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ON THE EXTENSION OF STRINGLIKE LOCALISED SECTORS

IN 2+1 DIMENSIONS

PIETER NAAIJKENS

Abstract. In the framework of algebraic quantum field theory, we study the
category ∆A

BF
of stringlike localised representations of a net of observables

O 7→ A(O) in three dimensions. It is shown that compactly localised (DHR)
representations give rise to a non-trivial centre of ∆A

BF
with respect to the

braiding. This implies that ∆A
BF

cannot be modular when non-trivial DHR
sectors exist. Modular tensor categories, however, are important for topologi-
cal quantum computing. For this reason, we discuss a method to remove this
obstruction to modularity.

Indeed, the obstruction can be removed by passing from the observable
net A(O) to the Doplicher-Roberts field net F(O). It is then shown that
sectors of A can be extended to sectors of the field net that commute with the
action of the corresponding symmetry group. Moreover, all such sectors are

extensions of sectors of A. Finally, the category ∆F
BF

of sectors of F is studied

by investigating the relation with the categorical crossed product of ∆A
BF

by
the subcategory of DHR representations. Under appropriate conditions, this

completely determines the category ∆F
BF

.

1. Introduction

The study of superselection sectors and particle statistics has been a long-
standing subject in algebraic quantum field theory [26]. Superselection sectors
can be described as representations of a local net O 7→ A(O) of observables. The
physically relevant representations are selected by a certain selection criterion. A
superselection sector, then, is a (unitary) equivalence class of representations satis-
fying this criterion. These representations can be shown to have the structure of a
tensor category resembling the category of representations of a compact group. In
this category, one can define a braiding, closely related to the statistics of sectors.

It is well known that for the compactly localised representations first considered
by Doplicher, Haag and Roberts, the braiding is in fact symmetric in spacetimes of
dimension three or higher [20]. However, if one considers the weaker condition of
localisation in some “fattening string” extending to spacelike infinity, the braiding
is non-symmetric for spacetimes of dimension 3 or less [24]. Buchholz and Fre-
denhagen have shown that for massive particle states, this localisation condition
holds [7].

The category of such stringlike localised representations in three dimensions
automatically satisfies most of the axioms of a modular tensor category [2, 56]. This
class of tensor categories plays a prominent role in the theory of topological quantum
computation, see e.g. [22, 23, 31, 32, 46]. A good review can be found in [45]. This is
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one of the reasons why modular tensor categories are interesting, providing a reason
to investigate if we can obtain modular tensor categories from algebraic quantum
field theory. Another part of the motivation is provided by related constructions and
results in e.g. [30, 41, 48], where the extension of compactly localised representations
in d = 1 + 1 is discussed.

First, we give a brief overview of the basics of algebraic quantum field theory
(AQFT), also called local quantum physics. The leading idea in AQFT is that local
algebras of observables encode all relevant information of a given physical theory.
For each double cone O in Minkowski space M3 there is an associated unital C∗-
algebra A(O) of observables, which are said to be localised in O. This assignment
of observable algebras should satisfy the following properties:

(i) Isotony: if O2 ⊂ O2 then A(O1) ⊂ A(O2). We assume the inclusions are
injective unital ∗-homomorphisms.

(ii) Locality: if O1 is spacelike separated from O2, then the associated local
observable algebras commute.

(iii) Translation covariance: there is a strongly continuous action x 7→ βx of
the translation group M3 on the local algebras, such that βx(A(O)) =
A(O + x).

To avoid the trivial case we assume in addition that for each double cone O the
algebra A(O) contains an element that is not a multiple of the identity. Note that
the set of double cones in M3 is directed by inclusion. The inductive limit of this net
in the category of C∗-algebras is denoted by A and is called the quasi-local algebra.
By means of a specific faithful irreducible representation π0 : A → B(H0), typically
the vacuum representation, A is represented as a net of bounded operators on a
Hilbert space H0. It is then natural to consider π0(A(O))′′ for each O, where the
prime denotes the commutant. This leads to net of von Neumann algebras, which
we will again denote by A(O). This net turns out to be more convenient to work
with, and thus we will from now on assume that A(O) is a von Neumann algebra
for each O. The algebra A again will be the norm closure of the union of these local
(von Neumann) algebras. Note that A is not a von Neumann algebra in general.

The vacuum representation π0 must satisfy a few additional conditions. It should
be covariant under translations, say with a strongly continuous group of unitaries
U0(x), x ∈ M3. There is a unique (up to a phase) vacuum vector Ω such that
U0(x)Ω = Ω for all x. Moreover, the spectrum condition for the generators of
translations should hold: the joint spectrum of the generators of the translations
should be contained in the forward lightcone V +. For details and motivations see
e.g. [8]. Buchholz and Fredenhagen provide a construction that, given a massive
single particle representation, produces a corresponding vacuum representation π0
satisfying these criteria [7].

A superselection sector is then a unitary equivalence class of representations
of A satisfying a certain (physically motivated) selection criterion. For example,
Buchholz and Fredenhagen were led to consider stringlike localised sectors [7]. The
category of these representations, denoted by ∆A

BF, has a very rich structure. An
essential ingredient in the analysis of this structure is the axiom of Haag duality,
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which strengthens locality. If S is some unbounded region of spacetime, the C∗-
algebra A(S ) is defined by

A(S ) =
⋃

O⊂S

A(O)
‖·‖

,

where the closure in norm is taken and the union is taken over all double cones
contained in S . Suppose S is any connected causally complete region, that is,
S = (S ′)′, where the prime denotes taking the causal complement. Haag duality
then is the condition that

(1.1) π0(A(S
′))′ = π0(A(S ))′′.

Here the prime in S
′ denotes taking the causal complement, whereas the other

primes stand for the commutant. We will only need this duality relation in the
case where S is either a double cone or a spacelike cone. Haag duality has been
proven for free fields [1], but to the knowledge of the author no result is known (in
d = 2+ 1) for interacting fields.

Every representation in ∆A
BF can be described as an endomorphism of some al-

gebra ASa containing A as a subalgebra. The category ∆A
BF then can be equipped

with a tensor product defined by composition of such endomorphisms. As men-
tioned before, a particularly interesting feature is that it is in fact a braided tensor
category. In three dimensions, the DHR sectors, which are localised in bounded
regions, form a degenerate tensor subcategory of ∆A

BF with respect to the braid-
ing: the braiding with objects from this subcategory reduces to a symmetry. By a
result of Rehren, this implies that the category ∆A

BF cannot be modular [47, 48].
The basic idea now is to pass to the field net F, as constructed by Doplicher and
Roberts [18].

The field net is a net of algebras that generate the different superselection sectors
by acting on the vacuum. It is endowed with an action of a compact group G of
symmetries (sometimes called the gauge group). The observables are precisely those
elements of the field algebra that are invariant under the action of this symmetry
group. At the end of the 1980s, Doplicher and Roberts solved a long-standing prob-
lem in algebraic quantum field theory, namely how to construct the group G and
the corresponding field net from the observable algebra [18]. Their investigations
led to a new duality theory for compact groups [17], on which we will elaborate
below. It is important to note however that these constructions only work if all
sectors have permutation statistics. In the braided case, instead of a group one ex-
pects an object with a (quasi-)Hopf algebra-like structure, see for example [49, 55],
or even a more general notion of symmetry [33].

In the special case where A has no fermionic DHR sectors, we can interpret
O 7→ F(O) as a new AQFT. Conti, Doplicher and Roberts have shown that the
field net does not have any non-trivial representations satisfying the DHR criterion
any more [9]. The theory F is an extension of A, in the sense that any stringlike
localised representation of A can be extended to a representation of F with the
same localisation properties. This extension factors through the categorical crossed
product ∆A

BF ⋊∆A
DHR of [40]. Under certain conditions, this crossed product is in

fact equivalent, in the categorical sense, to the category ∆F
BF. This makes it possible

to understand the latter completely in terms of the original theory O 7→ A(O). To
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summarise, the obstruction for modularity is removed by passing from a theory A

to a new theory F that extends A in a systematic way.
Although some constructions in this paper are motivated by results in d = 1+1,

there are also some notable differences with the case d = 2 + 1 considered in
the present work. In d = 2 + 1, passing from a net F to the fixpoint theory
A = FG with respect to the action of some group G introduces DHR sectors,
which are automatically degenerate in d = 2 + 1. In d = 1 + 1, DHR sectors
also appear when passing to the fixpoint net. In this case, however, they are
never degenerate, at least not if the symmetry group G is finite and the theory is
“completely rational” [30]. In that situation there appear automatically “twisted”
sectors which prevent degeneracy of the new DHR sectors in the fixpoint theory [41].

The paper is organised as follows. In Section 2, the basic structure of stringlike
localised sectors in three dimensions is recalled. The next section is concerned with
the construction of the field net F, and it is shown that this can be interpreted as a
new AQFT without DHR sectors. Section 4 then discusses how stringlike localised
sectors of our original theory A can be extended to the new theory F. Section 5 deals
with the reverse problem of restricting sectors that are invariant under the action
of the symmetry group, using results from the theory of non-abelian cohomology.
In the last part of the paper, it is investigated how these results are related to
the purely mathematical theory of crossed products of braided tensor categories by
symmetric subcategories. This gives a better understanding of the sectors of the
new theory in terms of those of the old theory. In particular, conditions are given
under which all sectors of F are related to the sectors of A. In the last section,
the main results are summarised and some open problems are indicated. Some
terminology regarding category theory and algebraic quantum field theory, which
will be used throughout the article, is recollected in an appendix.

2. Stringlike localised sectors

In algebraic quantum field theory a superselection criterion identifies the phys-
ically relevant representations of the observable algebra. Usually one selects those
representations π that cannot be distinguished from the vacuum representation
π0 in the spacelike complement of some causally complete region. The selection
criterion used by Doplicher, Haag and Roberts (DHR) requires that the relevant
representations π satisfy, for each double cone O,

(2.1) π ↾ A(O′) ∼= π0 ↾ A(O′).

That is, π is unitarily equivalent to the vacuum representation when restricted to
observables in the causal complement of an arbitrary double cone. The structure of
the DHR superselection sectors is well understood, see e.g. [26, 27] for reviews. A
DHR representation is of the form π ∼= π0◦ρ, where ρ is an endomorphism1 of A that
acts trivially on A(O′) for some O. Such an endomorphism is said to be localised in

O. Furthermore, ρ is transportable, in the sense that for any double cone Ô there

is a morphism ρ̂ localised in Ô, unitarily equivalent to ρ. Localised transportable
endomorphisms can be regarded as objects of a braided tensor category.

1All (endo)morphisms and representations are assumed to be unital and to preserve the ∗-
operation, unless stated otherwise.
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However, the criterion (2.1) is too narrow for many physical applications. For
example, consider the case of an electrically charged particle. Then, by Gauss’
theorem, it is possible to measure the electric flux through a surface at arbitrary
large distance. This implies that the presence of an electric charge can be detected
at arbitrarily large distances, i.e., there is no double cone O such that the state
cannot be distinguished from the vacuum in the spacelike complement of this O.
See [6] for a discussion of states in QED. This is why Buchholz and Fredenhagen
consider a more general selection criterion [7], namely

(2.2) π ↾ A(C ′) ∼= π0 ↾ A(C ′),

for each spacelike cone C in the following sense:

Definition 2.1. A spacelike cone is a set C = x +
⋃

λ>0 λ · O, for some double

cone O not containing the origin, and x ∈ Md. Moreover, we demand that C is
causally complete2, i.e., C = C ′′.

Such a spacelike cone can be visualised as a semi-infinite string that becomes
thicker and thicker when moving towards spacelike infinity. Since again this cri-
terion means that such representations cannot be distinguished from the vacuum
in the spacelike complement of a spacelike cone, such representations are called
localisable in cones. We will call the equivalence class of such a representation a
BF sector, and call a representative a BF representation.

Buchholz and Fredenhagen show that in a relativistic quantum field theory
massive single-particle representations always have such localisation properties.
Roughly speaking, a massive representation is a representation that is covariant
under translation (covariance under the full Poincaré group is not required). More-
over, the joint spectrum of the generators of the translations is bounded away from
zero and contains an isolated mass shell, separated by a gap from the rest of the
spectrum.

There are several methods to study the superselection structure of charges lo-
calised in spacelike cones (also called “topological charges”). Recall that we iden-
tified π0(A) with A. Contrary to the case of DHR sectors, BF sectors cannot be
described in terms of endomorphisms of the quasi-local algebra A. Instead, the
representations map cone algebras A(C ) to weak closures of the algebra, that is,

η(A(C )) ⊂ A(C )′′ if η is localised in a spacelike cone Ĉ ⊂ C . For double cones O
there is the inclusion A(O)′′ ⊂ A (recall that the local algebras are assumed to be
von Neumann algebras), but for spacelike cones in general the weak closure A(C )′′

is not contained in A. This implies that BF representations do not map A into A,
as is the case in the DHR situation, but into some larger algebra. This situation is
rather inconvenient, but fortunately this problem can be solved by introducing an
auxiliary algebra [7]. The BF representations can be extended to proper endomor-
phisms of this auxiliary algebra. At the end of this section we comment on some
other approaches.

To motivate the introduction of the auxiliary algebra, consider a BF representa-
tion π and spacelike cone C . By the selection criterion (2.2) there is a unitary V

2Buchholz and Fredenhagen do not demand that C is causally complete [7]. However, in view
of our definition of Haag duality, it is more natural to consider only causally complete spacelike
cones. See the Appendix to [18] for an alternative, but equivalent, definition.
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such that π0(A) = V π(A)V ∗ for all A ∈ A(C ′). Consider the equivalent represen-
tation

η(A) = V π(A)V ∗, A ∈ A.

