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A B S T R A C T   

Many studies have identified networks in parietal and prefrontal cortex that are involved in 
intentional action. Yet, our understanding of the way these networks are involved in intentions is 
still very limited. In this study, we investigate two characteristics of these processes: context- and 
reason-dependence of the neural states associated with intentions. We ask whether these states 
depend on the context a person is in and the reasons they have for choosing an action. We used a 
combination of functional magnetic resonance imaging (fMRI) and multivariate decoding to 
directly assess the context- and reason-dependency of the neural states underlying intentions. We 
show that action intentions can be decoded from fMRI data based on a classifier trained in the 
same context and with the same reason, in line with previous decoding studies. Furthermore, we 
found that intentions can be decoded across different reasons for choosing an action. However, 
decoding across different contexts was not successful. We found anecdotal to moderate evidence 
against context-invariant information in all regions of interest and for all conditions but one. 
These results suggest that the neural states associated with intentions are modulated by the 
context of the action.   

1. Introduction 

Intentions are believed to operate at the interface of thought and action [1], and therefore have to translate cognitive states into 
detailed motor coordination [2]. They are assumed to be the end state of a decision process, and to be the primary cause of the 
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subsequent action [3]. In this role, intentions are thought to consist of an action plan, and the decision to execute this plan [1]. Due to 
this assumed central role intentions play in our actions, they have a rich history of scientific investigation, going back to at least 
William James [4] in psychology, and Kornhuber & Deecke [5] in physiology. 

Even though the (folk) psychological notion of “intention” might be taken to imply a homogeneous or unitary process across 
different conditions, neuroscientific evidence suggests that multiple brain regions are involved in action intentions [6–10]. For 
example, human stimulation studies show that the urge to move can be distinguished from the desire to move [11]. While urges (the 
feeling of wanting to make a specific movement) are evoked when the medial prefrontal cortex—specifically the supplementary motor 
area [12]—is stimulated, a desire to make a movement (the feeling of wanting to make an unspecified movement) is evoked upon 
stimulation of the inferior parietal lobule [13]. 

In order to accommodate the multitude of brain areas involved in voluntary action and the various roles intentions are thought to 
play, Jahanshahi [14] suggested that intentions consist of multiple components, including a “what to do” component, a decision “when 
to act”, and an inhibitory process. A similar decomposition can be found in Brass and Haggard’s [15] “what”, “when”, and “whether” 
model of intentional action. Using fMRI this model was subsequently refined, but also challenged. For instance pre-supplemental motor 
area (pre-SMA) and anterior cingulate cortex (ACC) were found to contribute to all three components of the “what, when and whether 
model” [16,17]. 

These findings and models explicate the stages and structures involved in intentional action. The ‘what component’ is construed to 
represent the content of an intention [18,19], and is associated with activity in the frontomedial cortex, including, the rostral cingulate 
cortex, the supplemental motor area and the pre-supplemental motor area. A hierarchical cluster analysis points more specifically to 
the right middle cingulum, the right middle frontal gyrus, the right supramarginal gyrus and the left inferior frontal gyrus and pars 
triangularis [17]. 

Yet, what exactly is contained in the ‘what’ component of intentions is beyond the scope of most empirical studies. A typical way of 
assessing the neural correlates of the what component is to contrast an endogenously performed action with a cued action. This 
contrast does inform us about the difference between cued and self-selected actions, but does not explain what the mechanisms of 
voluntary action are. 

In everyday language use, and often in philosophy of action, an intention is generally framed as a state that is abstracted away from 
the immediate context of the intended action, and the reasons one can have for acting [20]. Neuroscience is often not explicit about 
how much of these processes are interpreted as part of (the what component of) an intention, or rather part of the processes leading up 
to the intention. Some work was done under the assumption that action decisions and action planning processes cannot be separated 
[21–23] and hence action intentions are context-dependent. Others have questioned this view [but see 24,25. Along similar lines, 
different reasons for performing an action have been shown to result in different kinematics [to the extent that they can be picked up by 
a human observer: [26–28], suggesting that different reasons may also be responsible for differences in the processes underlying 
intentional actions. Also in action observation, context is reported to modulate neural response in the observer [29]. 

