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Abstract. Multimorbidity is becoming a significant health-care prob-
lem for western societies, especially within the elderly. Since medical
knowledge is mostly organized around single diseases, it is unlikely that
the elderly patient with multiple diseases receives appropriate treatment.
To get a grip on complex interactions, we aim to model domains using
hierarchies, for example, patient characteristics, pathophysiology, symp-
tomatology and treatment. For this we introduce Multilevel Bayesian

networks, which we have applied to clinical data from family practices
in the Netherlands on heart failure and diabetes mellitus. We compare
the outcomes to conventional methods, which reveals a better insight of
interactions between multiple diseases.

1 Introduction

Recent epidemiological research in the Netherlands indicates that more than two
third of all patients older than 65 years have two or more chronic diseases at
the same time; this problem, one of the most challenging of modern medicine, is
referred to as the problem of comorbidity or multimorbidity. Where comorbidity

is defined in relation to a specific index condition, the term multimorbidity has
been introduced in chronic disease epidemiology to refer to any co-occurrence
of two, but often more than two, multiple chronic or acute diseases within a
person. The introduction of this term indicated a shift of interest from a given
index disease (i.e. the primary disease) to individuals having multiple diseases.

There is no guarantee that, in case of a patient with multiple diseases, treating
each disease individually is optimal. The need of an integrated optimal treat-
ment for a patient with multiple diseases also implies the need for an integrated
research methodology of multiple diseases. However, medical researchers often
focus on an index disease rather than looking at multimorbidity in total.

Typically, regression methods are used to analyze the variance in disease vari-
ables, where researchers focus on the power of specific variables for predicting
the presence or absence of specific diseases [22]. Where linear regression is used



for continuous outcome variables, logistic regression is mostly used for dichoto-
mous outcome variables. In case patients can be divided into groups, multilevel

regression can be used to analyze the group dependent variance by adding extra
variance components [7].

In contrast to using regression of fixed functional form, the patient data
can also be modeled using probabilistic graphical models, such as Bayesian net-
works [11]. The edges of the graphical model then represent relationships between
patient characteristics, pathophysiology and diagnostic tests for the disease of
interest, which naturally generalizes to multiple diseases. However, multilevel
modeling has not been studied in this context.

In this paper we introduce a new representation of multilevel disease models
using Bayesian networks – which we call multilevel Bayesian networks – of which
the multilevel regression model is a special case. This gives us the advantage that
multiple models, e.g. of diseases, can be merged into one model, which allows
examination of the interactions between them. Moreover, we apply this frame-
work to patient data from family practices in the Netherlands. Its effectiveness
is shown by comparing the model to the traditional methods based on regression
analysis.

2 Multimorbidity: Context and Related Research

An Abstract Disease Model The context of multimorbidity is illustrated by Fig. 1
which provides an abstract view on the problem. The left-hand side shows the
typical relationships between variables when considering a single disease. They
form a hierarchical topology: genetics and environment, patient characteristics,
disease, pathophysiology, and measurable variables, i.e. specific signs, symptoms
and laboratory results.

If we represent multiple diseases in the same model, all kinds of interaction
between variables within this model can be identified, as is illustrated at the
right-hand side of Fig. 1. Mutual dependences between the two diseases may
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Fig. 1. Abstract model of a single disease (left) and multiple diseases (right).



concern their pathophysiology, symptoms, signs, and lab results. By modeling
these interactions explicitly, better decisions can be made for patients having
multiple diseases. Moreover, when considered separately, single disease models
often contain a lot of overlap with each other, which may be avoided by inte-
grating different disease models into a single model.

Normally, in scientific research, one would investigate diseases separately,
resulting in different predictive values of variables shared by both diseases. Re-
cently, multilevel regression analysis was used to investigate the influence of par-
ticular family practice variables on hypertension and diabetes mellitus, revealing
an inter-practice variance in predictability [10]. However, since interactions could
have an additive effect on prevalence, this yields no insight into the predictive
value in case both diseases are present. Actually, we need an extra regression on
the combined diagnosis to be able to conclude on such information.

