Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in \(\sqrt{s} = 7 \) TeV proton-proton collisions with the ATLAS experiment

The ATLAS Collaboration

Abstract. Results are presented of searches for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons in \(\sqrt{s} = 7 \) TeV proton-proton collisions at the Large Hadron Collider. Search strategies requiring lepton pairs with identical sign or opposite sign electric charges are described. In a data sample corresponding to an integrated luminosity of 35 pb\(^{-1}\) collected with the ATLAS detector, no significant excesses are observed. Based on specific benchmark models, limits are placed on the squark mass between 450 and 690 GeV for squarks approximately degenerate in mass with gluinos, depending on the supersymmetric mass hierarchy considered.

Many extensions of the Standard Model (SM) predict the existence of new states decaying to invisible particles, often motivated by dark matter arguments. If such states are produced in collisions at the Large Hadron Collider, then they can potentially be identified by the presence of missing transverse momentum generated by the invisible decay products. The most important SM backgrounds, in particular jets from QCD production processes (referred to as “QCD jets” hereafter), can be suppressed by requiring in addition the presence of leptons in the final state. Particles predicted by supersymmetric (SUSY) theories can be sought with such a signature, with the missing transverse momentum generated by the production of weakly interacting lightest supersymmetric particles (LSP), and the leptons produced in the cascade decay of supersymmetric particles.

In this letter the first results of searches for the production of SUSY particles at ATLAS using final states with two leptons and missing transverse momentum are presented. Leptons are produced through the decays of charginos and neutralinos into W and Z bosons, and into real or virtual sleptons, the SUSY partners of leptons, if their masses are light enough. The main sources of leptons in SM events include W and Z decays, fake leptons from misidentification of jets and non-isolated leptons from heavy flavour decays. Two search strategies are described which require, respectively, isolated leptons of same sign (SS) or opposite sign (OS) electrical charge. SS lepton production in SM events is rare. On the other hand, the production of gluinos, which decay with the same probability to squark+anti-quark and anti-squark+quark pairs, and of squark-squark pairs, provides an abundant source of SS lepton pairs in SUSY events. When imposing the OS lepton pair requirement the SM background is larger. However, the signal cross section is also increased by the additional production of squark+anti-squark pairs. The results reported here are complementary to those from SUSY searches requiring lepton pairs of identical flavor and also those from inclusive searches requiring jets, missing transverse momentum and zero leptons or one lepton. A search by CMS for SUSY in events with OS lepton pairs is reported in Ref. [6].

The ATLAS detector [7] is a multipurpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and near 4\(\pi\) coverage in solid angle. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector (SCT), and a transition radiation tracker (TRT). The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by high-granularity liquid-argon (LAr) sampling electromagnetic calorimeters. A hadron calorimeter of iron-scintillator tiles provides coverage in the central rapidity range. The end-cap and forward regions are instrumented with LAr calorimetry for both electromagnetic and hadronic measurements. The muon spectrometer (MS) surrounds the calorimeters and consists of three large superconducting toroids, a system of precision tracking chambers, and detectors for triggering.

The full 2010 ATLAS pp dataset is used in this analysis, collected at the LHC at a centre-of-mass energy of 7 TeV. Application of basic beam, detector and data-quality requirements results in a dataset corresponding to a total integrated luminosity of 35 pb\(^{-1}\). The uncertainty on the integrated luminosity is estimated to be 11% [8]. The ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y axis points upward. Cylindrical coordinates (\(r, \phi\)) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln \tan(\theta/2)\).
data have been collected with a single lepton (e or μ) trigger. The detailed trigger requirements vary throughout the data-taking period owing to the rapidly increasing LHC luminosity and the commissioning of the trigger system. The requirements are such that the trigger efficiency is constant and stable for leptons with transverse momentum \(p_T > 20 \) GeV. The efficiency of the triggers has been studied using data, and agrees well with expectations.