In everyday life, we virtually never form intentions about abstract stimuli or objects. Almost always the intentions we form are 
about actions in a meaningful context, and for specific reasons. These factors are commonly not investigated in cognitive studies on 
intentions. In this exploratory study, we directly test the reason- and context-dependency of intention representations. We investigated 
the outcomes of action decisions, which we in the following refer to as “intentions”. Specifically, we investigate whether the same 
intention made for different reasons or in different contexts is accompanied by invariant neural patterns, or whether the patterns are 
context- or reason-dependent. To this purpose, we use multivariate pattern analyses (MVPA) of functional magnetic resonance imaging 
(fMRI) data [30–35]. 

In this study, participants formed action intentions based on specific reasons and in specific contexts. Given a certain reason, only 
one of the actions was reasonable. However, participants were not explicitly instructed by us to make a particular choice. We chose to 
use such semi-free intentions for two reasons: First, in real life we virtually never form intentions that are completely free from reasons 
to act. Rather, we form intentions because we want to achieve a certain goal, say to go to the office. So, the actions we perform in the 
morning are performed because we want to go to the office showered and dressed.1 These actions are performed in a meaningful 
context (e.g., bathroom, bedroom). Second, this setup allows us to check that participants perform the task (by assessing their re-
sponses) and to balance the number of trials per condition. 

2. Methods 

2.1. Participants 

Thirty participants took part in this study. Four of these were excluded from the neuroimaging analyses due to low performance 
(see 3.1), leaving N = 26 (19 female) for neuroimaging analysis. Participants were 18 to 37 years old (mean age 26.7 years). All 
participants had normal or corrected-to-normal vision and were right-handed according to the Edinburgh handedness assessment [37]. 
Participants had no history of neurological or psychiatric disorders and gave written informed consent. All participants mastered the 
German language at a native level, and received 20€ for participation. The study was approved by the local ethics committee 

1 Goals (and therefore intentions) can be defined at many different levels [19,36]. Consequently, actions that are purposeless on one level (say the 
movement in a Libet-like experiment) can be attributed to a goal at a higher level (e.g., completing the experiment or complying with the 
experimenter). 
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(Ethikkommission Lebenswissenshaftliche Facultät, number 2016-07). 

2.2. Experimental setup 

Stimuli were presented using PsychoPy version 1.83.03 [38]. They were projected onto a screen at the back of the scanner that was 
visible through a mirror mounted on the MR head coil. Each trial (Fig. 1) started with an image depicting a contextual setting (either a 
breakfast or a supermarket context), presented at the centre of the screen (factor “context”). Beneath the picture a one-sentence 
explanation of a situation was presented in German (factor “reason”). For example, “You have poured milk in your glass and 
you’ve put the lid back on”, which suggests placing the box (action) in order to do away with it (reason) in a breakfast context. 
Participants were instructed to imagine themselves in this situation and decide what would be the appropriate action in that situation. 
The combination of picture and sentence was presented for 4000 ms. This combination made only one of the intentions appropriate. 
Trials in which the participant failed to provide the answer that was suggested by this combination were considered incorrect and 
discarded from further analysis (Please see supplemental material for an overview of the trial with the correct responses). This screen 
was followed by a 6000 ms decision delay with an empty grey screen. After that, the response screen was presented, which always 
contained the two options “open” and “place”. On half of the trials these options were presented as words, on the other half of the trials 
as pictograms, to prevent participants from anticipating specific visual input. The two possible answers were displayed each on 
different sides of the screen, and participants indicated the correct answer by pressing a button with either their left or right index 
finger. The side on which each answer appeared was randomised to prevent a conflation between choice and motor preparation. 
Participants were asked to respond within 2000 ms. Responses that were made after 2000 ms were considered invalid. The response 
was followed by a 2000 ms intertrial interval (ITI) in which participants could prepare for the next trial. Since the ITI started as soon as 
the participant responded (i.e., not waiting for the full 2000 ms answering time to finish) a natural jitter occurred. Responses and 
response times were recorded. 

There were two contexts (supermarket vs. breakfast), two action options (open vs. place) and two reasons for choosing one action or 
the other, resulting in a 2 × 2 x 2 design. As the reasons for opening were necessarily different from the reasons for placing (in order to 
provide ecologically plausible reasons), this factor was nested. Each of the eight conditions was repeated four times within one run. 
Participants performed five runs (separated by short breaks). This means that each condition was repeated 20 times, resulting in a total 
of 160 trials. Participants received instructions and a short training session prior to the experiment. During the training session, 
participants performed five trials, randomly selected from the experiment trials. The total duration of the experiment, without setting 
up and training, was approximately 40 min. 