It follows that η(A) = A for all A ∈ A(C ′). By localisation and locality it follows

that η(AB) = η(A)B = Bη(A) for all A ∈ A(Ĉ ) and B ∈ A(Ĉ ′) where Ĉ ⊃ C is a
spacelike cone. Therefore, invoking Haag duality (1.1) for spacelike cones we have

η(A(Ĉ )) ⊂ A(Ĉ )′′.

Definition 2.2. A representation η of A is a BF representation localised in C if
it satisfies the selection criterion (2.2) and η(A) = A for all A ∈ A(C ′). This is
denoted by η ∈ ∆A

BF
(C ).

From now on, fix a spacelike cone C . We will consider the category ∆A
BF(C ) of

BF representations localised in C and intertwiners3 as morphisms. Note that the

objects of the category are still transportable, i.e., if η ∈ ∆A
BF(C ) and if Ĉ is an

arbitrary spacelike cone, there is a unitary equivalent representation (that might

not be an object of ∆A
BF(C )) that is localised in Ĉ . This restriction to a fixed

spacelike cone is for technical reasons only. As will be demonstrated below, for two
spacelike cones C1 and C2, the corresponding categories ∆A

BF(Ci) are equivalent as
braided tensor categories. In the remainder of this section, the structure of this
category is described. The reader unfamiliar with these constructions is advised to
keep in mind the category of finite-dimensional unitary representations of a compact
group, which shares many of its features with the category of BF representations.
There is, however, one notable difference: the representation category of a compact
group is always symmetric, whereas the category of BF representations in d = 2+1
is interesting precisely because it is braided, but in general not symmetric.

We now come to the construction of the auxiliary algebra. One starts by choosing
an auxiliary spacelike cone Sa. This can be interpreted as a “forbidden” direction.
From now on this auxiliary cone will be fixed. It should be noted that the results
will not depend on the specific choice of Sa. After fixing Sa we can consider the
family of algebras A((Sa + x)′)′′, for x ∈ M3. This set is partially ordered by
x ≤ y ⇔ Sa + x ⊃ Sa + y and is directed, i.e., each pair of elements in this poset
has an upper bound. Hence it is possible to consider the C∗-inductive limit (here
the norm closure of the union of algebras)

ASa =
⋃

x∈M3

A((Sa + x)′)′′
‖·‖

⊂ B(H0).

Clearly for every x ∈ M3, we have ASa = ASa+x. The point is then that BF
representations can be extended to endomorphisms of the auxiliary algebra.

After the introduction of this auxiliary algebra, the structure of the superselec-
tion sectors can be studied with essentially the same methods as in the case of com-
pactly localised (DHR) sectors, see e.g. [26, 27]. For the convenience of the reader
and to establish our notation, the main features and constructions are outlined
below. The results are phrased in terms of tensor C∗-categories. See [17, 36, 38]
for an overview of the relevant notions.

3Recall that for two representations η1 and η2 of an algebra A, an intertwiner T from η1 to η2
is an operator such that for all A ∈ A, Tη1(A) = η2(A)T .
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Lemma 2.3. Let η be a BF representation. Then η has a unique extension ηSa to
ASa that agrees with η on A and is weakly continuous on A((Sa + x)′)′′ for each
x ∈ M3. If η is localised in C ⊂ (Sa + x)′ for some x ∈ M3, then ηSa is an

endomorphism of ASa. In the latter case we have ηSa

1 ◦ ηSa

2 = ηSa

2 ◦ ηSa

1 if the
localisation regions of η1 and η2 are spacelike separated.

Proof. We give a sketch of the proof; for the full proof see Lemma 4.1 and Propo-
sition 4.3 of [7]. By the superselection criterion it is possible to find a unitary V
in B(H0) such that η(A) = V AV ∗ for A ∈ A((Sa + x)′). This representation can
be extended uniquely to the weak closure A((Sa + x)′)′′. Obviously, this extension
is weakly continuous. This leads to an extension ηSa of η. By Haag duality the
localisation of η implies, in particular, that the unitaries V can be chosen in the
auxiliary algebra, so that ηSa is an endomorphism of this auxiliary algebra.

The final statement of the lemma can be checked for A ∈ A. We then invoke
weak continuity to arrive at the desired conclusion. �

With this result, the analysis of the structure of the BF representations proceeds
analogously to the DHR case: one just extends the representations to ASa as
appropriate. In particular, it is possible to compose endomorphisms, which can be
interpreted as composition of charges.

Definition 2.4. Let ηi ∈ ∆A
BF

(C ) (i = 1, 2), with C spacelike to Sa + x for some
x. Define a tensor product on ∆A

BF
(C )) by

η1 ⊗ η2 = ηSa

1 ◦ η2,

and if Ti ∈ HomA(ηi, σi) for i = 1, 2, by

T1 ⊗ T2 = T1η
Sa

1 (T2) = σSa

1 (T2)T1.

It can be shown that η1 ⊗ η2 ∈ ∆A
BF(C ) and that η1 ⊗ η2 is independent of the

specific choice of auxiliary cone. Moreover if ηi ∼= η̂i, then η1 ⊗ η2 ∼= η̂1 ⊗ η̂2. See
Section 4 of [7] for proofs.

To proceed, an additional property is necessary, namely Borchers’ Property B
for spacelike cones.

Property B. Let E ∈ A(C ′)′ be a non-zero projection. Then, for any spacelike

cone Ĉ ⊃ C , where the bar denotes closure in M3, there is an isometry W ∈ A(Ĉ ′)′

such that WW ∗ = E.

In fact, this property follows from the spectrum condition and locality [4], or [10]
for a more recent exposition. Note that the assumption of weak additivity is not
necessary, since this is automatically satisfied for algebras of observables localised in
spacelike cones. Moreover, if the A(C )′′ are Type III factors Property B is satisfied
automatically and one can even choose W ∈ A(C )′′.

Theorem 2.5. The category ∆A
BF

(C ) has subobjects (notation: η1 ≺ η2), direct
sums η1 ⊕ η2, and can be endowed with a tensor product η1 ⊗ η2.

Proof. The first two properties can be derived using Property B. First, consider

η ∈ ∆A
BF(C ) and a projection P ∈ EndA(η). Consider a spacelike cone Ĉ ⊃ C .

By Property B there exists an isometry W ∈ A(Ĉ )′′ such that P = WW ∗. Define
σ(−) = W ∗η(−)W . Note that W ∈ HomA(σ, η). By duality and the localisation

of η, it follows that σ is localised in Ĉ . Moreover, since η is localisable in cones
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it is easy to exhibit unitary charge transporters of σ, hence σ ∈ ∆A
BF(C ). By

transportability it is possible to find a unitarily equivalent σ̂ localised in C . It
follows that σ̂ ≺ η.

For the existence of direct sums, consider η1, η2 ∈ ∆A
BF. Using again Property B

it is possible to find isometries V1, V2 ∈ A(Ĉ )′′ such that V1V
∗
1 +V2V

∗
2 = I (consider

projections P 6= 0, I and I − P ). Define η(−) = V1η1(−)V ∗
1 + V2η2(−)V ∗

2 . Then η

is localised in Ĉ and localisable in cones. Using the same argument as above, an
equivalent η̂ localised in C can be found. This is the direct sum η = η1⊕η2, unique
up to isomorphism. To see this, suppose η′(−) =W1η1(−)W ∗

1 +W2η2(−)W ∗
2 . Then

U := V1W
∗
1 + V2W

∗
2 is a unitary intertwiner from η to η′. Similarly, it is not hard

to see that if η ∼= η′, then η′ is a direct sum of η1 and η2 as well.
The tensor product was already defined in Definition 2.4. With these definitions

it is straightforward to verify that ⊗ defines a bifunctor on the category, and turns
∆A

BF(C ) into a strict monoidal category, with monoidal unit ι, given by the identity
endomorphism of A. �

Now that a tensor product has been defined on the category ∆A
BF(C ), the next

step is to look for a braiding. The braiding is intimately related to the statistics
of a sector. It gives rise to representations of the braid group, or of the symmetric
group if the braiding is symmetric, describing the interchange of identical particles.
These notions were first studied in the context of algebraic quantum field theory
by Doplicher, Haag and Roberts [13, 14]. Braid statistics have been studied, for
example, in [20]. The constructions below are essentially the same as in these
original papers, and have merely been adapted to the case at hand.

A convenient technical tool when dealing with BF representations is that of an
interpolating sequence of spacelike cones. This can be used, e.g., to show that a
certain construction is independent of the specific choice of spacelike cones, or to
choose charge transporters in the auxiliary algebra.

Definition 2.6. Let C1 and C2 be spacelike cones in S
′
a. An interpolating sequence

between C1 and C2, is a set of spacelike cones Ĉ1, . . . Ĉn, each contained in (Sa+xi)
′

for some xi ∈ M3, such that Ĉ1 = C1, Ĉn = C2, and for each i we have either
Ci ⊂ Ci+1 or Ci+1 ⊂ Ci.

With this definition it is possible to prove the following result:

Lemma 2.7. Let η ∈ ∆A
BF

(C1). For any spacelike cone C2 ⊂ S ′
a there is an

equivalent representation η̂ ∼= η localised in C2, such that a unitary intertwiner V
in ASa can be found.

Proof. Choose an interpolating sequence Ĉi between C1 and C2. Set η̂1 = η. We
then define a sequence of unitarily equivalent representations η̂i+1

∼= η̂i, such that
Viη̂i+1 = η̂iVi. Since either Ci+1 ⊂ Ci or Ci ⊂ Ci+1, it follows by Haag duality that
either Vi ∈ A(Ci)

′′ or Vi ∈ A(Ci+1)
′′, hence Vi ∈ ASa . But then Vn−1 · · ·V1 is a

unitary intertwiner between η̂ ≡ η̂n, and because ASa is an algebra, it follows that
V ≡ Vn−1 · · ·V1 ∈ ASa . �

A braiding on the category relates the objects η1⊗ η2 and η2⊗ η1. In this case it
is a unitary operator εη1,η2

that intertwines the representations η1⊗η2 and η2⊗η1.
A particular example is the statistics operator εη,η that describes the statistics of a
sector. To define the braiding εη1,η2

between η1⊗η2 and η2⊗η1, with ηi ∈ ∆A
BF(C ),



EXTENSION OF STRINGLIKE LOCALISED SECTORS IN d = 2 + 1 9

first choose two spacelike cones Ĉ1 and Ĉ2. Both spacelike cones should lie in the
causal complement of Sa + x for some x and should lie spacelike with respect to

each other, i.e. Ĉ1 ⊂ Ĉ
′
2. By transportability there are BF-representations η̂i ∼= ηi

localised in Ĉi. These morphisms are called spectator morphisms. Moreover, by
Lemma 2.7 the corresponding unitary intertwiners V1 ∈ HomA(η1, η̂1) and V2 can
be chosen to be in ASa . After these choices have been made, one can define the
braiding by

εη1,η2
= (V2 ⊗ V1)

∗ ◦ (V1 ⊗ V2).

It follows that εη1,η2
is a unitary in HomA(η1 ⊗ η2, η2 ⊗ η1).

A standard argument using interpolating sequences of spacelike cones shows
that the definition of εη1,η2

is independent of the specific choice of intertwiners and
localisation regions, up to the relative position of C1 and C2, in the following sense.

Definition 2.8. Suppose we have a spacelike cone C in the causal complement of
Sa. If we rotate the spatial coordinates counter-clockwise, at some point it will fail
to be spacelike to Sa. Now suppose we have two spacelike separated cones C1 and
C2. We define an orientation C1 < C2 if and only if we can move C1 by translation
and rotating counter-clockwise to Sa while remaining in the spacelike complement
of C2. Note that for any two spacelike separated cones, there is always precisely one
cone for which this is possible.

We will always choose Ĉ2 < Ĉ1 to define the braiding εη1,η2
. One can then show

that εη1,η2
is natural, in the categorical sense, in both the first and second variable.

Moreover, εη1,η2
satisfies the braid relations. The verification becomes straightfor-

ward if one chooses the spacelike cones Ĉi in the definition in a convenient way,
so as to be able to make use of the localisation properties of the endomorphisms.
See [27] for the way this works in the DHR case.

Theorem 2.9. The category ∆A
BF

(C ) is a strict braided tensor category, where
the braiding is given by εη1,η2

.

The appearance of braid (but not symmetric) statistics is due to the fact that in
2+1 dimensions the manifold of spacelike directions is not simply connected, unlike
the situation in higher dimensions. See Section 2 of [43] for a clarification of this
point.

Finally, there is the categorical notion of a conjugate object. In this setting,
conjugates can be interpreted as “anti-particles”, and are closely related to the
statistics of a sector. To each BF representation η a dimension d(η) and phase
ωη are associated. For bosons (resp. fermions) the phase is +1 (resp. −1), but in
∆A

BF(C ) these are not the only possibilities (for d = 2+1). There are several ways to
introduce these parameters. The traditional way is to introduce a left inverse [13,
14]. Longo discovered a connection between the Jones index of an inclusion of
factors and the dimension [34, 35]. Finally, one can define the dimension, and twist
(or phase), in a general categorical setting [36], see also [38].

The dimension d(η) takes values in [1,∞]. If d(η) < ∞, one says that η has
finite statistics. Restricted to objects of finite dimension, the dimension function
satisfies the following identies:

d(η) = d(η), d(η1 ⊗ η2) = d(η1)d(η2), d(η1 ⊕ η2) = d(η1) + d(η2).

