Search for Contact Interactions in Dilepton Events from pp Collisions at $\sqrt{s} = 7$ TeV with the ATLAS Detector

The ATLAS Collaboration

This Letter presents a search for contact interactions in the dielectron and dimuon channels using data from proton-proton collisions produced by the LHC at $\sqrt{s} = 7$ TeV and recorded by the ATLAS detector. The data sample, collected in 2011, corresponds to an integrated luminosity of 1.08 and 1.21 fb$^{-1}$ in the e^+e^- and $\mu^+\mu^-$ channels, respectively. No significant deviations from the standard model are observed. Using a Bayesian approach with a prior flat in $1/\Lambda^2$, the following 95% CL lower limits are placed on the energy scale of $\ell\ell qq$ contact interactions: $\Lambda^- > 10.1$ TeV ($\Lambda^+ > 9.4$ TeV) in the electron channel and $\Lambda^- > 8.0$ TeV ($\Lambda^+ > 7.0$ TeV) in the muon channel for constructive (destructive) interference in the left-left isoscalar contact interaction model. Limits are also provided for a prior flat in $1/\Lambda^4$.

INTRODUCTION

A wide range of new physics phenomena can produce modifications to the dilepton mass spectra predicted by the standard model (SM) such as quark/lepton compositeness, extra dimensions, and new gauge bosons. The predicted form of these deviations is often either a resonance or an excess in the number of events in the spectra at high mass. This Letter reports on a search for such an excess in dilepton events produced in proton-proton collisions at the LHC [1]. An interpretation of these data in the context of contact interactions (CI) is presented, including the first limits with the ATLAS detector in the dielectron channel and an update of the search performed using 2010 data in the dimuon channel [2]. A separate paper describes the search for new heavy resonances in the dilepton mass spectra performed using the same ATLAS dataset [3].

If quarks and leptons are composite, with at least one common constituent, the interaction of these constituents would likely be manifested through an effective four-fermion contact interaction at energies well below the compositeness scale. Such a contact interaction could also describe a new interaction with a messenger too heavy for direct observation at the LHC, in analogy with Fermi's nuclear β decay theory [4].

The Lagrangian for a general contact interaction has the form [5]

$$L = \frac{g^2}{4\pi} \left[\eta_{LL} \bar{\psi}_L \gamma_\mu \psi_L \bar{\psi}_L \gamma^\mu \psi_L + \eta_{RR} \bar{\psi}_R \gamma_\mu \psi_R \bar{\psi}_R \gamma^\mu \psi_R + 2\eta_{LR} \bar{\psi}_L \gamma_\mu \psi_R \bar{\psi}_R \gamma^\mu \psi_R \right], \quad (1)$$

where g is a coupling constant chosen to obey $g^2/4\pi = 1$, Λ is the contact interaction scale, which in the context of compositeness models is the energy scale below which fermion constituents are bound, and $\psi_{L,R}$ are left-handed and right-handed fermion fields, respectively. The parameters η_{ij}, where i and j are L or R, define the chiral structure (left or right) of the new interaction. Specific models are constructed by setting different combinations of these parameters to assume values of -1, 0 or $+1$. The addition of this contact interaction term to the SM Lagrangian alters the Drell-Yan (DY) production cross section ($q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+\ell^-$). The largest deviations, either constructive or destructive, are expected at high dilepton invariant mass and are determined by the scale Λ and the sign of the parameter η_{ij}. This analysis interprets the data in the context of the left-left isoscalar model (LLIM), which is commonly used as a benchmark for contact interaction searches [6]. The LLIM is defined by setting $\eta_{LL} = \pm 1$ and $\eta_{RR} = \eta_{LR} = 0$.

With the introduction of a contact interaction, the differential cross section for the process $q\bar{q} \rightarrow \ell^+\ell^-$ can be written

$$\frac{d\sigma}{dm_{\ell\ell}} = \frac{d\sigma_{DY}}{dm_{\ell\ell}} - \eta_{LL} \frac{F_I(m_{\ell\ell})}{\Lambda^2} + \frac{F_C(m_{\ell\ell})}{\Lambda^4}, \quad (2)$$

where $m_{\ell\ell}$ is the final-state dilepton mass. The expression above includes a SM DY term, as well as DY-CI interference (F_I) and pure contact interaction (F_C) terms (see Ref. [7] for the full form of this expression). At the largest Λ values to which this analysis is sensitive, both interference and pure contact interaction terms play a significant role. For example, at dilepton masses greater than 300 GeV and $\Lambda = 9$ TeV, the magnitude of the interference term is about 1.5 times that of the pure contact interaction term.

The present analysis focuses on identifying a broad deviation from the SM dilepton mass spectra, which are expected to be dominated by the DY process. Current experimental bounds on Λ (see below) indicate any deviation from a new interaction would appear at masses well above the Z boson peak. Consequently, the search region is restricted to dilepton masses above 150 GeV. The analysis exploits the high pp collision energy of the LHC and the capabilities of the ATLAS detector to identify and reconstruct electrons and muons at high momentum.

Previous searches for contact interactions have been carried out in neutrino scattering [8], as well as at
electron-positron e^-e^-, electron-proton e^+p, and hadron colliders \cite{14,15,16,24}. In the case of $eeqq$ contact interactions, the best limits in the LLIM for all quark flavors come from e^+e^- experiments with $\Lambda^- > 7.2$ TeV and $\Lambda^+ > 12.9$ TeV at 95% confidence level (CL) for $\eta_{LL} = -1$ and $+1$, respectively. These limits assume that contact interactions of electrons with all quark flavors are of the same strength. Best limits set in the specific case of first generation quarks are $\Lambda^- > 9.1$ TeV and $\Lambda^+ > 8.6$ TeV at 95% CL. In the case of $\mu^\pm qq$ contact interactions, the best limits are $\Lambda^- > 4.9$ TeV and $\Lambda^+ > 4.5$ TeV from the ATLAS analysis of the 2010 data \cite{2}.

