Measurement of the ZZ production cross section and limits on anomalous neutral triple gauge couplings in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

(The ATLAS Collaboration)
(Dated: November 25, 2011)

A measurement of the ZZ production cross section in proton-proton collisions at $\sqrt{s} = 7$ TeV using data recorded by the ATLAS experiment at the LHC is presented. In a data sample corresponding to an integrated luminosity of 1.02 fb$^{-1}$ collected in 2011, 12 events containing two Z boson candidates decaying to electrons and/or muons are observed. The expected background contribution is 0.3 ± 0.3(stat.) ±0.4(syst.) events. The cross section measured in a phase-space region with good detector acceptance and for dilepton masses within the range 66 GeV to 116 GeV is $\sigma^{\text{fid}}_{ZZ \rightarrow e^+e^-e^-e^-} = 19.4^{+6.3}_{-5.2}\text{(stat.)}^{+0.9}_{-0.7}\text{(syst.)} \pm 0.7\text{(lumi.)}$ fb. This result is then used to derive the total cross section for on-shell ZZ production, $\sigma^{\text{tot}}_{ZZ} = 8.5^{+2.7}_{-2.3}\text{(stat.)}^{+0.4}_{-0.3}\text{(syst.)} \pm 0.3$ (lumi.) pb, which is consistent with the Standard Model expectation of $6.5^{+0.2}_{-0.3}$ pb calculated at the next-to-leading order in QCD. Limits on anomalous neutral triple gauge boson couplings are derived.

PACS numbers: 14.70.Hp, 12.15.Ji, 12.60.Cn, 13.85.Qk

The production of pairs of Z bosons at the LHC is of great interest since it provides an excellent opportunity to test the predictions of the electroweak sector of the Standard Model at the TeV energy scale; moreover it is the irreducible background to the search for the Higgs boson in the $H \rightarrow ZZ$ decay channel. In the Standard Model, ZZ production proceeds at leading order (LO) via t-channel quark-antiquark interactions; the ZZZ and $ZZ\gamma$ neutral triple gauge boson couplings (nTGCs) are absent, hence there is no contribution from s-channel $q\bar{q}$ annihilation at tree level. At the one-loop level, fermion triangles generate nTGCs of $\mathcal{O}(10^{-4})$. Many models of physics beyond the Standard Model predict values of nTGCs at the level of 10^{-4} to 10^{-3}. The signature of non-zero nTGCs is an increase of the ZZ cross section at high ZZ invariant mass and high transverse momentum of the Z bosons. ZZ production has been studied in e^+e^- collisions at LEP and in $p\bar{p}$ collisions at the Tevatron. No deviation of the measured cross section from the Standard Model expectation has been observed, and limits on anomalous nTGCs have been set.

This letter presents the first measurement of ZZ production in proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV, and limits on the anomalous nTGCs. The cross section for on-shell ZZ production (i.e. in the zero-width approximation) is predicted at next-to-leading order (NLO) in QCD to be $6.5^{+0.3}_{-0.2}$ pb; this includes a~$\sim6\%$ contribution from gluon fusion. Candidate ZZ events are reconstructed in the $ZZ \rightarrow \ell^+\ell^-\ell^+\ell^-$ decay channel, where ℓ can be an electron or muon. Although this channel constitutes only $\sim0.5\%$ of the total ZZ cross section, its final state with four high transverse-momentum, isolated leptons has a very high expected signal to background ratio of ~30.

To reduce systematic uncertainties, the cross section is measured within a phase-space that corresponds closely to the experimental acceptance; this is termed the ‘fiducial’ cross section. The fiducial phase-space definition requires the invariant mass of both lepton pairs to be between 66 GeV and 116 GeV and all four leptons to be within the pseudorapidity $|\eta| < 2.5$ and have transverse momentum $p_T > 15$ GeV. The four-momenta of all photons present after the simulation of the parton shower which are within $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} < 0.1$ of a lepton are summed into the four momentum of that lepton. The total ZZ cross section in the on-shell approximation is obtained from the fiducial cross section using the known $Z \rightarrow \ell^+\ell^-$ branching ratio and a correction factor for the kinematic and geometrical acceptance.

