The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/92313

Please be advised that this information was generated on 2017-09-25 and may be subject to change.
Search for high-mass states with one lepton plus missing transverse momentum in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

The ATLAS detector is used to search for high-mass states, such as heavy charged gauge bosons (W', W^*), decaying to a charged lepton (electron or muon) and a neutrino. Results are presented based on the analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 36 pb$^{-1}$. No excess beyond standard model expectations is observed. A W' with sequential standard model couplings is excluded at 95% confidence level for masses below 1.49 TeV, and a W^* (charged chiral boson) for masses below 1.35 TeV.

Although the standard model (SM) of strong and electroweak interactions is remarkably consistent with particle physics observations to date, the high-energy collisions at the CERN Large Hadron Collider provide new opportunities to search for physics beyond it. One extension common to many models is the existence of additional heavy gauge bosons [1], the charged ones commonly denoted W'. Such particles are most easily searched for in their decay to a charged lepton (either electron or muon) and a neutrino.

In this letter, 7 TeV pp collision data collected with the ATLAS detector during 2010 and corresponding to a total integrated luminosity of 36 pb$^{-1}$ are used to supplement current limits [2, 3, 4, 5, 6] on σB (cross section times branching fraction) as a function of W' mass. A lower limit on the mass of a W' boson in the Sequential Standard Model (SSM) [7] is also reported. In this model, the W' has the same couplings to fermions as the SM W boson and thus a width which increases linearly with W' mass.

Limits are also established for W^*, the charged partner of the chiral bosons described in [8]. Theoretical motivation for such bosons is provided in [9]. The anomalous (magnetic-moment type) coupling of the W^* leads to kinematic distributions significantly different from those of the W'. To fix the coupling strength, a model with total and partial decay widths equal to those of the SSM W' with the same mass is adopted [10].

The analysis presented here identifies candidates in the electron and muon channels, sets separate limits for $W'/W^* \rightarrow e\nu$ and $W'/W^* \rightarrow \mu\nu$, and derives combined limits assuming flavor independence. The kinematic variable used to identify the W'/W^* is the transverse mass

$$m_T = \sqrt{2p_T E_T^{\text{miss}}(1 - \cos \varphi_{\nu})}$$

(1)

which displays a Jacobian peak that, for $W' \rightarrow \ell\nu$, falls sharply above the resonance mass. Here p_T is the lepton transverse momentum, E_T^{miss} is the magnitude of the missing transverse momentum (missing E_T), and φ_{ν} is the angle between the p_T and missing E_T vectors. Throughout this letter, transverse refers to the plane perpendicular to the colliding beams, longitudinal means parallel to the beams, θ and φ are the polar and azimuthal angles with respect to the longitudinal direction, and pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$.

The main background to the W' and W^* signals comes from the high-m_T tail of SM $W \rightarrow \ell\nu$ decay. Other backgrounds are Z bosons decaying into two leptons where one lepton is not reconstructed, W or Z decaying to τ-leptons where the τ subsequently decays to an electron or muon, and diboson production. These are collectively referred to as the electroweak (EW) background. In addition, there is a background contribution from $t\bar{t}$ production which is most important for the lowest W'/W^* masses considered here where it constitutes about 20% of the background after final selection. Other QCD background sources, where a light or heavy hadron decays semileptonically or a jet is misidentified as an electron, are estimated to be at most 3% of the total background (with the uncertainty on this estimate less than 10% of the total background level).

The ATLAS detector [11] has three major components: the inner (tracking) detector, the calorimeter and the muon spectrometer. Charged particle tracks and vertices are reconstructed with silicon pixel and silicon strip detectors covering $|\eta| < 2.5$ and transition radiation detectors covering $|\eta| < 2.0$, all immersed in a homogeneous 2 T magnetic field provided by a superconducting solenoid. These are surrounded by a finely-segmented, hermetic calorimeter system that covers $|\eta| < 4.9$ and provides three-dimensional reconstruction of particle showers. It uses liquid argon for the inner electromagnetic compartment followed by a hadronic compartment based on scintillating tiles in the central region ($|\eta| < 1.7$) and additional liquid argon for higher $|\eta|$. Outside the calorimeter, there is a muon spectrometer with air-core toroids providing a magnetic field, whose integral averages about 3 Tm. Three stations of drift tubes and cathode strip chambers provide precision...
measurements and resistive-plate and thin-gap chambers provide muon triggering capability and measurement of the \(\phi \) coordinate.