ATLAS DETECTOR AND DATA SAMPLE

ATLAS is a multipurpose particle detector \cite{25}. It consists of an inner tracking detector surrounded by a 2 T superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer with a toroidal magnetic field. Charged particle tracks are reconstructed using the inner detector, which comprises a silicon pixel detector, a silicon-strip tracker, and a transition radiation tracker, covering the pseudorapidity range $|\eta| < 2.5$ \cite{26}. A hermetic calorimeter, which covers $|\eta| < 4.9$, surrounds the superconducting solenoid. The liquid-argon electromagnetic calorimeter, which plays an important role in electron identification and measurement, is finely segmented, with readout granularity (η, ϕ) varying by layer and cells as small as 0.025×0.025 extending to $|\eta| < 2.5$, to provide excellent energy and position resolution. The electron energy resolution is dominated at high energy by a constant term equal to 1.2% in the barrel ($|\eta| < 1.37$) and 1.8% in the endcaps ($1.52 < |\eta| < 2.47$). Hadron calorimetry is provided by an iron-scintillator tile calorimeter in the central rapidity range $|\eta| < 1.7$ and a liquid-argon calorimeter in the rapidity range $1.5 < |\eta| < 4.9$. Another key detector component for this analysis is the muon spectrometer, which is designed to identify muons and measure their momenta with high accuracy. The currently achieved resolution for momenta transverse to the beam line (p_T) of 1 TeV ranges from 15% (central) to 44% (for $|\eta| > 2$). The muon system consists three toroidal magnet systems, a trigger system consisting of resistive plate chambers in the barrel and thin-gap chambers in the endcaps, providing triggering capability up to $|\eta| = 2.4$, and a set of precision monitored drift tubes and cathode strip chambers in the region $|\eta| < 2.7$.

The data sample for this analysis was collected during LHC operation in the first half of 2011 and corresponds to a total integrated luminosity of 1.08 and 1.21 fb$^{-1}$ in the e^+e^- and $\mu^+\mu^-$ channels, respectively. It was collected with stable beam conditions and an operational inner detector. For the electron (muon) channel, the calorimeter (muon spectrometer) was also required to be operational. Events were selected by requiring that they pass the single electron (muon) trigger with a transverse momentum p_T threshold of 20 (22) GeV. This analysis follows the same event selection as the search for new heavy resonances. A summary is provided below, a more complete description can be found in Ref. \cite{3}.

SIGNAL AND BACKGROUND MODELING

This analysis looks for deviations from the expected SM dilepton spectra. The largest SM contribution comes from DY followed by semileptonic decay of $t\bar{t}$ pairs, electroweak diboson production (WW, WZ, and ZZ), and production of jets in association with a W boson (W+jets). In addition, multi-jet production (QCD) is a significant background in the electron channel. With the exception of QCD, Monte Carlo (MC) simulation was used to model these backgrounds.

DY events were generated with PYTHIA 6.421 \cite{27} and MRST2007 LO* parton distribution functions (PDFs) \cite{28}. Signal DY+CI samples in the LLIM were generated with the same version of PYTHIA for the full dilepton differential cross section as shown in Eq. (2). This ensured that the interference term F_I was properly included. All quark flavors contributed to the contact interaction in these signal samples. Diboson processes were produced with HERWIG 6.510 \cite{29} using MRST2007 LO* PDFs. The W+jets background was generated with ALPGEN \cite{30} and CTEQ6L1 \cite{31} PDFs, and the $t\bar{t}$ background with MC@NLO 3.41 \cite{32} and CTEQ6.6 \cite{33} PDFs. For the latter two, JIMMY 4.31 \cite{34} was used to describe multiple parton interactions and HERWIG to describe the remaining underlying event and parton showers. PHOTOS \cite{35} was used to handle the final-state photon radiation for all MC samples. Furthermore, higher order QCD corrections were implemented via a mass-dependent K-factor defined as the ratio between the next-to-next-to-leading order (NNLO) Z/γ^* cross section, calculated using PHOZPR \cite{36} and MSTW2008 PDFs \cite{37}, and the LO cross section. This QCD K-factor was applied to both DY and DY+CI samples. Likewise, DY and DY+CI samples are corrected with a mass-dependent K-factor accounting for higher-order electroweak corrections arising from virtual heavy gauge boson loops that are calculated using HORACE \cite{38}. Finally, the generated samples were processed through a full simulation of the ATLAS detector based on the GEANT 4 package \cite{39}.

For both channels, the QCD multi-jet background is evaluated from data due to poor modeling and low MC statistics. In the electron channel, a reversed electron identification technique is used to select a sample of events in which both electrons fail a subset of the electron identification criteria (see further discussion below). This sample is then used to determine the shape
of the QCD background as a function of dielectron invariant mass. This template shape and the sum of the DY, dibosons, $t\bar{t}$, and $W^{+}+jets$ backgrounds normalized by their cross sections (including higher order corrections) are fitted to the observed dielectron mass distribution in the range between 70 and 200 GeV to determine the normalization of the QCD contribution. The above QCD background estimate is cross-checked with two other methods described in Ref. 3 in order to determine its systematic uncertainty. In particular, these cross-checks set bounds on the potential bias in the QCD mass spectrum introduced by the reversed identification technique. In the muon channel, the QCD background is much smaller and is also evaluated from data. A reverse isolation method is utilized: a QCD sample is selected from data by requiring two non-isolated muons with $0.1 < \Sigma p_T(R < 0.3)/p_T(\mu) < 1.0$, where $\Sigma p_T(R < 0.3)$ is the sum of the p_T of the tracks in a cone of $R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$ around the direction of the muon. The normalization for this sample is obtained from the ratio of isolated to non-isolated dimuon events in QCD $c\bar{c}$ and $b\bar{b}$ MC, where the isolation requirement is $\Sigma p_T(R < 0.3)/p_T(\mu) < 0.05$. Muons from light hadron decays are not a significant source of background at the high momenta relevant to this analysis.

