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Abstract—Pareto analysis is a broadly applicable method to
model and analyze tradeoffs in multi-objective optimization
problems. The set of Pareto optimal solutions is guaranteed
to contain the best solution for any arbitrary cost function or
selection procedure. This work introduces a method to explicitly
take uncertainty into account during Pareto analysis. A solution
is not modeled by a single point in the solution space, but
rather by a set of such points. This is useful in settings with
much uncertainty, such as during model-based design space
exploration for embedded systems. A bounding-box abstraction is
introduced as a finite representation of Pareto optimal solutions
under uncertainty. It is shown that the set of Pareto optimal
solutions in the proposed approach still captures exactly the
potentially best solutions for any cost function as well as any
way of reducing the amount of uncertainty. During model-based
design space exploration, for instance, design and implementation
choices that are made during the development process reduce
the amount of uncertainty. Steps in such a refinement trajectory
can render previously Pareto optimal solutions suboptimal. The
presented results provide a way to ensure that early selections
in the refinement process remain valid.

Keywords-Pareto analysis, uncertainty, model-based design
space exploration, refinement.

I. INTRODUCTION

Pareto analysis is a well-known concept to model and ana-
lyze tradeoffs in multi-objective optimisation problems [1]. It
originates from the economist Vilfredo Pareto who introduced
a notion of optimality that states that a solution is optimal if it
is not possible to find another solution which improves some
of the objectives without worsening any of the others [2]. The
Pareto optimal solutions constitute the Pareto frontier of the
problem space and they accurately capture any tradeoff among
the objectives. To ultimately select a solution, a cost function,
such as a weighted sum of the various objective values, may
be used to assign a cost to every solution. It is guaranteed that
the cheapest solution for an arbitrary monotone cost function
is always found on the Pareto frontier.

In much of the existing work on Pareto analysis, the
solutions are represented by points in the solution space.
Sometimes, however, uncertainty is present in the values of
solutions. The work in the present paper investigates this
situation and models solutions as arbitrary sets of points in the
solution space. This naturally applies to model-based design
space exploration for embedded systems. Early in the design
phase the models will contain a lot of uncertainty because
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of, e.g., unresolved design choices and missing information.
Objectives such as system latency and energy consumption
have therefore not single values but rather can take their value
from a range or set of values. The main question investigated
in this work is under which conditions decisions that are based
on information with uncertainty remain valid when (some of)
the uncertainty is resolved.

Contribution. The main contribution of this paper is a
general method to take uncertainty into account during Pareto
analysis which fits in the framework of [1]. Furthermore, it
is shown how this method naturally fits the area of model-
based design space exploration of embedded systems. The
development process — or refinement process — reduces the
amount of uncertainty in the models. The proposed method
provides a way to ensure that early choices in the refinement
process remain valid. Furthermore, it is shown by example that
Pareto analysis with uncertainty provides a way to trade design
space size against model size. This can be very effective when
the underlying analysis tools do not suffer (much) from the
additional state space load. This work connects Pareto analysis,
abstraction/refinement theory and model-based design-space
exploration.

Related Work. There is a plethora of work on optimization
under uncertainty, see e.g., [3] and [4]. Pareto analysis and
uncertainty is explored in [5], [6] and [7] which all consider
intervals on objectives for Pareto dominance. In [5] and [6]
probability distributions are used to distinguish designs which
have overlapping valuations. That approach is different from
the approach of the present paper which is centered around
non-deterministic domination between sets. Probably most
closely related is [7] which uses a dominance relation on
intervals that is almost equivalent to our definition. Our work
in addition gives a justification for such a definition and inves-
tigates the impact of the reduction of uncertainty. Traditional
refinement theories ([8], [9], [10], [11]) focus on behavioural
refinement relations whereas our abstraction/refinement ap-
proach focuses on performance.

Outline. In Sec.1I it is argued that uncertainty is needed to
build faithful models. Sec. III recalls Pareto analysis theory and
introduces a small example of a typical DSE problem which
serves as a running example throughout the paper. Sec.IV
formally defines the model-based design space exploration
problem. Sec.V proposes a method to fit uncertainty in the
framework of [1]. It shows a natural way of modeling un-
certainty — by a set of possible values (for a property such as
system latency) instead of by a single value. Such a set can be



accurately represented by a finite representation. Furthermore,
it is shown that the resulting Pareto frontier is both sufficient
and necessary when the amount of uncertainty is reduced.
Sec. VI describes an industrial case study from the digital
copying domain. It demonstrates how the framework presented
in the present paper can be used. Finally, conclusions are
presented in Sec. VIL.