Anomalous nTGCs for on-shell ZZ production can be parameterized by two CP-violating (f^i_V) and two CP-conserving (f^i_0) complex parameters ($V = Z, \gamma$) which are zero in the Standard Model. To ensure partial-wave unitarity, a form-factor parameterization is introduced to cause the couplings to vanish at high parton centre-of-mass energy \sqrt{s}: $f^V_0 = f^V_0/(1+s/\Lambda^2)^n$. Here, Λ is the energy scale at which physics beyond the Standard Model will be directly observable, f^V_0 are the low-energy approximations of the couplings, and n is the form-factor power. Following Ref. [3], $n = 3$ and $\Lambda = 2$ TeV are chosen, so that expected limits are within the values provided by unitarity at LHC energies. The results with energy cutoff $\Lambda = \infty$ are also presented as a comparison in the unitarity violation scheme.

The ATLAS detector [11] consists of inner tracking devices surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters and a muon spectrometer with a toroidal magnetic field. The inner detector, in combination with the 2 T field from the solenoid, provides precision tracking of charged particles for $|\eta| < 2.5$. It consists of a silicon pixel detector, a silicon strip detector and a straw tube tracker that also provides transition radiation measurements for electron identification. The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. It is composed of sampling calorimeters with either liquid argon (LAr) or scintillating tiles as the active media. In the region $|\eta| < 2.5$ the electromagnetic LAr...
calorimeter is finely segmented and plays an important role in electron identification. The muon spectrometer has separate trigger and high-precision tracking chambers which provide muon identification and measurement in $|\eta| < 2.7$.

A three-level trigger system selects events to be recorded for offline analysis. The events used in this analysis were selected with single-lepton triggers with nominal transverse momentum thresholds of 20 GeV for electrons and 18 GeV for muons. The efficiencies of the single-lepton triggers have been determined as a function of lepton p_T using large samples of $Z \rightarrow \ell^+\ell^-$ events. The trigger efficiency for events passing the offline selection described below is 99.9% with an uncertainty of 0.1%.

This measurement uses a data sample of proton-proton collisions at $\sqrt{s} = 7$ TeV recorded between February and June 2011. After data quality requirements, the total integrated luminosity used in the analysis is 1.02 fb$^{-1}$. The integrated luminosity uncertainty is 3.7% [12].

Events are required to contain a primary vertex formed from at least three associated tracks. The vertex with the largest sum of the p_T^2 computed from the associated tracks is selected as the primary vertex.

Signal events are characterized by four high-p_T, isolated electrons or muons, in three channels: $e^+e^-e^+e^-$, $\mu^+\mu^-\mu^+\mu^-$, and $\mu^+e^-\mu^+\mu^-$. Lepton candidates are required to be consistent with originating from the primary vertex. Muons are identified by matching tracks (or track segments) reconstructed in the muon spectrometer to tracks reconstructed in the inner detector [13]. Their momentum is calculated by combining the information from the two systems and correcting for the energy deposited in the calorimeters. Only muons with $p_T > 15$ GeV and $|\eta| < 2.5$ are considered. In order to reject muons from the decay of heavy quarks, isolated muons are selected by requiring the scalar sum of the transverse momenta (Σp_T) of other tracks with $p_T > 1$ GeV inside a cone of size $\Delta R = 0.2$ around the muon to be no more than 15% of the muon p_T. The overall reconstruction, identification and isolation efficiency, measured in data using a large sample of $Z \rightarrow \mu^+\mu^-$ events, varies as a function of p_T from 92% at 15 GeV to 95% at 45 GeV.

Electrons are reconstructed from a cluster in the electromagnetic calorimeter matched to a track in the inner detector [13]. Electron candidates are required to pass the 'medium' identification criteria described in Ref. [13], to have a transverse momentum (measured in the calorimeter) of at least 15 GeV and a pseudorapidity of $|\eta| < 2.47$. They must be isolated, using the same criterion as for muons, calculating the Σp_T around the electron track. Electron candidates within $\Delta R = 0.1$ of any selected muon are rejected, and if two electron candidates are within $\Delta R = 0.1$ of each other the one with the lower p_T is rejected. The overall reconstruction, identification and isolation efficiency varies as a function of p_T from 63% at 15 GeV to 81% at 45 GeV.