Most of the data were recorded with highly efficient triggers requiring the presence of an electron or muon candidate with \(p_T > 20 \) GeV. Lower thresholds were used for the early data.

Each energy cluster reconstructed in the electromagnetic compartment of the calorimeter with \(E_T > 20 \) GeV and \(|\eta| < 2.47 \) is considered as an electron candidate if it loosely matches with an inner detector track. The electron direction is defined as that of the reconstructed track and its energy as that of the cluster. The intrinsic resolution of the energy measurement is about 2% at 50 GeV, improving to approximately 1% at 200 GeV. Electron candidates with clusters containing cells overlapping with the few problematic regions of the calorimeter readout are removed. This reduces the acceptance by 8%.

Electrons are further identified based on lateral shower shapes in the first two layers of the electromagnetic part of the calorimeter and the fraction of energy leaking into the hadronic compartment. A hit in the first pixel layer is also required to reduce background from photon conversions in the inner detector material. These requirements give about 89% identification efficiency for electrons with \(E_T > 25 \) GeV and a 1/5000 probability to falsely identify jets as electrons before isolation requirements are imposed [12].

Muon tracks can be reconstructed independently in both the inner detector and muon spectrometer, and the muons used in this study are required to have matching tracks in both systems. The high-\(p_T \) resolution of the inner detector and muon spectrometer systems is sensitive to detector alignment. The muons used for this analysis are restricted to those which pass through the barrel part of the muon spectrometer, \(|\eta| < 1.05 \), where the muon spectrometer alignment is best understood, in particular using high-energy cosmic rays [13]. The momentum of the muon is obtained from the muon spectrometer and the average momentum resolution is currently about 20% at \(p_T = 1 \) TeV. Muons are required to have hits in all three muon stations to ensure this precise measurement of the momentum. About 80% of the muons in the barrel are reconstructed, with most of the loss coming from regions with limited detector coverage.

For the electron channel, the missing \(E_T \) is obtained from a vector sum over calorimeter cells associated with topological clusters [14]:

\[
E_T^{\text{miss}} = E_{T_{\text{calo}}}^{\text{miss}} = - \sum \text{clus}_{\text{topo}} E_{T_{\text{clus}}}.
\]

In the muon channel, most of the muon energy is not deposited in the calorimeter and the missing \(E_T \) is obtained from

\[
E_T^{\text{miss}} = E_{T_{\text{calo}}}^{\text{miss}} - p_T^\mu + E_T^{\mu, \text{loss}},
\]

where the second term in this vector sum subtracts the muon transverse momentum and the last corrects for the transverse component of the energy deposited in the calorimeter by the muon which is included in both of the first two terms. The energy loss is estimated by integrating the amount of material traversed and applying a calibrated conversion from path length to energy for each material type.

This analysis makes use of all the \(\sqrt{s} = 7 \) TeV data collected in 2010 that satisfy data quality requirements which guarantee the relevant detector systems were operating properly. The integrated luminosity for the data used in this study is 36 pb\(^{-1}\) for each channel. The uncertainty on this estimate is 11% [15].

The \(W' \) signal and the \(W/Z \) boson backgrounds are generated with Pythia 6.421 [16] using MRST LO* [17] parton distribution functions (PDFs). The \(tt \) background is generated with MC@NLO 3.41 [18]. \(W' \rightarrow \ell\nu \) events are generated with CompHEP [19] using CTEQ6L1 [20] PDFs followed by Pythia for parton showering and underlying event generation. For all samples, final-state photon radiation is handled by Photos [21] and the propagation of particles and response of the detector are evaluated using ATLAS full detector simulation [22] based on GEANT4 [23].

The Pythia signal model used as a benchmark for \(W' \) has \(V - A \) SM couplings but does not include interference between \(W' \) and \(W' \). Decays to channels other than \(\ell\nu \) and \(\mu\nu \), including \(\tau\nu, ud, sc \) and \(tb \), are included in the calculation of the \(W' \) and \(W^* \) widths but are not explicitly included as signal or background.

