The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/94075

Please be advised that this information was generated on 2017-09-02 and may be subject to change.
Search for pair production of the scalar top quark in mu+tau final states

We present a search for the pair production of scalar top quarks (\tilde{t}_1), the lightest supersymmetric partner of the top quark, in $p\bar{p}$ collisions at a center-of-mass energy of 1.96 TeV, using data corresponding to an integrated luminosity of 7.3 fb$^{-1}$ collected with the D0 experiment at the Fermilab Tevatron Collider. Each scalar top quark is assumed to decay into a b quark, a charged lepton, and a scalar neutrino ($\bar{\nu}$). We investigate final states arising from $t\bar{t}t\bar{t} \rightarrow b\bar{b}m\nu\bar{\nu}$ and $t\bar{t}t\bar{t} \rightarrow b\bar{b}m\nu\bar{\nu}$. With no significant excess of events observed above the background expected from the standard model, we set exclusion limits on this production process in the $(m_{\tilde{t}_1}, m_{\tilde{\nu}})$ plane.

PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm

Supersymmetry (SUSY) is a space-time symmetry that associates a bosonic partner with each standard model (SM) fermion, and a fermionic counterpart to each SM boson. The mass eigenstates of the scalar fermions, \tilde{f}_1 and \tilde{f}_2, are the results of the mixing of the SUSY partners of the chiral states f_R and f_L. The mass splitting between \tilde{f}_1 and \tilde{f}_2 depends on the mass of the corresponding fermion. It has been suggested that the large mass of the top quark (t) can induce a large splitting between the two stop-mass eigenstates with the consequence that the lightest scalar top quark \tilde{t}_1 may be sufficiently light to be produced abundantly at the Fermilab Tevatron Collider. If R-parity is conserved, scalar top quarks would be produced in pairs in $p\bar{p}$ collisions, either through gluon fusion or quark-antiquark annihilation.

In the minimal supersymmetric extension of the standard model (MSSM) with R-parity conserved, squarks (\tilde{q}) usually decay directly into $\tilde{q} \rightarrow q \tilde{\chi}^0_1$ where the lightest neutralino $\tilde{\chi}^0_1$ is the lightest supersymmetric particle (LSP). At the Tevatron, this mode is kinematically disfavored for the lightest scalar top quark, because of the large mass of the top quark. If in addition, $m_{\tilde{t}_1} \leq m_b + m_{\tilde{\chi}^+_1}$, where $\tilde{\chi}^+_1$ is the lightest chargino, the decay channel $t_1 \rightarrow b\tilde{\chi}^+_1$ is not accessible, and the only two-body decay that would be allowed is the flavor changing decay $t_1 \rightarrow c\tilde{\chi}^+_1$ [5]. Searches related to this...
channel have been reported by the ALEPH, DELPHI, L3 and OPAL Collaborations. The CDF and D0 Collaborations have searched for scalar top quarks in final states with acoplanar charm-jets and large imbalance in transverse momentum (E_T). Other possible decays are the three-body modes $\tilde{t}_1 \to bW^+\chi_1^0$, $\tilde{t}_1 \to bH^+\chi_1^0$, $\tilde{t}_1 \to b\tilde{\nu}\nu$, and $\tilde{t}_1 \to b\tilde{\nu}\nu$, where H^+ is the charged Higgs boson, and $\tilde{\nu}$ and $\tilde{\ell}$ are the sneutrinos and sleptons, superpartners of the neutrinos and leptons, respectively. A possible four-body decay, $\tilde{t}_1 \to b\chi_1^0f\tilde{f}$, where f represents a fermion, mediated by virtual top quark, chargino, sbottom, slepton and first/second generation squark exchange, has also been suggested.

Searches related to this channel have been reported by the D0 Collaboration. It is thought that the three-body decay modes may be important and even dominate the loop-induced $e\chi_1^0$ mode. Searches for scalar top quark pair production in $b\bar{b}\ell\bar{\ell}\nu\bar{\nu}$ final states have been reported by the ALEPH, L3, and OPAL Collaborations. D0 have searched for scalar top quark pairs in $t\bar{t}$ events. The signal topology consists of one isolated muon, one isolated τ lepton, and E_T coming mainly from undetected sneutrinos, and unreconstructed or mis-measured jets.

