shape models of spoken word recognition and in part determine which questions 
regarding their architecture are considered relevant.

6.3 Lexical decision

DIANA’s lexical decision accuracy was fairly high. The model uses a simple but powerful solu-
tion of comparing the best possible activation of a word in the mental lexicon with the best pos-
sible activation of any phone string. Note, however, that DIANA and the human participant have 
different causes of errors, both in free word recognition and lexical decision. For the computa-
tional model, the only cause of error is a poor match between the acoustic signal and the existing 
AMs, leading to a misinterpretation of the input. Listener errors may have other causes besides 
issues in interpreting the acoustic signal. For example, a human may not have the target word 
stored in their mental lexicon (i.e., the person may not know a word), may not be able to retrieve 
the target word at that particular time, may miss portions of the signal, or simply press the wrong 
button.

We note two specific issues in the current approach. The first issue is that pseudoword accuracy 
highly depends on signal length. We will address this finding in more detail below, when we con-
sider the representation of the mental lexicon in DIANA. The second issue is that word frequency 
does not affect the outcome of the lexical decision, while MALD1 and other lexical decision data 
generally show that word frequency predicts response accuracy. As we said above, some of the 
correlation between accuracy and word frequency in behavioral experiments is certainly due to the 
fact that lower frequency words are known by fewer participants. In addition, perhaps signals of 
low frequency words require a higher threshold of attention due to less practice with that signal; it 
is easier to get confused and make a mistake for a word one does know if that word is encountered 
rarely. Given high-performing AMs, future simulations could include a parameter that would esti-
mate the probability of a word being responded to as a pseudoword based on that word’s frequency 
(or other characteristics that prove relevant).
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6.4 Estimating response latency

The central aim of our simulations was to simulate the time needed to make a response from the 
onset of the signal. Effect of word frequency, regularly registered in statistical analyses of behav-
ioral responses, was found to be almost negligible. It is important to note that the current imple-
mentation of the frequency effect in DIANA is not as straightforward as it may appear. In statistical 
modeling of auditory lexical decision data, word frequency is ordinarily included as a predictor of 
response latency to that word. In DIANA the impact of frequency is instead best described as an 
interaction between a word’s frequency and the frequency of its close acoustic competitors (cf. 
Vitevitch & Luce, 2016). If a high-frequency target word has a high-frequency runner-up, then the 
activation difference between the two will remain dependent on acoustic activation alone and the 
winner may be selected rather late. In contrast, a high-frequency target word that has no high-fre-
quency competitors will become the sole plausible candidate much sooner. Statistical analyses of 
participant responses should investigate whether this sort of frequency relationship between top 
acoustic competitors is a better predictor of human response latency than using solely the fre-
quency of the target word.

Another reason for low impact of word frequency is due to the model estimating that it is better 
to wait until word offset, as higher values of θwc are favored (i.e., a larger difference in activation 
between the leading candidate and the runner-up is required for a winner to be selected), where γ  
(the parameter that determines top-down, frequency information) has a more limited impact. This 
behavior is unsurprising in an auditory lexical decision task, as a signal can become a pseudoword 
at any point before signal offset. Once signal offset is reached, DIANA assumes that the task is to 
choose the correct winner from the number of remaining candidates, with the decision being 
weighed by parameter β. The list of competitors includes all words that have their activation within 
the valu1e of θwc in comparison to the top candidate and all potential pseudowords. The number of 
pseudowords is approximated by raising 3 to the power of the number of phones in the signal word. 
A six-phone word would therefore have as many as 729 potential pseudoword competitors at word 
offset, and a word with seven phones would have 2,187. It is clear that when using this estimation 
pseudoword competitors far outnumber remaining plausible word competitors. In effect, the num-
ber of plausible word competitors and the distribution of their activations become insignificant in 
comparison. In turn, this means that the more phones a word has the longer choice reaction time 
will be for that word (as more potential pseudoword competitors are registered at word offset). In 
contrast, MALD1 data shows that longer words are responded to faster when response latency is 
calculated from word offset, that is, from the point when the signal of the word has ended. Simply 
put, while DIANA assumes that the time needed to select the winner will be longer in longer words 
due to many pseudoword competitors remaining at word offset, behavioral data shows an opposite 
trend in which participants respond faster to longer words relative to word offset.

In line with participant data, we found that optimal values of parameter β  controlling for choice 
RT are negative, indicating that time should be deducted from word offset rather than added to it, 
and deducted more for longer words. Even with such a setup that would make the raw response 
latency estimates much shorter than those observed in the behavioral experiment, the added benefit 
of choice RT to the correlation with MALD data is very limited. The highest correlation between 
DIANA response latency estimate and mean de-trended logged participant response latency was 
r = .42 . Although this correlation is moderate and higher than any correlation Nenadić and Tucker 
(2020) managed to obtain using TISK and jTRACE (the correlation never exceeded r = .2 using 
these models), it is almost exclusively due to the fact that DIANA and the human participants were 
presented with the same sound recordings. The correlation when β is set to 0, that is, when no 
choice RT is added and word duration alone is used, was nearly as high ( )r = .41 . These results 
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indicate that a different way of representing the decision process is needed. The main issue seems 
to lie in the way choice response latency is calculated, especially with regards to estimating the 
number of plausible pseudoword competitors at word offset in longer words. A possible improve-
ment for DIANA would be to adapt the current estimations of pseudoword competitors at stimulus 
offset, as the estimations are likely too high. The current number of pseudoword competitors is 
based on the full phonetic length, but perhaps only the most recent changes (those made toward 
signal end) matter—as all earlier ones are already knocked out as implausible.