II. UNCERTAINTY IN MODEL-BASED DESIGN SPACE
EXPLORATION

One of the most important properties of model-based design
space exploration is that exploration of the design space before
the realization of a system is based on formal models rather
than on ad-hoc calculations or physical prototypes. This should
be more precise when compared to ad-hoc calculations and
faster and cheaper when compared to the usage of physical
prototypes. The models that are used are thus always models
of non-existing systems. A clear prerequisite is that the models
are faithful. This means that any implementation of a model
should preserve the properties that have been discovered by
analysis of the model. Unfortunately, this is problematic as
even the faithful modeling of existing systems is far from
trivial. In [12], for instance, it is observed for verification that
“model hacking precedes model checking”. The authors mean
by this that the first few attempts to verify a formally modeled
system often are only used to get the model right. How can
a non-existing system be modeled faithfully if modeling an
existing system already is very difficult? How can model-based
design space exploration be applied if the models cannot really
be trusted? The approach taken in this paper is to explicitly
take uncertainty into account during both the modeling and
during the interpretation of the analysis results. There are
various ways to achieve this:

e Non-deterministic behavior in the model. Under-
specification of system behaviour can be used to (i) keep
various implementation routes open (e.g., priorities of
tasks are left unspecified), (ii) to model partial knowledge
(a task takes at least 10 ms and at most 20 ms), or (iii)
to abstract from interaction (e.g., harddisk speed between
50 and 150 MB/s depending on the load). Furthermore,
there can be inherent non-determinism in the system or
environment (such as jitter in the arrival times of a task).

e Probabilistic behavior in the model. System behavior
(execution time of a task, the system workload, etc.) may
have a known probability distribution associated with it.
Note that non-determinism can be used for this, but then
some useful information may be lost.

o Post processing of analysis results. Analysis results may
not be faithful because of (i) incomplete analysis and
(i1) errors in the model. The state space explosion often
prevents exhaustive analysis of formal models. This is
very visible in design space exploration where in general
a large number of models is analyzed. Even an analysis
time of a minute per model is too much if there is a large
number of models. As a result, only approximations of the
bounds of system properties may be known. Furthermore,

invalid abstractions such as faulty timing or ignoring
memory fragmentation can have a significant effect on
system properties. The analysis results can be adjusted
afterwards in a post-processing step to counter these
effects.

It often is tempting to reduce the uncertainty in high-
level models to make them more amenable for analysis tools
(simulation, model checking, etc.). The next example shows
that this can have a significant effect on the analysis result
and thus on the faithfulness of the model. Consider a system
with 5 tasks, their precedences and their execution times
(between parenthesis): D1(9) — A(1) — B(1000) and
D2(10) — C(1000). Tasks A and C share the same non-
preemptive resource. Assume that the supervisory control
system starts tasks as soon as they are enabled. If the execution
times of D1 and D2 are indeed exactly 9 and 10 time units
respectively then there is only a single execution: task D1
and D2 run in parallel, then A runs, and finally B and C run
in parallel. The system latency thus equals 1010 time units.
Suppose, however, that the execution time of D2 is not exactly
10 time units but it might sometimes be a bit faster: potentially
completing in 9 time units. The following schedule then also
becomes possible: D1 and D2 run in parallel, D2 finishes
first, then C starts which delays A and B. The latency of this
behavior equals 2010 — almost twice as long — because task
D2 is a bit faster than expected.

The example demonstrates that there may be a thin line
between a faithful and an unreliable model. A similar effect of
small disturbances with significant consequences in the results
is described in [13]. This work analyzes the effect of clock
drifts on the upper bound of message latency. It is the case
that a relatively small drift in clocks of components has a large
impact on the message latency. This may be due to the same
kind of “inversion” effect that occurs in the example above.

In model-based design space exploration, decisions are
made based on system properties derived from high-level
models of non-existent systems. This section argued that it
is unavoidable that the models and therefore the analysis
results contain uncertainty in order to be faithful. The present
paper investigates the impact of this uncertainty on the high-
level decisions that are made during model-based design space
exploration.

III. PARETO ANALYSIS PRELIMINARIES

Pareto analysis is a broadly applicable method to model and
analyze tradeoffs in multi-objective optimization problems.
This section recalls some definitions and results from [1].
First, however, a small design-space exploration problem is
introduced that serves as a running example.