Trial order was randomised, and the experimental design was assessed using the Same Analysis Approach [39] to test for unin-
tended regularities in the design (e.g. trial order, imbalances, design-analysis-interactions) or behavioural differences (error rates, 
reaction times) that could bias the machine-learning classifier (see below). No such unintended regularities were detected. 

Fig. 1. Experimental design. Panel a: schematic overview of the eight experimental conditions. The photos here are examples; various photos were 
used. Panel b: Graphical representation of one trial. The originally German sentence has been translated to English. During the delay and the 
intertrial interval (ITI) an empty grey screen was presented. 
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2.3. Image acquisition 

A 3 T S Trio (Erlangen, Germany) scanner with a 12-channel head coil was used to collect functional magnetic resonance imaging 
data. In each run, 266 T2*-weighted echo-planar images (EPI) were acquired using a descending interleaved protocol (TR = 2030 ms, 
TE = 30 ms, flip angle 78◦). Each volume consisted of 33 slices, separated by a gap of 0.75 mm. Matrix size was 64 × 64, and field of 
view (FOV) was 192 mm, which resulted in a voxel size of 3 × 3 × 3.75 mm. The first three images of each run were discarded, in order 
to allow the magnetic field to stabilise. Additionally, field distortion maps (TR = 400 ms, TE1 = 5.16 ms; TE2 = 7.65 ms; flip angle = 60 
deg.) were collected for correcting the EPIs. A structural, T1-weighted image (1 mm isotropic voxels; TR = 1900 ms; TI = 900 ms; TE =
2.52 ms; flip angle = 9 deg.) was collected for anatomical localisation. 

2.4. Data analysis 

The EPI images were preprocessed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The images were real-
igned, unwarped and slice-time corrected. Next, a general linear model [GLM]; [40] was estimated with 12 regressors corresponding to 
the 8 conditions in the design (see Fig. 1, panel a) plus the stimulus pictures as nuisance regressors (in order to minimise a possible 
effect of visual information on the performance of the classifier in the subsequent analyses). Regressors were modelled as a box-car 
encompassing presentation of the description for the picture regressors (0–4000 ms from trial onset) and the decision delay period 
for the experimental conditions (4000-10,000 ms from trial onset, see Fig. 1) and convolved with the canonical hemodynamic response 
function. We also included 6 regressors with movement parameters as regressors of no interest. The condition-, voxel-, and run-wise 
parameter estimates of the resulting GLM were subsequently used as input for the multivariate analyses. 

2.4.1. Multivariate decoding 
We performed multivariate pattern analysis (MVPA) using The Decoding Toolbox [TDT; 41]. A searchlight classifier [32,42] using 

libSVM [43] with a fixed linearisation parameter C1 was trained to classify the action (open vs. place) for one specific reason-context 
combination (See Fig. 2). The searchlights had a radius of 12 mm and were restricted by a whole-brain mask. This classifier was then 
subsequently tested on all four reason-context combinations in the remaining fifth run. For this, we employed 5-fold run-wise 
cross-validation [44] to estimate the generalisation performance of the classifier, by repeating this procedure with each run as 
left-out test data once, calculating the classification accuracy for each left-out run, and averaging the classification accuracies across 
runs. Results were corrected for multiple comparisons using a family-wise error correction at the cluster level (FWEC). The four 
training-test combinations were: (1) classifier trained and tested on the same reason and the same context (‘SameR-
easonSameContext’), (2) classifier trained and tested on the same context but on a different reason (‘CrossReason’), (3) classifier 
trained and tested on the same reason but in a different context (‘CrossContext’), and (4) classifier trained and tested on different 
reasons and different contexts, (‘CrossReasonCrossContext’, see Fig. 2). Training and testing was performed on unsmoothed images in 
individual space. 