Monte Carlo (MC) event samples are used to develop and validate the analysis procedure, determine detector acceptance and reconstruction efficiency, and transfer background expectations from control regions to signal regions. These samples are also used to model the sub-dominant SM backgrounds. Samples of QCD jet events are produced with the PYTHIA generator \[^{[10]}\]. Production of top quark pairs and single top is simulated with the MC@NLO generator \[^{[11]}\], with an assumed top-quark mass of 172.5 GeV. Samples of W and Z/γ* production with accompanying jets are produced with the ALPGEN generator \[^{[11]}\] for \(m_{t\ell} > 40 \) GeV. Low mass dileptons from Z/γ* production are generated with PYTHIA, Di-boson (WW, WZ, ZZ) production is simulated with the HERWIG generator \[^{[12]}\].

The MC samples are normalised to the available next-to-next-to-leading order (NNLO) or next-to-leading order (NLO) QCD calculations, except the QCD jet sample, which is normalised to the leading order PYTHIA cross section. Fragmentation and hadronization for the ALPGEN and MC@NLO samples is performed with HERWIG, using JIMMY \[^{[13]}\] for the underlying event model. The MC samples are produced using the ATLAS detector simulation software \[^{[15]}\] based on GEANT4 \[^{[16]}\]. The MC samples are tuned to reproduce the same number of primary vertices as in the data in order to take into account multiple inelastic interactions in the same beam crossing.

Criteria for electron and muon identification closely follow those described in Ref. \[^{[17]}\]. Electrons in the signal region are required to pass the “tight” selection criteria, have \(p_T > 20 \) GeV and \(|\eta| < 2.47\). Events are removed if an electron satisfying the “medium” selection is found in the transition region between the barrel and end-cap electromagnetic calorimeter, 1.37 < |\(\eta \) | < 1.52. The medium criteria are mainly based on lateral shower shape requirements in the calorimeter, \(E/p \) (where \(E \) is the shower energy in the calorimeter and \(p \) the track momentum in the ID) and TRT cuts are also applied for the tight electron selection, which provides additional rejection against conversions and fakes from hadrons. Muons are required to be identified either in both the ID and MS systems (combined muons) or as a match between an extrapolated ID track and one or more segments in the MS. For combined muons, a good match between ID and MS tracks is required, and the \(p_T \) values measured by these two systems must be compatible within the resolution. The summed \(p_T \) of other ID tracks with \(p_T > 500 \) MeV within a distance \(\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.2 \) around the muon track is required to be less than 1.8 GeV. Only muons with \(p_T > 20 \) GeV and \(|\eta| < 2.4\) are considered. For the final selection, the distance between the \(z \) coordinate of the primary vertex and that of the extrapolated muon track at the point of closest approach to the primary vertex must be less than 10 mm.

Jets are reconstructed using the anti-\(k_T \) jet clustering algorithm \[^{[18]}\] with a distance parameter \(R = 0.4 \). They are corrected for calorimeter non-compensation, upstream calibration and other effects using \(p_T \) and \(\eta \) dependent calibration factors obtained from Monte Carlo and validated with extensive test-beam and collision-data studies \[^{[19]}\]. Only jets with \(p_T > 20 \) GeV and \(|\eta| < 2.5\) are considered. If a jet and a selected electron overlap within a distance \(\Delta R < 0.2 \), the jet is discarded. Furthermore, identified medium electrons or muons are considered only if they satisfy \(\Delta R > 0.4 \) with respect to the closest remaining jet. Events are discarded if they contain any jet failing basic quality selection criteria that reject detector noise and non-collision backgrounds \[^{[20]}\].

The calculation of missing transverse momentum \(E_T^{\text{miss}} \) is based on the modulus of the vector sum of the transverse momenta of the reconstructed objects (jets with \(p_T > 20 \) GeV over the full calorimeter coverage \(|\eta| < 4.9 \) and selected leptons), together with any additional non-isolated muons and calorimeter clusters not belonging to reconstructed objects.

Events failing the requirement of at least one reconstructed primary vertex with at least five associated tracks are rejected. Selected events must contain exactly two leptons (e or μ) after the object selection described above. For electrons an isolation criterion is required: the summed calorimeter transverse energy within a distance \(\Delta R < 0.2 \) around the electron divided by the \(p_T \) of the electron must be smaller than 0.15. The invariant mass \(m_{\ell\ell} \) of the lepton pair must be greater than 5 GeV. The signal region for OS (SS) events is defined by the requirement \(E_T^{\text{miss}} > 150 \) GeV (100 GeV), which was chosen through optimisation of the expected signal significance for a selection of models drawn from the Minimal Supersymmetric Model (MSSM) framework in a mass range just above the existing limits from direct searches.