![FIG. 1: Diagram contributing to the three-body decay $\tilde{t}_1 \to b\tilde{\nu}\nu$.](image)

The three-body decay $\tilde{t}_1 \to b\tilde{\nu}\nu$ proceeds mainly through a virtual chargino $\tilde{\chi}_1^\pm$ (Fig. 1). In the MSSM, $\tilde{\chi}_1^0$ is the lightest mass eigenstate of the charged gaugino-higgsino mass matrix that is a mixing of the wino W^+ and the higgsino H^+, SUSY partners of the W boson and the charged Higgs boson, respectively. If $\tilde{\chi}_1^\pm$ is wino-like, the leptonic decay $\tilde{\chi}_1^\pm \to \ell^+\nu$ occurs with equal rate to all lepton flavors. If $\tilde{\chi}_1^\pm$ is higgsino-like, the decay $\tilde{\chi}_1^\pm \to \tau^+\nu$ is enhanced, owing to the large Yukawa coupling of the τ lepton. In that case, the decay $\tilde{t}_1 \to b\tau\nu$ can be dominant. We consider two scenarios in our search that depend on the composition of the chargino.

The D0 detector is designed to optimize detection and identification of particles arising from $p\bar{p}$ interactions and comprises dedicated subsystems surrounding the interaction point. The central tracker resides within a liquid-argon/uranium sampling calorimeter and muon detectors. Charged particles are reconstructed using multi-layer silicon detectors and eight double layers of scintillating fibers in a 1.9 T magnetic field produced by a superconducting solenoid. After passing through the calorimeter, muons are identified using 1.9 T toroids and a muon system composed of three layers of drift tubes and scintillation counters. Events are selected for offline analysis through a three-level trigger system. All events contributing to this analysis are required to pass one of a suite of single-muon triggers based on information from the tracking and muon systems.

For each event, the best primary vertex (pv) is selected from all the possible reconstructed interaction vertices as the one with smallest probability of originating from a minimum-bias interaction. To ensure efficient reconstruction, the location of the primary vertex along the beam direction is restricted to $|z_{pv}| < 60$ cm, where z_{pv} is the longitudinal position with respect to the center of the detector.

Using central track segments pointing to hit patterns in the muon system, muons are identified in the region $|$η$| < 1.8$, where η is the pseudorapidity. Their trajectories are required to have both drift-tube and scintillator hits that match a track in the central tracker. Muons that are not isolated are rejected if the sum of the transverse momenta of tracks inside a cone of radius $R \equiv \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.5$ around each muon (ϕ being the azimuth), divided by the transverse momentum p_T of the muon, is less than 0.15. The sum of the transverse energies in the calorimeter in an annulus of $0.1 < R < 0.4$ around the muon, divided by p_T^μ, is also required to be less than 0.15. Only muons with $p_T^\mu \geq 15$ GeV are considered in the analysis. A veto on cosmic ray muons is applied using timing information from the muon system.

Decays of $\tau \to$ hadrons+ν_τ (called τ_b) are identified with a neural network using as input variables (i) calorimeter clusters found with a cone algorithm of $R = 0.3$, (ii) energy in an annular cone $0.3 \leq R \leq 0.5$,
(iii) electromagnetic (EM) calorimeter subclusters, (iv) the multiplicity of tracks with $p_T > 1.5$ GeV within $R < 0.5$ of the direction of the τ lepton, and (v) consistency of the invariant mass of the hadron system with that of τ decay. Three neural networks NN_τ are trained to identify tau decays corresponding to $\tau^+ \rightarrow \pi^+ \nu$ (τ_1), $\tau^0 \rightarrow \pi^0 \nu$ (τ_2), and $\tau^- \rightarrow \pi^- \pi^+ \pi^0$ (τ_3). In addition, a selection on the output of NN_τ, a neural network trained to separate τ_3 from electrons of similar signatures, is applied. The minimum transverse energy of the τ_n measured in the calorimeter, $E_T^{\tau_n}$, is 12.5 GeV for τ_1 and τ_2 and 15 GeV for τ_3. The sum of the transverse momenta of the τ-associated tracks, p_T^{track}, is required to exceed 7, 5, and 10 GeV, for τ_1, τ_2, and τ_3, respectively. In addition, at least one track with $p_T > 7$ GeV is required for τ_3. Finally, only candidates with $|\eta_{\tau_n}| < 1$ and $p_T^{\text{track}}/E_T^{\tau_n} > (0.65, 0.5, 0.5)$ for (τ_1, τ_2, τ_3) are selected.