EVENT SELECTION

Events passing the trigger selection described above are required to have a pair of either electrons or muons with p_T greater than 25 GeV to ensure maximal trigger efficiency. To reject cosmic ray events and beam halo background, events are required to have a reconstructed vertex with at least three charged particle tracks with $p_T > 0.4$ GeV. If several such vertices are found, the vertex with the largest Σp_T^2 is selected as the primary vertex of the event, where the sum is over all charged particles associated with the given vertex. Electron candidates are confined in $|\eta| < 2.47$, with the detector crack region $1.37 \leq |\eta| \leq 1.52$ excluded because of degraded energy resolution. Muon candidates are required to be within the inner detector acceptance.

Electron candidates are formed from clusters of cells reconstructed in the electromagnetic calorimeter. Identification criteria on the transverse shower shape, the longitudinal leakage into the hadronic calorimeter, and the association to an inner detector track are applied to the cluster to satisfy the medium electron definition. The electron energy is obtained from the calorimeter measurements and its direction from the associated inner detector track. A hit in the first layer of the pixel detector is required (if an active pixel layer is traversed) to suppress background from photon conversions. Further QCD jet background suppression is achieved by demanding the highest p_T electron in the event to be isolated. To that effect, the sum of the calorimeter transverse momenta around the electron direction $\Sigma p_T(R < 0.2)$ must be less than 7 GeV. The core of the electron energy deposition is excluded and the sum is corrected for transverse shower leakage and pile-up from additional pp collisions. In addition, the two electron candidates are not required to have opposite charge because of possible charge misidentification either due to bremsstrahlung or to the limited momentum resolution of the inner detector at very high p_T. If the event contains more than two selected electrons, the two electrons with the highest p_T are chosen. For these selection criteria, the overall event acceptance for signal events has a small dependence on the dielectron mass above 500 GeV and a value of approximately 65% at 1 TeV.

Muon candidates are required to be of opposite charge and are reconstructed independently in both the inner detector and the muon spectrometer. The momentum is taken from a combined fit to the measurements from both subsystems. To obtain optimal momentum resolution and accurate modeling by the simulation, the muon candidates are required to satisfy the following requirements in the muon spectrometer: have at least three hits in each of the inner, middle, and outer detectors, and at least one hit in the non-bending xy plane. To suppress background from cosmic rays, requirements are imposed on the muon impact parameter and primary vertex (PV): transverse impact parameter $|d_0| < 0.2$ mm, z coordinate with respect to the PV $|z_0 - z_{PV}| < 1$ mm, and z position of the PV $|z_{PV}| < 200$ mm. Muons are also required to be isolated to reduce background from jets: $\Sigma p_T(R < 0.3)/p_T(\mu) < 0.05$, as explained in the previous section. If more than one opposite-sign muon pair is found in an event, the pair with the largest $p_T(\mu^+) + p_T(\mu^-)$ is chosen. The overall event acceptance for signal events has only a weak dependence on the dimuon mass with a value of approximately 40% at 1 TeV. Stringent requirements on the presence of hits in all three layers of the muon spectrometer and the limited three-layer geometrical coverage are the primary reason for the lower acceptance relative to the electron channel.

Extensive comparisons between data and MC simulation were performed at the level of single-lepton distributions to confirm that the simulation reproduces the selected data well, especially at high momentum.

Figure II displays the dielectron and dimuon mass spectra for all selected events with invariant mass greater than 70 GeV. The expected event yields for the different processes are obtained by first normalizing each MC process by its cross section (including higher order corrections) and then normalizing the total MC event yield plus the data-derived QCD background to the data in the Z peak region (dilepton mass between 70 and 110 GeV). Good agreement is observed between the data and the SM prediction over the whole dilepton mass range. A quantitative comparison is provided in Tables II and III.
slight excess of events observed at high dimuon mass is consistent with a statistical fluctuation. The most significant deviation in the number of dimuon events occurs for events with mass greater than 800 GeV. In this region, the Poisson probability for observing 5 or more events where 2.1 are expected is 6.2%. The muon tracks in the five data events were inspected in detail and no problem was found.

SYSTEMATIC UNCERTAINTIES

Since the MC event yields are normalized to the number of events observed in the Z peak region, only mass-dependent systematic uncertainties need to be considered, except for a 5% overall uncertainty in the knowledge of the Z/γ* cross section in the normalization region. This overall uncertainty is required since the cross section change due to the new physics is defined with respect to the SM cross section. The dominant uncertainties are of theoretical origin but experimental sources are also considered.

Theoretical uncertainties in the predicted event yields arise from the limited knowledge of PDFs, αS, QCD and electroweak K-factors, and Z/γ* cross section. The finite available MC statistics are also taken into account. The uncertainty due to the PDF and αS is estimated using the MSTW2008 PDF eigenvector set and additional PDFs corresponding to variations in αS. The resulting effect is about 4% at the Z pole growing with increasing mass to 10% at 1.5 TeV. Uncertainties due to QCD and electroweak K-factors are estimated to grow from 0.3% and 0.4% at the Z pole to 3% and 4.5% at 1.5 TeV, respectively, for both electron and muon channels. Estimates for the QCD K-factor are obtained by varying the renormalization and factorization scales independently by factors of two, then adding the impact of those variations linearly. The uncertainty in the electroweak K-factor is evaluated from the effect of neglecting real boson emission, varying the electroweak scheme definitions as implemented in PYTHIA and HORACE, as well as of the effect of higher order electroweak and O(ααS) corrections. For the electron channel, the QCD background estimate is subject to an uncertainty derived from a comparison with different background estimate methods (see discussion above). For the muon channel, the QCD background uncertainty is negligible.