Here η is a conjugate representation of η (see the Appendix). From now on, we
will consider only categories where all objects have finite dimension, i.e., we leave



10 PIETER NAAIJKENS

out any sectors with infinite statistics the observable net may admit. Objects
with finite dimension are precisely those for which there is a conjugate (or “anti-
particle”). To avoid cumbersome notation, the category of all BF representations
with finite statistical dimension will also be denoted by ∆A

BF(C ).
Under weak additional assumptions, Guido and Longo showed that the DHR

sectors with finite statistics are Poincaré covariant with positive energy [25], in
particular they are covariant under translations as well. Hence under their assump-
tions, the set of finite DHR sectors coincides with the set of Poincaré covariant
finite sectors with positive energy. Moreover, Buchholz and Fredenhagen show that
massive irreducible single particle representations automatically have finite statis-
tics [7]. They also show that all representations of interest for particle physics are
indeed described by (direct sums of) representations with finite statistics. One may
therefore argue that restricting to sectors of finite dimension is not too restrictive
from the point of view of physics. Finally, we would like to mention that Mund re-
cently proved a version of the spin-statistics theorem for massive particles obeying
braid group statistics [43].

The restriction to sectors with finite statistics implies that the category ∆A
BF(C )

is semi-simple, i.e. that every representation can be decomposed into a direct sum
of irreducibles. Indeed, let η ∈ ∆A

BF(C ). If η is not irreducible there is a non-trivial
projection E ∈ EndA(η). By the existence of subobjects, one has η = η1 ⊕ η2 for
some η1, η2 ∈ ∆A

BF(C ). Semi-simplicity now follows, since d(η) = d(η1)+ d(η2) and
the dimension function d takes values in [1,∞), since we restricted to objects of
finite dimension.

The results so far can be summarised by the following theorem.

Theorem 2.10. The category ∆A
BF

(C ) is a braided tensor C∗-category. That is
it has duals (or conjugates), direct sums, subobjects, a braiding and a positive ∗-
operation. The Hom-sets are Banach spaces, such that ‖T ◦ S‖ ≤ ‖S‖‖T ‖ and
‖S∗ ◦ S‖ = ‖S‖2 for all morphisms S, T (whenever the composition is defined).
Moreover, the tensor unit ι is irreducible.

It then follows automatically that the Hom-sets are finite-dimensional vector
spaces [36]. In the case of interest here, the ∗-operation and norm are inherited
from the observable algebra.

One question that remains to be answered is to which extent the category
∆A

BF(C ) depends on the choice of C . It turns out that in fact for any two choices
C1,C2 the resulting categories are equivalent as tensor categories, c.f. [18, Theorem
4.11].

Proposition 2.11. Let C1 and C2 be two spacelike cones. Then the categories
∆A

BF
(C1) and ∆A

BF
(C2) are equivalent as braided tensor categories.

Proof. We give a sketch of the proof; the details are left to the reader. One first
proves the result in the case C1 ⊂ C2. This gives rise to a full and faithful inclusion
of categories ∆A

BF(C1) ⊂ ∆A
BF(C2). Clearly this inclusion is braided. In addition,

the inclusion is essentially surjective, since for each representation localised in C2

one can find a unitary equivalent representation localised in C1. Hence, the inclu-
sion is in fact an equivalence of categories, hence an equivalence of braided tensor
categories [53].

To prove the full result, one uses an argument with interpolating sequences of
spacelike cones. �
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Figure 1. This figure shows why the braiding is degenerate for com-
pactly localised endomorphisms. The compactly localised (dashed lines)
endomorphism can move from one side of the spacelike cone to the other,
keeping it in the causal complement of the auxiliary cone (shaded region)
and spacelike cone C (solid lines) at all times.

Thus the BF representations form a braided tensor category. However, if there
are DHR localised sectors, the braiding has a “trivial” part. Indeed, the DHR
sectors form a symmetric subcategory of ∆A

BF(C ). But more importantly, the DHR
sectors are degenerate objects with respect to the braiding. That is, they have
trivial braiding with any object of ∆A

BF(C ), in a sense made precise below. In such
a situation, one says that the category has a non-trivial centre [40].

Definition 2.12. The centre of a braided category is the full subcategory of degen-
erate objects. That is, it consists of all objects ρ such that ερ,η ◦ εη,ρ = Iη⊗ρ for all
objects η.

A non-trivial centre is an obstruction to modularity, since by a result of Rehren
the existence of (non-trivial) degenerate sectors implies that the so-called S-matrix
(in the sense of Verlinde [57]) is not invertible [47]. To make this situation more
precise, we study the properties of the DHR sectors within ∆A

BF(C ).

Definition 2.13. Let S be either a double cone or a spacelike cone. We write
∆A

DHR
(S ) for the category of DHR localised sectors whose localisation region lies

in S .

Note that ρ ∈ ∆DHR(C ) in particular is also an element of ∆BF(C ), so the
constructions in the first part of this section go through without change. For
example, the tensor product of ρ1 and ρ2 in ∆DHR(C ) is again in ∆DHR(C ). Since
objects from ∆DHR(C ) can be localised in bounded regions of spacetime, one can
say even more about them:

Lemma 2.14. Let η ∈ ∆A
BF

(C ) and ρ ∈ ∆A
DHR

(O) for some double cone O ⊂ S ′
a.

Then the DHR sectors are degenerate with respect to the braiding, i.e.,

ερ,η ◦ εη,ρ = Iη⊗ρ.
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Proof. The basic idea is depicted in Figure 1. Because ρ is localised in a bounded
region, there is more freedom in the choice of localisation cones of the spectator
morphisms. In particular, it is possible to “flip” the cones, that is, if ρ̂ is localised

in some spacelike cone Ĉ , it is possible to find a spacelike cone C̃ pointing in the

opposite direction, such that ρ̂ is localised in C̃ . Using this, it is not difficult to see
that the braiding ερ,η does not depend on the orientation of the spacelike cones of
the spectator morphisms. It follows that ερ,η = ε−1

η,ρ, which proves the result. �

To conclude this section we briefly comment on other methods to describe the su-
perselection structure of charges localised in spacelike cones. Doplicher and Roberts
take a different approach in [18], which does not need the auxiliary algebra. This
method, however, works only in spacetimes of dimension at least 4 and would need
adaptation to the d = 2 + 1 case we are interested in.

In the approach of both Buchholz & Fredenhagen and of Doplicher & Roberts,
only representations localised in a fixed spacelike cone C can be considered. A re-
lated approach by Fröhlich and Gabbiani [24], which also uses the auxiliary algebra,
does not require one to fix a spacelike cone. Instead, they consider two coordinate
patches, and show that it is possible to pass from one to the other in a “smooth”
way.

Finally, it is possible to use the so-called universal algebra, introduced by Freden-
hagen [19], see also [42]. This has the advantage that we do not have to choose an
auxiliary cone. On the other hand, there are drawbacks, for example the universal
algebra is not simple and the vacuum representation is not faithful [21]. In the end,
each method gives the same result, so the choice of method only matters for the
technical details.

3. The field net

In this section we consider the field net of the observable algebras with respect to
the DHR sectors. In other words, the field operators by construction only generate
the DHR sectors. This is possible since the DHR sectors have permutation statistics
in 2+1 dimensions. At the end of this section we discuss an alternative, more
abstract construction of the field net, that turns out to be helpful in the applications
we have in mind.

For the convenience of the reader we first recall the definition of a field net [18].
We specialise to the case of interest here: that of a complete, normal field net
without fermionic sectors.

Definition 3.1. Let (π0,H0) be a vacuum representation of the net O 7→ A(O).
A complete normal field net (π,G,F) is a representation (π,H) of A and a net
O 7→ F(O) of von Neumann algebras acting on H, such that

(i) H0 ⊂ H;
(ii) π0 is a subrepresentation of π;
(iii) there is a compact group G of unitaries on H leaving H0 pointwise fixed,

inducing an action αg = Ad g;
(iv) for each g ∈ G, αg is an automorphism of F(O) with fixed-point algebra

π(A(O));
(v) the inductive limit F of the local algebras F(O) is irreducible;
(vi) the Hilbert space H0 is cyclic for F(O);
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(vii) if O1 and O2 are spacelike separated double cones, F(O1) and F(O2) com-
mute;

(viii) every irreducible DHR representation with finite statistics is included as a
subrepresentation of π.

In the presence of fermionic sectors, item (vii) has to be modified to graded
commutativity. Doplicher and Roberts show that such a field net exists and is
unique up to a suitable notion of equivalence. The main point for us is that (at
least in the purely bosonic case) this field net can be interpreted as an algebraic
quantum field theory in its own right. The proof of this fact will be given below,
after some preparatory results on harmonic analysis on the field net.

Definition 3.2. Let ξ be a finite-dimensional continuous unitary representation of
a group G as in Definition 3.1. A set of operators X1, . . . Xd, where d = dim ξ, is
said to be a multiplet transforming according to ξ if

αg(Xi) =

d∑

j=1

uξji(g)Xj ,

where uξji(g) are the matrix coefficients of ξ. An operator X is said to transform
irreducibly according to ξ, or to be an irreducible tensor, if it is part of a multiplet
transforming according to an irreducible representation ξ.

Irreducible tensors can be obtained by averaging over the symmetry group G,
and their span is weakly dense in the field algebra, see e.g. [15, Section 2].

Recall that for each irreducible DHR endomorphism ρ there is a Hilbert space
Hρ in the field net transforming according to some irrep ξ of G. That is, Hρ is a
closed linear subspace of F such that ψ∗

1ψ2 ∈ CI for all ψ1, ψ2 ∈ Hρ. The space
Hρ is precisely the set of operators ψ in F such that ψA = ρ(A)ψ for all A ∈ A,
and α ↾Hρ

= ξ. Moreover, there is a basis of Hρ that is a multiplet transforming
according to ξ. Irreducible tensors may then be decomposed into a G-invariant part
and an operator in Hρ, in the following sense:

Lemma 3.3. Let B ⊂ B(H) be a ∗-algebra, such that F(O) ⊂ B for some double
cone O. Suppose that X transforms irreducibly under the action of G, that is, is
contained in a finite dimensional Hilbert space transforming according to an irrep
of G. Then there is a B ∈ B ∩G′ and a ψ ∈ Hρ ⊂ F(O) such that

X = Bψ,

where ψ transforms according to the same irreducible representation as X.

This decomposition is not unique, but depends on the specific choice of Hρ.

Proof. Complete X to a multiplet X1, . . . Xd. Without loss of generality, assume
X = X1. Let ξ denote the representation according to which X transforms. Since
the field net has full spectrum, there is a Hilbert space Hρ in F(O), such that
Hρ transforms according to ξ. Note that the equivalence class of ρ corresponds to

the class of the representation ξ. If uξji are the matrix coefficients describing the
transformation of the multiplet, it is possible to choose an orthonormal basis ψi of

Hρ such that αg(ψi) =
∑d

j=1 u
ξ
ji(g)ψj . Now define

B =

d∑

i=1

Xiψ
∗
i .
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Since ξ is a unitary representation, it follows that αg(B) = B, i.e. B ∈ B ∩ G′.
Moreover, taking ψ = ψ1, it follows that Bψ = X1 = X . �

Now that we have the field net F at hand, it is possible to construct an auxiliary
algebra with respect to F, analogous to the one defined in terms of the algebra of
observables A. Hence we define

FSa =
⋃

x∈M3

(F((Sa + x)′))′′
‖·‖

,

where the closure in norm is taken.
Since the observable net embeds into the field net, one expects the auxiliary

algebra of the observable net to embed into the auxiliary algebra of the field net.
The next lemma demonstrates that this is indeed the case.

Lemma 3.4. Let (π,G,F) be a complete normal field net for (A, ω0). Then the
representation (π,H) of A can be uniquely extended to a faithful representation
πSa : ASa → B(H) that is weakly continuous on A((Sa + x)′)′′.

Proof. Write Ĝ for the set of equivalence classes of irreducible representations of
the group G. The representation (π,H), viewed as a representation of A, is a direct
sum ⊕ξ∈Ĝdξπξ, where each πξ is a DHR representation [18]. We will extend each

πξ to a representation πSa

ξ of ASa , and set πSa = ⊕ξ∈Ĝdξπ
Sa

ξ . So consider such

a representation πξ. By Lemma 2.3, πξ has a unique weakly continuous extension.

In fact, since πξ is localised in a bounded region, it follows in particular that πSa

ξ

is an endomorphism of ASa, viewed as a subalgebra of B(H).
To see that πSa is faithful, construct a left inverse ϕ of πSa , as in [7]. �

This result makes it possible to identify ASa with the subalgebra πSa(ASa) of
B(H). When there is no risk of confusion, we will sometimes identify A ∈ ASa with
its image πSa(A).

It is fruitful to investigate the relationship between the auxiliary algebra and the
action of the symmetry group. Just as the observable net consists of precisely those
operators that are fixed by the G-action on the field net, the same is true for the
auxiliary algebras.

Lemma 3.5. Let (π,H,F, G) be a normal field net. Then:

(i) For each spacelike cone, F(C )′ ∩G′ = π(A(C ′))′′.

(ii) The fixpoint algebra is given by
(
FSa

)G
= πSa(ASa).

Proof. (i) First of all, since π(A)′′ = G′ and A(C ′) is a subalgebra of A, it is obvious
that π(A(C ′))′′ ⊆ G′. From relative locality, π(A(C ′)) ⊆ F(C )′. By taking double
commutants, π(A(C ′))′′ ⊆ F(C )′.

Note that for each double cone O, H0 is cyclic for F(O), hence also for F(C ).
This implies that an element T ∈ F(C )′∩G′ is uniquely determined by its restriction
to H0. Furthermore, H0 is an invariant subspace for T , since T ∈ G′. We have
F(C )′ ∩ G′ ⊆ π(A(C ))′, so if E0 denotes the projection onto H0 ⊂ H, it follows
that

T |H0
∈ π(A(C ))′E0 = π0(A(C ))′ = π0(A(C

′))′′.