Selected events are required to have exactly four leptons, and to have passed a single-muon or single-electron trigger. To ensure high trigger efficiency, at least one of these leptons must have $p_T > 20$ GeV (25 GeV) for a muon (electron) and match to a muon (electron) reconstructed online by the trigger system within $\Delta R < 0.1$ (0.15).

Same-flavour, oppositely-charged lepton pairs are combined to form Z candidates. An event must contain two such pairs. In the $e^+e^-e^+e^-$ and $\mu^+\mu^-\mu^+\mu^-$ channels, ambiguities are resolved by choosing the pairing which results in the smaller value of the sum of the two $|m_{\ell^+\ell^-} - m_Z|$ values. Figure 1 shows the correlation between the invariant mass of the leading (higher p_T) and the subleading (lower p_T) lepton pair. The events cluster in the region where both masses are around m_Z. Events are required to contain two Z candidates with invariant masses satisfying 66 GeV $< m_{\ell^+\ell^-} < 116$ GeV.

FIG. 1. The mass of the leading lepton pair versus the mass of the subleading lepton pair. The events observed in the data are shown as solid circles and the ZZ signal prediction from simulation as boxes. The large dashed box indicates the signal region defined by the requirements on the lepton-pair masses.

The reconstruction efficiency for ZZ events is determined from a detailed Monte Carlo simulation. The LO event generator PYTHIA [13] with the MRST modified LO parton density function (PDF) set [15] is used to model $pp \rightarrow ZZ \rightarrow \ell^+\ell^-\ell^+\ell^-$ events, where ℓ includes electrons, muons and τ leptons. The PYTHIA simulation includes the interference terms between the Z and γ^* diagrams; the mass threshold for the Z/γ^* boson is set to 12 GeV. The detector response is simulated [16] with a program based on GEANT4 [17]. Additional inelastic pp events are included in the simulation, distributed so as...
to reproduce the number of collisions per bunch-crossing in the data. The simulation is also corrected with scale factors, and the lepton momentum resolution adjusted, to reproduce the lepton reconstruction and identification efficiencies measured in data.

The overall efficiencies of the reconstruction and selection criteria for events generated within the fiducial phase-space are (40±3)%, (79±2)% and (37±2)% for $e^+e^-e^+e^-$, $\mu^+\mu^-\mu^+\mu^-$ and $e^+e^-\mu^+\mu^-$ respectively. The dominant systematic uncertainties arise from electron identification (6.6% in the $e^+e^-e^+e^-$ final state, 3.1% in the $e^+e^-\mu^+\mu^-$ final state) and from the muon reconstruction efficiency (2.0% in $\mu^+\mu^-\mu^+\mu^-$ and 1.0% in $e^+e^-\mu^+\mu^-$).

Background to the ZZ signal originates from events with a Z (or W^\pm) boson decaying to leptons plus additional jets or photons ($W/Z + X$), from top-quark production and from other diboson final states. Such events may contain electrons or muons from the decay of heavy-flavoured hadrons, or muons from in-flight decay of pions and kaons; jets or photons may be misidentified as electrons. The majority of these background leptons are rejected by the isolation requirement.

To estimate the background contribution from four-lepton events in which one lepton originates from a jet, a sample of events containing three leptons passing all selection criteria plus one 'lepton-like jet' is identified; such events are denoted $\ell\ell\ell j$. For muons, the lepton-like jets are muon candidates that fail the isolation requirement. For electrons, the lepton-like jets are clusters in the electromagnetic calorimeter matched to inner detector tracks that fail either or both of the full electron selection and the isolation requirement. The events are otherwise required to pass the full event selection, treating the lepton-like jet as if it were a fully identified lepton. This event sample is dominated by $Z + X$ events. The background is then estimated by scaling this control sample by a measured factor f which is the ratio of the probability for a jet to satisfy the full lepton criteria to the probability to satisfy the lepton-like jet criteria. The background in which two selected leptons originate from jets is treated similarly, by identifying a data sample with two leptons and two lepton-like jets; such events are denoted $\ell\ell jj$. To avoid double counting in the background estimate, and to take into account the expected ZZ contribution in the control region, $N(\text{ZZ})$, the total number of background events $N(\text{BG})$ is calculated as:

$$N(\text{BG}) = N(\ell\ell\ell j) \times f - N(\ell\ell jj) \times f^2 - N(\text{ZZ}).$$