Experimental uncertainties originate from the energy/momentum resolution, as well as the trigger, reconstruction and identification efficiencies. In the electron channel, the uncertainty in the constant term, which dominates the energy resolution at high energy, has a negligible impact on the analysis. Knowledge of the energy scale also has a negligible effect. The electron reconstruction and identification uncertainty results in a 1.5% effect, which is estimated by studying the impact of the isolation requirement on the dielectron mass distribution. In the muon channel, the momentum resolution is dominated by the quality of the muon spectrometer alignment. The uncertainty in the alignment is evaluated directly from dedicated toroid field-off runs and redundant momentum measurements in overlapping small and large chambers. These experimental uncertainties are found to have minimal impact on the dimuon mass distribution. Finally, a systematic error growing from 0.3% at the Z pole to 4.5% at 1.5 TeV is assigned to the muon reconstruction efficiency to account conservatively for its small pT dependence due to occasional large energy loss from bremsstrahlung.

STATISTICAL ANALYSIS

The data analysis proceeds with a Bayesian method to compare the observed event yields with the expected
TABLE I. Expected and observed numbers of events in the electron channel. The total expected yield is normalized to the data in the Z peak control region between 70 and 110 GeV. The errors quoted originate from both systematic uncertainties and limited MC statistics, except the error on the total expected yield in the normalization region which is given by the square root of the number of observed events.

<table>
<thead>
<tr>
<th>m_{ee} [GeV]</th>
<th>70-110</th>
<th>110-130</th>
<th>130-150</th>
<th>150-170</th>
<th>170-200</th>
<th>200-240</th>
<th>240-300</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>258482 ± 410 3185 ± 110 1183 ± 46 608 ± 28 473 ± 24 312 ± 18 196 ± 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>218 ± 36 87 ± 7 64 ± 5 51 ± 2 51 ± 2 37 ± 2 30 ± 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibosons</td>
<td>368 ± 19 31 ± 2 24 ± 2 15 ± 1 16 ± 1 14 ± 1 8 ± 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+jets</td>
<td>150 ± 100 57 ± 11 40 ± 9 27 ± 6 26 ± 6 20 ± 5 14 ± 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCD</td>
<td>332 ± 60 80 ± 42 50 ± 20 32 ± 7 29 ± 7 19 ± 15 12 ± 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>259550 ± 510 3440 ± 120 1361 ± 50 733 ± 30 595 ± 25 401 ± 24 260 ± 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>259550</td>
<td>3419 1362</td>
<td>758</td>
<td>578</td>
<td>405</td>
<td>256</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m_{ee} [GeV]</th>
<th>300-400</th>
<th>400-550</th>
<th>550-800</th>
<th>800-1200</th>
<th>1200-1800</th>
<th>1800-3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>105.0 ± 5.0 41.0 ± 2.2 12.8 ± 0.8 2.5 ± 0.2 0.29 ± 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>14.9 ± 0.8 4.5 ± 0.2 1.0 ± 0.1 0.10 ± 0.02 < 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibosons</td>
<td>7.5 ± 1.1 2.1 ± 0.4 1.0 ± 0.3 0.3 ± 0.1 < 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+jets</td>
<td>9.0 ± 3.2 3.5 ± 1.6 1.0 ± 0.7 0.2 ± 0.3 < 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCD</td>
<td>5.5 ± 4.4 1.5 ± 1.2 0.3 ± 0.2 < 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>141.9 ± 8.0 52.6 ± 3.0 16.1 ± 1.1 3.0 ± 0.4 0.33 ± 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>147</td>
<td>48 17</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II. Expected and observed numbers of events in the dimuon channel. The total expected yield is normalized to the data in the Z peak control region between 70 and 110 GeV. The errors quoted originate from both systematic uncertainties and limited MC statistics, except the error on the total expected yield in the normalization region which is given by the square root of the number of observed events.

<table>
<thead>
<tr>
<th>$m_{\mu\mu}$ [GeV]</th>
<th>70-110</th>
<th>110-130</th>
<th>130-150</th>
<th>150-170</th>
<th>170-200</th>
<th>200-240</th>
<th>240-300</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>236405 ± 320 3133 ± 90 1076 ± 36 548 ± 22 417 ± 18 249 ± 13 153 ± 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>193 ± 21 70 ± 9 51 ± 7 34 ± 4 38 ± 4 30 ± 3 21 ± 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibosons</td>
<td>307 ± 16 25 ± 2 19 ± 2 13 ± 2 12 ± 1 10 ± 1 8 ± 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+jets</td>
<td>1 ± 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCD</td>
<td>1 ± 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>236908 ± 490 3229 ± 90 1147 ± 37 595 ± 22 467 ± 19 290 ± 13 182 ± 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>236908</td>
<td>3211 1132</td>
<td>621</td>
<td>443</td>
<td>279</td>
<td>195</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$m_{\mu\mu}$ [GeV]</th>
<th>300-400</th>
<th>400-550</th>
<th>550-800</th>
<th>800-1200</th>
<th>1200-1800</th>
<th>1800-3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>80.8 ± 3.9 31.0 ± 1.7 9.2 ± 0.6 1.8 ± 0.2 0.22 ± 0.04 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>11.7 ± 1.2 3.5 ± 0.3 0.7 ± 0.1 0.06 ± 0.02 < 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibosons</td>
<td>6.7 ± 1.1 1.0 ± 0.4 0.7 ± 0.3 < 0.05 < 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W+jets</td>
<td>< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCD</td>
<td>< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>99.3 ± 4.2 35.5 ± 1.8 10.6 ± 0.7 1.9 ± 0.2 0.22 ± 0.04 < 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>83</td>
<td>39 12</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The yield of observed events in each of the mass bins defined in Tables I and II is