Jets are reconstructed from energies deposited in calorimeter towers using an iterative midpoint cone algorithm [25], with a cone radius $R = 0.5$. Jet energies are calibrated to the particle-level jets using correction factors derived primarily from the transverse momentum balance in photon plus jets events [26]. Only jets with $p_T > 15$ GeV and $|\eta| < 2.5$ are considered in this analysis and jets in the vicinity of a τ_n candidate ($R < 0.5$) are discarded.

The E_T is calculated from the calorimeter energy, corrected for jet, EM, and τ energy scales and for the transverse momentum of selected muons.

Monte Carlo (MC) events for signal are simulated using MADGRAPH/MADEVENT [27] and PYTHIA [28] for parton-level generation and hadronization, respectively. We consider a range of scalar top quark mass values from 100 to 200 GeV, generated in steps of 20 GeV. The range of probed sneutrino masses extends from 40 to 140 GeV in steps of 20 GeV. For each hypothesis, the MSSM parameters are estimated from SUSPECT [29] and SDECAY [30]. The next-to-leading order (NLO) scalar top quark pair production cross section is calculated with PROSPINO 2.0 [31], using CTEQ6.1M parton distribution functions (PDF) [32, 33]. The calculations are performed with the renormalization and factorization scales μ_R, μ_F equal to the scalar top quark mass $m_{\tilde{t}_1}$, $\frac{1}{2} m_{\tilde{t}_1}$, and 2 $m_{\tilde{t}_1}$ to estimate uncertainty on the nominal value through the impact of the two excitations. These uncertainties are combined quadratically with uncertainties on the PDF [32, 33] to provide a total theoretical uncertainty of 18% to 20% on the scalar top quark cross section.

The kinematics for signal are determined both by $m_{\tilde{t}_1}$ and by the mass difference $\Delta m = m_{\tilde{t}_1} - m_{\tilde{b}}$. The p_T of the leptons and b quarks decrease on average for smaller values of Δm, and E_T is correlated with both $m_{\tilde{t}_1}$ and Δm. We choose two signal points $[m_{\tilde{t}_1}, m_{\tilde{b}}] = (180, 60)$ GeV and $(120, 80)$ GeV, labeled “Signal A” and “Signal B” in the following, to illustrate the impact of the selection criteria for large $m_{\tilde{t}_1}$ and Δm (Signal A) and for low $m_{\tilde{t}_1}$ and Δm (Signal B).

The dominant SM backgrounds to the pair production of scalar top quarks are from $Z/\gamma^* \rightarrow (\tau^+ \tau^-) + \text{jets}$, $Z/\gamma^* \rightarrow (\mu^+ \mu^-) + \text{jets}$; diboson production ($WW, WZ, ZZ$); $t\bar{t}$; W+jets, and instrumental background from multijet (MJ) processes. All but the latter are estimated through MC simulations. Vector boson pair production is simulated with PYTHIA, while the other backgrounds are simulated at the parton level using ALPGEN [34] and PYTHIA for hadronization and parton showering.

Correction factors for MC estimated from data are applied to lessen the impact of minor mismodeling of detector response. These corrections are related to the instantaneous luminosity, the position of the beam spot, identification efficiencies for μ and τ, vector boson p_T, and jet, muon, and τ energy resolutions.

The instrumental background originates either from incorrectly-identified, isolated muons (arising for example from semi-leptonic b decays) or from misidentified τ_n (jets mimicking τ_n signatures). This is estimated by changing the requirements on muon isolation and on the τ_n NN_τ outputs for each type of tau after the subtraction of the MC contributions corresponding to non-instrumental background. Normalization factors for these samples are estimated assuming that MJ processes have equal amounts of like-charge and opposite-charge $\mu\tau$ events.