The last step follows by Haag duality for spacelike cones in the vacuum represen-
tation.
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(ii) Note that αg extends to B(H), where H is the Hilbert space on which F acts
irreducibly. Using the Haar measure of G, one can define a conditional expectation
E : F → A by

E(A) =

∫

G

αg(A)dg.

It then follows that

E
(
FSa

)
= E

(
⋃

x∈M3

F(Sa + x)′

)‖·‖

=
⋃

x∈M3

E(F(Sa + x)′)
‖·‖

.

where we used that E is weak- and norm-continuous [12]. Now by part (i) it follows
that E(F(Sa + x)′) = πSa(A(Sa + x)′)′′, see also [12, Lemma 3.2]. Therefore,

E(FSa) =
⋃

x

πSa(A(Sa + x)′)′′
‖·‖

= πSa(ASa),

which proves the claim. �

With the aid of these lemmas it is possible to prove the main result of this
section: without fermionic sectors, the field net can be interpreted as an AQFT in
its own right, but one without non-trivial DHR sectors.

Theorem 3.6. Assume that O 7→ A(O) satisfies the following conditions:

(i) there are at most countably many DHR sectors;
(ii) there are no fermionic DHR sectors;
(iii) each DHR sector with finite statistics is covariant under translations sat-

isfying the spectrum condition.

Then the field net O 7→ F(O) satisfies the axioms of an algebraic QFT, i.e. it is a
local, translation covariant net satisfying Haag duality and the spectrum condition,
hence it also has Property B for spacelike cones. The complete normal field net
admits only the trivial DHR representation.

Proof. Isotony follows, since the field net is, in particular, a net. Since we assumed
the absence of fermionic sectors, twisted duality for the field net reduces to Haag
duality for double cones. Thus only the questions of translation covariance and du-
ality for spacelike cones remain. The covariance properties follow from the results
in Section 6 of [18], and the assumption that we only have translation covariant
sectors. In fact, one can show in this case that the representation π of F is transla-
tion covariant. The generators of translations again satisfy the spectrum condition
and the vacuum vector Ω is invariant under the action of the translation group [18,
Section 6]. By the same reasoning as before, Property B follows.

To prove duality for spacelike cones, consider such a cone C . First, note that
by locality F(C ′)′′ ⊂ F(C )′. Let F ∈ F(C )′ transform irreducibly under the action
of G. But then by Lemma 3.3, F = Bψ, where B ∈ F(C )′ ∩ G′ and ψ ∈ Hρ.
Applying Lemma 3.5 gives B ∈ π(A(C ′))′′ and, since Hρ ⊂ F(C ′), one obtains
F ∈ F(C ′)′′. The irreducible tensors form a dense subset, which allows us to
conclude F(C ′)′′ = F(C )′. Taking commutants then proves Haag duality.

For the last assertion, note that the observable net is embedded in the field net.
More precisely, we have an inclusion of subsystems A ⊂ F. By [9, Theorem 4.7],
every DHR representation of the field net F with finite statistics is a direct sum
of representations with finite statistics. Moreover, these sectors are labelled by the
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equivalence classes of irreducible representations of a compact group L, such that
F(A)L = B (see also [9, Theorem 4.1]). But in this case, B = F(A) = F, hence L
is the trivial group and the only irreducible DHR sector is the vacuum sector. �

Let us briefly comment on the assumptions of Theorem 3.6. The first condition
is a technical one, needed for the results in [9] and Corollary 5.4 below. By con-
struction of the field net, DHR sectors are in 1-1 correspondence with irreps of G,

hence Ĝ, the set of irreps of G, is also countable. The second condition implies
that the field net satisfies ordinary locality, as opposed to twisted locality. The
final condition is needed to lift the translation covariance of A to the field net. As
mentioned before, by weak additional assumptions on A, it follows automatically
that every DHR sector with finite statistics is translation covariant. Therefore, the
conditions appear not to be unreasonably restrictive. From now on, we will assume
that A satisfies all assumptions in the theorem.

Roughly speaking, Doplicher and Roberts construct the field net as a crossed
product of the observable algebras by a semigroup of endomorphisms. As men-
tioned before, this construction is intimately related to the theory of representations
of compact groups. It is therefore not surprising that an alternative construction,
based on results on the category of representations of compact groups, exists. In-
deed, based on an unpublished manuscript of Roberts and on Deligne’s embedding
theorem [11], Halvorson and Müger describe such a construction [27, 38], which is
of a more algebraic nature compared to the original analytic approach. Since the
algebraic formulation is easier to work with in the present case, the rest of this
section will be used to outline the main features of this approach and to fix the
notation.

The results in Section 2 state that the DHR representations form a symmetric
tensor (C∗)-category. By Deligne’s embedding theorem, this gives rise to a faithful
symmetric tensor ∗-functor E : ∆A

DHR → SHf , the category of finite-dimensional
(super) Hilbert spaces. The embedding theorem also gives a compact supergroup
(G, k) of natural monoidal transformations of E, and an equivalence of categories
such that ∆A

DHR is equivalent to Repf (G, k). All monoidal categories and functors
are assumed to be strict, unless noted otherwise. The “super” structure gives a
Z2-grading on the Hilbert spaces, corresponding to the action of a central element
k ∈ G such that k2 = e. Since we assumed that all DHR sectors are bosonic, we
can forget about the super structure. The group G from the embedding theorem
will be the symmetry group.

The embedding functor E associates to each DHR endomorphism ρ a Hilbert
space E(ρ). Using this embedding functor E, we first construct a field algebra F0.
We cite the definition:

Definition 3.7. The field algebra F0 consists of triples (A, ρ, ψ), where A ∈ A,
ρ ∈ ∆DHR, and ψ ∈ E(ρ), modulo the equivalence relation

(AT, ρ, ψ) ≡ (A, ρ′, E(T )ψ),

for T an intertwiner from ρ to ρ′. For λ ∈ C, we have E(λ idρ) = λ idE(ρ), hence
(λA, ρ, ψ) = (A, ρ, λψ).

In particular, it follows that any element with ψ = 0, is the zero element of the
algebra. One then proceeds by defining a complex-linear structure on this algebra,
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a multiplication, as well as an involutive ∗-operation. The multiplication is defined
by (A1, ρ1, ψ1)(A2, ρ2, ψ2) = (A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2).

The definition of the ∗-operation is a bit more involved. First, ifH andH ′ are two
Hilbert spaces and S : H⊗H ′ → C is a bounded linear map, one can define an anti-
linear map JS : H → H ′. This map is defined by setting 〈(J S)ψ, ψ′〉 = S(ψ⊗ψ′)
for all ψ ∈ H,ψ′ ∈ H ′. The brackets denote the inner product on H ′. If ρ is a DHR
endomorphism, choose a conjugate (see the Appendix) (ρ,R,R). The ∗-operation

is then defined by (A, ρ, ψ)∗ = (R∗ρ(A)∗, ρ,JE(R
∗
)ψ). For a verification that this

is well-defined and indeed defines a ∗-algebra, see [27].
Note that this construction is purely algebraic, for instance, there is no norm

defined on F0. The algebra A can be identified with the subalgebra {(A, ι, 1) : A ∈
A} of F0, and E(ρ) can be identified with the subspace {(I, ρ, ψ) : ψ ∈ E(ρ)}.4

The compact group G associated with the embedding functor E gives rise to an
action on F0. Recall that the elements of G are monoidal natural transformations
of the functor E. If g ∈ G, write gρ for the component at ρ. The action of G on F0

is then defined by

αg(A, ρ, ψ) = (A, ρ, gρψ), A ∈ A, ψ ∈ E(ρ).

This is in fact a group isomorphism g 7→ αg into AutA(F0), the group of automor-
phisms of F0 that leave A pointwise fixed. Finally, for a double cone O, it is possible
to define the local ∗-subalgebra F0(O) of F0, consisting of elements (A, ρ, ψ), with
A ∈ A(O), ψ ∈ E(ρ), and ρ localized in O.

To construct the field net, a faithful, G-invariant positive linear projection (in
fact, a conditional expectation) m : F0 → A is defined. If ω0 is the vacuum state
of A, the GNS construction on the state ω0 ◦m is used to create a representation
(π,H) of F0. The local algebras are then defined by F(O) = π(F0(O))′′. As usual,
the algebra F is defined to be the norm closure of the union of all local algebras.
Since m is G-invariant, the action of αg is implemented on H by unitaries U(g). In
other words, π(αg(F )) = U(g)π(F )U(g)∗ for g ∈ G and F ∈ F0. This action can
be extended to F in an obvious way. With these definitions, (π,G,F) is a complete
normal field net for (A, ω0) with local commutation relations. In fact, any complete
normal field net for A is equivalent to the field net constructed here.

The final technical lemma concerns field operators. In the field net there are
field operators, which can be interpreted as operators creating the DHR charges
from the vacuum state. That is, for a DHR endomorphism ρ there are Ψ ∈ F such
that ρ(A)Ψ = ΨA, with A ∈ A. It is convenient in calculations to know how this
works on the auxiliary algebras.

Lemma 3.8. Let ρ be an endomorphism of A localised in a double cone O, and
take ψ ∈ E(ρ). Then

(3.1) πSa(ρSa(A))π(I, ρ, ψ) = π(I, ρ, ψ)πSa(A),

for all A ∈ ASa.

Proof. Note that for A ∈ A, the equality holds basically by construction of the
field net. Now suppose A ∈ A((Sa + x)′)′′. Then there is a net (in the sense of
topology) Aλ → A in A((Sa + x)′) that converges weakly to A. Equation (3.1)
holds for Aλ by the previous remark. The result now follows by weak continuity of
the extensions and of separate weak continuity of multiplication. �

4These Hilbert spaces E(ρ) play the same role as the Hilbert spaces Hρ in [18].
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4. Extension to the field net

Our next goal is to understand the BF-superselection structure of F, including
the way it is related to that of A. Now that we have established how the auxiliary
algebra is included in the field net, a natural question is how BF representations
of A can be extended to BF representations of F. This section is devoted to this
problem. At the end of the section we comment on alternative approaches.

If η̂ ∈ ∆F
BF(C ) is an extension of η ∈ ∆A

BF(C ), it follows that

αg ◦ η̂(A) = αg ◦ η(A) = η(A) = η̂ ◦ αg(A)

for all A ∈ A. The next theorem gives a characterisation of extensions such that
αg ◦ η̂(F ) = η̂ ◦αg(F ) for all F ∈ π(F0). Such extensions are in 1-1 correspondence
with certain families of unitariesWρ(η) in ASa. A proof of this result for extensions
of automorphisms was given in [16, Thm. 8.2]. Later, the result of Doplicher
and Roberts was adapted to endomorphisms [39]. The explicit description of the
field net allows us to verify this construction, without invoking e.g. universality
properties as in the original proof.

The first step is to show that we can define an extension on the subalgebra π(F0)
of F. We will then extend this to the algebra F.

Proposition 4.1. Let η be a representation of A. Then representations η̂ of π(F0)
that extend η and commute with αg are in one-to-one correspondence with mappings
(ρ, η) 7→Wρ(η) from ∆A

DHR
×∆A

BF
(C ) to unitaries in ASa satisfying

Wρ(η) ∈ HomA(ρ⊗ η, η ⊗ ρ), ;(4.1)

Wρ′(η)(T ⊗ Iη) = (Iη ⊗ T )Wρ(η), T ∈ HomA(ρ, ρ
′), ;(4.2)

Wρ⊗ρ′(η) = (Wρ(η)⊗ Iρ′ )(Iρ ⊗Wρ′ (η)), ;(4.3)

Wρ(η ⊗ η′) = (Iη ⊗Wρ(η
′))(Wρ(η)⊗ Iη′ ).(4.4)

The extension is determined by

(4.5) η̂(π(A, ρ, ψ)) = πSa(ηSa(A)Wρ(η))π(I, ρ, ψ).

Moreover, if S ∈ HomA(η, η
′) satisfies SWρ(η) = Wρ(η

′)ρSa(S) for all ρ ∈ ∆A
DHR

(that is, Wρ(η) is natural in η), then πSa(S) ∈ HomF0
(η̂, η̂′).

Proof. To avoid cumbersome notation, πSa(ASa) will be identified with ASa in the
proof. First, assume η̂ is a representation of F that commutes with the G-action.
Lemma 3.5 implies that η̂ restricts to a representation of ASa , which we will denote
by η. For ρ ∈ ∆A

DHR, write Ψi = π(I, ρ, ψi), where ψi is an orthonormal basis of
E(ρ). Define

Wρ(η) =
d∑

i=1

η̂(Ψi)Ψ
∗
i .

This definition is independent of the chosen basis of E(ρ). The Ψi generate a
Hilbert space with support I, [27, Proposition 270], from which it follows that
Wρ(η) is unitary. The Hilbert space E(ρ) transforms according to some irre-
ducible representation. Since η̂ commutes with the G-action, it is easy to verify
that αg(Wρ(η)) = Wρ(η). By Lemma 3.5(ii), Wρ(η) is a unitary in ASa. Note
that Wι(η) = I, since η is unital. Also note that for ψ ∈ E(ρ), it follows that
Wρ(η)π(I, ρ, ψ) = η̂(π(I, ρ, ψ)). Because (4.5) is in particular a ∗-endomorphism
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(see below for a verification) and F0 is generated by elements of this form, we see
that η̂ can indeed be defined as in (4.5).