\[\mu = n_{DY+CI}(\theta, \bar{\nu}) + n_{non-DY \ bkg}(\bar{\nu}) \]

where $n_{DY+CI}(\theta, \bar{\nu})$ is the number of events predicted by the PYTHIA $DY+CI$ MC for a particular choice of contact interaction model parameter θ, $n_{non-DY \ bkg}(\bar{\nu})$ is the number of non-DY background events, and $\bar{\nu}$ represents the set of Gaussian nuisance parameters that account for systematic uncertainties in these numbers as discussed above. The parameter θ corresponds to a choice of energy scale Λ and interference parameter η_{LL}. The complete set of μ values used in this analysis is shown in Tables III and IV for the electron and muon channels, respectively. For each mass bin, a second order polynomial is used to model the dependence of μ on $1/\Lambda^2$.

The likelihood of observing a set of n events in N invariant mass bins is given by a product of Poisson probabilities for each mass bin k:

\[L(\bar{n} \mid \theta, \bar{\nu}) = \prod_{k=1}^{N} \frac{\mu_k^{n_k} e^{-\mu_k}}{n_k!} \]
TABLE III. Expected numbers of events in the signal region of the analysis for various contact interaction scales with constructive (Λ^-) and destructive (Λ^+) interference in the electron channel. The errors quoted originate from both systematic uncertainties and limited MC statistics.

<table>
<thead>
<tr>
<th>$m_{\text{c.m.}}$ [GeV]</th>
<th>150-170</th>
<th>170-200</th>
<th>200-240</th>
<th>240-300</th>
<th>300-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda^- = 3$ TeV</td>
<td>785 ± 29</td>
<td>649 ± 26</td>
<td>467 ± 22</td>
<td>383 ± 19</td>
<td>343 ± 12</td>
</tr>
<tr>
<td>$\Lambda^- = 4$ TeV</td>
<td>781 ± 28</td>
<td>647 ± 26</td>
<td>437 ± 21</td>
<td>326 ± 17</td>
<td>223 ± 7</td>
</tr>
<tr>
<td>$\Lambda^- = 5$ TeV</td>
<td>734 ± 27</td>
<td>612 ± 24</td>
<td>405 ± 19</td>
<td>298 ± 16</td>
<td>181 ± 6</td>
</tr>
<tr>
<td>$\Lambda^- = 7$ TeV</td>
<td>691 ± 26</td>
<td>638 ± 25</td>
<td>406 ± 19</td>
<td>259 ± 15</td>
<td>163 ± 5</td>
</tr>
<tr>
<td>$\Lambda^- = 12$ TeV</td>
<td>721 ± 26</td>
<td>604 ± 24</td>
<td>336 ± 17</td>
<td>234 ± 14</td>
<td>149 ± 5</td>
</tr>
<tr>
<td>$\Lambda^+ = 3$ TeV</td>
<td>770 ± 28</td>
<td>642 ± 24</td>
<td>424 ± 20</td>
<td>331 ± 17</td>
<td>269 ± 9</td>
</tr>
<tr>
<td>$\Lambda^+ = 4$ TeV</td>
<td>745 ± 27</td>
<td>591 ± 23</td>
<td>385 ± 19</td>
<td>277 ± 16</td>
<td>166 ± 5</td>
</tr>
<tr>
<td>$\Lambda^+ = 5$ TeV</td>
<td>702 ± 25</td>
<td>607 ± 23</td>
<td>350 ± 17</td>
<td>258 ± 15</td>
<td>151 ± 5</td>
</tr>
<tr>
<td>$\Lambda^+ = 7$ TeV</td>
<td>672 ± 25</td>
<td>600 ± 23</td>
<td>399 ± 19</td>
<td>251 ± 14</td>
<td>142 ± 5</td>
</tr>
<tr>
<td>$\Lambda^+ = 12$ TeV</td>
<td>749 ± 27</td>
<td>593 ± 23</td>
<td>403 ± 19</td>
<td>274 ± 15</td>
<td>137.9 ± 4.4</td>
</tr>
</tbody>
</table>

According to Bayes‘ theorem, the posterior probability for the parameter θ given \bar{n} observed events is

$$P(\theta | \bar{n}) = \frac{1}{Z} L_M(\bar{n} | \theta)P(\theta)$$

where Z is a normalization constant and the marginalized likelihood L_M corresponds to the likelihood after all nuisance parameters have been integrated out. This integration is performed assuming that the nuisance parameters are correlated across all mass bins and that they affect both signal and background expectations, except for the electroweak K-factor that only affects the DY and DY+CI components. The prior probability $P(\theta)$ is chosen to be flat in $1/\Lambda^2$, motivated by the form of Eq. 2. The 95% CL limit is then obtained by finding the value Λ_{lim} satisfying $\int_0^{\Lambda_{\text{lim}}/2} P(\theta | \bar{n}) d\theta = 0.95$, where $\theta = 1/\Lambda^2$. The above calculations have been performed with the Bayesian Analysis Toolkit (BAT) 42.

RESULTS

To test the consistency between the data and the standard model, a likelihood ratio test was performed by producing a set of 1000 SM-like pseudoexperiments and comparing the likelihood ratio between the signal+background and pure background hypotheses obtained in the data to the results of the pseudoexperiments. The signal+background likelihood is evaluated at the Λ value that maximizes it. The derived p-value, corresponding to the probability of observing a fluctuation in the pseudoeperiments that is at least as signal-like as that seen in the data (i.e. with a maximum likelihood ratio greater or equal to that obtained in the data), is estimated to be 39% (79%) in the electron channel and 21% (5%) in the muon channel for constructive (destructive) interference. These values indicate that there is no significant evidence for contact interactions in the analyzed data and thus limits are set on the contact interaction scale Λ.