In regression methods the variance of the observations is minimized with
respect to the dependency between variables. Multilevel analysis also tries to ex-
plain the variance caused by grouping variables that intermediate on the lower
level variables, i.e. it allows the intercept and slope, that determines the linear
dependency between two variables, to alter for different groups. To analyze com-
plex multimorbidity models one might have to deal with large datasets in which
many variance is introduced. This can be due to the fact that data is collected
from different kind of sources (e.g. family practices) or the data represents pa-
tients of all kind of populations (social, economic, and demographic differences).
If we would ignore this, identifying interactions between disease variables such
as pathophysiology and laboratory results could be difficult or erroneous.

Ultimately, we need one model that explains, both the variance, introduced
in the observations, and the interactions in case of multiple diseases. If we can
translate the multilevel regression models, which can deal with the variance
explained by hierarchical structures themselves, to a graphical representation
in such a way that we are able to connect multiple models of different diseases
together, we also make them dependent on the interactions between diseases.

Related Research Much of the medical research relies on regression models which
are applied to a single disease, and, thus, ignore the complexity of multimorbid-
ity. Prevalence of multimorbidity are studied in family practices [1], sometimes
with clustering of specific diseases [8]. These results illustrate the impact and
complexity, but give little insight into interactions between diseases.

More advanced methods to analyze multimorbidity in particularly were not
available until recently. A network analysis of pairwise comorbidity correlations
for 10.000 diseases from 30 million medical records illustrated the complexity
of many physiological processes in a context of patient characteristics such as
ethnicity and genetic predisposition [6]. Markov blanket models and Bayesian
model averaging were used in algorithms for learning patient-specific models from
clinical data, to predict the outcome of sepsis or death in case of cardiovascular
diseases [21]. To deal with polypharmacy, there is recent work of a Bayesian
network meta-analysis to compare antihypertensive treatments in randomized
controlled trials [16]. The method allows a comparison of multiple treatments



where only a subset of treatments were compared in each trial. This mixed
treatment comparison was facilitated with a framework of Markov models to be
able to monitor disease progression [13].

Bayesian graphical modeling [18] is presented as a framework for general-
ized linear models, including multilevel and hierarchical models, with the aim to
represent the conditional independence assumptions for parameters and observ-
ables and to make them the basis for a local computational strategy, generally
based on Markov Chain Monte Carlo (MCMC) methods. It addresses solutions
to deal with overdispersion, hierarchical modeling, dependency between coeffi-
cients, model criticism, making predictions, covariates and missing populations.

Although not specially designed for multimorbidity, similarity networks and
Bayesian multinets [2] may offer a suitable method to represent uncertain knowl-
edge in case of multiple diseases. An advantage of these methods is the possibility
to represent asymmetric independence assertions, meaning that dependency be-
tween variables may only occur for certain values of these variables.

In the next section, basic techniques used in this paper are briefly reviewed.

3 Preliminaries

In this section we provide the basic concepts that we will use when modeling
multimorbidity. Before moving on to the regression methods and Bayesian net-
works we first summarize basic elements of probability theory putting emphasis
on multivariate probability distributions. Further on, we will discuss the issues
that need to be dealt with when modeling multiple diseases.

3.1 Probability Theory

The patients’s characteristics, pathophysiology, investigations, etc., can be seen
as random variables each with its own distribution. Formally, random variables
are denoted with uppercases, and observations with lowercases. We assume there
is some joint, or multivariate, probability distribution over the set of random
variables X, denoted by P (X). The probability of a conjunction of two sets of
variables, X ∧ Y , is denoted as P (X ∧ Y ) and also as P (X,Y ). The marginal
distribution of Y ⊆ X is then given by summing (or integrating) over all the
remaining variables, i.e., P (Y ) =

∑
Z=X\Y P (Y,Z). A conditional probability

distribution P (X | Y ) is defined as P (X,Y )/P (Y ). Two variables X and Y are
said to be conditionally independent given a third variable, Z, if P (X | Y,Z) =
P (X | Z).