The search of scalar top quark pairs proceeds in three steps: two event selections, labeled “Selection-1” and “Selection-2” below, and then a multivariate analysis.

Selection-1 requires candidates to contain exactly one muon and τ_n of opposite electric charge, and to have a minimum separation of $R(\mu, \tau_n) > 0.5$ between the two leptons. No specific requirement on jets is applied at this stage, but events having a jet in the vicinity of the muon ($\Delta R < 0.5$) are rejected. Events with low values of the azimuthal angle difference between the leptons and E_T, which are often due to issues with lepton reconstruction, are removed by requiring $\Delta \phi(\mu, E_T) > 0.5$ and $\Delta \phi(\tau_n, E_T) > 0.5$. At this stage of the analysis, 3387 data events remain while 3453 events are simulated, 893 events remain, while a total background of Signal A
TABLE I: Numbers of events observed and expected from SM background processes and the two signal samples A and B at the Selection-1 stage for τ_1 (τ_1, τ_2, τ_3) and their sum. The uncertainties quoted in the Table are statistical.

<table>
<thead>
<tr>
<th>Process</th>
<th>τ_1</th>
<th>τ_2</th>
<th>τ_3</th>
<th>all τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z/\gamma^*\rightarrow \tau^+\tau^-$+jets</td>
<td>162.6</td>
<td>994.4</td>
<td>352.3</td>
<td>1509.4</td>
</tr>
<tr>
<td>$Z/\gamma^*\rightarrow \mu^+\mu^-$+jets</td>
<td>38.7</td>
<td>91.6</td>
<td>48.3</td>
<td>178.6</td>
</tr>
<tr>
<td>diboson</td>
<td>7.5</td>
<td>40.5</td>
<td>16.9</td>
<td>65.0</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>3.2</td>
<td>27.3</td>
<td>10.7</td>
<td>41.3</td>
</tr>
<tr>
<td>W+jets</td>
<td>125.1</td>
<td>631.1</td>
<td>421.1</td>
<td>1177.2</td>
</tr>
<tr>
<td>Instrumental</td>
<td>54.7</td>
<td>233.1</td>
<td>193.4</td>
<td>481.3</td>
</tr>
<tr>
<td>Background total</td>
<td>392.0±6.0</td>
<td>2018.1±16.9</td>
<td>1042.8±12.6</td>
<td>3452.8±28.6</td>
</tr>
<tr>
<td>Data</td>
<td>388</td>
<td>1937</td>
<td>1062</td>
<td>3387</td>
</tr>
</tbody>
</table>

Wino scenario

| Signal A | 2.3±0.3 | 17.4±0.8 | 4.7±0.4 | 24.4±1.0 |
| Signal B | 4.4±1.3 | 21.4±3.0 | 7.1±1.7 | 32.9±3.7 |

Higgsino scenario

| Signal A | 2.9±0.3 | 20.5±0.9 | 5.3±0.5 | 28.6±1.1 |
| Signal B | 3.8±1.2 | 20.5±2.9 | 6.9±1.6 | 31.1±3.6 |

FIG. 2: (Color online) Distributions of the number of jets after the preselection for (a) τ type 1, (b) τ type 2, (c) τ type 3, and (d) their event sum. Signal A and Signal B correspond to the wino scenario.

905 ± 10 (stat) ± 127 (syst) events is expected (see Table II).

The separation of scalar top quark signal and background is improved through an implementation of Boosted Decision Trees (BDT) [35]. A decision tree classifies events on the basis of cumulative selection criteria that define disjoint subsets of events, each with a different signal purity. The decision tree is redefined iteratively by creating subsets of events called nodes. Each node is split into two subsets on the basis of the strongest discriminant for that sample. An impurity measure i is estimated for each node from the
TABLE II: Numbers of events observed and expected from SM background processes and for the two signal samples A and B, after the final selection on $N(jets) > 0$. The quoted uncertainties correspond to statistical sources.