Using the Bayesian method described above, the expected 95% CL lower limit values on the energy scale Λ are found to be 9.6 ± 1.0 TeV for constructive interference ($\eta_{\text{LL}} = -1$) and 9.3 ± 1.0 TeV for destructive interference ($\eta_{\text{LL}} = +1$) in the electron channel. The corresponding expected limits in the muon channel are 8.9 ± 0.9 TeV and 8.6 ± 0.9 TeV. The quoted uncertainties correspond to the 68% range of limits surrounding the median value of all limits obtained with a set of 1000 pseudoeperiments. Stronger limits are expected in the electron channel than in the muon channel due to the significantly larger acceptance for the dielectron selection.

The observed limits (at 95% CL) are $\Lambda^- > 10.1$ TeV ($\Lambda^+ > 9.4$ TeV) in the electron channel and $\Lambda^- > 8.0$ TeV ($\Lambda^+ > 7.0$ TeV) in the muon channel for constructive (destructive) interference. These limits are summarized in Table [V].

If instead of choosing the prior to be flat in $1/\Lambda^2$, it is selected to be flat in $1/\Lambda^4$ to match the form of the
TABLE IV. Expected numbers of events in the signal region of the analysis for various contact interaction scales with constructive (Λ^-) and destructive (Λ^+) interference in the muon channel. The errors quoted originate from both systematic uncertainties and limited MC statistics.

<table>
<thead>
<tr>
<th>$m_{\mu\mu}$ [GeV]</th>
<th>150-170</th>
<th>170-200</th>
<th>200-240</th>
<th>240-300</th>
<th>300-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ^- = 3 TeV</td>
<td>638 ± 28</td>
<td>547 ± 26</td>
<td>371 ± 22</td>
<td>285 ± 19</td>
<td>263 ± 13</td>
</tr>
<tr>
<td>Λ^- = 4 TeV</td>
<td>618 ± 27</td>
<td>513 ± 24</td>
<td>287 ± 18</td>
<td>228 ± 15</td>
<td>163 ± 7</td>
</tr>
<tr>
<td>Λ^- = 5 TeV</td>
<td>572 ± 26</td>
<td>478 ± 23</td>
<td>357 ± 20</td>
<td>206 ± 14</td>
<td>131 ± 6</td>
</tr>
<tr>
<td>Λ^- = 7 TeV</td>
<td>571 ± 25</td>
<td>496 ± 23</td>
<td>294 ± 18</td>
<td>187 ± 14</td>
<td>113 ± 5</td>
</tr>
<tr>
<td>Λ^- = 12 TeV</td>
<td>606 ± 26</td>
<td>441 ± 22</td>
<td>252 ± 16</td>
<td>191 ± 14</td>
<td>100.0 ± 3.8</td>
</tr>
<tr>
<td>Λ^+ = 3 TeV</td>
<td>602 ± 26</td>
<td>417 ± 21</td>
<td>332 ± 19</td>
<td>205 ± 15</td>
<td>186 ± 10</td>
</tr>
<tr>
<td>Λ^+ = 4 TeV</td>
<td>575 ± 25</td>
<td>456 ± 22</td>
<td>286 ± 17</td>
<td>182 ± 13</td>
<td>112 ± 5</td>
</tr>
<tr>
<td>Λ^+ = 5 TeV</td>
<td>554 ± 25</td>
<td>483 ± 23</td>
<td>289 ± 17</td>
<td>167 ± 12</td>
<td>102.0 ± 4.0</td>
</tr>
<tr>
<td>Λ^+ = 7 TeV</td>
<td>557 ± 24</td>
<td>435 ± 21</td>
<td>292 ± 18</td>
<td>196 ± 14</td>
<td>102.0 ± 4.4</td>
</tr>
<tr>
<td>Λ^+ = 12 TeV</td>
<td>576 ± 25</td>
<td>421 ± 21</td>
<td>256 ± 16</td>
<td>186 ± 13</td>
<td>100.0 ± 3.9</td>
</tr>
</tbody>
</table>

The limits obtained without electroweak corrections can be computed reliably due to the unknown new physics represented by the contact interaction. However, significant deviations from the standard model. Using early 2011 run data amounting to 1.08 (1.21) fb$^{-1}$ of pp collisions in the electron (muon) channel collected with the ATLAS detector. The dilepton mass distributions do not display significant deviations from the standard model. Using a Bayesian approach with a 1/\Lambda^2 prior, as was done in most previous searches at hadron colliders, the following 95% CL limits are set on the energy scale of contact interactions: $\Lambda^- > 10.1$ TeV ($\Lambda^+ > 9.4$ TeV) in the electron channel, see Table V.

TABLE V. Expected and observed 95% CL lower limits on the contact interaction energy scale Λ for the electron and muon channels, as well as for the combination of those channels. Separate results are provided for the different choices of flat priors: 1/Λ^2 and 1/Λ^4.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Prior</th>
<th>Expected limit (TeV)</th>
<th>Observed limit (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^+e^-</td>
<td>1/Λ^2</td>
<td>9.6</td>
<td>9.3</td>
</tr>
<tr>
<td>e^+e^-</td>
<td>1/Λ^4</td>
<td>8.9</td>
<td>8.6</td>
</tr>
<tr>
<td>$\mu^+\mu^-$</td>
<td>1/Λ^2</td>
<td>8.9</td>
<td>8.6</td>
</tr>
<tr>
<td>$\mu^+\mu^-$</td>
<td>1/Λ^4</td>
<td>8.3</td>
<td>7.9</td>
</tr>
<tr>
<td>Comb.</td>
<td>1/Λ^2</td>
<td>10.4</td>
<td>10.1</td>
</tr>
<tr>
<td>Comb.</td>
<td>1/Λ^4</td>
<td>9.6</td>
<td>9.4</td>
</tr>
</tbody>
</table>