In case a variable X is discrete, the variable is bounded by a finite set of
possible values x, a probability is then denoted by P (X = x). In case the outcome
space of a variable X is the set of real numbers R or a subset thereof, one uses
the probability P (X ≤ x).



3.2 Linear Regression

In general, in medical research, we have a dataset of observations of a number of
patients, and we could see them as possible outcomes of the random variables.
The variables can be split up in several domains. We can distinguish outcome
variables, denoted as Oi, and explanatory variables, denoted as Ei. Some ex-
planatory variables act on a group level, i.e. they have the same value for each
individual within a certain group, which are denoted as Li.

Linear regression tries to fit the observations of a random continuous variable
(assuming it is normally distributed) into a linear model. This is done using
an algorithm, e.g. a least square method, that minimizes the defiance of the
observations with respect to the model parameters (the variance). Typically,
we want to explain an observation o with respect to explanations ei assuming
that the observations o are possible outcomes of a random variable O. If the
vectors (1, e1, . . . , ei, . . . , en)

T are explanations, linear regression often estimates
the parameters β = (β0, β1, . . . , βi, . . . , βn)

T , such that

P (O | e) ∼ N (µ,Σ), with µ = βT e (1)

for every explanation e. Linear regression only makes sense in case of continuous
variables. In case of disease variables this mostly only accounts for physical
measurements. For example, a linear relation between two different kind of blood
measurements BM1 and BM2, e.g. the low density lipoprotein (LDL) and high
density lipoprotein (HDL) blood values, could be modeled as:

P (BM1 | BM2 = bm2) ∼ N (β0 + β1bm2, Σ)

For more details about linear regression and other regression methods, especially
in the medical area, one is referred to [22].

3.3 Multilevel Regression

In multilevel regression, part of the variance is explained due to group effects,
i.e. the intercept and slope of the linear dependencies is allowed to alter amongst
different groups. Now suppose we have a set of observations lj , with 1 ≤ j ≤ m,
that have the same value within a certain group of patients, and based on that we
can divide the patients into k groups. We could simply add these variables to the
regression model as extra predictors. If we have e = (1, e1, . . . , en, l1, . . . , lm)T

as possible multivariate outcome, and β as (β0, β1, . . . , βn, βn+1, . . . , βn+m)T we
keep a model as defined in Equation (1), having n+m+ 1 degrees of freedom.

Multilevel regression, however, offers a different approach. For each kth group
we define a linear regression model, with Ok as random outcome variable, and
allow dependency of the regression coefficients on the variables lj and certain
deviation from the overall mean. With e = (1, e1, . . . , en)

T , l = (1, l1, . . . , lm)T ,
βk = (βk0, . . . , βkn)

T , δk = (δk0, . . . , δkn)
T , Γk a matrix consisting of γk

ij , and
δki ∼ N (0, Σδ), the model becomes:

P (Ok | e, g) ∼ N (µ,Σ), with µ = (δk + Γkg)
T e (2)



The model is now more complex and the number of degrees of freedom is k(n+
1)(m+2). For example, if we extend our previous example by grouping on gender
represented by a variable gen, and allow an influence of gender on the relation
between the two blood measurements, the model then becomes:

P (BM1 | male, bm2] = N (δm0 + γm
0 + (δm1 + γm

1 )bm2, Σ)

P (BM1 | female, bm2] = N (δf0 + γf
0 + (δf1 + γf

1 )bm2, Σ)

The parameters of multilevel regression models can be estimated using an re-
stricted iterative generalized least square (RIGLS) method, which coincides with
restricted maximum likelihood (REML) in Gaussian models [3]. It estimates the
parameters by alternating the optimizing process between the fixed parameters
(γkij) and the stochastic parameters (δki) until convergence is reached, and is
equivalent to the maximum likelihood estimation in standard regression.

