Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This letter presents a search for singly produced vector-like quarks, Q, coupling to light quarks, q. The search is sensitive to both charged current (CC) and neutral current (NC) processes, $pp \rightarrow Qq \rightarrow Wq\bar{q}$ and $pp \rightarrow Qq \rightarrow Zq\bar{q}$ with a lepton decay of the vector gauge boson. In 1.04 fb$^{-1}$ of data taken in 2011 by the ATLAS experiment at a center-of-mass energy $\sqrt{s} = 7$ TeV, no evidence of such heavy vector-like quarks is observed above the expected Standard Model background. Limits on the heavy vector-like quark production cross section times branching ratio as a function of mass reach could be achieved at the LHC with early data. Single production of a VLQ occurs via the process $qq' \rightarrow q'Q$ (Fig. 1). A quark produced by this process of gauge boson exchange can have a charge of $5/3, 2/3, -1/3$ or $-4/3$. As a benchmark, we consider theories with only VLQs U of charge $\pm 2/3$ or only with D of charge $-1/3$, without regard to the multiplet structure of the model. The experimental limits obtained on cross section times branching ratio can then be interpreted as limits on the couplings for different VLQ models. The contribution from the s-channel diagram is negligible compared to that of the t-channel process. Therefore one characteristic of the signal is the presence of a forward jet: after one of the initial state quarks emits the electroweak gauge boson, it will continue in the forward direction with little transverse momentum (pT), while the other quark couples to the W or Z to produce the heavy quark. Because the LHC is a proton-proton collider, the charged current (CC) production of a D quark is expected to have a higher cross section than that of a U quark. Similarly, for the neutral current (NC) process, U quarks are expected to be produced more abundantly. Anti-quark production is suppressed since it involves antiquarks in the initial state.

Bounds on the mass of new heavy quarks were obtained previously from a search in the pair production process at the Tevatron and LHC. Limits have also been obtained at the Tevatron [15, 16] and LHC [17, 18]. Limits of single production processes $\sigma(pp \rightarrow qQ) \times BR(Q \rightarrow qW)$, which in the model [11] of degenerate doublets with $k_{ud} = 1$ and decaying 100% via CC gives a 95% confidence level (C.L.) upper limit exclusion for D quarks with masses up to 690 GeV. Limits at 95% C.L. on $\sigma(pp \rightarrow qQ) \times BR(Q \rightarrow qZ)$ in the same model yield an exclusion of a U quark with $k_{ud} = \sqrt{2}$ and 100% branching ratio via NC up to a mass of 550 GeV.

This Letter reports on a search for singly produced VLQs in the ATLAS detector at the LHC. The search is conducted in events with at least two jets and a vector boson, indicated...
by either two high-\(p_T\) leptons (electrons or muons) in the case of a \(Z\), or a single lepton and missing transverse momentum \((E_T^{\text{miss}})\) in the case of a \(W\). The data used in this analysis were collected from March to June 2011, at a center of mass energy \(\sqrt{s} = 7\) TeV and correspond to an integrated luminosity of \(L = (1.04 \pm 0.04)\) fb\(^{-1}\).}

2. The ATLAS Detector

The ATLAS detector is a multi-purpose particle physics detector system optimized to record information coming from \(pp\) collisions \([22]\). Closest to the interaction point is the inner detector (ID) for charged particle tracking, which is performed by silicon pixel and microstrip detectors in addition to a straw-tube tracker with radiators to produce transition radiation. The tracking system is embedded in a 2 T axial magnetic field. Surrounding the solenoid are the lead and liquid argon electromagnetic (EM) calorimeter and hadronic tile calorimeter subsystems. Forward calorimetry is accomplished with liquid argon detectors and copper and tungsten absorbers. These systems allow the reconstruction of electrons and jets, both essential for this analysis. Surrounding the calorimeter systems is a muon spectrometer (MS) that uses drift chambers to record muon trajectories in a toroidal magnetic field. A three-level trigger is used to select events for subsequent offline analysis. Events recorded when a subsystem was not properly functioning are not used in this analysis.