CONCLUSIONS

A search for contact interactions in e^+e^- and $\mu^+\mu^-$ events produced in proton-proton collisions at $\sqrt{s} = 7$ TeV has been performed. The analysis uses early 2011 run data amounting to 1.08 (1.21) fb$^{-1}$ of pp collisions in the electron (muon) channel collected with the ATLAS detector. The dilepton mass distributions do not display significant deviations from the standard model. Using a Bayesian approach with a 1/\Lambda^2 prior, as was done in most previous searches at hadron colliders, the following 95% CL limits are set on the energy scale of contact interactions: $\Lambda^- > 10.1$ TeV ($\Lambda^+ > 9.4$ TeV) in the electron channel, see Table V.
electron channel and $\Lambda^- > 8.0$ TeV ($\Lambda^+ > 7.0$ TeV) in the muon channel for constructive (destructive) interference in the left-left isoscalar compositeness model. Some-what weaker limits are obtained with a prior flat in $1/\Lambda^4$. These limits are the most stringent to date on $\mu q q$ contact interactions and exceed the best existing limits set by a single experiment on $eeq q$ contact interactions for light-quark flavors.

ACKNOWLEDGEMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CON-ICYT, Chile; CAS, MOST and NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and VSC, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Lever-hulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Tai-

[26] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (ρ, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
</table>
V.A. Schegelsky, 58c, 20
V. Tsulaia, C. Santoni, 124
T. Tic, M. Shiyakova, 121a
A. Tonoyan, S. Trincaz-Duvoid, 77
K. Tokunaga, E. Tassi, S. Tapprogge, 48
S. Tapprogge, K. Sliwa, V. Sipica, V. Simak, K. Stoerig, D.M. Strom,
K. Sliwa, 121b, S. Schaetzel, 58b, S. Schuh, A. Schöning, M. Schott,
D. Scheirich, V. Scharf, M. Schramm, A. Schröder, 80, S. Schaepe,
S. Schaefer, A.C. Schaffer, D. Schaile, R.D. Schamberger, A.G. Schamov,
V.A. Schegelsky, D. Schericke, M. Schermau, M.I. Scherzer, C. Schiavi,
S. Schuh, A. Schöning, M. Schott, D. Schouten, J. Schovancova,
M. Schmitz, A. Schönig, M. Schot, D. Schouwen, J. Schorner,
M. Schröer, S. Schülker, G. Schuler, J. Schultes, H.-C. Schultz-Coulon,
M. Schumacher, B.A. Schumian, Ph. Schumian, C. Schwanenberger,
R. Schwienhorst, R. Schwoerer, W.G. Scott, J. Searcy,
G. Sedov, E. Sedykh, A. Seiden, F. Seifert, J.M. Seixas, G. Sekhniaidze,
K.E. Selbach, D.M. Seliverstov, B. Selden, G. Sellers, J. Seman,
N. Semprini-Cesari, C. Serfon, L. Serin, R. Seuster, H. Severini,
M.E. Sevior, A. Sfylra, E. Shabalin, M. Shamilin, L.Y. Shan, J.T. Shank,
Q.T. Shao, M. Shapiro, P.B. Shatalov, L. Shaver, K. Shavik, D. Sherman,
P. Sherwood, A. Shibata, H. Shich, S. Shimizu, M. Shimójima, T. Shin,
M. Shiyakova, A. Shmelev, A. Shmeleva, G. Shostak, H. Shrestha,
M.A. Shupe, P. Sicho, A. Sidoti, F. Siegert, D. Sijak, O. Silberth,
J. Silva, Y. Silver, D. Silverstein, S.B. Silverstein, V. Simak,
O. Simon, L. Sime, A. Simon, M. Simmons, P. Sinervo, N.B. Sinev,
V. Sipica, G. Siragusa, A. Sircar, A.N. Sisakyan, O. Skovpen,
L.A. Skinnari, H.P. Skovpen, K. Skovpen, N. Skvorodnev,
K. Sliwa, J. Sloper, V. Smakhtin, S. Yu. Smirnov, L.N. Smirnova,
B.C. Smith, D. Smith, K.M. Smith, M. Smizańska, K. Smolek,
A.A. Snasearev, S.W. Snow, J. Snow, J. Snuverink,
S. Snyder, M. Soares, L. Sobie, J.A. Sodoma, A. Soffer, C.A. Solans,
M. Solar, J. Solé, E. Soldatov, U. Soldevila, E. Solfaroli Camillocci,
A.A. Solodkov, O.V. Solovyanov, N. Soui, V. Sopko, B. Sopko,
M. Soosebe, R. Soualah, M. Souahila, A. Soukharev, S. Spagnolo,
F. Spano, R. Spighi, A. Spigio, F. Spilia, R. Spiewok, M. Spousta,
T. Spreiter, B. Spurlock, R.D. St. Denis, T. Stahl, R. Stamm,
E. Stancheva, R.W. Stanley, C. Stanescu, S. Stapnes,
E.A. Starchenko, J. Stark, P. Staroba, P. Starovoitov, A. Stane,
G. Stavropoulos, G. Steele, P. Steinberg, P. Steiner,
G. Steidlmair, K. Stelbek, B. Stelzer, H.J. Stelzer,
O. Stelzer-Chilton, H. Stenzel, S. Stern, K. Stevenson, G.A. Stewart,
J.A. Stillings, M.C. Stockton, K. Stoering, G. Stolecia,
S. Stonjek, P. Strachota, J. Stradling, A. Straessner, J. Strandberg,
S. Strandberg, G. Strang, E. Strauss, M. Strauss, P. Strizenecc, B. Strömer,
D.M. Strom, J.A. Strong, R. Strowynski, J. Strube, B. Stugu,
P. Sturm, N.A. Styles, D.A. Soh, D. Su, H.S. Subramaniam, A. Succurro,
Y. Sugaya, T. Sugimoto, C. Suhr, K. Suita, M. Suk, V.V. Sulin,
T. Sumida, X. Sun, J.E. Sundermann, K. Suruliz, S. Sushkov,
G. Susinno, M. Sutton, Y. Suzuki, D. Sukz, V. Svatko,
Y. Suzuki, H. Sved, J. Svendson,
V. Tafraid, R. Tafirout, 158a, T. Taiblum, H. Takahashi,
H. Takai, R. Takashima, H. Takada, 66
T. Takeshita, Y. Takubo, M. Talby, A. Talysev, J.M. Tansett,
J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tanaka, A.J. Tanasijcev,
K. Tani, N. Tanouye, G.P. Tappon,
S. Tapprogge, D. Tardif, S. Tarem, F. Tarrade, G.F. Tartarelli,
E. Tassi, J. Taylor, J.E. Sundermann,
M. Teitler, M. Teixeira Dias Castanheira, P. Teixeira-Dias,
H. Ten Kate, P.K. Teng, S. Terada, K. Terashi, J. Tereon,
M. Testa, R.J. Teuscher, J. Thadome, J. Theraup,
T. Theveneaux-Pelzer, M. Thioye, J.P. Thomas, E.N. Thompson,
P.D. Thompson, P.D. Thompson, A.S. Thompson, E. Thomson,
M. Thomson, R.P. Thun, E. Tian, M.J. Tilletts, T. Tic,
V.O. Tikhomirov, Y.A. Tikhomov, 106f, S Timoshenko,
R. Tipton, F.J. Tique, M.J. Tique, M.J. Tique,
S. Tisserant, T. Toczek, T. Todorov, S. Todorova-Nova,
B. Toggerow, J. Too, K. Tokunaga, M. Tokunaga, K. Tokezchu,
M. Tomko, L. Tomkins, K. Toms, G. Tong, A. Tonoyan,
C. Toppel, N.D. Tornelli, I. Torciani, E. Torrence, H. Torres,
J. Tóth, F. Touchard, D.R. Tovey, T. Trefzger,
L. Tremblet, P. Tipton,