Fig. 1 shows a small synthetic system which poses a typical
design space exploration problem. The system consists of
an FPGA with 3 logic blocks: two functional blocks and
1 memory block. The application that runs on this FPGA
consists of 10 objects that need to be processed by the four
functional steps A through D in order. The workload per step
per object is given in the step, e.g., A has a workload of 2. Each



object also needs 10 units of memory during the processing.
Note that the mapping of the functional steps to either F1 or
F2 is not yet determined.

| Memory (size 10, 20, 30, 40 or 50) |
i ~
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[85, 95] [105, 115]

Fig. 1. A small design-space exploration example. There are 16 ways to
map the functional steps to the two functional blocks and there are 24 totally
ordered priority assignments of the tasks. Combined with a memory with a
size in {10, 20, 30,40, 50} this gives 16 x24 x5 = 1,920 design alternatives.

The time that each processing step takes is the product of
the load of the step and the unit processing time of the block
to which it is mapped. For instance, if step A is mapped to
F1 then it takes between 2 x 85 and 2 x 95 time units. The
uncertainty in the execution times of the functional blocks
reflects uncertainty about the ultimate implementation of the
functionality. Taking this into account improves the faithful-
ness of the model. The two system properties of interest are
system latency and memory size. There are three unresolved
design choices: (i) how much memory does the system need,
(i1) how should the steps be mapped, and (iii) what should the
task priorities be?

A gquantity is a set () with a partial order <g. The memory
size and the system latency of the running example can both
be modeled as a natural number and can be compared with the
natural ordering which makes them quantities. A configuration
space is the Cartesian product Q1 X Q2 X - -+ X @, of a finite
number of quantities, and a configuration is an element of a
configuration space. The space N x N which contains tuples
of memory and latency values is the configuration space of
the running example. A concrete configuration is, for instance,
(30,2098): a memory size of 30 and a latency of 2098. If ¢; =
(c1,...,c¢)and co = (ci,...,cB) are two configurations from
the same configuration space S then c¢; dominates ¢y, denoted
by ¢1 =g ¢y if and only if ¢} <q, ¢ for all dimensions i.
The irreflexive variant — strict dominance — is denoted by <g.
The notation c;[k] is used to denote c§. If S is clear from
the context then it is omitted from the <g notation. Consider
two concrete configurations from the running example: a =
(20,5068) and b = (30,7000). Then a < b because 20 < 30
and 5068 < 7000.

A set C' of configurations is said to be Pareto minimal
if and only if for every c1,co € C holds that ¢; £ co.
In general, configurations that are not strictly dominated by
other configurations are called Pareto points, and are Pareto
optimal. A configuration set C'; dominates a configuration set
Cs from the same space, denoted by C; < Cs if and only if

for every co € Cy there is some ¢; € C such that ¢; < co.
Two sets of configurations C7,C> from the same space are
equivalent, denoted by C7; = Cs if and only if C; < Cs and
C5 =< (4. Every finite set C' of configurations has a unique
Pareto minimal subset D such that D = C'. This is the Pareto
frontier of the set of configurations, and consists of all Pareto
points of C'.

Let (Q, =) be a poset. A cost function on a configuration
space S is a function f : S — (@ that is montone: for all
c1,¢o € S it holds that if ¢; < ¢, then f(c1) =g f(c2).
Let C' be a set of configurations. A configuration ¢ € C' is
cost optimal for C if f(c) is minimal w.rt. <o in the set
{f(¢) | ¢ € C}. The function that projects configurations of
the running example to the system latency dimension is a cost
function (one that favours system latency over memory size).
An important result is that the Pareto frontier is necessary
and sufficient to represent all possible tradeoffs w.r.t.cost
functions.

The running example immediately shows that point values
in the N x N configuration space may not be suitable to
model the problem because the system has more than a
single value for its latency due to the uncertainty w.r.t.task
execution times. Observant readers may have noticed that
[1] also allows a partially ordered domain of infervals to
model uncertainty. However, instead of going directly to such
a partially ordered set of intervals, the present paper takes a
more structured approach by modeling uncertainty as arbitrary
sets of configurations and by showing that such arbitrary sets
have a finite interval representation which fits in the framework
of [1].