The main background for the SS analysis arises from SM processes generating events containing at least one fake or non-isolated lepton. These processes are collectively referred to as “fake lepton” background, and mainly consist of \(t\bar{t} \), single-top, W+jets and QCD light and heavy flavour jet production. The other significant backgrounds arise from di-boson production and from charge mis-measurements of electrons in \(t\bar{t} \) events that have undergone hard bremsstrahlung with subsequent photon conversions. The other SM backgrounds, such as Z boson production, are small, since their contribution is largely suppressed by the \(E_T^{\text{miss}} \) cut. For the OS analysis the dominant background arises from \(t\bar{t} \) production. In addition, there are contributions from fake or non-isolated leptons, Z+jet, di-boson and single-top production.

For the “fake lepton” background, the origin of the detected leptons are either jets faking leptons or heavy flavoured meson decays into non-isolated leptons. The contribution from this background is estimated from data using a method that is similar to that described in Ref. \[^{[21]}\]. This method defines a looser lepton selection, referred to...
as “loose” hereafter, and counts the numbers of observed events containing loose-loose, loose-tight, tight-loose and tight-tight lepton pairs. The probability of loose real leptons to pass the tight selection criteria is obtained using a $Z \rightarrow \ell^+\ell^-$ control sample while the probability of loose fake leptons to pass the tight selection criteria is obtained using several control samples dominated by QCD jet events. Using these probabilities, linear equations can be obtained for the observed event counts as functions of the numbers of events containing fake-fake, fake-real, real-fake and real-real lepton pairs. These four equations can be solved simultaneously to yield the fake lepton background for the SS and OS analyses.

The contribution from the incorrect electron charge assignment background to the SS analysis is studied using $Z \rightarrow e^+e^-$ MC events by comparing the charges of generator level electrons to those of reconstructed electron candidates following the application of the SS analysis cuts. The background contribution is calculated as a function of the electron rapidity and applied to $t\bar{t}$ MC events to obtain the $t\bar{t}$ contribution in the SS analysis. The method is validated with data looking at the number of SS $Z \rightarrow e^+e^-$ events in a sample selected by requiring a lepton pair with invariant mass between 60 GeV and 120 GeV. The method predicts 61.3 ± 0.4 events compared with 62 observed events in data.

The number of $t\bar{t}$ events in the OS signal region (SR) is obtained by multiplying the observed number of $t\bar{t}$ events in an appropriately defined control region (CR) by a factor $P(CR \rightarrow SR)$, defined as the ratio between the number of $t\bar{t}$ MC events in the CR and the number of MC events in the CR. A $t\bar{t}$ dominated control region is selected by selecting “top-tagged” lepton pair events which satisfy the same selection criteria as signal candidates except for a $60 < E_T^{miss} < 80$ GeV requirement, defining a region in which both the Z contribution and the SUSY signal contamination are small. Events in this region are top-tagged using the variable m_{CT}, introduced in Ref. [22]. For two identical decays of heavy particles into two visible particles (or particle aggregates) v_1 and v_2, and into invisible particles, m_{CT} is defined as:

$$m_{CT}^2(v_1, v_2) = [E_T(v_1) + E_T(v_2)]^2 - [p_T(v_1) - p_T(v_2)]^2,$$

where transverse momentum vectors are denoted by p_T and transverse energies E_T are defined as $E_T = \sqrt{p_T^2 + m^2}$.