G. Tschudy, T.N. Trinh, M.F. Tripiana, W. Trischuk,
A. Trivedi, B. Trocme, C. Troncon, A. Trontier-McDonald,
M. Trzebinski, A. Trzucek, C. Tsarouchas, J.C-L. Tseng,
M. Tsiaikiris, P.V. Tsiareshka, D. Tsionou, G. Tsipolitis,
E.G. Tskhadadze, I.I. Tsukerman, V. Tsulaia, J.W. Tsung,
S. Tsvengay, D. Tsybychev, A. Tua, A. Tudorache,
A. Tudorache, V. Tudorache, 25a, V. Tudorache,
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute,
Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington IN, United States of America
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City IA, United States of America
63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
70 Physics Department, Lancaster University, Lancaster, United Kingdom
71 (a)INFN Sezione di Lecce; (b)Dipartimento di Fisica, Università del Salento, Lecce, Italy
72 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
73 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
74 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
75 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
76 Department of Physics and Astronomy, University College London, London, United Kingdom
77 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
78 Fysiska institutionen, Lunds universitet, Lund, Sweden
79 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
80 Institut für Physik, Universität Mainz, Mainz, Germany
81 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
82 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
83 Department of Physics, University of Massachusetts, Amherst MA, United States of America
84 Department of Physics, McGill University, Montreal QC, Canada
85 School of Physics, University of Melbourne, Victoria, Australia
86 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
87 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
88 (a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy
89 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
90 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
91 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
92 Group of Particle Physics, University of Montreal, Montreal QC, Canada
93 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
94 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
95 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
96 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
97 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
99 Nagasaki Institute of Applied Science, Nagasaki, Japan
100 Graduate School of Science, Nagoya University, Nagoya, Japan
101 (a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
102 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
103 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
104 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
106 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107 Department of Physics, New York University, New York NY, United States of America
108 Ohio State University, Columbus OH, United States of America
109 Faculty of Science, Okayama University, Okayama, Japan
110 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
111 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
112 Palacký University, RCPTM, Olomouc, Czech Republic
113 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
114 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
115 Graduate School of Science, Osaka University, Osaka, Japan
116 Department of Physics, University of Oslo, Oslo, Norway
117 Department of Physics, Oxford University, Oxford, United Kingdom
118 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
119 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
120 Petrusev Nuclear Physics Institute, Gatchina, Russia
121 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
123 (a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Departamento de Fisica Teorica y del Cosmos and CAPE, Universidad de Granada, Granada, Spain
124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
125 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
126 Czech Technical University in Prague, Praha, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina SK, Canada
130 Ritsumeikan University, Kusatsu, Shiga, Japan
131 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
132 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
133 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
134 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco
135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
137 Department of Physics, University of Washington, Seattle WA, United States of America
138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139 Department of Physics, Shinshu University, Nagano, Japan
140 Fachbereich Physik, Universität Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby BC, Canada
142 SLAC National Accelerator Laboratory, Stanford CA, United States of America
143 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144 (a)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
145 (a)Department of Physics, Stockholm University; (b)The Oskar Klein Centre, Stockholm, Sweden
146 Physics Department, Royal Institute of Technology, Stockholm, Sweden
147 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

Also at Section de Physique, Université de Genève, Geneva, Switzerland

Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

Also at California Institute of Technology, Pasadena CA, United States of America

Also at Institute of Physics, Jagiellonian University, Krakow, Poland

Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Also at Department of Physics, Oxford University, Oxford, United Kingdom

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

* Deceased