6.5 Future directions and concluding remarks

Besides the above-mentioned adaptations that may be performed on the DIANA’s auditory lexical 
decision task architecture, we discuss two more important aspects of models of spoken word rec-
ognition that could be a part of future DIANA developments. First, the current representation of the 
mental lexicon in DIANA ignores a very important characteristic of words—their meaning and 
contexts in which they are used. This ties directly to our interpretation of how the mental lexicon 
is organized and accessed. Currently, DIANA represents the mental lexicon as a list of unconnected 
strings of phones (words), focusing on form alone. Under this setup, recognizing a word is in no 
way affected by the word’s meaning beyond its frequency of occurrence, which is the case in most 
(abstract) models of spoken word recognition.

However, effects of word meaning in spoken word recognition, even when words are presented 
in isolation, extend beyond frequency of occurrence (e.g., Goh et al., 2016; Sajin & Connine, 2014; 
Tucker et al., 2019). In addition, we have seen in Simulation 2 that a representation of the mental 
lexicon that stores information on form and frequency alone leads to lexical decisions to pseudow-
ords being mostly guided by direct acoustic mismatch, making long pseudowords very easy to 
discard for DIANA. Human participants, however, do not have this sort of certainty when respond-
ing to long pseudowords, given that these pseudowords share, for example, morphological charac-
teristics with existing English words (see also Hendrix & Sun, 2021, for a detailed discussion of 
factors affecting pseudoword processing in the visual modality).

Therefore, we argue that not just DIANA, but any model of spoken word recognition would 
benefit from a representation of the mental lexicon that does not consider word form (and 
frequency) only. This is not a novel notion. The authors of both Cohort (Marslen-Wilson & Tyler, 
1980; Marslen-Wilson & Welsh, 1978) and TRACE (McClelland & Elman, 1986a, 1986b), for 
example, recognize the impact semantic or contextual factors can have on processing (but see also 
Gaskell & Marslen-Wilson, 1997, 2002). However, primarily due to technical limitations, such 
factors remained underdeveloped. Many of these technical limitations are now alleviated and 
certain models of spoken word recognition attempt to expand on the representation of the mental 
lexicon. The Distributed Cohort Model (Gaskell & Marslen-Wilson, 1997, 1999, 2002), EARSHOT 
(Magnuson et al., 2020), and the discriminative lexicon approach (Baayen et al., 2019) represent 
units in the mental lexicon as semantic vectors. These vectors are correlated, creating a network 
of word meaning. Similar solutions could be implemented in DIANA in the future, by altering 
DIANA’s lexicon and the information it holds or even by grafting a solution from another model to 
DIANA’s existing task architecture.

The second development direction we discuss is estimating when the model (and therefore the 
human listener) should make a “pseudoword” decision. Most models of spoken word recogni-
tion do not mention or simulate the process of responding to a signal that is not present in the 
mental lexicon, although this is an important situation that occurs even outside of the laboratory, 
for example, when the listener is presented with unknown or foreign words. We envision an 
approach similar to the one used to determine that the input is a word: a threshold that marks the 
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difference between free phone activation and word activation needed to discard the input as a 
pseudoword. This threshold would be higher than the threshold used to determine that the signal 
is a word, creating a zone of uncertainty between the two thresholds where DIANA would wait 
for more information. This waiting could continue until signal offset. At signal offset, an elegant 
solution would be to calculate the added choice reaction time using the same formula as in 
words.

The value of this “pseudoword” threshold would likely have to be high. Otherwise, too many 
“pseudoword” decisions would occur before pseudoword signal offset, contradicting the behav-
ioral data showing that responses to pseudowords tend to be slower than responses to words 
(Tucker et al., 2019). It seems that human listeners prefer to wait until more information is pro-
vided even in the cases when there may be an early point of disambiguation that should disqualify 
the signal as a word. We believe this is because they allow for a possibility that something was 
pronounced in a strange manner, that they misheard something, or that they are simply coming up 
short in their search through the mental lexicon and that they need a bit more time and information 
to find the word to which the signal corresponds. The more the pseudoword deviates from words 
stored in the mental lexicon, however, the bigger the chance that it would be discarded before 
signal offset, so  an exception to this general rule could be very unlikely strings of segments and 
especially speech signals that break the phonotactic rules of the language—nonwords (cf. Ziegler 
et al., 1997)—though such stimuli do not occur in MALD and other standard auditory lexical 
decision studies.

Despite many challenges that the current implementation of DIANA faces, we believe that 
DIANA is very promising. DIANA successfully uses the acoustic signal as input and has no bind-
ing limitations in terms of language it can be used for (as long as AMs exist or can be created) or 
the lexicon size that can be implemented. Furthermore, we hope that DIANA will be applied to 
other behavioral tasks. This could also show how robust the current task architecture actually is, 
that is, whether the performance in these tasks can be described using the same processes as those 
used for auditory lexical decision and word repetition or not. The development of the field of spo-
ken word recognition depends on its models being tested against various behavioral data and 
improved based on the findings. We argue that the primary frontier for current models of spoken 
word recognition is to simulate spoken word recognition phenomena using realistic conditions 
(e.g., realistic input and realistic competitor sets) and be adaptable enough to simulate data from a 
plethora of different behavioral experiments used in the field.
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