3. Signal and background modeling

Signal Monte Carlo (MC) samples are generated using MadGraph \([23]\) based on Ref. \([11, 13]\), then hadronized and show-

Figure 1: Vector-like quark production and decay diagrams for \(s\)-channel (top) and \(t\)-channel (bottom). The thick line indicates the vector-like quark.
Electron candidates are required to pass tight quality selection criteria based on the calorimeter shower shape, track quality and track matching with the calorimeter cluster \[^{135}\] . They must have \(p_T > 25 \text{ GeV} \) and lie in the pseudorapidity \(\eta \) region \(|\eta| < 2.47 \), excluding the regions of transition between the central and forward detector sub-elements, \(1.37 < |\eta| < 1.52 \). During most run periods of the data set, a region of the EM calorimeter corresponding to about 1% of channels was less efficient than the rest of the detector. An exclusion window around the affected area was defined as \(-0.1 < \eta < +1.5 \) in pseudorapidity and \(-0.9 < \phi < -0.5 \) in azimuth. Electrons in this region are removed from data collected during these periods. The same procedure is applied to simulated events corresponding to the fraction of data covered by these run periods. Finally, no more than 4 GeV of transverse energy is allowed outside the core of the electron defined by a cone of size \(\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} = 0.2 \).

Muon candidates are reconstructed by combining tracks from both the ID and the MS. They are required to pass ID quality requirements \[^{137}\] and have \(p_T > 25 \text{ GeV} \) and \(|\eta| < 2.4 \). To suppress cosmic rays, muon candidates must have a distance of closest approach to the primary vertex in the longitudinal direction \(|z_0| < 5 \text{ mm} \) and in the transverse plane \(|d_0| < 0.1 \text{ mm} \). Isolated muons are selected by requiring that the sum of ID track transverse momentum around the muon track, in a cone of \(\Delta R = 0.2 \) divided by the \(p_T \) of the muon itself be less than 0.1.

Jet four-vectors are reconstructed from calorimeter clusters using the anti-k_\(T \) algorithm \[^{138}\] with a radius parameter of 0.4. After correcting for calorimeter non-compensation and inhomogeneities by using \(p_T \) and \(\eta \) dependent calibration factors \[^{139}\] , jets are required to have \(p_T > 25 \text{ GeV} \) and \(|\eta| < 4.5 \). Events containing jets that fail quality criteria \[^{140}\] are rejected to ensure an accurate \(E^{\text{miss}}_T \) measurement. Furthermore, events containing jets passing through the inefficient region of the EM calorimeter are vetoed. To remove jets originating from other \(pp \) interactions within an event, the selected jets are required to have more than 75% of \(p_T \)-weighted ID tracks associated to the primary vertex. Finally, to avoid counting electrons as jets, any jet candidate within \(\Delta R < 0.2 \) of a selected electron is removed.

The \(E^{\text{miss}}_T \) is calculated as the negative vector of the transverse components of energy deposits in the calorimeters within \(|\eta| < 4.5 \). For events containing muons, any calorimeter energy deposit from a muon is ignored and the muon energy measured in the MS is used instead \[^{141}\].

The CC candidates are required to have (i) exactly one electron or muon, (ii) missing transverse momentum \(E^{\text{miss}}_T > 50 \text{ GeV} \), (iii) one jet with \(p_T > 50 \text{ GeV} \) and at least one more jet with \(p_T > 25 \text{ GeV} \), (iv) a minimum pseudorapidity separation \(|\Delta\eta| > 1.0 \) between the highest-\(p_T \) (leading) jet and second or third-leading jet, since the presence of a forward jet is expected in signal events, (v) \(m_T(l,E^{\text{miss}}_T) > 40 \text{ GeV} \), where

\[
m_T(l, E^{\text{miss}}_T) = \sqrt{2E_T^l E^{\text{miss}}_T (1 - \cos \Delta\phi(l, E^{\text{miss}}_T))}
\]