The factor f is measured in a sample of data selected with single-lepton triggers with criteria applied to suppress isolated leptons from W^\pm and Z bosons, and corrected for the remaining small contribution of true leptons using simulation. It is measured independently in η and p_T and the values combined assuming they are uncorrelated. A similar analysis is performed on Monte Carlo simulation of background processes; the larger of the statistical uncertainty on f determined from the data and the difference between data and simulation is taken as the systematic uncertainty in each p_T (or η) bin. This results in a systematic uncertainty which varies as a function of p_T from 57% (85%) at 15 GeV to 55% (77%) at 45 GeV for electrons (muons).

The numbers of observed and expected events after applying all selection criteria are shown in Table I. The expected number of signal events is determined from the Pythia simulation normalized to the NLO calculation using MCFM [9] with the MSTW2008 [18] NLO PDF set. The normalization factor, calculated within the phase-space of the fiducial cross section measurement, is 1.41. The expected numbers of signal events include contributions of 1.6% from $ZZ \rightarrow \ell^+\ell^-\ell^+\ell^-$ events generated outside the fiducial phase-space and 0.3% from events where one of the Z bosons decays to τ leptons. Twelve ZZ candidates are observed in data, with a background expectation of 0.3 ± 0.3(stat.) ±0.4(syst.), corresponding to a p-value of 10^{-7} equivalent to a one-sided Gaussian significance of 5σ. In the four-muon channel 8 events are observed where 3.3 \pm 0.4 signal plus background events are expected. The probability of the expected number fluctuating up to 8 or more is 3.2%.

The transverse momentum distribution and the invariant mass distribution of the combined four-lepton system for the selected candidates are shown in Fig. 2.

The ZZ fiducial cross section is determined using a maximum likelihood fitting method to combine the three four-lepton channels. The systematic uncertainties are included in the fitting procedure as nuisance parameters. The measured fiducial cross section is:

$$\sigma_{\text{fid}}^{\text{ZZ} \rightarrow \ell^+\ell^-\ell^+\ell^-} = 19.4^{+6.3}_{-5.2}\text{(stat.)}^{+0.9}_{-0.7}\text{(syst.)} \pm 0.7\text{(lumi.) fb},$$

where $\ell^+\ell^-\ell^+\ell^-$ refers to the sum of the $e^+e^-e^+e^-$, $e^+e^-\mu^+\mu^-$ and $\mu^+\mu^-\mu^+\mu^-$ final states. The total cross section is determined similarly, correcting for the known $Z \rightarrow \ell^+\ell^-$ branching ratios and the acceptance of the fiducial phase-space. This acceptance, calculated at NLO using MCFM version 6.0 with the MSTW2008 PDF set, is 0.507 ± 0.009, where the error arises primarily from PDF uncertainties with a 1% contribution from QED radiative corrections and off-shell Z/γ effects evaluated.

Table I. Summary of observed and expected events in the data, total background contributions and expected signal in the individual four-lepton and combined channels.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Observed</th>
<th>BG(data-driven)</th>
<th>Expected ZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^-e^+e^-$</td>
<td>2</td>
<td>0.01±0.009</td>
<td>1.53±0.03±0.10</td>
</tr>
<tr>
<td>$\mu^+\mu^-\mu^+\mu^-$</td>
<td>8</td>
<td>0.3±0.3±0.3</td>
<td>3.03±0.04±0.06</td>
</tr>
<tr>
<td>$e^+e^-\mu^+\mu^-$</td>
<td>2</td>
<td><0.01±0.009</td>
<td>4.37±0.04±0.14</td>
</tr>
<tr>
<td>$\ell^+\ell^-\ell^+\ell^-$</td>
<td>12</td>
<td>0.3±0.3±0.4</td>
<td>8.9±0.1±0.3</td>
</tr>
</tbody>
</table>
The result is consistent within errors with the NLO total on-shell from POWHEG BOX \[19\]. The measured value of the Standard Model total cross section is:\[\sigma_{\text{tot}}^{ZZ} = 8.5^{+2.7}_{-2.3} \text{ (stat.)}^{+0.4}_{-0.3} \text{ (syst.)} \pm 0.3 \text{ (lumi.) pb.}\]

The result is consistent within errors with the Standard Model total cross section for this process of $6.5^{+0.3}_{-0.2}$ pb \[9\].