IV. MODEL-BASED DESIGN SPACE EXPLORATION

Universes M of models and P of parameters are assumed,
and Q denotes the set of all quantities. Each parameter can
take values from some quantity: The gnt : P — Q function
gives the quantity of a parameter. Let P = {py,...,p,} C P
be a set of parameters. A function v : P — gnt(p;) U--- U
gnt(p,) with v(p;) € gnt(p;) is called a parameter valuation.
The set of all parameter valuations of P is denoted by val(P).
A model M € M captures the behavior of a system and is
parameterized by a set of parameters, denoted by param(M).

Definition 1 (Design Space): The design space of a model
M is the set of design alternatives {(M,v) | v €
val(param(M))} and is denoted by dspace(M).

The DSE problem of the running example can be described
by a model with parameters that specify the memory size, the
mapping and the task priorities. The task priorities are left
unspecified in the model. This is a technique to trade design
space size for model size. The design space is a factor 24
smaller, but the state space of single design alternatives might
be larger as additional non-determinism due to unspecified
priorities is present. The model in this case has 5 param-
eters: {mem_size, mapA, mapB, mapC,mapD}. The quantities
are the following: gnt(mem_size) = {10,20,30,40,50}, and



gnt(mapA) = gnt(mapB) = gnt(mapC) = qnt(mapD) =
{F1, F2}. This gives 5 x 2 = 80 design alternatives.

The size of the design space of a model clearly is expo-
nential in the number of parameters. A dynamic quantity for
M is a quantity () whose value is obtained by evaluation
of system behavior. Typical examples include latency and
energy consumption. The evaluation usually consists of model
analysis by e.g., a simulator or analytic performance model.

Configurations are formed by a combination of relevant
parameter valuations and values for dynamic quantities. A
parameter is relevant if its value could potentially directly
distinguish quality of design alternatives. For instance, the
mem_size parameter of the running example is relevant be-
cause a system with less memory is cheaper. Furthermore, the
running example has a single dynamic quantity: the system
latency.

Definition 2 (Configuration Space): Let M be a model, let
{p1,-..,Pm} C param(M) be the set of relevant parameters
and let QQ1,...,Q, be a set of dynamic quantities for M.
The configuration space of M, denoted by cspace(M), is the
Cartesian product gnt(p1) X ... X gnt(pm) X Q1 X ... X Q.

The running example thus has a 5-dimensional design space
with 80 design alternatives and a 2-dimensional configuration
space which shows the latency-memory tradeoff.

In most existing work on Pareto analysis a design alternative
is mapped to a single configuration, which allows, for instance,
the application of the framework of [1] (Sec.III). In order to
be able to express uncertainty, however, a design alternative is
mapped to an arbitrary, non-empty, set of configurations in the
present paper. Such a set can express lower and upper bounds
on properties such as latency and energy consumption, and
is also general enough to express correlations between such
dynamic properties within a single design alternative.

config : dspace(M) — 26P@e(M) \ ) (1)

A refinement is a relation on the set of models that relates
compatible and faithful models. Two models are compatible if
they have the same configuration space, and if the parameters
of the refined model are a subset of the parameters of the
refinement. A refinement is faithful if the behavior of the re-
finement is contained in the behavior of the refined model [8],
[9], [10], [11], in our case, w.r.t. the configuration space.

Definition 3 (Refinement): Let M and M’ be models. It is
said that M’ refines M, denoted by M’ T M, if and only if :
o (compatibility) param(M) C  param(M’) and
espace(M) = cspace(M)
o (faithfulness) config((M',v")) C config((M,v)) for all
v € val(param(M)) and v" € val(param(M')) such that

v'(p) = v(p) for all p € param(M).

The task priorities have been left unspecified in the current
model of the running example as a way to treat design space
size against model size. A model which explicitly adds task
priorities with a new set of parameters refines the current

model. Faitfulness follows from the fact that such a model
exhibits a subset of the behavior of the current model.

Refinement is defined on the level of models rather than on
the level of design alternatives. Design alternatives of related
models with the same high-level parameter valuation are, how-
ever, connected by the faithfulness requirement. Let M’ & M
and let v € val(param(M)), and let v' € val(param(M'))
such that v'(p) = v(p) for all p € param(M). It is said that
the design alternative (M’,v') refines the design alternative
(M,v), denoted by (M’',v') C (M,v). Thus, if A’ refines
A then these design alternatives have the same high-level
parameter valuation by definition.

Consider the running example and let A = (M, mem_size =
10, mapA = Fl,mapB = F2,mapC = F1,mapD = F2). Let
M’ be a refinement of M that adds priorities: a number from
1 to 24 that specifies a total order between the four tasks. Let
A" = (M', mem_size = 10, mapA = F1,mapB = F2,mapC =
F1,mapD = F2,prio = 2). Then A’ C A because A and A’
have the same valuation for the high level parameters.