It remains to verify properties (4.1)–(4.4). The verification of these properties
is quite straightforward. We give a proof of (4.2) and leave the rest to the reader.
So, let T ∈ HomA(ρ, ρ

′). Note that T ∈ A by Haag duality for double cones. Then
∑

i

η̂(π(T, ρ, ψi))π(I, ρ, ψi)
∗ =

∑

i

η̂(π(I, ρ′, E(T )ψi))π(I, ρ, ψi)
∗

=
∑

i

πSa(Wρ′ (η))π(I, ρ′, E(T )ψi)π(I, ρ, ψi)
∗

= πSa(Wρ′ (η))π(T, ι, 1).

This is equation (4.2). In the second line equation (4.5) has been used.
As for the converse, we have to show that equation (4.5) indeed defines a ∗-

representation of π(F0) that extends η. For (A, ρ, ψ) ∈ F0, define η̂(π(A, ρ, ψ)) as
in equation (4.5). Note that (4.3) together with the unitarity of Wι(η) imply that
Wι(η) = I. Considering the embedding of A into F0 (by A 7→ (A, ι, 1)), it follows
that η̂(π(A, ι, 1)) = πSa(η(A)). This shows that we can view η̂ as an extension of
η.

To check that η̂ is well-defined, suppose (AT, ρ, ψ) = (A, ρ′, E(T )ψ), with T
intertwining ρ and ρ′. A simple computation, using πSa(T ) = π(T ), and the fact
that π is well-defined, shows that well-definedness of η̂ boils down to the identity

η(A)Wρ′ (η)T = η(AT )Wρ(η),

which in turn is easily verified using the properties of Wρ(η).
In order to show that η̂ is multiplicative, consider F = (A, ρ, ψ) and F ′ =

(A′, ρ′, ψ′) as elements of F0. Then:

η̂(π(F )π(F ′)) = η̂(π(Aρ(A′), ρ⊗ ρ′, ψ ⊗ ψ′))

= πSa(η(Aρ(A′))Wρ⊗ρ′ (η)π(I, ρ ⊗ ρ′, ψ ⊗ ψ′).
(4.6)

On the other hand,

η̂(π(F ))η̂(π(F ′)) = πSa(η(A)Wρ(η))π(I, ρ, ψ)π
Sa (η(A′)Wρ′(η))π(I, ρ′, ψ′).

An application of Lemma 3.8 reduces the right hand side to

πSa(η(A)Wρ(η)ρ
Sa(η(A′)Wρ′(η)))π(I, ρ ⊗ ρ′, ψ ⊗ ψ′).

Then one should note that Wρ(η) intertwines ρ
Sa ◦ η and ηSa ◦ ρ, and use the fact

that ρ is an endomorphism of A, so that ηSa(ρ(A′)) = η(ρ(A′)). By using (4.3),
one then obtains equation (4.6), so η̂ preserves multiplication.

To check that η̂ is a ∗-homomorphism, we have to show η̂(π(F )∗) = η̂(π(F ))∗.
Since η̂ preserves multiplication, it is enough to show this for (A, ι, 1) and (I, ρ, ψ) ∈
F0. The first case is easy:

η̂(π(A, ι, 1)∗) = η̂(π(A∗, ι, 1)) = πSa(η(A∗))π(I, ι, 1) = πSa(η(A))∗,

since η and πSa are ∗-homomorphisms. To check the remaining case, let (ρ,R,R)
be a conjugate. Then, R∗ ∈ HomA(ρ⊗ ρ, ι), so we have

η(R∗)Wρ(η) =Wι(η)R
∗Wρ⊗ρ(η)

∗Wρ(η) = R∗(Wρ(η)
∗Wρ⊗ρ(η))

∗

= R∗ρSa(Wρ(η)
∗),

(4.7)
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where the properties of Wρ(η) have been used in each step. Recall the anti-linear
map J used in the definition of the ∗-operation on F0. Then, by definition of η̂,

η̂(π(I, ρ, ψ)∗) = η̂(π(R∗, ρ, (JE(R
∗
))ψ))

= πSa(η(R∗)Wρ(η))π(I, ρ, (JE(R
∗
))ψ).

Substitute equation (4.7) and apply Lemma 3.8. Together with the fact that πSa

agrees with π on A, this gives

η̂(π(I, ρ, ψ)∗) = πSa(R∗ρS(Wρ(η)
∗)π(I, ρ, (JE(R

∗
))ψ)

= π(R∗, ι, 1)π(I, ρ, (JE(R
∗
))ψ)πSa(Wρ(η)

∗)

= π(I, ρ, ψ)∗πSa(Wρ(η))
∗

= η̂(π(1, ρ, ψ))∗,

which concludes the proof that η̂ is a representation.
To prove that η̂ commutes with the G-action, consider (A, ρ, ψ) ∈ F0, and let

g ∈ G. Then

η̂(αgπ(A, ρ, ψ)) = η̂(π(A, ρ, gρψ)) = πSa(η(A)Wρ(η)π(I, ρ, gρψ).

On the other hand, αg is implemented by U(g), so we have

αg ◦ η̂(π(A, ρ, gρ)) = U(g)πSa(η(A)Wρ(η))π(I, ρ, ψ)U(g)∗

= U(g)πSa(η(A)Wρ(η))U(g)∗π(I, ρ, gρψ).

From this it follows that if πSa(η(A)Wρ(η)) is G-invariant, then η̂ commutes with
the action of G. Since η(A)Wρ(η) ∈ ASa this is nothing but Lemma 3.5(ii).

Finally, let S ∈ HomA(η, η
′) be an intertwiner, and F = (A, ρ, ψ) ∈ F0. Then

πSa(S)η̂(π(F )) = πSa(Sη(A)Wρ(η))π(1, ρψ)

= πSa(η′(A)SWρ(η))π(I, ρ, ψ)

= πSa(η′(A)Wρ(η
′)ρSa(S))π(I, ρ, ψ)

= η̂′(π(F ))πSa (S),

where in the last line Lemma 3.8 has been used. Hence we see that πSa(S) ∈
HomF0

(η̂, η̂′), completing the proof. �

It should be noted that conditions (4.1)–(4.4) are very similar to the conditions
on a braiding, in particular the braiding ερ,η satisfies these conditions. The only
difference is that Wρ(η) need only be defined for ρ a DHR endomorphism and η a
BF endomorphism.

The construction above gives an extension of representations of A to F. To verify
if these extensions are BF representations one should look at the localisation prop-
erties of the extension. The next lemma gives a necessary and sufficient condition
for the extension of a localised representation to be cone localised again.

Lemma 4.2. Consider the notation and assumptions of Proposition 4.1. If η is
localised in C , its extension η̂ is localised in C if and only if Wρ(η) = I for each
ρ ∈ ∆A

DHR
localised spacelike to C . Here, η̂ is called localised in C if it acts trivially

on all F ∈ π(F0(O)) for O ⊂ C ′.
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Proof. The localisation properties follow from the localisation of η. If F ∈ F0(O)
for some double cone O ⊂ C ′, it is of the form F = (A, ρ, ψ), with A ∈ A(O)
and ρ localised in O. But η acts trivially on such A, and Wρ(η) = I. Hence
η̂(π(A, ρ, ψ)) = π(A, ρ, ψ).

For the converse, suppose that ρ ∈ ∆A
DHR is localised spacelike to C . Choose an

orthonormal basis ψi of E(ρ). Then π(I, ρ, ψi) ∈ π(F0(O)) for O ⊂ C ′. Hence

η̂(π(I, ρ, ψi)) = πSa(Wρ(η))π(I, ρ, ψi) = π(I, ρ, ψi).

We multiply on the right by π(I, ρ, ψi)
∗ and sum over i. Since E(ρ) has support I,

it follows that πSa(Wρ(η)) is the identity. �

As a consequence of these results, we can canonically extend BF representa-
tions of A to BF representations of F. This way of extending representations was
first pointed out by Rehren [48], where the author sketches a proof in the case of
compactly localised sectors.

Theorem 4.3. Every BF representation η of A can be extended to a BF represen-
tation of F that commutes with the G-action. This extension is unique.

Proof. One readily verifies that Wρ(η) = ερ,η has the properties required in Propo-
sition 4.1. Moreover, Wρ(η) = I if ρ is localised spacelike to η. Hence there is a
∗-representation η̂ of π(F0) extending η. If η is localised in C , Lemma 4.2 shows

that η̂ is localised in the same region. If C̃ is another spacelike cone, by transporta-

bility of η there is a unitarily equivalent η′ localised in C̃ . By Proposition 4.1, this
lifts to a unitary equivalence of η̂ and η̂′, since the condition stated on S is nothing
but naturality of ερ,η in η. This shows transportability of the extension.

We now have a representation defined on the algebra π(F0). To extend this
representation to F, we first show that it can be extended to the local algebras
F(O) = π(F0(O))′′. Consider a double cone O. If O is spacelike to C , localisation
implies η̂(π(F )) = π(F ) for all π(F ) ∈ π(F0(O)). In this case it is clear that this
extends to the weak closure F(O). Now suppose O is not spacelike to C . Then by
the argument above, there is a unitary V such that η̃(π(F )) = V ∗η̂(π(F ))V which
is localised spacelike to O. In other words, η̂(π(F )) = V π(F )V ∗, by localisation
of η̃. The right hand side is weakly continuous, hence we can extend η̂ to F(O)
for every O. But the argument also shows that η̂ is in fact an isometry, since
‖V π(F )V ∗‖ = ‖π(F )‖. The union of the local algebras is norm dense in F, hence
by continuity η̂ extends uniquely to a representation of F.

Finally, we show that the extension is unique. Suppose that we have another
localised extension that commutes with the action ofG. Proposition 4.1 then asserts
the existence of a family Wρ(η). We show Wρ(η) = ερ,η. First of all, suppose
ρ ∈ ∆A

DHR is localised spacelike to the localisation of η. Then, by Lemma 4.2,
Wρ(η) = I. But this is equal to ερ,η, since ρ is degenerate. Now consider an
arbitrary ρ ∈ ∆A

DHR. Choose a unitary equivalent ρ′ localised spacelike to the
localisation of η, with corresponding unitary T . Then,

(T ⊗ Iη) = (Iη ⊗ T )Wρ(η), (T ⊗ Iη) = (Iη ⊗ T )ερ,η,

where the first equation follows from (4.2), and the second follows from naturality
with respect to ρ of the braiding. Since T is a unitary, it follows that Wρ(η) =
ερ,η. �
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Remark 4.4. (i) Localisation properties are used to show that η̂ can be extended to
a representation of F. By applying the results of [16], as in [39], it can be proved that
in fact every extension (whether it is cone localised or not) as in Proposition 4.1
can be defined on the whole of F.

(ii) Denote the canonical extension by Φ(η) or η̂. It turns out that Φ : η 7→ η̂ is
in fact a faithful, but not full, tensor functor. These and other categorical aspects
are discussed in Section 6.

Let us briefly comment on other approaches to the problem of extending repre-
sentations. Firstly one could use techniques from the theory of subfactors. For this
to work A(C )′′ ⊂ F(C )′′ needs to be an inclusion of factors. Moreover, the Jones
index of this inclusion should be finite. In this case the machinery of α-induction
and σ-restriction can be applied [3]. In the present situation, however, it is not
clear if these requirements are satisfied.

Another approach that can be used in the DHR setting is Roberts’ theory of
localised cocycles [51, 52], see also [9]. It is not immediately clear, however, if this
can be modified to apply to case of BF sectors. For one, the set of all double cones
is directed, unlike the set of all spacelike cones.

5. Non-abelian cohomology and restriction to the observable

algebra

In the previous section, extension of BF representations of the observable algebra
to the field algebra was discussed. Here we investigate the other direction: does
every BF representation of the field algebra that commutes with the group action
come from such an extension? This is a first step in understanding the category
∆F

BF(C ). In answering this question, one encounters problems of a cohomological
nature in a natural way.

For convenience of the reader we recall the notion of an α-1-cocycle and an α-2-
cocycle in a von Neumann algebra M; for the complete definition see [54]. A Borel
map v : G→ U(M) is an α-1-cocycle if it satisfies the identity

v(gh) = αg(v(h))v(g);

a map w : G×G→ U(M) is an α-2-cocycle if

w(gh, k)w(g, h) = w(g, hk)αg(w(h, k)).

It is possible to define a coboundary map ∂. For example, a 1-cocycle v(g) is a
coboundary if there is a unitary w ∈ M such that v(g) = αg(w)w

∗. A 2-cocycle
w(g, h) is a coboundary if there is a Borel map ψ : G→ U(M) such that w(g, h) =
αg(ψ(h))ψ(g)ψ(gh)

∗.
It turns out that each cocycle taking values in F(C ) is in fact a coboundary in

a bigger algebra F(C̃ )′′ ⊃ F(C )′′. This is essentially due to the field net having
full G-spectrum, which allows to use the construction of Sutherland to construct a
coboundary [54]. Before proving this result, we first recall some notions regarding
Hilbert spaces in von Neumann algebras [50].

Definition 5.1. Let M be a von Neumann algebra. A Hilbert space in M is a norm
closed linear subspace H, such that a ∈ H implies a∗a ∈ CI and x ∈ M, ax = 0
for all a ∈ H implies x = 0.
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An inner product is then defined by (a, b)I = a∗b. One can check that this
indeed defines a Hilbert space. If {Vi}i∈J is an orthonormal basis for H , the op-
erators ViV

∗
i are (mutually orthogonal) projections, hence the Vi are isometries,

and
∑

i∈J ViV
∗
i = I. Certain operators x ∈ M can be identified with operators in

B(H). More generally, if H1 and H2 are two Hilbert spaces in M, write

(H1, H2) = {x ∈ M : ψ∗
2xψ1 ∈ CI, ψ1 ∈ H1, ψ2 ∈ H2}.