In Equation (1), v_i can be a lepton, a jet, or a lepton-jet combination. The distributions of m_{CT} for each of these combinations, as well as the distributions of invariant mass for jet+lepton pairs generated in the same top quark decay, possess kinematic end-points which are functions of the masses of the top quark and W boson as detailed in Ref. [23]. An event is considered to be top-tagged if it includes two jets with $p_T > 20$ GeV and the three m_{CT} variables and the lepton-jet invariant masses are compatible with the kinematics of fully leptonic $t\bar{t}$ ($t\bar{t} \rightarrow \ell^+\ell^-\nu$) events. A total of 15 top-tagged data events are observed in the CR compared with a MC expectation of 21.3 \pm 3.8 events, of which 18.8 arise from $t\bar{t}$ production and 2.5 from other SM sources. The quoted uncertainty is the statisti-

![Fig. 1. Distributions of E_T^{miss} for SS (upper) and OS (lower) lepton pair events passing the analysis selections. The data are shown as points with error bars superimposed on the expected SM background distributions determined (mostly data-driven) with MC simulation. The overflow point in the OS E_T^{miss} histogram is a likely candidate for cosmic ray interaction. In the bottom panel the ratio between data and the total SM background is shown. The histogram labelled “Standard Model” represents the sum of all backgrounds and the light (yellow) bands indicate the uncertainty on the MC predictions from finite MC statistics and uncertainties in cross section, luminosity and jet and lepton energy scales and resolutions. “SU4” represents a point in the mSUGRA/CMS parameter space with $m_0 = 200$ GeV, $m_{1/2} = 160$ GeV, $A_0 = -400$ GeV, $\tan \beta = 10$ and $\mu > 0$.](image)
The ATLAS Collaboration: Search for SUSY in events with lepton pairs and E_T^{miss} with ATLAS

A partially data-driven approach is adopted to estimate the contribution from Z production in the e^+e^- and $\mu^+\mu^-$ channels of the OS analysis. A control region is defined requiring $E_T^{miss} < 20$ GeV and $81 < m_{ll} < 101$ GeV, where non-Z contributions are found to be negligible. A normalisation factor between the CR and the SR is obtained from this region using the MC. This factor is applied to the data in the CR in order to estimate the contributions to the signal regions. The $e\mu$ contribution is estimated solely using MC due to lack of events in the control region. The resulting numbers are presented in Table 1. The contributions from other SM processes such as single-top and di-boson production are estimated using MC samples and found to be small. The contribution of the former is measured from a dedicated data sample selected from simulation.

A likelihood function used to fit the event counts in the signal regions can be written as $L(n|s,b,\theta) = P_S \times C_{\text{sys}}$, where n represents the number of observed data events, s is the new physics signal to be tested, b is the background and θ represents the systematic uncertainties, which are treated as nuisance parameters with Gaussian probability density functions. P_S is the Poisson probability distribution for the event count in the signal region and C_{sys} represents the constraints on systematic uncertainties taking into account correlations. The limits are then derived from the profile likelihood ratio, $A(s) = -2(\ln L(n|s,b,\theta) - \ln L(n|s,b,\tilde{\theta}))$, where s, b and θ maximise the likelihood function and $\tilde{\theta}$ maximise the likelihood for a given choice of s. Only signal hypotheses which lead to a non-negative number of observed events are considered. Exclusion p-values are obtained using pseudo-experiments with test statistic $A(s)$ and one-sided upper limits set [25]. Using the observed numbers of data events and background expectations in the signal region, 95% confidence upper limits on the cross section times branching ratio times acceptance times efficiency are obtained for new physics processes producing lepton pairs.
PROSPINO simulations are calculated at NLO withHERWIG for the cross section calculation. Experimental uncertainties are calculated for each model. Theoretical uncertainties are defined by CTQM 6 PDF sets for the opposite sign (black line) and same-sign (blue line) analyses. The illustrated D0 limit assumes $\mu < 0$.