The \(W' \rightarrow \ell\nu, W \rightarrow \ell\nu \) and \(Z \rightarrow \ell\ell \) cross sections are calculated at next-to-next-to-leading order QCD (NNLO) using FEWZ [24, 25] with MSTW2008 PDFs [26]. For the \(W \) and \(Z \), higher-order electroweak corrections (beyond the photon radiation included in the simulation) are calculated using Horace [27, 28]. In the high-mass region of interest, the electroweak corrections reduce the cross sections, with the reduction increasing with mass. For \(m_T > 750 \) GeV, the electroweak corrections reduce the \(W \rightarrow \ell\nu \) cross section by 6%. Electroweak corrections beyond final-state radiation are not included for \(W' \) because the calculation for the SM \(W \) cannot be applied directly. The \(tt \) cross section is calculated at near-NNLO using the results from reference [29] and assuming a top-quark mass of 172.5 GeV. The signal and most important background cross sections are listed in Table 1. Cross-section uncertainties for \(W' \rightarrow \ell\nu \) and the \(W/Z \) [12] and \(tt \) [30] backgrounds are estimated from PDF error sets, the difference between MSTW and CTEQ PDF sets, and standard variations of renormalization and factorization scales. The uncertainties for the LO \(W' \rightarrow \ell\nu \) cross sections include only the contributions from the PDFs.

Except for QCD and cosmic-ray contamination, expected signal and background levels are evaluated with simulated samples and normalized using the aforementioned cross sections and the integrated luminosity of the data. The same reconstruction and event selection are applied to both data and simulated samples.
Table 1: Calculated values of σB for W', W^* and the leading backgrounds. The value for $t \to \ell X$ includes all final states with at least one lepton (e, μ or τ). The others are exclusive and are used for both $\ell = e$ and $\ell = \mu$.

<table>
<thead>
<tr>
<th>Process</th>
<th>Order</th>
<th>Mass [GeV]</th>
<th>σB [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W' \to \ell \nu$</td>
<td>NNLO</td>
<td>500</td>
<td>17.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>0.837</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1250</td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1500</td>
<td>0.0887</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1750</td>
<td>0.0325</td>
</tr>
<tr>
<td>$W^* \to \ell \nu$</td>
<td>LO</td>
<td>500</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>0.559</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1250</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1500</td>
<td>0.0595</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1750</td>
<td>0.0212</td>
</tr>
<tr>
<td>$W \to \ell \nu$</td>
<td>NNLO</td>
<td></td>
<td>10460</td>
</tr>
<tr>
<td>$Z/\gamma^* \to \ell \ell$</td>
<td>NNLO</td>
<td></td>
<td>989</td>
</tr>
<tr>
<td>$(m_{Z/\gamma^*} > 60 \text{ GeV})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t \ell \to \ell X$</td>
<td>Near-NNLO</td>
<td></td>
<td>89.4</td>
</tr>
</tbody>
</table>

Events are required to have a primary vertex reconstructed from at least three tracks with $p_T > 150$ MeV and longitudinal distance less than 150 mm from the center of the collision region. Spurious tails in missing E_T arising from calorimeter noise and other detector problems are suppressed by checking the quality of each reconstructed jet and discarding events where any jet has a shape indicating such problems (following Ref. [31]). Events are required to have exactly one candidate electron or one candidate muon, defined as follows. A candidate electron is one reconstructed with $E_T > 25$ GeV, $|\eta| < 1.37$ or 1.52 $< |\eta| < 2.40$. A muon is considered a candidate if it has $p_T > 25$ GeV, $|\eta| < 1.05$ and has matching tracks in the inner detector and muon spectrometer. In addition, the inner detector track associated with the electron or muon is required to be compatible with originating from the primary vertex, specifically with transverse distance of closest approach $|r_0| < 1$ mm and longitudinal distance at this point $|z_0| < 5$ mm.

The above requirements constitute the event preselection criteria. To suppress the QCD background, the lepton is required to be isolated. In the electron channel, the isolation energy is measured with the calorimeter in a cone $\Delta R < 0.4$ ($\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$) around the electron track and the requirement is $\sum E_T < 10$ GeV, where the sum excludes the core energy deposited by the electron and is corrected to account for leakage of the electron energy outside this core. In the muon channel, the isolation energy is measured using inner detector tracks with $p_T^{\text{trk}} > 1$ GeV in a cone $\Delta R < 0.3$ around the muon track.

The isolation requirement is $\sum p_T^{\text{trk}} < 0.5 p_T$, where the muon track is excluded from the sum. The scaling of the threshold with the muon p_T reduces efficiency losses due to radiation from the muon at high p_T.

Finally, a missing E_T threshold is applied to further suppress the QCD background. In both channels, a fixed threshold is applied: $E_T^{\text{miss}} > 25$ GeV. In the electron channel, where QCD jets may be misidentified as electrons, a scaled threshold is also applied: $E_T^{\text{miss}} > 0.6 E_T$. Taken together, all the above constitute the final selection requirements.