<table>
<thead>
<tr>
<th>Process</th>
<th>τ_1</th>
<th>τ_2</th>
<th>τ_3</th>
<th>all τ</th>
<th>$N(jets)=1$</th>
<th>$N(jets)=2$</th>
<th>$N(jets)>2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z/\gamma^*(\rightarrow \tau^+\tau^-)+jets$</td>
<td>35.6</td>
<td>226.2</td>
<td>79.5</td>
<td>341.3</td>
<td>301.6</td>
<td>34.6</td>
<td>5.0</td>
</tr>
<tr>
<td>$Z/\gamma^*(\rightarrow \mu^+\mu^-)+jets$</td>
<td>8.0</td>
<td>20.7</td>
<td>10.4</td>
<td>39.1</td>
<td>33.5</td>
<td>4.7</td>
<td>0.9</td>
</tr>
<tr>
<td>diboson</td>
<td>2.3</td>
<td>12.5</td>
<td>6.9</td>
<td>21.7</td>
<td>17.7</td>
<td>3.3</td>
<td>0.7</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>3.0</td>
<td>25.6</td>
<td>10.1</td>
<td>38.7</td>
<td>8.1</td>
<td>20.0</td>
<td>10.6</td>
</tr>
<tr>
<td>W+jets</td>
<td>30.4</td>
<td>166.5</td>
<td>117.5</td>
<td>314.4</td>
<td>301.6</td>
<td>36.7</td>
<td>6.0</td>
</tr>
<tr>
<td>Instrumental</td>
<td>20.6</td>
<td>25.6</td>
<td>10.1</td>
<td>38.7</td>
<td>8.1</td>
<td>20.0</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Background total | 99.9 ± 2.3 | 506.6 ± 5.4 | 298.5 ± 4.9 | 905.1 ± 9.6 | 755.1 ± 8.4 | 119.4 ± 2.0 | 30.6 ± 0.8 |

Wino scenario | | | | | | | |
| Signal A | 1.9 ± 0.3 | 13.9 ± 0.7 | 3.7 ± 0.4 | 19.5 ± 0.9 | 10.4 ± 0.6 | 7.1 ± 0.5 | 2.0 ± 0.3 |
| Signal B | 2.0 ± 0.9 | 10.6 ± 2.1 | 3.6 ± 1.2 | 16.3 ± 2.6 | 12.2 ± 2.3 | 3.1 ± 1.1 | 1.0 ± 0.6 |

Higgsino scenario | | | | | | | |
| Signal A | 2.3 ± 0.3 | 16.2 ± 0.8 | 4.2 ± 0.4 | 22.7 ± 1.0 | 11.8 ± 0.7 | 8.6 ± 0.6 | 2.3 ± 0.3 |
| Signal B | 1.8 ± 0.8 | 9.9 ± 2.0 | 3.1 ± 1.1 | 14.8 ± 2.4 | 10.9 ± 2.0 | 2.9 ± 1.0 | 1.0 ± 0.6 |

weighted number of signal S and background B events in the node. For a given split, the decrease of impurity $\Delta i = i(S, B) - i(S_L, B_L) - i(S_R, B_R)$, where L and R stand for left and right daughter nodes, is calculated. The best splitting gives the largest Δi. We use the Gini index defined as $SB/(S+B)^2$ as a measure of impurity. Terminal nodes are called leaves. Each leaf has a purity value defined by $S/(S+B)$. One of the main advantage of decision trees over analyses using simple requirements is that events that fail any individual selection criteria continue to be considered by the algorithm.

The performance of the decision tree is improved by the boosting technique. The basic principle is to create a tree, calculate an associated uncertainty, and create a new tree with a smaller uncertainty by re-weighting the misclassified events. We use adaptive boosting, known in the literature as AdaBoost. The associated uncertainty ϵ_n of a tree indexed by n is estimated as the fraction of misclassified events. The boosting weight of the n^{th} tree is $\alpha_n = \beta \ln((1-\epsilon_n)/\epsilon_n)$ where β is an empirically determined parameter called boosting parameter. Misclassified events are given an additional multiplicative weight of e^{α_n} and the resulting new tree indexed by $n+1$ is used to retrain the BDT and reduce the number of misclassified events. This procedure is repeated N times, where N is the number of boosting cycles. For the scalar top quark search, the best signal to background separation occurs for $\beta = 0.5$ and $N = 40$.