In order to increase sensitivity, we restricted our crucial generalisation analyses to regions of interest (ROIs) that encoded intention- 
related information for the same context and the same reason (combination 1 in Fig. 2). To find these regions, we performed a decoding 
analysis in individual anatomical space, after which the decoding results were normalised to MNI space (3rd degree B-Spline inter-
polation) using the structural images and smoothed with a 2 × 2x2mm FWHM kernel), which allowed us to do a group-level analysis 
(second-level t-test for each voxel, p < 0.001, family-wise error correction at the cluster level (FWEC)). To avoid circularity in 

Fig. 2. The training and testing procedure. For training and testing we employed a leave-one-run-out procedure. A classifier was trained to 
distinguish between the intention to open (O) and to place (P) on four of the five runs and subsequently tested on the left-out run in four different 
settings: 1) SameReasonSameContext (blue), 2) CrossReason (green), 3) CrossContext (magenta), and 4) CrossReasonCrossContext (orange). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

S. Uithol et al.                                                                                                                                                                                                          

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


Heliyon 9 (2023) e17231

5

subsequent analyses in the estimate of the SameReasonSameContext condition [45,46], individual ROIs for each participant were 
created using a ‘leave-this-participant-out’ protocol (a leave-one-participant-out procedure in which, e.g., the ROIs of participant 1 
were created using the decoding results of all subjects but participant 1, see also [7]. For this, a threshold of p < 0.001, FWEC, was used 
[47]. The ROIs covered a substantial part of the cortex, including visual, parietal, frontal, prefrontal and temporal regions (see Fig. 3, 
left panel). As we were not interested in visual decoding, and since the stimuli images were not completely matched in terms of lu-
minosity, colour and detail, occipital cortex was excluded from further analysis, leaving parietal, premotor, prefrontal, and cerebellar 
areas. The continuous ROI was split into four functional-anatomical (fa)ROIs for each participant (using the Automated Anatomical 
Labeling library [48], which is based on the MNI anatomical labels). An example of these ROIs can be seen in Fig. 3, right panel; the 
exact boundaries of these ROIs varied slightly per participant. All ROIs were present on both hemispheres. 

Next, we projected each ROI to the participant space of the left-out participant using the inverse of the transformation matrices that 
were used to normalise the images to MNI space. Subsequently, the classification accuracies were extracted from the whole-brain 
searchlight analysis for each of the ROIs. These accuracies were combined in another second-level analysis (again one-sample t- 
test). The group average classification in the four conditions (SameReasonSameContext, Different Reason, Different Context, and 
Different Reason Different Context) was compared in each of the four ROIs. See the supplemental material for a graphical overview of 
the analysis pipeline. 

3. Results 

3.1. Behavioural results 

Only participants with two (out of four) or more correct trials on each of the eight conditions in each run were included in sub-
sequent analyses. Four participants were excluded based on this criterion, leaving N = 26 participants for the fMRI analysis (see 2.1 
above). Trials that contained responses that were either incorrect or that occurred after the instructed response window of 2000 ms 
were discarded. In total, 267 trials (6.4%) were discarded. On average, participants gave the expected answer in 93.6% of the trials 
(standard deviation 6.5%). Since there was a 6000 ms delay between stimulus presentation and answering screen, we assumed that no 
meaningful information can be drawn from the reaction times. This was confirmed by the outcome of a repeated-measure ANOVA, 
which showed no significant effect of condition on reaction time (p = 0.6). 

3.2. Classification results 

The SameReasonSameContext condition showed significant information in all ROIs (mean classification accuracies: parietal: 
56.0%; premotor: 56.2%; prefrontal: 56.2%; cerebellum: 54.3%; one-sided, one-sample t-test: p < 0.001 for all ROIs; the Bonferroni 
corrected significance threshold for multiple comparisons corresponding to αbonf = 0.05 for four conditions and four ROIs is αuncorr =

0.003; Cohen’s d for the for conditions respectively: 0.9; 1.0; 0.9; 1.3; see Fig. 4). Please note that while the SameReasonSameContext 
condition was used to define the ROIs with a searchlight analysis, the ROI definition for each participant was created from the results of 
all other participants, and thus voxel selection and test-set classification performance were independent (i.e., “non-circular”). This 
allowed us to compare the results from different ROI conditions. Within each participant, the classification was performed using a 

Fig. 3. Regions of interest. Panel A shows searchlight decoding results with above-chance classification (p < 0.001, FWEC) in the SameR-
easonSameContext condition based on a second-level voxel-wise analysis including all subjects. Panel B shows the four participant-specific ROIs for 
participant 1 during the ROI analysis: prefrontal (blue); premotor (green); parietal (red); and cerebellum (cyan). To avoid circularity, the 
SameReasonSameContext, ROIs were created for each participant from the classification results of all other subjects (here: all except subject 1). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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leave-one-run-out cross-validation. Reason and context modulation were checked using repeated-measures ANOVA. This yielded a 
significant modulation for context in parietal cortex (p = 0.03), premotor cortex (p = 0.03), and cerebellum (p = 0.001). Reason was 
not significant in any of the four ROIs. 