Figure 1 shows the p_T, missing E_T, and m_T spectra in both channels after final selection for the data, for the expected background, and for three examples of W' with a mass of 1500 GeV. There are significant differences between the background levels in the electron and muon channels. The background from $W \to \ell \nu$ and $Z \to \ell \ell$ is higher in the muon channel because of the worse momentum resolution for high-p_T muons. The difference is even larger for the $Z \to \ell \ell$ background because there is additionally a much larger chance that one lepton is lost due to the restricted acceptance in η. The QCD background in the electron channel is less than that in the muon channel because of the tighter electron selection criteria: an isolation threshold that is not scaled with p_T and the addition of a scaled missing E_T threshold.

In the electron channel, four techniques are used to estimate the QCD background level from data through the use of subsidiary samples which are disjoint from the analysis region. In the “inverted identification” technique, the distributions of the QCD background as a function of p_T, missing E_T, or m_T are estimated from events which pass relaxed identification criteria but fail the normal selection. The normalization is obtained by fitting the missing E_T distribution plus the estimates for EW and $t \bar{t}$ to the observed data. The other techniques are described elsewhere:

Table 2: Expected number of events from the various background sources in both decay channels for $m_T > 750$ GeV, i.e. for W'/W^* with a mass of 1500 GeV. The $W \to \ell \nu$ and $Z \to \ell \ell$ entries include the expected contributions from the τ-lepton. The uncertainties are statistical.

<table>
<thead>
<tr>
<th>Process</th>
<th>$e\nu$</th>
<th>$\mu\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \to \ell \nu$</td>
<td>0.145 ± 0.001</td>
<td>0.43 ± 0.10</td>
</tr>
<tr>
<td>$Z \to \ell \ell$</td>
<td>0.0001 ± 0.0001</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>diboson</td>
<td>0.011 ± 0.001</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>$t\ell$</td>
<td>0.003 ± 0.003</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>QCD</td>
<td>0.003 ± 0.001</td>
<td>0.02 ± 0.05</td>
</tr>
<tr>
<td>Cosmic ray</td>
<td>0.006 ± 0.003</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.159 ± 0.005</td>
<td>0.62 ± 0.11</td>
</tr>
</tbody>
</table>
Figure 1: Spectra of p_T (top), missing E_T (center) and m_T (bottom) for the electron (left) and muon (right) channels after final event selection. The points represent ATLAS data and the filled histograms show the stacked backgrounds. Both direct production of leptons and indirect from τ-leptons are included. Open histograms are W' signals added to the background with masses in GeV indicated in parentheses in the legend. The QCD background is estimated from data. The signal and other background samples are normalized using the integrated luminosity of the data and the NNLO (near-NNLO for $t\bar{t}$) cross sections listed in Table 1.
“Isolation templates” [12], “Three control regions” [32], “Matrix” [33, 34]. Figure 2 shows the estimates obtained from all four techniques after final selection as a function of m_T along with the power-law fit to all four sets of results and its 1σ uncertainty band. The extrapolation of this fit and uncertainty band provides the estimate of the QCD background level and uncertainty in the high-m_T region used for the limit calculations.

The shape of the QCD background for the muon channel is evaluated by starting with the muon preselection and replacing the isolation threshold with a range of values in the non-isolated region: $0.2 < \sum p_{T}^{i} / p_{T} < 0.4$. The normalization of the QCD background is determined by fitting the resulting missing E_T spectrum plus the EW and $t\bar{t}$ predictions from simulation to the data after final selection, excluding the missing E_T threshold. The isolation range used to determine the shape is varied to determine the uncertainty in the prediction for the QCD background level. Figure 3 shows the predicted background level after final selection as a function of m_T along with the unbinned power-law fit and its 1σ uncertainty band. The range of m_T used for the fit is the one which gives largest values for the upper end of this band. The lower end of the uncertainty band corresponds to a negligible background level and uncertainty band. The extrapolation of this fit and uncertainty band are also shown.

Figure 3: Estimated QCD background as a function of m_T in the muon channel after final selection as obtained from the data-driven method (see text). The unbinned power-law fit to the data and its 1σ uncertainty band are also shown.