The design space exploration problem is to find a minimal
set of optimal design alternatives. There are two complicating
factors which prevent direct application of the definitions
summarized in Sec. III:

e Design alternatives are mapped to sets of configura-
tions in order to be able to express uncertainty and the
correlations between quantities within a single design
alternative.

o All possible refinements of a design alternative must be
taken into account, i.e., decisions on the high level must
remain valid.

V. PARETO ANALYSIS AND UNCERTAINTY
A. Non-deterministic configurations

A natural way to express uncertainty w.r.t. the quantity val-
ues of a certain design alternative is to model this uncertainty
by a set of configurations instead of by a single configuration,
as proposed by Eq. 1.

Definition 4 (Non-deterministic configuration): Let S be a
configuration space. A non-deterministic configuration is a
non-empty subset of S.

To establish dominance at a higher level model requires
that it is always preserved by refinement. Refinement — or
reduction of uncertainty — corresponds to the act of reducing
the set of configurations, as proposed by Def. 3. This leads to
the following definition of dominance.

Definition 5 (Non-deterministic dominance): Let C and C’
be two non-deterministic configurations on the same configu-
ration space. Then C dominates C’, denoted by C' <* C’, if
and only if for all ¢ € C' and ¢ € C’ holds that ¢ < ¢.

Non-deterministic domination can be lifted to the design
space of a model as follows. Let M be a model and let
Ay, Ay € dspace(M). Then Ay =* A, if and only if A; = Ay
or config(A1) <* config(As).



Proposition 1: =<* is a pre-order on the design space’.

The relation is not a partial order because two different
design alternatives can be mapped to the same singleton
configuration: this invalidates anti-symmetry. Two design alter-
natives A; and As are equivalent if and only if A; <* A, and
Ag <* A1, and is denoted by A; = As. This is an equivalence
relation, and the equivalence class of a design alternative A is
denoted by A. The quotient of a design space of a model M
is defined as follows:

gspace(M) = {A | A € dspace(M)}

Proposition 2: If A; = A,, then config(41) =
config(As) = {c} for some configuration c.

Equivalent design alternatives thus have the same singleton
configuration and hence there is no reason to prefer one
over the other. The pre-order induces a partial order on the
quotient design space. This enables the re-use of the definitions
introduced in [1]: gspace( M) together with the induced partial
order on it is a quantity. Note, however, that the multi-
dimensional configuration space of Def.2 is collapsed into a
single partially ordered quantity. This disables much of the
possibilities of the framework. The next subsection presents
two finite representations of which one addresses this issue.

B. Finite representations of non-deterministic configurations

The following definition represents an arbitrary non-
deterministic configuration by two configurations which de-
scribe its bounding box. To this end, from now on, we assume
that all quantities are complete lattices, so that infimum and
supremum are guaranteed to exist.

Definition 6 (Bounding Box Representation): Let S be a
configuration space, and let C' C S be a non-deterministic
configuration. Then inf(C') is the configuration (vq,...,v,)
where v; = inf({c[i] | ¢ € C'}) and sup(C') is the configuration
(v1,...,0,) where v; = sup({c[i] | ¢ € C}). The set
{inf(C), sup(C)} is the bounding box of C, and is denoted
by BB(C).

Note that the infimum and supremum points of a non-
deterministic configuration do not need to be elements them-
selves of that non-deterministic configuration. Fig.2 shows a
non-deterministic configuration and its bounding box repre-
sentation.

The finite bounding box representation, which itself is
a non-deterministic configuration, is an exact abstraction
w.r.t.the non-deterministic dominance relation. Note that
inf(C) = sup(C). The following theorem show that correla-
tions between quantity values in a non-deterministic configu-
ration are not important for Pareto analysis and we are allowed
to combine the individual extreme values per quantity to obtain
the bounding box.

!Proofs are published in [14].
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Fig. 2. A non-deterministic configuration C' in a two-dimensional configu-
ration space and its bounding box.
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Fig. 3. Fig.(a) shows bounding boxes of three design alternatives in a 2-
dimensional configuration space. Only Aa <* As; the other pairs of design
alternatives are not related. Fig. (b) shows two bounding boxes with the same
range in the horizontal dimension but which are unrelated nevertheless.