CrossContext decoding was not significant from chance level in any of the four ROIs (parietal: 51.9%; premotor: 51.6%; prefrontal: 
51.8%; cerebellum: 49.8%, p > 0.05 for all ROIs, α = 0.003, αbonf = 0.05; Cohen’s d for the four conditions respectively: 0.3; 0.3; 0.3; 
− 0.1), neither was CrossReasonCrossContext decoding (parietal: 53.2%, p = 0.003; premotor: 51.4%, p = 0.1; prefrontal: 52.3%, p =
0.05; cerebellum 50.1%, p > 0.1, α = 0.003, αbonf = 0.05; Cohen’s d for the four conditions respectively: 0.6; 0.2; 0.3; 0.6); see Fig. 4). 

Next, we quantified the evidence for the absence of information in the neural data using Bayesian statistics by calculating the Bayes 
factors (BFs) for each condition using JASP [49]. The BFs were calculated using a Bayesian repeated-measures ANOVA over classi-
fication accuracies. Specifically, we calculated the BF10, which informs how more likely Hypothesis 1 (there being an effect) is than 
Hypothesis 0 (there being no effect) using a default prior (Cauchy, scale 0.707). Note that “10” in “BF10” indicates that it assesses 
Hypothesis 1 vs. Hypothesis 0, and not the base of the logarithm used below (which is the natural logarithm base e). Following Lee & 
Wagenmakers [50], we consider logarithms of the Bayes Factors |loge (BF10)| between 0 and 1 to be anecdotal (grey in Tables 1 and 2); 
between 1 and 2 moderate (Tables 1 and 2); between 2 and 3.5 strong, between 3.5 and 4.5 very strong (not in our results), and larger 
than 4.5 as extreme. Negative values indicate evidence for the null hypothesis H0, that is, the absence of information suitable for 
classification, positive values indicate evidence for H1. The Bayesian repeated-measure ANOVA indicates moderate to extreme evi-
dence for the presence of information about action in the CrossReason analysis in all ROIs, and anecdotal (one ROI) to moderate (three 
ROIs) evidence for H0 (that is, against the presence of information suitable for classification) for the CrossContext analysis (see 
Table 1). 

Based on the significant CrossReason effect of the ANOVA, we performed separate Bayesian t-tests for each individual condition. 
Table 2 shows the logarithms of the Bayes Factors |loge (BF10)| for all conditions in all ROIs. Again, negative values indicate evidence 
for H0 that no information suitable for classification is available for this condition in this ROI, H1 indicates evidence for the presence of 
information. 

4. Discussion 

In this paper, we measure relatively stable patterns of brain activation that can be correlated to the presence of an intentions in the 
participant. These patterns can be said to represent the attributed intention, although this may not necessarily imply the presence of a 
contentful neural representation [51,52]. We will use the term ‘neural state’ or ‘neural representation’ to refer to the patterns of brain 
activity identified using multivariate fMRI decoding techniques and that we, researchers, were able to correlate with the presence of an 

Fig. 4. Results of the decoding analyses in each ROI. Asterisks denote values being significantly (p < 0.05, Bonferroni-corrected for multiple 
comparisons, p < 0.003 for each test) above-chance level (50%, horizontal dashed line). Error bars represent the 95% confidence interval (Bon-
ferroni corrected for multiple comparison). Stars represent significance levels: ‘****’: p < 0.001; ‘***’: p < 0.005; ‘**’: p < 0.01; ‘*’: p <
0.05 (corrected). 

Table 1 
The natural logarithm of the Bayes Factors assessing H1 vs H0 (BF10) of the Bayesian repeated measures ANOVA for information 
on the action intentions vs. no information in the different ROIs. Negative values indicate evidence for the null hypothesis. Note: 
“10” in “BF10” indicates that it assesses Hypothesis 1 vs. 0; that is, it is not indicating the base of the logarithm that appears in the 
column titles, which is the natural logarithm (base e). Evidence level: |loge (BF10)| 0–1: anecdotal; 1–2: moderate; 2–3.5: strong, 
3.5–4.5: very strong (not in our results), >4.5: extreme.   