W' production with the masses listed in Table I. The limits are evaluated using a single-bin likelihood analysis, i.e. by counting events with $m_T > 0.5 m_{W'/W'}$. The expected number of events in each channel is

$$N_{\text{exp}} = \epsilon_{\text{sig}} \cdot L_{\text{int}} \cdot \sigma_B + N_{\text{bg}},$$

where L_{int} is the integrated luminosity of the data sample and ϵ_{sig} is the event selection efficiency, i.e. the fraction of events that pass final event selection criteria and have m_T above threshold. N_{bg} is the expected number of background events. Using Poisson statistics, the likelihood to observe N_{obs} events is:

$$\mathcal{L}(\sigma B) = \frac{(L_{\text{int}} \cdot \epsilon_{\text{sig}} \cdot \sigma_B + N_{\text{bg}})^{N_{\text{obs}}}}{N_{\text{obs}}!}.$$

and this expression is used to set limits on σB. Uncertainties are handled by introducing nuisance parameters and multiplying by the probability density function (pdf) characterizing that uncertainty:

$$\mathcal{L}(\sigma B, \theta_1, \ldots, \theta_N) = \mathcal{L}(\sigma B) \prod g_i(\theta_i),$$

where $g_i(\theta_i)$ is the Gaussian pdf for nuisance parameter θ_i. The nuisance parameters are taken to be the explicit dependencies: L_{int}, ϵ_{sig} and N_{bg}. Correlations between these are neglected. This is justified by the small effect that the nuisance parameters themselves have on the limits, as demonstrated below.

The fraction of fully simulated signal events that pass final selection and are above m_T threshold provides an initial estimate of the expected numbers of events for each mass. Small corrections are made to account for differences between the kinematical distributions at NNLO (obtained from FEWZ) and those in the LO simulation. The largest correction is around 4%. Contributions from $W' \to \tau\nu$ with the τ-lepton decaying leptonically have been neglected and would increase the W' selection efficiencies by 3-4%.
The EW and $t\bar{t}$ background predictions are also obtained from full simulation, normalized to the integrated luminosity of the data. For the EW background, small corrections are again made to account for differences between kinematical distributions in LO simulation and higher order calculations, now using NLO MCFM [52] because the present version of FEWZ does not provide reliable values far from the resonance peak. The background level for each mass is obtained by adding the small QCD and cosmic-ray contributions to these values.

The uncertainties on ε_{sig} and N_{bg} account for experimental and theoretical systematic effects as well as the statistics of the simulation samples. The experimental systematic uncertainties include efficiencies for lepton trigger, reconstruction, impact parameter and isolation as well as vertex resolution. Lepton momentum and missing E_T response, characterized by scale and resolution, are also included. Most of these performance metrics are measured at relatively low p_T and their values are extrapolated to the high-p_T regime relevant to this analysis. The uncertainties due to these extrapolations are included but are too small to significantly affect the W'/W^* limits. The uncertainties on the QCD and cosmic-ray background estimates also contribute to N_{bg}. Theoretical systematic uncertainties arise from the calculation of cross sections and their kinematical distributions, lepton isolation, and the distribution of the ratio of neutrino to lepton p_T which affects the scaled missing E_T selection efficiency.

Table 3 summarizes the uncertainties on the event-selection efficiencies and background levels for a W' signal with $m_{W'} = 1500$ GeV (i.e. for $m_{W'} > 750$ GeV).

For ε_{sig}, most of the uncertainty in the electron channel comes from electron identification except for the higher masses where the isolation leakage is also important. The total is less than 6% for all W'/W^* masses and has a negligible effect on the limit evaluation. The signal uncertainties are even smaller in the muon channel. For N_{bg}, the dominant uncertainties in the electron channel come from the electron energy scale and the cross-section calculation. For the muon channel, the simulation statistics followed by the uncertainties on the QCD background and cross-section calculation dominate. The first is large because momentum smearing pushes events with high p_T, and hence higher cross section, into the high-p_T bins used in the limit evaluation. The cross-section uncertainties are large (around 8% in Table 3) because it is the high-mass tail that is relevant to this analysis.

Limits for 95% CL (confidence level) exclusion on σ_B for each W' and W^* mass and decay channel are set using the likelihood function in Eq. [3] as input to the estimator $CL_s = CL_{s+b}/CL_b$ [35]. The inputs for the limit calculation are L_{int}, ε_{sig}, N_{bg}, N_{obs} and the uncertainties on the first three. Except for L_{int} and its uncertainty, these inputs are all listed in Table 3. The table also lists the predicted numbers of signal events, N_{sig}, with their uncertainty including both that of ε_{sig} and the cross-section calculation. The uncertainties on ε_{sig}, N_{bg} and N_{sig} account for all relevant experimental and theoretical effects except for integrated luminosity which is included separately to allow for the correlation between signal and background.