These operators are in 1-1 correspondence with operators in B(H1, H2), see [50,
Lemma 2.3]. For x ∈ (H1, H2), write L(x) for the corresponding linear operator in
B(H1, H2). In this case, (ψ1, L(x)ψ2)I = ψ∗

1xψ2. With these preparations we can
prove the triviality of cocycles.

Theorem 5.2. Assume G is second countable. Let v(g1, . . . , gn) be a unitary α-n-

cocycle in F(C )′′. Then there is a spacelike cone C̃ ⊃ C such that v is a coboundary

in F(C̃ )′′.

Proof. Pick a double cone O ⊂ C ′, such that there is a spacelike cone C̃ ⊃ C ∪O.
Note that this is always possible. Since the field net has full spectrum, for each
irreducible representation ξ of G, there is a Hilbert space in F(O), transforming
according to this representation. That is, there are isometries ψi, i = 1, . . . , d
spanning a Hilbert space Hξ in F(O), such that

αg(ψi) =

d∑

j=1

uξji(g)ψj ,

where uξji(g) are the matrix coefficients of ξ.

The left regular action λ(g) on L2(G) decomposes as a direct sum of irreducible
representations. By the Peter-Weyl theorem the Hilbert space L2(G) decomposes
as [28]

(5.1) L2(G) =
⊕

ξ∈Ĝ

dξHξ,

where dξ is the dimension of the representation ξ. For each irreducible repre-
sentation ξ, the algebra F(O) contains a Hilbert space Hξ (as in Definition 5.1),
transforming according to the corresponding representation. The group G is sec-
ond countable, hence the number of irreducible representations is at most count-
able [28]. Since A(O) is a properly infinite von Neumann algebra acting on a
separable Hilbert space, it is possible to find a countable family of isometries Vi
such that V ∗

i Vj = δi,jI and
∑

i ViV
∗
i = I. Moreover, they are invariant under the

action of G. These isometries enable us to construct an image of the direct sum
decomposition (5.1) of L2(G) in F(O) as follows. First choose an enumeration ξi of

Ĝ, counted with multiplicities. For each i choose an orthonormal basis ψj of Hξi

where j = 1, . . . , dξi . Then eij = ViψjV
∗
i forms an orthonormal basis of a Hilbert

space in F(O). This Hilbert space will be denoted by L2
F(G). If T : L2

F(G) → L2(G)
denotes the corresponding isomorphism of Hilbert spaces, the above remarks imply
that T (αg(ψ)) = λ(g)T (ψ) for all ψ ∈ L2

F(G).

Note that the action αg induces an action on B(L2
F(G)). To see what effect this

has on the corresponding operators in B(L2(G)), consider the following calculation,
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where 〈−,−〉 is the inner product of L2(G), x ∈ B(L2
F(G)), and g ∈ G:

〈T (ψ1), L(x)T (ψ2)〉I = ψ∗
1xψ2

= αg(ψ
∗
1)αg(x)αg(ψ2)

= (αg(ψ1), L(αg(x))αg(ψ2))I

= 〈λ(g)T (ψ1), L(αg(x))λ(g)T (ψ2)〉I

= 〈T (ψ1), λ(g)
∗L(αg(x))λ(g)T (ψ2)〉I.

In other words, L(αg(x)) = λ(g)L(x)λ(g)∗ = Adλ(g)L(x), since the left regular
representation is unitary.

The situation can be summarised as follows: there is a copy of L2(G) in F(O),
as well as a copy of B(L2(G)). Moreover, the action αg of G acts as Adλ(g) on
these operators. We are now in a position to apply Proposition 2.5.1 from [54].

Define an injective representation π : F(C )′′⊗B(L2(G)) → F(C̃ )′′ by π(x⊗ y) =
xF−1(y). Note that this is indeed a representation, since F(C )′′ commutes with
F(O). Endow the algebra F(C )′′ ⊗ B(L2(G)) with the action βg of G defined by
βg = αg ⊗Adλ(g). It follows that for each g ∈ G, π(βg(x⊗ y)) = αg(π(x⊗ y)). By
Proposition 2.1.5 of [54] v(g1, . . . gn)⊗I is a β-coboundary. But since v(g1, . . . gn) =
π(v(g1, . . . gn)⊗I) and αg◦π = π◦βg, it follows that v(g1, . . . gn) is an α-coboundary

in F(C̃ )′′. �

Remark 5.3. The DHR sectors of A are in one-to-one correspondence with irre-
ducible representations of the group G. Hence under the assumption already made
in Theorem 3.6, it follows that G is indeed second countable.

With this theorem we are able to prove the main result of this section, namely
that every BF representation of F that commutes with the G-action comes from
the extension of a representation of A.

Corollary 5.4. Let η ∈ ∆F
BF

(C ), such that αg ◦ η = η ◦ αg for all g ∈ G. Then η

restricts to a BF sector η ↾ ASa of the observable net. Moreover, ̂η ↾ ASa = η.

Proof. Since the representation η commutes with the action of G, by Lemma 3.5(ii)
it restricts to an endomorphism of ASa. It is clear that this restriction is localised in
C as well. To prove transportability, proceed in a similar way as in [41, Proposition

3.5]. Suppose Ĉ is another spacelike cone. For simplicity we assume it is spacelike
to Sa. In the general case, one has to apply an argument as in the proof of

Proposition 2.11. Pick a spacelike cone C̃ ⊂ Ĉ such that there is a double cone

Ĉ ⊃ O ⊂ C̃ ′. By Lemma 2.7 and transportability, there is a unitary V ∈ FSa such

that η̃ = Ad V ◦ η is localised in C̃ .
Now consider g η̃ = αg ◦ η̃ ◦ αg−1 . Since η is G-invariant, αg(V ) ∈ HomF(η,

g η̃).

Because αg leaves F(C̃ ′) globally invariant, g η̃ is also localised in C̃ . Define an α-1-

cocycle v(g) = αg(V )V ∗ ∈ HomF(η̃,
gη̃). By Haag duality, v(g) ∈ F(C̃ )′′. Moreover

g 7→ v(g) is strongly continuous. By Theorem 5.2 there is a unitaryW ∈ F(Ĉ )′′ such
that v(g) = αg(W )W ∗. Define η̂ = AdW ∗ ◦ η̃. It is easy to see that η̂ is localised

in Ĉ and that W ∗V ∈ HomF(η, η̂). Moreover, by definition αg(V )V ∗ = αg(W )W ∗,
from which it follows that αg(W

∗V ) =W ∗V for all g ∈ G. Hence W ∗V is in ASa,
and is the desired intertwiner from η ↾ ASa to η̂ ↾ ASa .
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Since extensions commuting with G are unique by Theorem 4.3, the last state-
ment is obvious. �

6. Categorical crossed products

The results in the previous section give a complete understanding of all G-
invariant BF representations of ∆F

BF(C ). Indeed, these are all of the form Φ(η)
for some BF representation η of A. Recall that this extension functor is defined by
Φ(η) = η̂, and by Φ(S) = πSa(S) for intertwiners S (see Proposition 4.1). In fact,
this extension preserves all relevant properties of the category ∆A

BF(C ).

Proposition 6.1. The functor Φ : ∆A
BF

(C ) → ∆F
BF

(C ) is a strict braided monoidal
functor. It also preserves direct sums: Φ(η1 ⊕ η2) ∼= Φ(η1) ⊕ Φ(η2). Finally,
d(Φ(η)) = d(η).

Proof. Functoriality of Φ is immediate. Note that Φ(ι) is just the identity endomor-
phism of F, hence it preserves the tensor unit. We verify Φ(η1⊗η2) = Φ(η1)⊗Φ(η2)
on a dense subalgebra. Consider F = (A, ρ, ψ) ∈ F0. Then the extension of the
tensor product is given by

(6.1) η̂1 ⊗ η2(π(F )) = πSa(ηSa

1 η2(A)ερ,η1⊗η2
)π(1, ρ, ψ).

Note that by definition, η̂1(π(A, ι, 1)) = πSa(η1(A)) for all A ∈ A. Passing to
the unique weakly continuous extension, and taking weak limits, it follows that
η̂Sa

1 (πSa(A)) = πSa(ηSa

1 (A)) for all A ∈ ASa . We then calculate

(η̂1 ⊗ η̂2)(π(F )) = η̂1
Sa(πSa(η2(A)ερ,η2

)π(I, ρ, ψ))

= η̂1
Sa(πSa(η2(A)ερ,η2

))πSa(ερ,η1
)π(I, ρ, ψ)

= πSa(ηSa

1 (η2(A)ερ,η2
)ερ,η1

)π(I, ρ, ψ).

By the braid equations (cf. conditions (4.2)–(4.4)), the last line is equal to equa-
tion (6.1). For η1, η2 ∈ ∆A

BF(C ), note that Φ(εη1,η2
) = εΦ(η1),Φ(η2). This follows

from uniqueness of the braiding of ∆F
BF(C ), and by noticing that the funtor Φ

sends spectator morphisms used in the definition of εη1,η2
to spectator morphisms

for Φ(η1) and Φ(η2).
To prove that Φ preserves direct sums, assume η1 ⊕ η2 = AdV1 ◦ η1+AdV2 ◦ η2.

It is then not hard to show that for F ∈ F0,

Φ(η1 ⊕ η2)(π(F )) = Φ(V1)Φ(η1)(π(F ))Φ(V
∗
1 ) + Φ(V2)Φ(η1)(π(F ))Φ(V

∗
2 ).

The right hand side is just the direct sum Φ(η1)⊕ Φ(η2).
Finally, for the last statement one can show that if (η,R,R) is a standard con-

jugate for η, then (Φ(η),Φ(R),Φ(R)) is a standard conjugate for Φ(η), and this
determines the dimension. Details can be found in [38, Proposition 344]. �

Using some harmonic analysis, the intertwiners between two extensions can be
described explicitly.

Proposition 6.2. For γ ∈ ∆A
DHR

, write Hγ for the Hilbert space in F generated
by π(I, γ, ψ), ψ ∈ E(γ). Then for η1, η2 ∈ ∆A

BF
(C ),

(6.2) HomF(Φ(η1),Φ(η2)) = spani∈Ĝ π
Sa(HomA(γi ⊗ η1, η2))Hγi

,

where γi ∈ ∆A
DHR

corresponds to the irrep i. Moreover, we can choose each γi to
be localised in a double cone Oi ⊂ C .
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Proof. Consider T ∈ HomA(γ ⊗ η1, η2) and Ψ = π(I, γ, ψ) ∈ Hγ . By Proposi-

tion 4.1, T lifts to an intertwiner πSa(T ) from γ̂ ⊗ η1 to η̂2, hence

η̂2(π(A, ρ, ψ
′))πSa(T )Ψ = πSa(T )γ̂ ⊗ η1(π(A, ρ, ψ

′))Ψ.

Since the DHR morphisms form a symmetric category and E is a symmetric ∗-tensor
functor, that is, it maps εγ,ρ to the canonical symmetry ΣE(γ),E(ρ), it follows that
π(I, ρ, ψ′)π(I, γ, ψ) = π(εγ,ρ, γ, ψ)π(I, ρ, ψ

′). Using the braid equations, we then
have

πSa(γSaη1(A)ερ,γ⊗η1
)π(I, ρ, ψ′)Ψ = πSa(γSaη1(A)ερ,γ⊗η1

εγ,ρ)Ψπ(I, ρ, ψ
′)

= πSa(γSa(η1(A)ερ,η1
))Ψπ(I, ρ, ψ′).

An application of Lemma 3.8 then shows that πSa(T )Ψ ∈ HomF(Φ(η1),Φ(η2)).
For the other direction, note that since Φ(η1) and Φ(η2) are G-invariant exten-

sions, it follows that HomF(Φ(η1),Φ(η2)) is stable under the action of G. Since
the Hom-sets are finite-dimensional vector spaces, it is clear that in this case they
are generated linearly by irreducible tensors under G. So let T1, . . . Tn be some
multiplet in HomF(Φ(η1),Φ(η2)) transforming according to the representation ξ.
By the proof of Lemma 3.3 there is a G-invariant X such that Ti = XΨi, where
the Ψi ∈ Hγ form an orthonormal basis for E(γ). Moreover, γ is localised in some
O ⊂ C and transforms according to ξ.

Since Ti ∈ HomF(Φ(η1),Φ(η2)), we have, with F = (A, ι, 1) ∈ F0,

XΨiη̂1(π(F )) = η̂2(π(F ))XΨi = XπSa(γSa(η1(A)))Ψi,

where the last identity follows by applying Lemma 3.8 to the first term in the

equation. Now, multiply on the right by Ψ∗
i , and sum over i. Since

∑d
i=1 ΨiΨ

∗
i = I

by [27, Proposition 270], this leads to

(6.3) XπSa(γSaη1(A)) = πSa(η2(A))X.

By Lemma 3.5(ii) there is a T ∈ ASa such that πSa(T ) = X , and by equation (6.3)
and faithfulness of πSa , we have T ∈ HomA(γ ⊗ η1, η2). �

Corollary 6.3. The tensor functor Φ is an embedding (i.e. faithful and injective
on objects), but not full.

Proof. It follows from Corollary 5.4 that Φ is injective on objects. Since πSa is a
faithful representation, Proposition 4.1 implies Φ is faithful. The preceding proposi-
tion implies that it is not full. Indeed, the image of HomA(η1, η2) under the functor
Φ is πSa(HomA(η1, η2)), which in general is a proper subset of HomF(Φ(η1),Φ(η2))
as given by equation (6.2). �

Inspired by the results of Doplicher and Roberts, Müger formulated a categorical
version of the field net construction [40]. In a different context, a similar construc-
tion is due to Brugières [5]. In both approaches, modular categories are obtained by
getting rid of a non-trivial centre. Here we investigate this in the present situation,
c.f. [41]. We follow the approach of [40], since it also works when the symmetric
subcategory has infinitely many isomorphism classes of objects.