3.4 Generalized Regression Models

The former model assumes that the random outcome variable O is normally
distributed. But suppose we want to consider a dichotomous outcome variable
with only the possible values ’yes’ and ’no’. An approach to deal with non-
normally distributed variables is to include the necessary transformation and the
choice of the appropriate error distribution explicitly into the model. This class of
statistical models are called generalized linear models. They are defined by three
components: an outcome variable O that has an expected value E[O|e], a linear
additive regression equation that produces an unobserved (latent) predictor η
of the outcome variable O, and a link function that links the expected values of
the outcome variable O to the predicted values for η. In logistic regression the

link function is given by η = logit(E[O|e]) = log E[O|e]

1−E[O|e]
. The logistic multilevel

model then becomes:

logit(E[Ok] | e, l) = (δk + Γkl)
T e

The conditional probability in case of logistic regression is then defined as:

P (Ok | e, l) =
1

1 + e−x
, with x = (δk + Γkl)

T e (3)

For example, we are interested in the predictive value of blood measurement
BM1 and BM2 to an dichotomous outcome variable such as disease D1 with
possible values ’yes’ or ’no’. The multilevel logistic regression model with respect
to gender then becomes:

logit(E[D1] | male, bm1, bm2) = δm0 + γm
0 + (δm1 + γm

1 )bm1 + (δm2 + γm
2 )bm2

logit(E[D1] | female, bm1, bm2) = δf0 + γf
0 + (δf1 + γf

1 )bm1 + (δf2 + γf
2 )bm2

Parameters for dichotomous outcomes are estimated with marginal and penal-
ized quasi-likelihood (MQL/PQL) algorithms [4]. Alternatively MCMC methods
such as Gibbs Sampling can be used [15].



3.5 Bayesian Networks

Bayesian networks offer an effective framework for knowledge representation
and reasoning under uncertainty [11]. Formally, a Bayesian network, or BN,
is a tuple B = (G,X,P ), with G = (V,E) a directed acyclic graph (DAG),
X = {Xv | v ∈ V } a set of random variables indexed by V , and P a joint
probability distribution. X is a Bayesian network with respect to the graph G
if P can be written as a product of the probability of each random variable,
conditional on their parent variables:

P (X1 = x1, . . . , Xn = xn) =
∏

v∈V

P (Xv = xv | Xj = xj for all j ∈ π(v)) (4)

where π(v) is the set of parents of v (i.e. those vertices pointing directly to v
via a single arc). If there are continuous variables, the definition is similar, and
can be defined by using the probability density function. While the conditional
probabilities could be estimated using regression methods [14], parameter and
structure learning methods for Bayesian networks are readily available [9].

For example, suppose we have two binary variables, D for disease present
yes/no and G for gender, both having an direct effect on the blood measurements
BM1 and BM2. Besides that BM1 affects BM2 also directly. Using marginaliza-
tion, we obtain the probability for BM2 by:

P (BM2) =
∑

D

∑

G

∑

BM1

P (BM2 | BM1, D,G)P (BM1 | D,G)P (D)P (G)

Conditional independence in Bayesian networks is an important concept when
modeling multimorbidity. When considering three vertices u, v and w we can
distinguish certain types of dependencies:

– v is a tail-tail vertex (u← v → w)
– v is a head-tail vertex (u→ v → w)
– v is a head-head vertex (u→ v ← w)

For the first two situations we obtain independence between Xu and Xw if we
condition on Xv, i.e. P (Xu | Xw, Xv) = P (Xu | Xv), also denoted as Xu ⊥⊥ Xw |
Xv, whereas Xu 6⊥⊥ Xw | ∅. In the third situation, the situation is reversed, as
Xu and Xw are unconditionally independent, whereas they become dependent
when conditioning on Xv, i.e., Xu ⊥⊥ Xw | ∅ and Xu 6⊥⊥ Xw | Xv. The Markov
blanket (MB) of a vertex contains all the variables that shield the vertex from the
rest of the network, meaning that if all variables within the MB can be observed,
this is the only knowledge needed to predict the behavior of that vertex [11].