The numbers of observed events are in good agreement with the expected numbers of background events for all mass bins in the electron channel and for the lowest bin in the muon channel. A discrepancy is observed in the muon channel for $m_{W'} > 750$ GeV where 5.48 muon events are predicted and none are observed, a result for which the Poisson probability is only 0.4%. However, the muon p_T spectrum in Fig. 4 shows no evidence of any discrepancy between data and predicted background at high p_T, confirming that, as expected, the muon efficiency remains stable at high p_T.

Table 3 and Fig. 4 show the limits obtained from these values. The figure also shows the expected limits and the theoretical W'/W^* σ_B as a function of $m_{W'}$ for both channels and their combination. The intersection between the central theoretical prediction and the observed limits provides the 95% CL lower limit on the mass. Table 3 presents the W' and W^* expected and observed mass limits for the electron and muon decay channels and for the combination of both channels. These limits increase by 5-10 GeV if the uncertainties on ε_{sig}, N_{bg} and L_{int} are neglected. For both channels, the effect of the ε_{sig} and N_{bg} uncertainties on the limits is small for the lowest-$m_{W'}$ bin and negligible for the others.

Limits on $W' \rightarrow t\bar{t}$ have been reported in many other experiments [1, 2, 3, 4, 5, 6]. Prior to this letter and the recent $W' \rightarrow \ell\nu$ results from CMS [6], the best limits in the high-mass region were reported by CDF [3] and CMS [5], both for $W' \rightarrow t\bar{t}$. The CMS measurement was made with pp collisions at $\sqrt{s} = 1.96$ TeV using an integrated luminosity of 5.3 fb$^{-1}$. Both CMS results were obtained at the same collision energy ($\sqrt{s} = 7$ TeV) and during the same run period as those reported here. The CMS limits were set using a Bayesian approach. Ref. [6] also reports a combination of the CMS results in the two decay channels with an SSM W' mass limit of 1580 GeV. Figure 4 compares the result presented here with the $W' \rightarrow e\nu$ result from CDF and the combination from CMS. The comparison is made using the ratio of the limit to the calculated value of σ_B, a quantity that is proportional to the square of the coupling strength. The NNLO cross sections in Table 1 [2] are used for both the ATLAS and CMS points.

In conclusion, the ATLAS detector has been used to search for new high-mass states decaying to a lepton plus missing E_T in pp collisions at $\sqrt{s} = 7$ TeV using 36 pb$^{-1}$ of integrated luminosity. No excess beyond SM expectations is observed. Limits on σ_B are shown in Figs. 4 and 5. A W' with SSM couplings is excluded for masses below 1490 GeV at 95% CL. The exclusion for W^* with couplings set in accordance with reference [10] is 1350 GeV. The limits for W^* are the most stringent to date.
Table 3: Relative uncertainties on the event-selection efficiency and background level for a W' with a mass of 1500 GeV. The most important uncertainties are indicated in bold. The last row gives the total uncertainties.

<table>
<thead>
<tr>
<th>Source</th>
<th>ε_{sig} (GeV)</th>
<th>N_{sig}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu\nu$</td>
<td>$\mu\nu$</td>
</tr>
<tr>
<td>Missing E_T scale</td>
<td>0.1%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Reco. and id. efficiency</td>
<td>3.6%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Isolation leakage</td>
<td>2.7%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Energy/momentum resolution</td>
<td>0.1%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Energy/momentum scale</td>
<td>0.8%</td>
<td>6.6%</td>
</tr>
<tr>
<td>Correlated misalignment</td>
<td>0.6%</td>
<td>3.3%</td>
</tr>
<tr>
<td>QCD background</td>
<td>1.7%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Cross section (shape/level)</td>
<td>0.7%</td>
<td>8.5%</td>
</tr>
<tr>
<td>Isolation</td>
<td>1.5%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Other</td>
<td>0.2%</td>
<td>0.4%</td>
</tr>
<tr>
<td>All</td>
<td>5.3%</td>
<td>12.6%</td>
</tr>
</tbody>
</table>

Table 4: Inputs for the $W'/W^* \rightarrow \ell \nu \sigma B$ limit calculations for an integrated luminosity of 36 pb$^{-1}$. The first two columns are the W'/W^* mass and decay mode. The next four are the corrected signal selection efficiency, ε_{sig}, and the prediction for the number of signal events, N_{sig}, obtained with this efficiency. The last two columns are the expected number of background events, N_{bg}, and the number of events observed in data, N_{obs}. The uncertainties for N_{sig} and N_{bg} include contributions from the uncertainties in the cross sections but not from the integrated luminosity.