Theorem 1: Let M be a model and let Aq,As €
dspace(M). Then A; <* A, if and only if BB(config(A;)) <*
BB(config(42)).

Fig. 3 shows examples of how the dominance relation <*
can be represented by bounding boxes.

The quotient design space together with the induced partial
order on it form a quantity. Together with the finite bounding
box representation this can be used for modeling and analysis
using the framework of [1]. Note, however, that there is only a
single quantity: the quotient design space, and not the various
dimensions of the configuration space. This is the result of
the approach to model uncertainty as sets of configurations.
The remainder of this section presents an alternative finite
representation, interval representation, based on the original
quantities in the configuration space. This gives rise to a
multi-dimensional interval configuration space that fits the
framework of [1] and in which the original quantities are
retained.

A bounding box represents intervals on each quantity. The
set of intervals of quantity @) is the following:

Vo={(zy)eQxQ|z=quy}
A partial order can be defined on the set of intervals, which
makes the pair (V¢, <) a quantity in the sense of [1].
Definition 7 (Interval order): Let (z,y),(z',y’) € Vq.
Then (z,y) < («/,y’) if and only if (z,y) = («/,¥') Vy =<0
x'.

Proposition 3: The < relation is a partial order on V.



The next definition gives the interval representation of a
non-deterministic configuration. Since intervals of quantities
are quantities themselves, the interval representation gives a
configuration in the sense of [1].

Definition 8 (Interval Representation): Let C C @1 X

- X @p be a non-deterministic configuration. The in-
terval representation, denoted by inferval(C'), is the tuple
((z1,91),-- -5 (Tn,yn)) € Vg, x --- x Vg, , where z; =
inf({clj] | c € C}), and y; = sup({c[j] | c € C}).

The order on intervals is almost equivalent to the non-
deterministic dominance relation. For one of the directions
of the equivalence the assumption is needed that for every
dimension there are no two design alternatives with an equal
non-point interval in that dimension. This avoids that using
the interval representation design alternatives are dominated
that would not be dominated in the original definition of non-
deterministic dominance (Def. 5). For instance, Fig. 3(b) shows
the bounding boxes of design alternatives A; and As. Be-
cause of reflexivity of < it holds that interval(config(A1)) <
interval(config(As)), whereas A; A* As. Despite this prob-
lem, the interval representation is very useful since it gives rise
to a multi-dimensional interval configuration space whereas
the bounding box representation collapses all dimensions into
a single dimension. Multiple dimensions enable the full power
of the framework of [1].

The assumption can be verified by a tool that uses the
interval representation. Moreover, it can be justified by the
observation that the non-point intervals usually originate from
dynamic quantities (also see Def. 2). Since there is uncertainty,
it can be assumed that no two design alternatives have the exact
same bounds for a dynamic quantity: if the analysis tools tell
us this nevertheless, then this is an artifact from the modeling
process which can be corrected automatically.

Theorem 2: Let M be a model and let A;,A; €
dspace(M). If for every dimension holds that no two de-
sign alternatives have the same non-point interval represen-
tation for that dimension, then A; =<* A, if and only if
interval(config(Ay)) < interval(config(As)).

Let M be a model. The interval space of M, denoted by
ispace(M), is the set {interval(config(A)) | A € dspace(M)}.
From now on it is assumed that the interval space of a model
satisfies the condition stated in Thm. 2.

The work presented in this paper has been added to the
OCTOPUS toolset [15]. This toolset can be used to model
and analyze the DSE problem of the running example. The
UPPAAL [16] backend has been used to analyze the latency
bounds of all 80 design alternatives (a matter of seconds on a
regular personal computer). The Pareto frontier consists of 23
design alternatives, and many design alternatives have overlap
w.r.t. their latency values.

C. Pareto frontiers and refinements

Refinement reduces the amount of uncertainty. This sub-
section studies the effects of refinement on the sufficiency and

.Cg
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Fig. 4. Fig. (a) shows the bounding box representations of four design alter-
natives. Fig. (b) shows a problematic setting for refinement and dominance.

necessity of the Pareto frontier. Informally, sufficiency means
that the Pareto frontier contains enough design alternatives,
and necessity means that it does not contain too many design
alternatives. The following theorem states that the Pareto
frontier shows all design alternatives that can be optimal after
refinement. L.e., refinement does not add Pareto optimal design
alternatives that were not Pareto optimal previously.