Let us recall the basic ideas in this construction. Suppose C is a braided tensor
C∗-category and S is a full symmetric subcategory. By the Doplicher-Roberts
theorem [17], there is a unique compact group G and an equivalence of categories
E : S → Repf (G). In the case at hand, C is the category ∆A

BF(C ) and S is the
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symmetric subcategory ∆A
DHR(C ).5 The group G will be the symmetry group, and

E is the functor used in Section 3.
First a category C ⋊0 S is defined. For each k ∈ Ĝ, choose a corresponding

γk ∈ S such that Hk = E(γk) transforms according to k. The category C ⋊0 S is
the category with the same objects as C, but with Hom-sets

HomC⋊0S(ρ, σ) = ⊕k∈ĜHomC(γk ⊗ ρ, σ)⊗Hk,

where the usual tensor product of vector spaces over C is used. One can then define
a composition of arrows, a ∗-operation, conjugates, direct sums and in the case at
hand, where the objects of S are degenerate, a braiding. Since the details are quite
involved, we refer to the original paper [40].

The category C ⋊0 S already has most of the desired structure. One property,
however, is missing: in general it is not closed under subobjects. To remedy this,
a closure construction is defined. This closure is denoted by C ⋊ S. It is called the
crossed product of C by S. The basic idea is to add a corresponding (sub)object
for each projection in HomC⋊0S(η, η). To make this precise: the category C ⋊ S
has pairs (η, P ) as objects where η ∈ C and P = P 2 = P ∗ ∈ HomC⋊0S(η, η). The
morphisms are given by

HomC⋊S((η1, P1), (η2, P2)) = {T ∈ HomC⋊0S(η1, η2) |T = T ◦ P1 = P2 ◦ T },

which is just P2 ◦ HomC⋊0S(η1, η2) ◦ P1. Composition is as in C ⋊0 S. Because P
is a projection, id(η,P ) = P . The tensor product can be defined by as (η1, P1) ⊗
(η2, P2) = (η1⊗η2, P1⊗P2), and the same as in C⋊0S on morphisms. One can then
show that C ⋊ S is a braided tensor C∗-category with conjugates, direct sums and
subobjects. The category C is embedded into the crossed product C⋊S by a tensor
functor ι : C → C ⋊ S, defined by η 7→ (η, idη) and HomC(η1, η2) ∋ T 7→ T ⊗ Ω.
Here Ω is a unit vector in the Hilbert space transforming according to the trivial
representation of G. Like the functor Φ, ι is a embedding functor that is not full.

The following proposition clarifies the relation between the crossed product
∆A

BF(C )⋊∆A
DHR(C ) and the BF representations of the field net F.

Proposition 6.4. The extension functor Φ : ∆A
BF

(C ) → ∆F
BF

(C ) factors through
the canonical inclusion functor ι : ∆A

BF
(C ) → ∆A

BF
(C )⋊∆A

DHR
(C ). That is, there

is a braided tensor functor H : ∆A
BF

(C ) ⋊ ∆A
DHR

(C ) → ∆F
BF

(C ) such that the
diagram

∆A
BF(C ) ∆A

BF(C )⋊∆A
DHR(C )

∆F
BF

(C )

✲ι

❍
❍
❍
❍
❍
❍❥

Φ
❄

H

commutes. Moreover, H is full and faithful.

Proof. First define H on the category ∆A
BF(C )⋊0 ∆

A
DHR(C ). Clearly, for objects η

we must set H(η) = Φ(η). In view of Proposition 6.2, it is natural to set for the
morphisms H(T ⊗ ψk) = πSa(T )π(I, γk, ψk), where T ∈ HomA(γk ⊗ ρ, σ), ψk ∈

E(γk), and k ∈ Ĝ, and extend by linearity. It is not very difficult, although quite

5Note that in the construction of the field net, the subcategory ∆A
DHR

was used, without the
localisation in C . Using transportability, however, it is easy to see that one might as well choose
∆A

DHR
(C ), since this category is equivalent to ∆A

DHR
.
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tedious, to verify that H defines a strict braided monoidal functor from ∆A
BF(C )⋊0

∆A
DHR(C ) to ∆F

BF(C ). It is clear that H is faithful, and by Proposition 6.2 it is
full.

To define H on the closure ∆A
BF(C ) ⋊ ∆A

DHR(C ), consider one of its objects
(η, P ). By definition, P 2 = P = P ∗ ∈ Hom∆A

BF
(C )⋊0∆A

DHR
(C )(η, η). It follows

that H(P ) as defined above is a projection in HomF(Φ(η),Φ(η)). By localisation
of H(η) and Haag duality it follows that H(P ) ∈ F(C )′′. Consider a spacelike

cone Ĉ such that C ⊂ Ĉ . Then by Property B there is an isometry W ∈ F(Ĉ ′)′

such that WW ∗ = H(P ). Now define H(η, P )(·) = W ∗η̂(·)W . This defines a ∗-

representation of F that is localised in Ĉ , due to localisation properties of E. Using
transportability, an equivalent representation localised in C can be obtained, in
a similar way as done in Section 2. Again it can be verified that H is a braided
monoidal functor. It is clearly faithful, and by Proposition 6.2 and the definition
of the Hom-sets in the crossed product, it is also full. Note that H is not a strict
tensor functor, but only a strong one. This is due to the arbitrary choices one has to
make in finding the isometry W , which is merely unique up to unitary equivalence.

Finally, ∆A
BF(C ) is embedded in ∆A

BF(C ) ⋊ ∆A
DHR(C ) by η 7→ (η, I). Hence

H ◦ ι(η) = H((η, I)) = η̂, thus H ◦ ι = Φ. �

7. Essential surjectivity of H

One of our goals is to understand the category ∆F
BF(C ) in terms of the original

AQFT O 7→ A(O). The functor Φ is not full, so it cannot provide a complete
answer to this question. The functor H , however, is full and faithful. Moreover,
we have an explicit description of the crossed product in terms of our original net
of observables A(O). Since a tensor functor is an equivalence of tensor categories if
and only if it is an equivalence of categories [53], it is enough to show that H is an
equivalence of categories. By the previous section H is full and faithful, hence only
essential surjectivity has to be shown. In this section this question is investigated.
The first observation is that this is related to a property of the extension functor
Φ.

Proposition 7.1. The functor H is essentially surjective if and only if Φ is dom-
inant. That is, for each irreducible η ∈ ∆F

BF
(C ), η ≺ Φ(η̃) for some η̃ ∈ ∆A

BF
(C ).

Proof. Suppose first that H is essentially surjective. Then for an irreducible object
η ∈ ∆F

BF(C ), there is some (η′, P ) such that η ∼= H(η′, P ). But by construction of
H , evidently H(η′, P ) is a subobject of Φ(η′). Since η ∼= H(η′, P ), also η ≺ Φ(η′).

Conversely, suppose Φ is dominant. Let η ∈ ∆F
BF(C ) be irreducible, and sup-

pose η′ is such that η ≺ Φ(η′). Then there is a corresponding isometry W ∈
HomF(η,Φ(η

′)). Hence WW ∗ is a projection in EndF(Φ(η
′),Φ(η′)). Proposi-

tion 6.2 shows that this projection comes from a corresponding projection P̂ in

Hom∆A

BF
(C )⋊0∆A

DHR
(C )(η

′, η′), and we see that η ∼= H(η′, P̂ ). The result follows

because ∆F
BF(C ) is semi-simple. �

In the remainder of this section, we comment on the question of finding conditions
such that Φ is dominant. In the case of finite G this problem has been solved
in [39]. Given an irreducible sector of the field net, one can use the full G-spectrum
of the field net to construct a direct sum that is G-invariant and contains η. This
construction works in the present case of BF sectors as well. By Corollary 5.4 it
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follows that this direct sum comes from extending a representation of the observable
net.

A straightforward attempt to generalise this to arbitrary compact groups would
be to replace the (finite) direct sum by a countable direct sum or even a direct
integral. However, apart from convergence problems one might encounter, there is
another issue: since the dimension d(η) is strictly positive, and is additive under
taking direct sums, this leads to a sector with infinite dimension. Hence it is not
an element of our category ∆F

BF(C ).
Let us first recall how the group G acts on the sectors, or more precisely, on

equivalence classes of localised representations.

Lemma 7.2. Let η ∈ ∆F
BF

(C ). Then G acts on equivalence classes [η] by g[η] =
[gη] = [αg ◦ η ◦ αg−1 ].

Proof. This obviously defines an action. This action is well-defined: suppose
η1(−) = V η2(−)V ∗ for some unitary V . Then gη2(−) = αg ◦ η2 ◦ αg−1(−) =
αg(V η1 ◦ αg−1(−)V ∗) = αg(V )αg ◦ η1αg−1 (−)αg(V

∗), hence gη1 ∼= gη2. �

The previous observations suggest that if there is any hope to construct a G-
invariant direct sum of a sector of the field net, the action of G on this sector should
not be too “wild”, in the sense that there should only be a finite number of mutually
inequivalent sectors under the action of G. This is indeed a necessary condition, as
will be shown below. This behaviour is described by the stabiliser subgroup.

Definition 7.3. Suppose η ∈ ∆F
BF

(C ). The stabiliser subgroup Gη is defined by
Gη = {g ∈ G | gη ∼= η}.

By Lemma 7.2 this is well-defined. Moreover, the index [G : Gη] is finite if and
only if there are only finitely many equivalence classes under the action of G. Note
that Gη is a closed subgroup of G, hence compact. The condition that the index
be finite is necessary for finding a G-invariant dominating representation.

Lemma 7.4. Suppose η ≺ η̂ for η ∈ ∆F
BF

(C ), where η̂ commutes with the action
of G. Then [G : Gη] <∞.

Proof. Assume for simplicity that η is irreducible; the general case readily follows.
Decompose η̂ = ⊕i∈Iηi where I is some finite set. Then there is an i ∈ I such
that ηi ∼= η, since η ≺ η̂. Because g η̂ = η̂ for all g ∈ G, it follows that for every
g ∈ G there is some j ∈ I such that gηi ∼= ηj . As g runs over G, [gηi] runs over
all equivalence classes g[η]. It follows that there are at most |I| such equivalence
classes, or by the remark above: [G : Gη] ≤ |I|. �

Our next goal is to construct a BF representation η̂ that commutes with the
action of G, such that η ≺ η̂. In other words: η is a direct summand of η̂. Observe
that it is enough to consider only summands ηi ∼=

giη for some gi ∈ G. Now assume
that [G : Gη] is finite. Then there is a finite dimensional representation of G,
permuting a basis of the space spanned by the left cosets G/Gη. Write [g] for the
coset of g ∈ G. Pick a representative gi of each coset. Since the field net has full
G-spectrum, it is possible to find isometries V[gi] such that αg(V[gi ]) = V[ggi] and
the following relations hold:

V ∗
[gi]
V[gj ] = δi,jI,

∑

[gi]∈G/Gη

V[gi]V
∗
[gi]

= I.
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Now if g ∈ G, there is a gj and a hj ∈ Gη such that ggi = gjhj . Moreover, multipli-
cation on the left induces a permutation on the cosets, hence also of the represen-
tatives gi. Let η̃ be such that η ≺ η̃. Consider η̂(−) =

∑
[gi]∈G/Gη

V[gi]
gi η̃(−)V ∗

[gi]
.

Then for g ∈ G,

gη̂(−) =
∑

[gi]∈G/Gη

αg(V[gi])
ggi η̃(−)αg(V[gi])

∗ =
∑

[gi]∈G/Gη

V[gi]
gi(hi η̃(−))V ∗

[gi]
,

where hi is as above. So for η̂ to commute with the G-action, it is sufficient that
hη̃ = η̃ for all h ∈ Gη. The existence of such a η̃ is also necessary.

To find such an η̃, by semi-simplicity of ∆F
BF(C ) it is enough to consider an

irreducible η. We will do this in the rest of this section. By definition, for each
g ∈ Gη there is a unitary v(g) such that gη(−) = v(g)η(−)v(g)∗. By considering
ghη = g(hη) and using that η is irreducible, it follows that

v(gh) = c(g, h)αg(v(h))v(g), g, h ∈ Gη,

where c(g, h) is a complex number of modulus one. In fact, it is not difficult to show
that c(g, h) is a 2-cocycle, with equivalence class [c] ∈ H2(Gη,T). The cohomology
class does not depend on the specific choice of unitaries v(g) and is the same for
each η′ ∼= η. Hence (Gη, [c]) can be seen as an invariant of the sector. If [c] is the
trivial cohomology class, v(g) is in fact an α-one-cocycle and we can construct an
η′ ∼= η that commutes with the action of Gη, just as in the proof of Corollary 5.4.

The following observation, which amounts to the fact that the direct sum is
independent of the chosen basis, turns out to be convenient.

Lemma 7.5. Let η ∈ ∆F
BF

(C ) be irreducible. Consider two direct sums of copies
of η, η̂ =

∑n
i=1 Viη(−)V ∗

i and η̂′ =
∑n

i=1Wiη(−)W ∗
i . Then η̂ = η̂′ if and only if

there is a unitary n× n matrix λ such that Wi =
∑n

i=1 λjiVj .

Proof. (⇒) Define λij = V ∗
i Wj , then λij ∈ EndF(η) ∼= C, by irreducibility of η. By

a straightforward calculation one easily verifies that λ is indeed a unitary matrix,
and Wi =

∑n
i=n λjiVj .