It is appealing to define disease variables as binary variables, i.e. the disease
of interest is present yes or no. Socio-economical and demographic variables
are often categorical (sometimes ordered) or numerical (e.g. age). Laboratory
investigations are often continuous (especially blood measurements), but can
be discretized, e.g. blood glucose levels could be defined as normal, subclinical,
and clinical. Variables can be dependent on each other, or independent, which
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Fig. 2. Bayesian network of multilevel regression.

can be represented in a Bayesian network, defining variables as vertices and
dependencies as edges. If the structure is unknown it can be learned.

Ideally, we expect to obtain some kind of hierarchical topology in the learned
structure, just as described in Fig 1. In fact, we can put restrictions into the
learning algorithm to force such a topology. If we consider the disease variables,
an association might be present between them, but there’s a chance we could
make them conditional independent if we observe the environmental and pa-
tient’s characteristics variables, i.e. they serve as tail-tail variables with respect
to disease variables. At the other hand looking at the laboratory results, those
might act as head-head variables with respect to diseases, therefore we cannot
make the diseases conditional independent looking solely to laboratory results.

4 Multilevel Bayesian Networks

In this section, we introduce the multilevel Bayesian network (MBN) formalism
as interpretation of multilevel regression. First, we briefly explore the relation
between multilevel regression models and Bayesian networks. Then, we generalize
this by allowing more structure within the model. We discuss the building and
learning of such models and compare this to the regression approach.

4.1 Multilevel Regression Analysis as a Bayesian Network

In multilevel regression, the outcome variable O depends on the explanations
e = e1, . . . , en and l = l1, . . . , lm. In a Bayesian network approach, we model
O as a conditional probability distribution given the set of parents E1, . . . , En,
L1, . . . , Lm, and I1, . . . , Ik, i.e., we now interpret the explanations and group ex-
planations as instantiations of random variables. The variables Ij , with 1 ≤ j ≤ k
is an indicator variable for grouping of objects at a certain level j. Fig. 2 then
shows the corresponding Bayesian network, assuming independent predictors.

Clearly, this model is not realistic in case of multimorbidity domains. There
is no structure present between predictors and we have only one outcome vari-
able of interest. In general, the opposite is more likely to be true, i.e. multiple
outcome variables, multiple dependencies between predictors and variables that
are both predictor and outcome variable. While discriminative learning algo-
rithms, such as regression, are good for prediction, they do not provide insight



into the domain, nor can they be used to model interactions necessary in the
case of multimorbidity. Bayesian networks have the ability to give such insight,
by allowing dependencies between variables.

4.2 Multilevel Bayesian Networks in General

The idea of a multilevel Bayesian network is that I variables split the domain
into different categories with a deterministic effect on variables that are con-
stant within a category (L). Some variables (E) are group-independent, though
structure may exist between these variables. Other variables (O) depend both
on grouping and other variables in the same or higher levels. The Bayesian net-
work is constrained in the sense that no edges exist from a lower-level variable
to a higher-level variable. This ensures that we keep the hierarchical structure
obtained with multilevel regression methods (see Fig. 3). A multilevel Bayesian

network is defined as a tuple (G,N, I, E,O,L, P ) such that:

– (G,V, P ), where V = I ∪ E ∪O ∪ L, forms a Bayesian network;
– I, E, O, and L are pair-wise disjoint;
– N ∈ N denotes the number of levels on top of the base level 0;
– I = {I1, . . . , IN} are variables such that each value of such a variable contains

a group. It holds that Ij is the only parent of Ij−1 in G for all 1 ≤ j ≤ N ;
– E = {E0, . . . , EN} where each Ej is a set of variables corresponding to level

j, such that if (V → Ej
i ) ∈ G, then V ∈ (E ∪O)j+k, with k ≥ 0;

– O = {O0, . . . , ON} where each Oj is a set of variables corresponding to level
j, such that if (V → Xj

i ) ∈ G, then V ∈ (E ∪O)j+k or V ∈ Lj+k+1 k ≥ 0;
– L = {L1, . . . , LN} where each Lj is a set of group variables corresponding to

a level j. If Lj
i ∈ Lj is a group variable, then it holds that (i) (Ij → Lj

i ) ∈ G,

(ii) there are no other variables V such that V → Lj
i , and (iii) P (Lj

i | Ij) is
deterministic.