<table>
<thead>
<tr>
<th>m [GeV]</th>
<th>decay</th>
<th>ε_{sig}</th>
<th>N_{sig}</th>
<th>N_{bg}</th>
<th>N_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>$\mu\nu$</td>
<td>0.556 ± 0.024</td>
<td>0.530 ± 0.022</td>
<td>349 ± 30</td>
<td>208 ± 18</td>
</tr>
<tr>
<td>750</td>
<td>$\mu\nu$</td>
<td>0.565 ± 0.025</td>
<td>0.520 ± 0.022</td>
<td>65.8 ± 4.8</td>
<td>39.6 ± 3.5</td>
</tr>
<tr>
<td>1000</td>
<td>$\mu\nu$</td>
<td>0.362 ± 0.009</td>
<td>0.257 ± 0.005</td>
<td>42.1 ± 2.7</td>
<td>19.6 ± 1.5</td>
</tr>
<tr>
<td>1250</td>
<td>$\mu\nu$</td>
<td>0.552 ± 0.026</td>
<td>0.505 ± 0.023</td>
<td>5.23 ± 0.51</td>
<td>3.22 ± 0.42</td>
</tr>
<tr>
<td>1500</td>
<td>$\mu\nu$</td>
<td>0.530 ± 0.028</td>
<td>0.488 ± 0.025</td>
<td>1.71 ± 0.21</td>
<td>1.06 ± 0.17</td>
</tr>
<tr>
<td>1750</td>
<td>$\mu\nu$</td>
<td>0.503 ± 0.027</td>
<td>0.482 ± 0.028</td>
<td>0.59 ± 0.09</td>
<td>0.37 ± 0.07</td>
</tr>
</tbody>
</table>
Figure 4: Limits at 95% CL for W' (left) and W^* (right) production in the decay channels $W'/W^* \to e\nu$ (top), $W'/W^* \to \mu\nu$ (center), and the combination of these (bottom). The solid lines show the observed limits with all uncertainties. The expected limit is indicated with dashed lines surrounded by 1σ and 2σ shaded bands. Dashed lines show the theory predictions (NNLO for W', LO for W^*) between solid lines indicating their uncertainties. The $W^* \sigma B$ uncertainties are obtained by varying renormalization and factorization scales and by varying PDFs. Only the latter are included for W^*.
Table 5: Upper limits on W' and $W^* \sigma_B$. The first two columns are the mass and decay channel and the following are the 95% CL limits with headers indicating the nuisance parameters for which uncertainties are included: S for the event selection efficiency (ε_{sig}), B for the background level (N_{bg}), and L for the integrated luminosity (L_{int}). Columns labeled SBL include all uncertainties and are used to evaluate mass limits. Results are given for the electron and muon channels and the combination of the two.

<table>
<thead>
<tr>
<th>mass [GeV]</th>
<th>95% CL limit on σ_B [fb]</th>
<th>W'</th>
<th>W*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>none</td>
<td>S</td>
<td>SB</td>
</tr>
<tr>
<td>500 $e\nu$</td>
<td>647</td>
<td>649</td>
<td>682</td>
</tr>
<tr>
<td>500 $\mu\nu$</td>
<td>625</td>
<td>625</td>
<td>640</td>
</tr>
<tr>
<td>500 both</td>
<td>413</td>
<td>416</td>
<td>444</td>
</tr>
<tr>
<td>750 $e\nu$</td>
<td>390</td>
<td>391</td>
<td>393</td>
</tr>
<tr>
<td>750 $\mu\nu$</td>
<td>227</td>
<td>228</td>
<td>228</td>
</tr>
<tr>
<td>750 both</td>
<td>186</td>
<td>184</td>
<td>188</td>
</tr>
<tr>
<td>1000 $e\nu$</td>
<td>199</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>1000 $\mu\nu$</td>
<td>216</td>
<td>216</td>
<td>216</td>
</tr>
<tr>
<td>1000 both</td>
<td>108</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>1250 $e\nu$</td>
<td>149</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>1250 $\mu\nu$</td>
<td>213</td>
<td>214</td>
<td>213</td>
</tr>
<tr>
<td>1250 both</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>1500 $e\nu$</td>
<td>155</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>1500 $\mu\nu$</td>
<td>215</td>
<td>215</td>
<td>215</td>
</tr>
<tr>
<td>1500 both</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>1750 $e\nu$</td>
<td>164</td>
<td>163</td>
<td>164</td>
</tr>
<tr>
<td>1750 $\mu\nu$</td>
<td>229</td>
<td>229</td>
<td>229</td>
</tr>
<tr>
<td>1750 both</td>
<td>95</td>
<td>96</td>
<td>96</td>
</tr>
</tbody>
</table>