is the transverse mass of the W candidate, and (vi) an azimuthal angle separation between the lepton and \(E^{\text{miss}}_T \) vector \(\Delta\phi(l, E^{\text{miss}}_T) < 2.4 \) rad since the \(W \) in the signal is expected to be boosted. To reconstruct the mass of the VLQ candidate, the longitudinal momentum \(p_L \) of the neutrino is calculated such that the invariant mass of the lepton and \(E^{\text{miss}}_T \) equals the mass of the \(W \). Of the two solutions, the one which leads to the larger value of \(|\Delta\eta| \) between the reconstructed neutrino four-vector and the leading jet is chosen, since the simulation shows it to be the correct solution about 60% of the time. If no real solution is found, the real part of the complex solutions is taken. The system composed of the leading jet and the reconstructed \(W \) is taken to be the VLQ candidate.

The NC candidates are required to have exactly two oppositely charged same-flavor leptons with an invariant mass in the range \(66 < M(l,l) < 116 \text{ GeV} \) and a transverse momentum \(p_T(l,l) > 50 \text{ GeV} \). At least two jets of \(p_T > 25 \text{ GeV} \) are required, with the same \(|\Delta\eta| > 1.0 \) requirement as described for the CC selection. The invariant mass of the system composed of the two leptons and the leading jet is taken to be the VLQ candidate mass.

To evaluate the level of multijet background in the CC analysis, a procedure is used based on a fit to the \(E^{\text{miss}}_T \) distribution in the range \(0 < E^{\text{miss}}_T < 100 \text{ GeV} \). For this purpose, only selection criteria (i) and (v) above are required. For both the electron and muon modes, template shapes for the non-multijet backgrounds are taken from the MC samples described earlier and summed according to their relative cross sections. The overall normalization of this non-multijet template is left floating. In the electron mode, a sample enriched in objects misidentified as electrons (fakes) is selected from data using medium quality electrons, excluding tight electrons, as defined in \[^{146}\]. The \(E^{\text{miss}}_T \) distribution of this sample serves as the electron multijet template shape. For the muon mode, multijet background is primarily expected to come from heavy flavor decays. Therefore, the multijet template shape is taken from a PYTHIA sample of \(bb \) events. For both lepton flavors, a fit to the \(E^{\text{miss}}_T \) distribution is performed using the multijet and non-multijet templates to determine the normalization of the multijet component. The modeling of the multijet background was tested in a control region defined by the range of \(10 < E^{\text{miss}}_T < 30 \text{ GeV} \). The modeling of the kinematic variable distributions, and in particular of the VLQ candidate mass, was found to agree with data within statistics.

In the case of the NC selection, the multijet background is estimated from data-driven studies to be negligible. In the electron channel the selection for electron candidates is changed to require the medium criteria, excluding tight electrons, to obtain a fake di-electron template shape in \(m_\ell\ell \), which is then scaled to make the total background expectation match the data with the same selection. In the muon channel the isolation requirement is inverted, and the \(m_{\mu\mu} \) template scaled to the data in the same way.

With the above selections, the observed event yields and corresponding predictions are given in Tables \[^{1}\] and \[^{2}\]. From these
yields, no significant excess is observed in the data that can be accounted for by a VLQ signal. Figure 2 shows the invariant mass distributions of the reconstructed VLQ candidate in the signal regions for both channels. These distributions are used in a binned likelihood fit to extract signal yields and production cross section upper limits. A slight shape discrepancy between data and MC is apparent in Figure 2. Before extracting an upper limit, a correction is applied to the MC background shape, as described in Section 6.

5. Systematic uncertainties

Systematic uncertainties on the simulation of the signal arise from uncertainties in PDFs and the factorization and renormalization scales. In order to estimate the uncertainty due to the parton distributions, the CTEQ66 [42] PDF set is used, for which the eigenvectors of the Hessian matrix are known. The difference in signal cross section due to the PDF uncertainty is found to range from 3.0% at a signal mass of 225 GeV to 4.4% at 1000 GeV. The uncertainty due to the factorization and renormalization scales is estimated by taking the difference between signal cross sections at the nominal value of the scales, and at values of one-half and twice the nominal. The uncertainty is found to vary between 4% and 12% for the same mass range. Uncertainties due to the simulation of initial and final state radiation are found to be about 1%. These uncertainties on the theoretical cross section are added in quadrature.