loge (BF10) ANOVA CrossReason loge (BF10) ANOVA CrossContext 

Parietal 1.9 (moderate H1) − 1.4 (moderate H0) 
Premotor − 0.9 (anecdotal H0) 2.9 (strong H1) 
Prefrontal − 1.1 (moderate H0) 1.0 (moderate H1) 
Cerebellum − 1.4 (moderate H0) 7.3 (extreme H1)  
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intention, without further assumption about the nature of these states. 
We directly assessed the impact of changing context and changing reason on the voxel patterns accompanying intentions. We used 

MVPA on fMRI data to compare classification accuracy for same-context or same-reason conditions with the accuracy for cross-context 
and cross-reason conditions. When context changed between training and test data, the decoding accuracy dropped to chance level. 
Bayesian analyses showed in most cases moderate evidence for absence of context-independent information. Changing the reason for 
forming a certain intention did not have this effect. This suggests that context plays a crucial role in the neural states related to action 
intentions, in line with embodied approaches to cognition, that emphasise the ‘situatedness’ of cognition [53]. 

The notion of a context-invariant encoding of task information in a single brain region has been challenged before [see 54,55. In 
fact, it has long been known that different variables of tasks are encoded in different regions across cortex, supporting a distributed 
model of task encoding [8,56–58]. Furthermore, when preparing actions, information about ‘what’ will be performed and ‘when’ it 
will be performed is encoded in dissociable brain regions [10,17], in line with Brass and Haggard’s [15] distinction of the ‘what’, 
‘when’ and ‘whether’ subprocesses of intentions [8,9,59]. Our results can be interpreted as another extension of this heterogeneous 
neural implementation by showing that the ‘what’ component is at least partly dependent on the context in which the action decision is 
made. 

Furthermore, it has been previously shown that activation in frontoparietal cortex is strongly task-dependent [e.g. 60] [but see 61] 
and that task information also differs across different sequential stages of a task [62–66]. Our results extend these findings by showing 
that task representations can be relatively invariant to certain changes (i.e., variation in reason) but not to others (i.e., changes in 
context). 

It has been shown behaviourally that context affects action responses [67], and intuitively it seems necessary that action intentions 
have context-dependent elements, as otherwise people would not be able to consider contextual factors in establishing appropriate 
actions. Yet, our results point towards a stronger form of context-dependency. Decoding accuracy was not only significantly lower 
when testing across context (compared to within context), for most brain regions and conditions there was moderate evidence that the 
intention-related information did not generalize across different contexts. There are two possible explanations for this result: 1) There 
are nevertheless common representational cores underlying intentions for the same action across contexts, but this core was not 
accessible via the sampling of the neural signal with fMRI (i.e., a false negative result); or 2) there is no context-invariant represen-
tational core at all. We will discuss both these options. 

Our findings could reflect a false negative: Hypothetically, when parts of the processes change with context and parts remain 
invariant, the changing parts may obscure the invariant representations, and decrease the signal-to-noise ratio, which will make 
decoding harder. Yet, our Bayesian analyses suggests that this may not be the case, since they reveal anecdotal to moderate evidence 
that neural intention representations are not context-invariant. More complex coding schemes are conceivable in which the context 
representation is convolved with the intention representation in a non-linear way [68]. The non-linear convolution defies detection 
with our classification paradigm. 

Alternatively, our findings could be interpreted as pointing to a different possibility: Intentions do not have a context-invariant 
representational core at all. The negative Bayes factors provided anecdotal to moderate evidence in favour of this hypothesis. In 
that case, action-control processes could potentially be understood as a dynamic integration of sensorimotor processes tailored to the 
relevant context [55,69], with an action that is uniquely adapted to the context, rather than the formation of an invariant intention that 
is subsequently translated into the current context [20,70,71]. This interpretation raises multiple fundamental research questions. 
What are the reported brain areas doing during intentional action if not constituting a context-free representation of an action (see 
Uithol et al., 2014)? How is generalisation between contexts possible if the activity in much of the neural circuitry involved in 
intentional action is context-dependent? 

Despite our efforts to improve ecological validity of our paradigm by varying contexts and reasons, there were still aspects of our 
design that make it different from everyday intention formation: 1) the context was not really “immersive” and instead participants 
had to imagine the context by means of a photograph on the screen; and 2) participants did not execute the exact action they had 
chosen, but they indicated their choice via a button-press, thus requiring an additional transformation and level of abstraction. 