To optimize the sensitivity of the analysis, three subsamples are selected according to the jet multiplicity per event: $N(jets)=1$, $N(jets)=2$, $N(jets)>2$. Since there are many SUSY mass points, and their characteristics differ significantly, the generated BDTs are trained and tested for each sample and each SUSY point using the implementation of the TMVA library. The five most sensitive input variables for the BDTs trained with samples of Signal A and Signal B are given in Table [III]. To minimize bias, samples are split into three parts: 1/3 for training, 1/3 for testing and 1/3 for analysis. The distributions of the BDT outputs trained with Signals A and B are shown in Figs. [3] and [4] for the wino and higgsino scenarios, respectively.

The predicted numbers of background and signal events depend on measurements and parametrizations that have non-negligible systematic uncertainties, which can either affect exclusively the normalizations of backgrounds or the signal efficiency, or modify also the differential distribution of the BDT discriminant. The main sources involve muon identification and reconstruction efficiencies (2%), τ_h identification and reconstruction (10%, 4%, and 5% for τ_1, τ_2 and τ_3, respectively), trigger (5%), luminosity (6.1%) , jet energy calibration (3.2% for the background, 1.5% to 2.6% for signal), jet identification efficiency and energy resolution (5% for the background, 1% to 6% for signal). Systematic uncertainties related to reconstructed objects are estimated by changing each quantity by one standard deviation (s.d), and gauging the impact on the final measurement. Additional uncertainties arise from the choice of PDF, which affects the cross sections for the background components (6.3% for $Z/\gamma^*(\rightarrow \tau^+\tau^-)+jets$ and $Z/\gamma^*(\rightarrow \mu^+\mu^-)+jets$, 15% for $W+$jets and 10% for $t\bar{t}$; 5.6%, 8.1%, and 5.5% for WW, WZ, and ZZ, respectively) and for signal (18% to 20%). To estimate the systematic uncertainties related to instrumental background, a MC scalar top quark signal is added as a background contribution during the stages that consider distribution and normalization of the MJ background. Each scalar top quark signal is considered, and the largest relative changes in the distribution and the normalization of the instrumental background are thereby estimated. The resulting uncertainties correspond to 5% and 10% for the normalization and the functional dependence, respectively.

There is no significant excess of events observed above the predicted background, and we therefore combine the numbers of expected signal and background events, with
TABLE III: Listing of the five most sensitive input variables used for each BDT training and testing. The significance of H_T, $\text{Sig}(H_T)$, is defined as the likelihood that the H_T in an event is consistent with a fluctuation of the resolution on the p_T measurements on the selected leptons and jets. S_T is the sum of the lepton p_T and of the H_T. The transverse mass M_T is defined as $M_T(A,B) = \sqrt{2p_T^A p_T^B (1 - \cos \phi(A,B))}$. H_T is equal to the scalar sum of the E_T of the jets.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Wino scenario</th>
<th>Higgsino scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(\text{jets})=1$</td>
<td>$N(\text{jets})=2$</td>
<td>$N(\text{jets})\geq3$</td>
</tr>
<tr>
<td>S_T</td>
<td>$\eta(\text{leading jet})$</td>
<td>$\Delta \phi_{\min}(\text{jet},H_T)$</td>
</tr>
<tr>
<td>$\eta(\text{leading jet})$</td>
<td>$\Delta \phi_{\min}(\text{jet},H_T)$</td>
<td>$\eta(\text{leading jet})$</td>
</tr>
<tr>
<td>Signal A $\Delta R_{\max}(\mu,\text{jet})$</td>
<td>$\Delta R_{\max}(\tau,\text{jet})$</td>
<td>$\Delta \phi_{\min}(\text{jet},H_T)$</td>
</tr>
<tr>
<td>$M_T(\mu,\tau,\text{jet})$</td>
<td>$\Delta \phi(\mu,\tau,H_T)$</td>
<td>$\eta(\text{leading jet})$</td>
</tr>
<tr>
<td>$\Delta \phi(\mu,\tau)$</td>
<td>$\Delta \phi(\text{leading jet},H_T)$</td>
<td>$\Delta \phi(\text{leading jet},H_T)$</td>
</tr>
<tr>
<td>Mass(leading jet)</td>
<td>Mass(leading jet)</td>
<td>$\Delta \phi(\text{leading jet},H_T)$</td>
</tr>
</tbody>
</table>