Table 6: Lower limits on W' and W^* masses. The first column is the decay channel ($e\nu$, $\mu\nu$ or both combined) and the following give the expected (Exp.) and observed (Obs.) mass limits.

<table>
<thead>
<tr>
<th>decay</th>
<th>Mass limit [GeV]</th>
<th>W'</th>
<th>W*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e\nu$</td>
<td>1370</td>
<td>1370</td>
<td>1260</td>
</tr>
<tr>
<td>$\mu\nu$</td>
<td>1210</td>
<td>1290</td>
<td>1020</td>
</tr>
<tr>
<td>both</td>
<td>1450</td>
<td>1490</td>
<td>1320</td>
</tr>
</tbody>
</table>

Figure 5: Normalized cross section limits ($\sigma_{\text{limit}}/\sigma_{\text{theory}}$) for W' as a function of mass for this measurement and those from CDF and CMS. The cross section calculations assume the W' has the same couplings as the standard model W boson. The region above each curve is excluded at 95% CL.

Acknowledgements

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DSNRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; AARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK)
and BNL (USA) and in the Tier-2 facilities worldwide.

References

University of Sao Paulo, Sao Paulo, Brazil

24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest;
 (c) West University in Timisoara, Timisoara, Romania

26 Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina

27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

28 Department of Physics, Carleton University, Ottawa ON, Canada

29 CERN, Geneva, Switzerland

30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

31 (a) Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física,
 Universidad Técnica Federico Santa María, Valparaíso, Chile

32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics,
 University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China

33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3,
 Aubiere Cedex, France

34 Nevis Laboratory, Columbia University, Irvington NY, United States of America

35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland

38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

39 Physics Department, Southern Methodist University, Dallas TX, United States of America

40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America

41 DESY, Hamburg and Zeuthen, Germany

42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

44 Department of Physics, Duke University, Durham NC, United States of America

45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

46 Fachhochschule Wiener Neustadt, Wiener Neustadt, Austria

47 INFN Laboratori Nazionali di Frascati, Frascati, Italy

48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

49 Section de Physique, Université de Genève, Geneva, Switzerland

50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

51 Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia

52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut
 National Polytechnique de Grenoble, Grenoble, France

56 Department of Physics, Hampton University, Hampton VA, United States of America

57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik,
 Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

59 Faculty of Science, Hiroshima University, Hiroshima, Japan

60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

61 Department of Physics, Indiana University, Bloomington IN, United States of America

62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

63 University of Iowa, Iowa City IA, United States of America

64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

67 Graduate School of Science, Kobe University, Kobe, Japan

19
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
Department of Physics, Queen Mary University of London, London, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Department of Physics & Astronomy, NS 102, University of Louisville, Louisville, KY, 40245, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli; Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCP TM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
INFN Sezione di Pavia; Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Also at TRIUMF, Vancouver BC, Canada

Also at Department of Physics, California State University, Fresno CA, United States of America

Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland

Also at Department of Physics, University of Coimbra, Coimbra, Portugal

Also at Università di Napoli Parthenope, Napoli, Italy

Also at Institute of Particle Physics (IPP), Canada

Also at Louisiana Tech University, Ruston LA, United States of America

Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

Also at Manhattan College, New York NY, United States of America

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan

Also at High Energy Physics Group, Shandong University, Shandong, China

Also at California Institute of Technology, Pasadena CA, United States of America

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Also at Section de Physique, Université de Genève, Geneva, Switzerland

Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

Also at Institute of Physics, Jagiellonian University, Krakow, Poland

Also at Department of Physics, Oxford University, Oxford, United Kingdom

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Also at Department of Physics, Nanjing University, Jiangsu, China

Deceased