Within the mSUGRA/CMSSM framework, these results are interpreted as limits in the $(m_0, m_{1/2})$ plane, for the $\tan \beta = 3$, $A_0 = 0$, $\mu > 0$ slice of the model. Model grids in a more general MSSM 24-parameter framework as defined in Ref. [33] are also studied. For these models (referred to as “MSSM PhenoGrid2” hereafter) the following parameters are fixed: $m_{\tilde{q}} = 1000$ GeV, $\mu = 1.5 \times \min(m_{\tilde{q}}, m_{\tilde{g}})$, $\tan \beta = 4$, $A_{\tilde{q}} = \mu / \tan \beta$, $A_{\tilde{g}} = \mu \tan \beta$, and $A_{\tilde{t}} = \mu \tan \beta$. The masses of third generation sfermions are set to 2 TeV, and common squark and slepton mass parameters are assumed for the first two generations. The remaining free parameters are the three gaugino masses and the squark and slepton masses. Two grids in the $(m_{\tilde{q}}, m_{\tilde{g}})$ plane are generated: one yielding soft final state kinematics, defined by $m_{\chi_0} = M - 50$ GeV, $m_{\tilde{q}} = M - 150$ GeV and $m_{\tilde{g}} = \tilde{M} - 100$ GeV, where \tilde{M} is the minimum of the gluino and squark mass (“compressed spectrum” models); and one with a very light LSP, yielding a harder spectrum of leptons, jets and E_T^{miss}, with $m_{\tilde{q}} = M - 100$ GeV, $m_{\chi_0} = 100$ GeV and $m_{\tilde{g}} = M / 2$ GeV (“light neutralino” models). SUSY signal events are generated with HERWIG++ for the mSUGRA/CMSSM models and with HERWIG for the MSSM models. Cross sections are calculated at NLO with PROSPINO [35]. Theoretical and experimental uncertainties on the signal rate are calculated for each model. Theoretical uncertainties are evaluated by varying the factorisation and renormalisation scales and by varying the CTEQ6.1 PDF sets used for the cross section calculation. Experimental uncertainties include those due to the lepton and jet energy scale and resolution and an 11% uncertainty on the luminosity measurement. The total uncertainty varies between 20% and 30% for most of the signal models considered in this analysis.

The expected and observed limits in the $(m_{\tilde{g}}, m_{\tilde{q}})$ plane for the specific MSSM models described in the text. The upper panel is for the SS analysis, the lower panel for the OS analysis.
2010. Two analyses have been performed, using respectively same sign and opposite sign lepton pair signatures. The observed numbers of events in the signal regions of both analyses are compatible with SM expectations. These results have been interpreted as limits in the parameter spaces of three different SUSY models, namely the mSUGRA/CMSM framework, and two classes of MSSM models with a compressed SUSY particle mass spectrum and with a light neutralino. Depending on model assumptions squarks with masses between 450 and 690 GeV are excluded, for squarks approximately mass degenerate and lighter than gluinos, extending the coverage of previous experiments.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CF, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, M-ERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and EPS, Netherlands; RGC, Hong Kong; NWO, Norway; MNiSW, Poland; GRCES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRF and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), C-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

22. D. R. Tovey, JHEP 04 (2008) 034.
23. G. Polesello and D. R. Tovey, JHEP 03 (2010) 030.
32. LEP SUSY Working Group (ALEPH, DELPHI, L3, OPAL), Notes LEPSUSYWG/01-03.1 and 04-01.1, published in PRL.

References

1. Yu.A. Golfand and E.P. Likhtman, JETP Lett. 13 (1971) 323-326.
The ATLAS Collaboration

The ATLAS Collaboration: Search for SUSY in events with lepton pairs and E_T^{miss} with ATLAS