For signal and background events, the jet-energy-scale uncertainty is calculated by shifting the p_T of all jets up and down by factors that vary as a function of p_T and η. The factors range from 4.6% for jets with $p_T = 20$ GeV to 2.5% for jets with p_T above 60 GeV [39]. This procedure results in an uncertainty of about 20% on the background normalization, and about 5% on the signal efficiency. The jet-energy-resolution uncertainty is calculated by smearing the p_T of each jet depending on the jet p_T and η, typically by around 10%. This source of uncertainty is found to impact both the background normalization and signal efficiency by about 1%. The lepton-energy-scale uncertainty is evaluated and found to be much less than 1% for both signal and background. The effect of the previously mentioned EM calorimeter inefficiency is also found to be much less than 1%. Uncertainties also arise from the trigger, identification, and reconstruction efficiency corrections applied to the MC simulation. They affect the signal efficiency uncertainty by 1-2% depending on the mass. The rate uncertainty from MC statistics after event selection is 3-5%. Finally, the uncertainty on the luminosity is 3.7% [21]. None of the systematics studied have been found to significantly affect the shape of the VLQ candidate mass distribution.

6. Results

To determine signal yields, a binned maximum likelihood fit is performed using template histograms of the VLQ candidate mass distribution. The fit is performed separately for each signal mass. The electron and muon final states are fitted simultaneously. The overall signal and background normalizations

![Figure 2: Invariant mass distribution of VLQ candidates in both the CC (top) and NC (bottom) channels, summed over both the electron and muon final states. The dashed line shows the signal shape, normalized by 100 times the leading order theoretical cross section. The bottom part of each plot shows the ratio of the data to the background model. The last bin contains events with invariant mass candidates equal to or higher than 1200 GeV.](image-url)
Table 1: Expected and observed event counts in the kinematically allowed VLQ mass range after the final selection in the NC channel with an integrated luminosity of 1.04 fb$^{-1}$. Uncertainties are statistical and systematic, respectively. The signal predictions assume a coupling $\kappa_{UD} = 1$.

<table>
<thead>
<tr>
<th>Process</th>
<th>Electron channel</th>
<th>Muon channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+jets</td>
<td>14500 ± 100 ± 4400</td>
<td>16600 ± 100 ± 5000</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>2360 ± 50 ± 270</td>
<td>2530 ± 50 ± 290</td>
</tr>
<tr>
<td>Single Top</td>
<td>700 ± 30 ± 120</td>
<td>740 ± 27 ± 120</td>
</tr>
<tr>
<td>Multijet</td>
<td>670 ± 30 ± 270</td>
<td>340 ± 20 ± 410</td>
</tr>
<tr>
<td>Z+jets</td>
<td>128 ± 11 ± 90</td>
<td>432 ± 21 ± 170</td>
</tr>
<tr>
<td>Diboson</td>
<td>174 ± 13 ± 53</td>
<td>198 ± 14 ± 62</td>
</tr>
<tr>
<td>Expected Total Background</td>
<td>18500 ± 100 ± 4400</td>
<td>20900 ± 100 ± 5100</td>
</tr>
<tr>
<td>Data</td>
<td>17302</td>
<td>20668</td>
</tr>
</tbody>
</table>

Table 2: Expected and observed event counts in the kinematically allowed VLQ mass range after the final selection in the NC channel with an integrated luminosity of 1.04 fb$^{-1}$. Uncertainties are statistical and systematic, respectively. The signal predictions assume a coupling $\kappa_{UD} = 1$.