Theorem 3 (Sufficiency): Let M and M’ be models such
that M’ C M, let A € dspace(M), let A’ € dspace(M'), and
let A’ C A. If A’ is Pareto optimal in gspace(M'), then A is
Pareto optimal in gspace(M).

Note that the reverse implication of Thm.3 does not hold.
Fig.4(a) shows such a situation. Note that A} C A; and that
Al T A,. The figure shows that A; and As are both Pareto
optimal in {A;, A2}. However, only A’ is Pareto optimal in
{471, A3}

The necessity of the Pareto frontier depends on whether the
exact non-deterministic configurations or only their finite rep-
resentations are known. In practice, often no non-deterministic
configurations are computed by analysis tools other than in
the form of lower and upper bounds on individual quantities.
This exactly coincides with the bounding box or interval
representation. If it is assumed that any behavior within the
finite representation can be achieved by a refinement, then the
Pareto frontier is necessary.

Theorem 4 (Necessity): If A is Pareto optimal in
gspace(M) and every behavior in the bounding boxes
of the design alternatives are possible refinements, then a
A’ T A and a cost function exist such that A’ is the cost
optimum in gspace(M").

Necessity of the Pareto frontier in case when the exact shape
of the non-deterministic configuration is taken into account
does not hold in general. Consider Fig.4(b) and let A; =
{c1}, As = {e2}, and A3 = {c3,cq4}. Then Ay A* Az and
Ay A* As, yet any “strict” refinement of Az is dominated
by either ¢; or co. A cost function that would make Aj the
optimum, cannot be safe under refinement: a strict refinement
of As clearly is not the cost optimum because a cost function
must be monotonic.

Consider the running example and suppose that the ex-
ecution time of F1 and F2 is understood better because



there is more clarity about the exact implementation of the
processing units: F1 takes between 89 and 91 time units,
and F2 takes between 109 and 111 time units per unit of
load. The Pareto frontier now consists of 12 instead of 23
design alternatives and this shows that refinement (or the
reduction of uncertainty) can easily remove design alternatives
from the Pareto front. Before refinement there are 8 Pareto
optimal design alternatives with a memory size of 10, and
after refinement there is only a single Pareto optimal design
alternative with a memory size of 10.

D. Refinements and cost functions

Tradeoff options based on information with uncertainty may
cease to be optimal choices after the amount of uncertainty is
reduced. This is to be expected. The example in Fig. 4(a) can
be used to show this. Suppose we take as a cost function f
the value in the horizontal dimension and let F'(A) be the
worst-case value of f(c) it may assume for any configuration
¢ € config(A). Then F(As) < F(A1), but F(A]) < F(A}).
The refinement step has improved A; more than As. Thus,
worst-case cost optimal non-deterministic configurations are
in general not preserved by refinement. This means that in
such cases, decision need to be postponed till after as much
as possible refinement, as suggested by the fact that A; and
Ag were both Pareto optimal.

The problem of which Pareto optimal element to choose for
implementation cannot be solved without knowing the exact
cost function. The priority function as defined in [1], however,
is safe under refinement: the set of cost optimal configurations
does not grow when refinements are considered (although it
can shrink as demonstrated by Fig. 4(a)).

The priority function assigns partial priorities to dimensions.
Worse configuration values in low priority dimensions may be
overruled by better values in high priority dimensions.

Definition 9 (Priority function [1]): Let S = Q1 X+ --XQy,
be a configuration space and let < be a partial ordering on
{1,2,...,n}. The priority function is the identity function on
S, and the order is defined as ¢ =<, ¢ if and only if for every
1 <k <n clk] 2 [k] or some m exists such that m <k and
c[m] < ¢'[m].

The following theorem states that the priority function can
be used for decisions on the high level. It implies that the so-
lutions on the high-level which are not priority optimal can be
discarded safely since these solutions will not become priority
optimal after refinement. Note that this theorem applies to the
interval representation, because this is the only representation
with a multi-dimensional configuration space.

Theorem 5: Let M and M’ be models, let M’ T M, let
A € dspace(M), let A" € dspace(M’) and let A’ C A. If
interval(config(A’)) is priority optimal in ispace(M'), then
interval(config(A)) is priority optimal in ispace(M).