In our design there was a 6 s delay between the onset of the intention formation and the moment the participant could indicate the 
chosen option. This was introduced as in other studies in order to maximize the separation of the relevant stage for the multivariate 
analyses [see e.g. 9]. In order to avoid making the design more complex, we did not ask participants for additional introspective reports 
during this delay. However, we have no indication that they were doing anything other than maintaining the chosen option in mind (as 
reflected in the high accuracy rate of the responses). Participants were asked to imagine themselves in the indicated context and to 

Table 2 
Logarithms of the Bayes Factors (BF10) for information on the action intentions vs. no information in the different ROIs. Negative values signify 
evidence for the null hypothesis that no information is present in the neural activity pattern. Notation, evidence level, and colour code are as in 
Table 1.   

loge (BF10) T-Test 
SameReasonSameContext 

loge (BF10) T-Test 
CrossReason 

loge (BF10) T-Test 
CrossContext 

loge (BF10) T-Test 
CrossReasonCrossContext 

Parietal 5.8 (extreme H1) 5.2 (extreme H1) − 0.3 (anecdotal H0) 1.8 (moderate H1) 
Premotor 6.4 (extreme H1) 3.4 (strong H1) − 0.8 (anecdotal H0) − 1.1 (moderate H0) 
Prefrontal 5.6 (extreme H1) 3.2 (strong H1) − 0.4 (anecdotal H0) − 0.8 (anecdotal H0) 
Cerebellum 10.6 (extreme H1) 2.8 (strong H1) − 0.3 (anecdotal H0) − 0.9 (anecdotal H0)  
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imagine the chosen action. 
Our results, stemming from a task in which meaningful actions in specific contexts were selected (even though only being indicated 

through a button press), can be compared to previous fMRI studies in which actions more complex than a button press were selected 
and executed, but in a meaningless context [57,72–75]. Our study still employs a simplification compared to real-world intentions, 
insofar as the action context are only imagined and that actions are simplified to mere button presses, the latter due to limitations in 
moving inside the scanner bore. Previous studies employed other simplifications, in the sense that typically actions lacked an 
ecological purpose (i.e., an ecologically valid reason) and a meaningful context. Nevertheless, there is some overlap in the cortical 
areas from which information could be decoded, including ventral premotor, lateral prefrontal and parietal areas, primarily inferior 
parietal lobule, superior parietal lobule, intraparietal sulcus and precuneus. On the other hand, many of the regions that have been 
previously reported for being involved in action selection are absent in our results: frontal eye fields, dorsal premotor and –of course– 
primary motor areas, frontopolar and medial prefrontal cortex, as well as pre-supplementary motor area [6,10,42,60,73,76]. In 
previous studies, these regions were often mentioned to be involved in intentional action [77], yet, we found no information in these 
areas in our study. 

It remains to be seen, though, whether the differences between our findings and previously reported findings are robust and 
replicable [78], but we can think of two explanations that could account for this potential discrepancy in the implicated brain regions: 
1) the same areas are actually involved but the activity pattern is not (significantly) different between the two intentions we 
manipulated in our study; or 2) since our study did not involve executing the selected action (the button press only related to the 
chosen action in an arbitrary way), no action-planning component specific to the chosen action is involved, which may be necessary for 
these additional areas to be recruited. Previous studies that dissociated decision processes from overt movement [42,79–81] did find 
intention-related information in medial PFC. This could suggest that the neural loci of intention-related activation are dependent on 
the nature of the decision and execution, which would make generalising across paradigms difficult [69]. 

What the exact relation between context and intention representation is, is still not clear. Is, for instance contextual similarity 
correlated with intention decodability? Do various contexts cluster together in a functional way, rather than a purely visual way, when 
the task is forming intentions? And if so, would this clustering also find its way into occipital regions, as this task-driven visual 
processing is suggested in a recent study on conceptual categorisation [82]? 

Next to empirical questions, conceptual work is needed to advance our understanding of intentional action. The borders between 
action planning, action decision, and action understanding may be clear from a conceptual point of view, the overlap in contributing 
brain regions (e.g. Molenbergh et al. (2012) found context modulation in ventral premotor cortex and inferior parietal lobule during 
action observation) suggest that from a neural point of view these processes may be related. 

To conclude, multivariate methods allow tracing stable states in action decision processes. Our results show that the intuitive 
conclusion that these states are context-independent representations of action decisions, akin to the context-free nature of the notion of 
“intention” in everyday language and folk psychology, is potentially problematic. States underlying an intention that seem stable 
within a given research paradigm, may only be stable within a certain range of factors. In our experiment, the stable character of 
intentional processes did not generalize to different contexts. 
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