Limits on anomalous nTGCs are determined using the total number of observed events only. The ZZ production yield dependency on couplings is parameterized using fully simulated events generated with SHERPA \[20\] subsequently reweighted using the leading-order matrix element \[3\] within the framework of Ref. \[21\]. The reweighting procedure uses simulated samples with Standard Model as well as non-Standard Model coupling values to ensure adequate coverage of all kinematic regions. One dimensional 95\% confidence intervals for the anomalous nTGCs are determined using a maximum profile likelihood fit to the observed number of events. The systematic errors are included as nuisance parameters. The resulting limits for each coupling, determined assuming real couplings and with the other couplings fixed at their Standard Model value, are listed in Table \[11\]. The present results are dominated by statistical uncertainties: limits derived using statistical uncertainties alone differ from those in Table \[11\] by less than 0.01. These limits are comparable with, or are more stringent than, those derived from measurements at LEP \[5\] and the Tevatron \[6\]; it should be noted that limits from LEP do not use a form factor, and those from the Tevatron use $\Lambda = 1.2$ TeV.

In summary, the ZZ production cross section has been measured in proton-proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector. Both the fiducial cross section within the detector acceptance and the total cross section have been determined. The latter is in agreement with the Standard Model expectation. Limits on anomalous nTGCs have been derived.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Geor-
gia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[8] Throughout this paper Z should be taken to mean Z/γ∗.
[10] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis along the beam pipe. The z-axis points from the interaction point to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ as η = −ln tan(θ/2).
Ann Arbor MI, United States of America
88 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
89 (a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
100 Nagasaki Institute of Applied Science, Nagasaki, Japan
101 Graduate School of Science, Nagoya University, Nagoya, Japan
102 (a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
103 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
107 Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
108 Department of Physics, New York University, New York NY, United States of America
109 Ohio State University, Columbus OH, United States of America
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
112 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
113 Palacký University, RCPTM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a)INFN Sezione di Pavia; (b)Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
124 (a)Laboratorio di Instrumentazione e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Dipartimento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies - Université Hassan II, Casablanca; (b)Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat; (c)Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Énergie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University
of California Santa Cruz, Santa Cruz CA, United States of America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
144 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 (a)Department of Physics, Stockholm University; (b)The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a)TRIUMF, Vancouver BC; (b)Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
161 Science and Technology Center, Tufts University, Medford MA, United States of America
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
164 (a)INFN Gruppo Collegato di Udine; (b)ICTP, Trieste; (c)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana IL, United States of America
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Fisica Corpuscular (IFIC) and Departamento de Fisica Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170 Waseda University, Tokyo, Japan
171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison WI, United States of America
173 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
174 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
175 Department of Physics, Yale University, New Haven CT, United States of America
176 Yerevan Physics Institute, Yerevan, Armenia
177 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Fermilab, Batavia IL, United States of America
g Also at Department of Physics, University of Coimbra, Coimbra, Portugal
h Also at Università di Napoli Parthenope, Napoli, Italy
i Also at Institute of Particle Physics (IPP), Canada
j Also at Department of Physics, Middle East Technical University, Ankara, Turkey
k Also at Louisiana Tech University, Ruston LA, United States of America
l Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
m Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
n Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Manhattan College, New York NY, United States of America
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at High Energy Physics Group, Shandong University, Shandong, China
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Física, Universidade de Minho, Braga, Portugal
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
Also at California Institute of Technology, Pasadena CA, United States of America
Also at Institute of Physics, Jagiellonian University, Krakow, Poland
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
* Deceased