1 University at Albany, Albany NY, United States of America
2 Department of Physics, University of Alberta, Edmonton AB, Canada
3 (a)Department of Physics, Ankara University, Ankara; (b)Division of Physics, TOBB University of Economics and Technology, Ankara; (c)Division of Physics, Erciyes University, Kayseri
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
6 Department of Physics, University of Arizona, Tucson AZ, United States of America
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Dogus University, Istanbul; (c)Department of Physics, University of Istanbul, Istanbul, Turkey
19 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a)Departamento de Física, Pontifícia Universidad Católica de Chile, Santiago; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu; (d)High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, København, Denmark
36 (a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
<table>
<thead>
<tr>
<th>Page</th>
<th>Location</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany</td>
<td>Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic</td>
</tr>
<tr>
<td>100</td>
<td>Nagasaki Institute of Applied Science, Nagasaki, Japan</td>
<td>Czech Technical University in Prague, Prague, Czech Republic</td>
</tr>
<tr>
<td>101</td>
<td>Graduate School of Science, Nagoya University, Nagoya, Japan</td>
<td>State Research Center Institute for High Energy Physics, Protvino, Russia</td>
</tr>
<tr>
<td>102</td>
<td>(a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy</td>
<td>Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom</td>
</tr>
<tr>
<td>103</td>
<td>Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America</td>
<td>Physics Department, University of Regina, Regina SK, Canada</td>
</tr>
<tr>
<td>104</td>
<td>Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands</td>
<td>Ritsumeikan University, Kusatsu, Shiga, Japan</td>
</tr>
<tr>
<td>105</td>
<td>Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands</td>
<td>INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy</td>
</tr>
<tr>
<td>106</td>
<td>Department of Physics, Northern Illinois University, DeKalb IL, United States of America</td>
<td>INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy</td>
</tr>
<tr>
<td>107</td>
<td>Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia</td>
<td>INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy</td>
</tr>
<tr>
<td>108</td>
<td>Department of Physics, New York University, New York NY, United States of America</td>
<td>Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies - Université Hassan II, Casablanca; (b)Centre National de l’Énergie des Sciences Techniques Nucleaires, Rabat; (c)Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000; (d)Faculté des Sciences, Université Mohamed Premier et LPTPM, Oujda; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco</td>
</tr>
<tr>
<td>109</td>
<td>Ohio State University, Columbus OH, United States of America</td>
<td>DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique), Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>110</td>
<td>Faculty of Science, Okayama University, Okayama, Japan</td>
<td>Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America</td>
</tr>
<tr>
<td>111</td>
<td>Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America</td>
<td>Department of Physics, University of Washington, Seattle WA, United States of America</td>
</tr>
<tr>
<td>112</td>
<td>Department of Physics, Oklahoma State University, Stillwater OK, United States of America</td>
<td>Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom</td>
</tr>
<tr>
<td>113</td>
<td>Palacký University, RCPTM, Olomouc, Czech Republic</td>
<td>Department of Physics, Shinshu University, Nagano, Japan</td>
</tr>
<tr>
<td>114</td>
<td>Center for High Energy Physics, University of Oregon, Eugene OR, United States of America</td>
<td>Fachbereich Physik, Universität Siegen, Siegen, Germany</td>
</tr>
<tr>
<td>115</td>
<td>LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France</td>
<td>Department of Physics, Simon Fraser University, Burnaby BC, Canada</td>
</tr>
<tr>
<td>116</td>
<td>Graduate School of Science, Osaka University, Osaka, Japan</td>
<td>SLAC National Accelerator Laboratory, Stanford CA, United States of America</td>
</tr>
<tr>
<td>117</td>
<td>Department of Physics, University of Oslo, Oslo, Norway</td>
<td>Department of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic</td>
</tr>
<tr>
<td>118</td>
<td>Department of Physics, Oxford University, Oxford, United Kingdom</td>
<td>(c)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa</td>
</tr>
<tr>
<td>119</td>
<td>(a)INFN Sezione di Pavia; (b)Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy</td>
<td>(c)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa</td>
</tr>
<tr>
<td>120</td>
<td>Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America</td>
<td>(c)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa</td>
</tr>
<tr>
<td>121</td>
<td>Petersburg Nuclear Physics Institute, Gatchina, Russia</td>
<td>(c)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa</td>
</tr>
<tr>
<td>122</td>
<td>(a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy</td>
<td>(c)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa</td>
</tr>
<tr>
<td>123</td>
<td>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America</td>
<td>(b)Oskar Klein Centre, Stockholm, Sweden</td>
</tr>
<tr>
<td>124</td>
<td>(a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisbon, Portugal; (b)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain</td>
<td>(b)Oskar Klein Centre, Stockholm, Sweden</td>
</tr>
<tr>
<td>125</td>
<td>Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic</td>
<td>Physics Department, Royal Institute of Technology, Stockholm, Sweden</td>
</tr>
<tr>
<td>126</td>
<td>Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic</td>
<td>Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America</td>
</tr>
</tbody>
</table>
The ATLAS Collaboration: Search for SUSY in events with lepton pairs and E_T^{miss} with ATLAS

* Deceased