<table>
<thead>
<tr>
<th>Process</th>
<th>Electron Channel</th>
<th>Muon Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z+jets</td>
<td>3250 ± 60 ± 430</td>
<td>5350 ± 70 ± 700</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>58 ± 8 ± 3</td>
<td>90 ± 9 ± 5</td>
</tr>
<tr>
<td>Diboson</td>
<td>38 ± 6 ± 4</td>
<td>58 ± 8 ± 4</td>
</tr>
<tr>
<td>Expected Total Background</td>
<td>3350 ± 60 ± 430</td>
<td>5500 ± 70 ± 700</td>
</tr>
<tr>
<td>Data</td>
<td>3105</td>
<td>5070</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>Electron Channel</th>
<th>Muon Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Signal, U(225 GeV)</td>
<td>192 ± 14 ± 9</td>
<td>339 ± 18 ± 19</td>
</tr>
<tr>
<td>Expected Signal, U(600 GeV)</td>
<td>15 ± 3.9 ± 0.6</td>
<td>23 ± 4.8 ± 0.7</td>
</tr>
<tr>
<td>Expected Signal, U(1000 GeV)</td>
<td>1.9 ± 1.4 ± 0.1</td>
<td>2.7 ± 1.6 ± 0.1</td>
</tr>
</tbody>
</table>

A heavy VLQ signal would appear as a peak on top of a smooth background in the VLQ candidate invariant mass distribution. It is therefore important to have a good estimate of the background shape in the region around a signal mass hypothesis. The fit procedure described above makes use of the full range of mass, but the normalization is dominated by the lower mass region where the number of events is higher. A small shape difference between Monte Carlo and data can therefore yield a systematic bias in the fit at high mass. For that reason a correction is applied to the background model for each signal mass. It is obtained from linear fits to the reconstructed invariant mass of the ratio of data/MC after the full event selection, excluding bins in the range [-200,+100] GeV around each signal mass tested. The asymmetric choice in the excluded mass is motivated by the fact that the expected signal has a low mass tail. The 1σ uncertainty in the slope is taken as a systematic shape uncertainty. It was verified that no significant difference to the fit results arose from choosing a narrower excluded mass window, or even no exclusion at all.

Since no significant excess of data over the background prediction is observed in either channel, limits as function of the VLQ mass are obtained based on the likelihood fits. Pseudo-experiments are generated by sampling the likelihood function to compute the expected limits, using a Gaussian prior for all nuisance parameters and including the shape uncertainty from the linear correction.

The 95\% C.L. exclusion limits on $\sigma(pp \rightarrow Qq) \times BR(Q \rightarrow Vq)$ as a function of the VLQ mass, based on the CL$_{S}$ method [4], are shown in Fig. 3. Taking the intersection of the observed (expected) cross section limits with the central value of the theoretical cross section, masses below 900 GeV (840 GeV) are excluded for the CC channel and 760 GeV (820 GeV) for the NC channel, assuming a coupling $\kappa_{UD}^2 = 1$ and a 100\% branching ratio for VLQs to decay to a vector boson and a jet. Within the $\pm 1\sigma$ theoretical uncertainties, the observed CC mass limit ranges from 870 – 920 GeV. The corresponding range for the NC channel is 730 – 770 GeV. Limits for each mass tested are given in Table 3. The fourth and fifth columns show an interpretation of the cross section limits in terms of limits on the couplings k_{UD}^2 and k_{uU}^2, in each case assuming only D production or only U production, respectively, and 100\% branching fraction to a vector boson and jet.

A stronger limit in the CC channel may be obtained by repeating the CC analysis, requiring a negatively charged lepton...
because the SM background from $W^-+\text{jets}$ is lower than for $W^+\text{jets}$. The upper limits on $\sigma(pp \rightarrow D^+q) \times BR(D^+ \rightarrow W^-u)$ are given in the sixth column of Table 3.

7. Conclusion

A search for single production of vector-like quarks coupling to light generations has been presented. No evidence is found for such quarks above the expected background in either the CC or NC channel. Upper limits on the production cross section times branching ratio $\sigma(pp \rightarrow D^+q) \times BR(D^+ \rightarrow W^-u)$ are determined by the median result of background-only pseudoexperiments, and is shown with its 1σ and 2σ uncertainties, respectively.