FIG. 3: (Color online) Distributions of the BDT output discriminants, in the wino scenario, for the sample with $N(\text{jets})=1$, (a) for Signal A, (b) for Signal B; $N(\text{jets})=2$, (c) for Signal A, (d) for Signal B; $N(\text{jets})\geq2$, (e) for Signal A, (f) for Signal B.

their corresponding uncertainties, and the numbers of events observed in data obtained from the BDT outputs for each SUSY point, to calculate upper limits on the cross sections for signal at the 95% CL using the modified frequentist approach [39]. The bins of the BDT outputs corresponding to $N(\text{jets})=1, 2,$ and > 2, are treated as separate channels, and their likelihoods are combined taking into account the correlations of both systematic uncertainties affecting exclusively the normalization of backgrounds and signal efficiencies and also of those that change the distribution of the BDT discriminant. The limits are calculated using the confidence level $CL_S = CL_{S+B}/CL_B$ where CL_S and CL_B are the confidence levels for the signal+background and background-only
hypotheses, respectively [39]. Exclusion regions are given on Figs. 5 and 6 as a function of the scalar top quark and sneutrino masses. These results are obtained under the assumption $B(\tilde{t}_1 \rightarrow b\tilde{\nu}) = B(\tilde{t}_1 \rightarrow b\tilde{\tau}^\pm) = 1/3$ (Fig. 5, higgsino scenario) and $B(\tilde{t}_1 \rightarrow b\tilde{\nu}) = 0.1$, $B(\tilde{t}_1 \rightarrow b\tilde{\tau}^\pm) = 0.8$ (Fig. 6, higgsino scenario). For larger mass differences between the scalar top quark and the sneutrino, a scalar top quark mass lower than 200 GeV is excluded. The search is sensitive to a possible signal in the mass region up to $\Delta m = 60$ GeV for $m_{\tilde{t}_1} = 140$ GeV, with the observed limit being within one standard deviation of the expected limit.

In summary, a search for scalar top quark pair production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV has been performed in a dataset corresponding to an integrated luminosity of 7.3 fb$^{-1}$. Events containing one muon, one τ decaying hadronically, at least one jet, and missing transverse energy have been considered in this analysis. No evidence is found for the production of the lightest scalar top quark, and 95% CL exclusion limits are set in the plane $[m_{\tilde{t}_1}, m_{\tilde{\nu}}]$. The largest scalar top quark mass excluded is 200 GeV for a sneutrino mass of 45 GeV, and the largest sneutrino mass excluded is 85 GeV for a scalar top quark mass of 160 GeV. This is the first Tevatron limit obtained from a study of final states containing τ leptons from $t_1\bar{t}_1 \rightarrow b\tilde{\nu}_{\tau}\bar{B}_\tau$.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

t
alysis. The region excluded by a recent D0 search [15] in the expected and observed 95% CL exclusion limits for this analysis. Shaded areas represent the kinematically forbidden region and the LEP-I [40] and LEP-II [6] exclusions. The dashed and continuous lines represent, respectively, the expected and observed 95% CL exclusion limits for this analysis. The region excluded by a recent D0 search [15] in the \(t \bar{t} \rightarrow b \bar{b} \nu \bar{\nu} \) final state in the wino scenario is indicated by the dotted line.

[23] The pseudorapidity is defined as \(\eta = -\ln[\tan(\theta/2)] \), with \(\theta \) being the polar angle with respect to the proton beam direction, relative to the center of the detector.
[37] BDTs have been computed with the Toolkit for Multivariate Data Analysis (TMVA) package (http://tmva.sourceforge.net/) implemented in ROOT (http://root.cern.ch) v5.27.