(⇐) Easy calculation. �

Now suppose we have a direct sum η̂(A) =
∑n

i=1 Viη(A)V
∗
i . An easy calculation

then shows that for g ∈ Gη:

g η̂(−) =

n∑

i=1

αg(Vi)v(g)η(−)v(g)∗αg(V
∗
i ),

where the v(g) are unitaries as above. Because v(g) is unitary, it follows that
αg(Vi)v(g) is a basis of HomF(η,

g η̂). This space has a Hilbert space structure,
defining an inner product by 〈V,W 〉I = W ∗V for V,W ∈ Hom(η, g η̂). Combining
this with the previous observations, we find the following necessary and sufficient
criterion.

Proposition 7.6. There is a G-equivariant (i.e., commuting with the action of G)
dominating sector η̂ ≻ η if and only if the following conditions hold:

(i) the stabiliser group Gη has finite index in G, i.e. [G : Gη] <∞,
(ii) there is a finite-dimensional non-trivial Hilbert space H in F such that

αg(V )v(g) ∈ H for all V ∈ H and g ∈ Gη.
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We end this section with a few remarks. First of all, the author unfortunately
does not know of any physical interpretation of the conditions in the proposition.
Furthermore it seems to be difficult to verify these conditions. However, the propo-
sition generalises the situation where G is finite. In this case, the conditions are
trivially satisfied. If one can show that the cocycle c(g, h) is trivial (as a cocy-
cle in H2(Gη,T)), it follows by Theorem 5.2 that there is a unitary w such that
v(g) = αg(w)w

∗. Condition (ii) is then satisfied by taking the one-dimensional
Hilbert space spanned by w. Using Theorem 5.2 one can show that c(g, h) is trivial
as a cocycle in the field net, which, however, is not sufficient here.

As a final remark, suppose that condition (ii) is satisfied. It follows that there is
Hilbert space in F carrying a projective unitary representation. Indeed, choose an
orthonormal basis Vi of H. Then for g ∈ Gη, αg(Vi)v(g) is a new basis for H. Write
λ(g) for the unitary transformation that implements the basis change. It follows
that λ(gh) = c(g, h)λ(g)λ(h).

8. Conclusions and open problems

It would be desirable to arrive at a modular category starting from an AQFT
in three dimensions, for example because of their relevance to topological quantum
computing. In this paper some steps in this direction are taken. In particular, the
category of stringlike localised or BF representations has many of the properties of
a modular category. The existence of DHR sectors, which cannot be ruled out a
priori, is shown to be an obstruction for modularity. To remove this obstruction, the
original theory A is extended to the field net F, which can be seen as a new AQFT
without DHR sectors. The relation between those theories is partially made clear,
in particular by the crossed product construction of Section 6. There is, however,
one point that is not fully understood, namely the question whether the sectors in
the new theory F can be completely described by the sectors of the theory A. This
is the case if for example G is finite, or the conditions of Proposition 7.6 hold for
each BF sector of F. In this case, the sectors of F are completely determined by
the crossed product ∆A

BF ⋊∆A
DHR(C ).

Although one major obstruction for modularity has now been removed, this
is not enough to conclude that ∆F

BF(C ) is modular. In particular, there may be
degenerate BF (but not DHR) sectors of F. The other condition is that there should
be only finitely many equivalence classes of BF representations of F. In case the
functor H of Section 7 is indeed an equivalence, both properties are determined
by the crossed product, and hence ultimately by ∆A

BF(C ). In particular, in this

situation, absence of degenerate sectors in ∆F
BF(C ) is equivalent to the absence

of degenerate objects in ∆A
BF(C ) ⋊ ∆A

DHR(C ). This is essentially because H is a
braided functor, which makes it possible to transfer the degeneracy condition of
the braiding from one category to the other. The absence of degenerate objects of
∆A

BF(C ) ⋊ ∆A
DHR(C ) is equivalent to the absence of degenerate BF sectors (that

are not DHR) of A, since by [40] the crossed product has trivial centre if and only if
∆A

DHR(C ) is equal to the centre of ∆A
BF(C ). The finiteness condition would follow

by counting arguments from finiteness of ∆A
BF(C ).

We give a list of some open problems and questions.

(i) In view of the remarks above, it would be interesting to understand the
set of BF (that are not DHR) sectors of A. In particular, are there condi-
tions that imply that this set is finite, or does not contain any degenerate
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sectors? As for the latter: in the DHR case a condition for this was given
in [39]. Perhaps this condition might be adapted to the case of BF sec-
tors. It should be noted that both conditions (i.e. non-degeneracy and
finiteness) are completely understood in the case of conformal field the-
ory on the circle, in terms of an index of certain subfactors [30]. That
method, however, cannot obviously be adapted to the case we are inter-
ested in, among other reasons because we have no condition for factoriality
of the relevant algebras of observables. However, it would be interesting
to know if there is an analogue of the condition of “complete rationality”
that ensures modularity.

(ii) It would be desirable to have a physical interpretation for the conditions
given in Section 7. This might give some hints on how to prove these
conditions in concrete theories.

(iii) One of our assumptions was the absence of fermionic DHR sectors of A.
It would be interesting to see what can still be done if this assumption
is dropped. In this case, the field net does not satisfy locality, but only
twisted locality. Thus one would lose the interpretation of F as an AQFT in
the sense that it should only consist of observables commuting at spacelike
distances.

(iv) Can the techniques be useful in describing quantum spin systems? Such
systems are more appropriate for topological quantum computing than
relativistic quantum field theories, see e.g. [31]. There is some evidence
that points into this direction [44]. In particular, it can be shown that
in Kitaev’s Z2 model on the plane, single excitations can be described by
automorphisms of an observable algebra. These automorphisms fulfill a
selection criterion similar to the BF criterion. Moreover, they are localised
and transportable, and using the methods here, one can explicitly calculate
the statistics of these excitations. The results are consistent with Kitaev’s
results [31]. Although this simple model is by no means sufficient for
quantum computing, it might be possible to extend the methods to more
interesting models.

Appendix A.

In this appendix we collect some of the terminology regarding (tensor) categories
and notions of superselection theory that will be used throughout the article. Due
to lack of space, we restrict to the essentials. In particular, the categorical concepts
can be defined much more generally than necessary for our purposes. For the
essentials of category theory, details can be found in the book by Mac Lane [37].
For the structure of categories appearing in algebraic quantum field theory, see [38].
Modular categories are described in [2]. An overview of superselection theory can
be found in the book of Haag [26].

A.1. Superselection theory. A sector is an unitary equivalence class of repre-
sentations (satisfying some selection criterion such as the DHR or BF criterion) of
the observable algebra. Representations satisfying the BF or DHR criterion can be
described by localised and transportable endomorphisms of the observable algebra.
Sometimes we will identify such an endomorphism ρ with its sector, i.e., all unitary
equivalent localised endomorphisms. These endomorphisms are the objects of a
category, with intertwiners as morphisms. An intertwiner from η1 to η2 (and hence
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a morphism in Hom(η1, η2)) is an operator T such that Tη1(A) = η2(A)T for all
observables A. There is a natural tensor product ⊗ (defined by composition of
endomorphisms) on this category.

Another important concept is that of a conjugate sector. A conjugate of a DHR
or BF representation can be interpreted as an “anti-charge”. Formally, a conjugate
for a BF (or DHR) representation ρ is a triple (ρ,R,R), where ρ is a BF (resp. DHR)
representation. The operators R,R are intertwiners satisfying R ∈ Hom(ι, ρ ⊗ ρ),
with ι the trivial endomorphism, and R ∈ Hom(ι, ρ⊗ ρ) such that

R
∗
ρ(R) = I, R∗ρ(R) = I,

where I is the unit of the observable algebra. If a conjugate exists, one can always
choose a standard conjugate. A conjugate (ρ,R,R) is called standard if R∗ρ(S)R =

R
∗
SR for all S ∈ Hom(ρ, ρ). The conditions for a conjugate imply that ρ⊗ ρ (and

ρ ⊗ ρ) contain a copy of the vacuum sector. A conjugate exists if and only if the
sector has finite (statistics) dimension. The latter is then given by d(ρ)I = R∗R
with R standard. Conjugates are intimately related to the statistics of a sector. It
should be noted that conjugates can be defined in a much more general categorical
setting, e.g. [36].

In the category of BF representations, a braiding ερ,η ∈ Hom(ρ⊗η, η⊗ρ) for every
pair of objects ρ, η can be defined. A sector is called degenerate if, roughly speaking,
it has trivial braiding with all objects. More precisely, ρ is degenerate if and only
if ερ,η ◦ εη,ρ = I for all objects η. If this holds for a particular representative of a
sector, it holds for all representatives of the sector. An object of the form ι⊕· · ·⊕ ι
is always degenerate. Degenerate sectors of this form are called trivial.

A.2. Category theory. Let F : C → D be a functor. Then, for every pair of
objects ρ, σ in C, there is a map Fρ,σ : Hom(ρ, σ) → Hom(F (ρ), F (σ)) defined by
S 7→ F (S) for S ∈ Hom(ρ, σ). The functor F is called faithful, if Fρ,σ is injective
for each pair of objects ρ, σ. Likewise, if it is surjective for all pairs, it is called full.
Note that a faithful functor is not necessarily injective on objects, that is, it might
happen that F (ρ) = F (σ) for distinct objects ρ and σ of C. A faithful functor that
is also injective on objects, is called an embedding.6 In particular, subcategories
give rise to embedding functors. A subcategory of a category C is a category that
contains a collection of the objects and morphisms of C. A subcategory is called
full if it has the same morphisms as the bigger category, hence in that case it is
completely determined by specifying its objects. Finally, a functor F : C → D is
called an equivalence of categories if it is full, faithful and essentially surjective,
which means that for each object D of D, there is an object C of C such that
F (C) is isomorphic to D. From a categorical perspective, equivalent categories are
“essentially the same”.

Certain categories admit a tensor (or monoidal) product⊗. That is, one can form
tensor products of objects and morphisms. In a tensor category there is a tensor
unit ι, such that ρ ∼= ι ⊗ ρ ∼= ρ ⊗ ι, where ∼= means isomorphic in the category.
Associativity is described by natural isomorphisms αρ,σ,τ : ρ⊗(σ⊗τ) → (ρ⊗σ)⊗τ
satisfying certain coherence conditions. A tensor category is called strict if the
associativity morphisms reduce to the identity, and ρ⊗ ι = ι⊗ ρ = ρ for all objects
ρ. The categories encountered in this paper are all strict.

6Note, however, that for some authors an embedding functor is only a faithful functor.
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Every tensor category is monoidally equivalent to a strict tensor category. That
is, there is a tensor functor between the two categories, that is also an equivalence
of categories. A tensor functor is a functor F together with natural isomorphisms
F (ρ ⊗ σ) → F (ρ) ⊗ F (σ), and similarly for the tensor unit. Again, the functor
is called strict if the isomorphisms are all identities. Even between strict tensor
categories, however, it might be necessary to consider non-strict tensor functors.
In case both categories have a braiding, a braided tensor functor F : C → D is
a functor such that F (εCρ,σ) = εDF (ρ),F (σ) (or a suitably modified condition if the

categories are not strict), where εCρ,σ is the braiding of C.
The category of stringlike localised representations is calledmodular, if it has only

finitely many equivalence classes of representations and the centre (with respect to
the braiding) is trivial. The latter condition is the statement that if ερ,η ◦ εη,ρ = I
for each object ρ, then η = ι ⊕ · · · ⊕ ι, i.e., it is a direct sum of trivial endomor-
phisms. A modular category satisfies additional axioms (for example the existence
of duals or conjugates), but these are automatically satisfied by the category of BF
representations. The non-degeneracy condition is equivalent to Turaev’s condition
on a modular category [56], which is stated in terms of invertibility of a certain
matrix S, by a result of Rehren [47].
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[30] Y. Kawahigashi, R. Longo, and M. Müger. Multi-interval subfactors and modularity of rep-
resentations in conformal field theory. Comm. Math. Phys., 219(3):631–669, 2001.

[31] A. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Physics, 303(1):2–30, 2003.
[32] A. Kitaev. Anyons in an exactly solved model and beyond. Ann. Physics, 321(1):2–111, 2006.
[33] N. Kowalzig. Hopf Algebroids and Their Cyclic Theory. PhD thesis, Universiteit van Ams-

terdam and Universiteit Utrecht, 2009.
[34] R. Longo. Index of subfactors and statistics of quantum fields. I. Comm. Math. Phys.,

126(2):217–247, 1989.
[35] R. Longo. Index of subfactors and statistics of quantum fields. II. Correspondences, braid

group statistics and Jones polynomial. Comm. Math. Phys., 130(2):285–309, 1990.
[36] R. Longo and J. E. Roberts. A theory of dimension. K-Theory, 11(2):103–159, 1997.
[37] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in

Mathematics. Springer-Verlag, New York, second edition, 1998.
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[55] K. Szlachányi and P. Vecsernyés. Quantum symmetry and braid group statistics in G-spin

models. Comm. Math. Phys., 156(1):127–168, 1993.
[56] V. G. Turaev. Quantum invariants of knots and 3-manifolds, volume 18 of de Gruyter Studies

in Mathematics. Walter de Gruyter & Co., Berlin, 1994.
[57] E. Verlinde. Fusion rules and modular transformations in 2D conformal field theory. Nuclear

Phys. B, 300(3):360–376, 1988.

E-mail address: p.naaijkens@math.ru.nl

Radboud University Nijmegen, IMAPP, FNWI, Heyendaalseweg 135, 6525 AJ Nijmegen,

The Netherlands


	1. Introduction
	2. Stringlike localised sectors
	3. The field net
	4. Extension to the field net
	5. Non-abelian cohomology and restriction to the observable algebra
	6. Categorical crossed products
	7. Essential surjectivity of H
	8. Conclusions and open problems
	Appendix A. 
	A.1. Superselection theory
	A.2. Category theory

	References