8. Acknowledgments

We thank A. Atre, M. Carena, T. Han, and J. Santiago for the MadGraph code used to produce the signal MC samples.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRF and CFI, Canada; CERN, CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSTM CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

<table>
<thead>
<tr>
<th>Mass [GeV]</th>
<th>CC $\sigma \times$ BR [pb]</th>
<th>NC $\sigma \times$ BR [pb]</th>
<th>$\tilde{\kappa}^2_{ud}$</th>
<th>$\tilde{\kappa}^2_{ud}$</th>
<th>CC$^{-}$ $\sigma \times$ BR [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>15</td>
<td>18</td>
<td>0.075</td>
<td>0.21</td>
<td>12</td>
</tr>
<tr>
<td>300</td>
<td>17</td>
<td>11</td>
<td>0.24</td>
<td>0.31</td>
<td>5.6</td>
</tr>
<tr>
<td>400</td>
<td>5.3</td>
<td>2.4</td>
<td>0.21</td>
<td>0.19</td>
<td>3.8</td>
</tr>
<tr>
<td>500</td>
<td>2.1</td>
<td>1.4</td>
<td>0.19</td>
<td>0.26</td>
<td>1.1</td>
</tr>
<tr>
<td>600</td>
<td>1.9</td>
<td>1.5</td>
<td>0.37</td>
<td>0.56</td>
<td>1.9</td>
</tr>
<tr>
<td>700</td>
<td>2.2</td>
<td>1.0</td>
<td>0.86</td>
<td>0.75</td>
<td>2.2</td>
</tr>
<tr>
<td>800</td>
<td>0.93</td>
<td>1.0</td>
<td>0.66</td>
<td>1.33</td>
<td>0.97</td>
</tr>
<tr>
<td>900</td>
<td>0.80</td>
<td>0.9</td>
<td>1.0</td>
<td>2.1</td>
<td>0.70</td>
</tr>
<tr>
<td>1000</td>
<td>0.91</td>
<td>1.1</td>
<td>1.9</td>
<td>4.0</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table 3: Observed upper limits at 95% confidence level on the cross section times branching ratio $\sigma(pp \rightarrow Qq) \times BR(Q \rightarrow Vq)$ as a function of mass and the corresponding upper limit on a model-independent heavy-to-light quark coupling. The final column shows the limit on the CC process after selecting negatively charged leptons.

The ATLAS Collaboration

Department of Physics, Humboldt University, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
(a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
INFN Sezione di Bologna; (e) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
Physikalisches Institut, University of Bonn, Bonn, Germany
Department of Physics, Boston University, Boston MA, United States of America
Department of Physics, Brandeis University, Waltham MA, United States of America
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFJS), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa ON, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
(a) Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavatì di Rende, Italy
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas TX, United States of America
Physics Department, University of Texas at Dallas, Richardson TX, United States of America
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
Department of Physics, Duke University, Durham NC, United States of America
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
Section de Physique, Université de Genève, Geneva, Switzerland
(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
(a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
Department of Physics, Hampton University, Hampton VA, United States of America
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington IN, United States of America
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Department of Physics, Lancaster University, Lancaster, United Kingdom
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
Faculty of Science, Hiroshima University, Hiroshima, Japan
Also at Laboratorio de Instrumentaçao e Física Experimental de Partículas - LIP, Lisboa, Portugal
Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Novosibirsk State University, Novosibirsk, Russia
Also at Fermilab, Batavia IL, United States of America
Also at Department of Physics, University of Coimbra, Coimbra, Portugal
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Department of Physics, Middle East Technical University, Ankara, Turkey
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Department of Physics and Astronomy, University College London, London, United Kingdom
Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
Also at Department of Physics, University of Cape Town, Cape Town, South Africa
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Manhattan College, New York NY, United States of America
Also at School of Physics, Shandong University, Shandong, China
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Fisica, Universidad de Minho, Braga, Portugal
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at California Institute of Technology, Pasadena CA, United States of America
Also at Institute of Physics, Jagiellonian University, Krakow, Poland
Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
* Deceased