Consider the refinement of the running example. The pri-

ority function can be applied to make latency more important
than memory. In that case, only one design alternative (the

one with memory size 10) is filtered out because the others all
overlap w.r.t.latency and thus 11 design alternatives remain,
and none has a memory size of 10. On the other hand, if
memory is more important than latency, then 11 of the 12
Pareto optimal design alternatives are filtered out because there
was only a single Pareto optimal solution with a memory size
of 10. Note that the task priorities have not yet been specified
in the model used in the running example. This choice was
motivated as a means to trade design space size for model size.
The Pareto frontier now consists of 11 design alternatives. In
order to find an optimal task priority assignment only these 11
design alternatives need to be considered further. This gives
11x24 = 264 refinements. Thus, in order to analyze the design
space a total of 80 + 264 = 344 dynamic analysis runs of the
UPPAAL model checker are needed. This saves a factor of
léiio = 5.58 compared to the situation in which the priority
assignments are added directly as a model parameter. This
is an effective method to attack the design space explosion
problem, especially if the underlying analysis tools do not
suffer from additional state space load. This is the case for
simulation and sometimes even for model checking (if the
state space is small or is represented symbolically).

VI. CASE STUDY

This section presents an industrial case study of the dat-
apath of a professional printer under development from Océ
technologies (http://www.oce.nl). The datapath is the digital
image processing part of the machine. It contains image
processing steps such as, for example, scaling and sharpening.
The datapath is implemented on a general purpose PC which is
connected to the scanner and printer hardware via dedicated
PCle boards. Fig.5 shows an informal representation of the
copy application and its mapping to the execution platform.

PCle(16x)
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PRINTER
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- e 4

PCle(1x)
&>
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DDR2 :

P
PCle(1x)

The copy application (ellipses) and its mapping to the platform.

Fig. 5.

A copy job starts with scanning a page (left upper corner of
the figure). Then, the image data is transferred to the controller
and an image processing step is performed on the PCle board.
The second image processing step is performed on the GPU.
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Fig. 6. The tradeoff between harddisk cost and latency in a “parallel
coordinates” view.

The image data then is compressed and is written to a harddisk.
It then is read again from the harddisk, decompressed and sent
to the printer hardware. The various steps have fixed-size RAM
buffers between them to transfer the image data (B3, B4 and
B5). The tasks work on various levels of abstraction: scan,
print, IP1, and IP2 work on the image data of whole pages,
whereas the other tasks work on parts of the page’s image data
in order to benefit from pipelining.

The behavior of the system is influenced by the type of
pages that are copied. Pages with high-resolution photographs
are more difficult to compress than pages with only plain text.
This means that the amount of data that is processed by the
harddisk may vary significantly per page. Furthermore, the
speed of the harddisk is influenced by the load on it. If data
is read while at the same time data is written, then the speed
drops. Thus, the input of the system (the pages to copy) can
effect system latency.

A choice needs to be made between various harddisks, each
with a different cost. L.e., the design space consists of 3 design
alternatives, A, B and C. Alternative A has the slowest disk,
and C has the fastest disk. An important performance metric is
the system latency for copying a certain number of pages. As
explained above, the latency may depend on the complexity of
the individual pages. In order to get a representative overview,
180 typical copy jobs have been selected for analysis: 30 jobs
with 20 easy to compress pages, 30 jobs with 20 hard to
compress pages, 30 jobs with 20 pages that are neither easy
nor hard to compress, and easy, medium and hard sets with 30
jobs for 50 pages. A configuration space with 7 dimensions is
created. The minimal and maximal system latency in each of
the 6 sets of 30 jobs is used to create latency intervals. (Note
that the latency of the individual jobs also is uncertain.)

The OCTOPUS toolset implements the approach for tradeoff
analysis with uncertainty and has been used to model and
analyze the system. Fig. 6 shows the results: all three design
alternatives are on the Pareto frontier. Design alternative C

clearly has the lowest latency. However, it does not dominate
the other design alternatives because these have a cheaper hard
disk. Application of the priority filter with the priority that any
of the latency dimensions is more important than harddisk cost
gives design alternative C as the unique best choice.

VII. CONCLUSIONS

Pareto analysis is a broadly applicable method to model and
analyze tradeoffs in multi-objective optimization problems and
it is used in many engineering disciplines. The present paper
introduces a way to explicitly take uncertainty into account
and has been applied to the domain of model based design
space exploration of embedded systems. The proposed method
has been implemented in the OCTOPUS toolset. Furthermore,
the running example shows a technique to trade design space
size for model size by leaving design parameters unspecified
at first. The example shows that this can potentially be very
effective if the underlying analysis tools do not suffer much
from the additional state space load. Finally, an industrial
case study showed the applicability of Pareto analysis with
uncertainty.
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