. . . . . .

E1

Ei

En

O1 O2

I

L1 Lj LmLevel 1
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Fig. 3. Bayesian network of multilevel regression with an improved structure between
predictors (Ei) and outcome variables (Oi).



4.3 Building Multilevel Bayesian Networks

In order to build the structure between intra-level variables, we can make use
of two approaches. We can either model the structure manually based on ex-
isting medical knowledge or learn the structure from data. Structure learning
of Bayesian networks offers a suitable method to learn these dependencies. The
constraints imposed by the multilevel Bayesian network can be captured by
blacklisting and whitelisting edges, which can be incorporated into a wide range
of structure learning algorithms (see e.g., [17]). For example, the necessary edges
between I and other variables are whitelisted, whereas edges from a lower level
to a higher level are all blacklisted. The parameters can be learned using stan-
dard Bayesian network techniques. Compared to multilevel regression models, it
is also possible to use a Bayesian approach for learning the parameters [19] and
therefore include even more domain knowledge to the model.

Model validation can be achieved by using information criteria such as the
Deviance Information Criteria and the Bayesian Information Criteria [20]. Al-
ternatively, standard cross validation (e.g. k-fold cross validation) is a robust
method to validate regression and Bayesian models [12].

5 Modeling Inter-practice Variation

5.1 Problem domain and data

In this paper, we apply the MBN approach for modeling inter-practice varia-
tions for predicting heart failure and diabetes mellitus. Data was collected by
the Netherlands Information network of General Practice (LINH). In 1996, they
started as a register of referrals of general practitioners to medical specialists.
Information about contacts and diagnoses, prescriptions, referrals and labora-
tory and physiological measurements are extracted from the information sys-
tems. The LINH database contains information of routinely collected data from
approximately 90 general practices. Unless patients moved from practices, and
practices opted out, longitudinal data of approximately 300.000 distinct patients
are stored. Patients under 25 were excluded, because of their low probability on
multimorbidity. Practices who recorded during less than six month were also
excluded from statistical analysis. Eventually, we used data of 218333 patients.
Morbidity data were derived from diagnoses, using the international classifica-
tion of primary care (ICPC) and anatomical therapeutic chemical (ATC) codes.

5.2 Results

Our main variables of interest are heart failure and diabetes mellitus. The pre-
dictors are shown in Table 1, with the urbanity of the practice’s area as higher
level variable. Multilevel logistic regression leaves us then with five separate
models, for which the parameters are estimated using MLWin [5]. To obtain the
parameters of the MBN interpretation we ran a MCMC method which is avail-
able in the WinBUGS software [19]. Dichotomous variables are modeled using



RIGLS MCMC-fixed MCMC-learn

Diabetes Mellitus β Odds β Odds β Odds

Intercept -5.800 (0.3%) -5.678 (0.3%) -5.866 (0.3%)
Age 0.029 1.029 0.028 1.028 0.063 1.065
Gender (ref = male) -0.090 0.914 -0.089 0.915 -0.222 0.801
Overweight/obesity 0.545 1.725 0.513 1.671 1.189 3.282
Lipid disorder 1.862 6.437 1.855 6.392
Hypertension 1.736 5.675 1.758 5.800
Atherosclerosis -0.047 0.954 -0.052 0.949
Heart failure 0.124 1.132 0.178 1.194
Retinopathy 2.225 9.253 2.269 9.669
Angina pectoris -0.387 0.679 -0.409 0.665
Stroke / CVA -0.262 0.770 -0.269 0.766
Renal disease 0.162 1.176 0.183 1.200
Cardiovasc. symptoms -0.165 0.848 -0.163 0.850
Urbanity (ref=urban)
strongly urban 0.232 1.261 0.243 1.275 -0.326 0.722
modestly urban 0.390 1.477 0.399 1.490 0.389 1.476
little urban 0.362 1.436 0.342 1.408 -0.934 0.393
not urban 0.388 1.474 0.230 1.259 -0.313 0.731

Model validation
average accuracy 89% 89% 88%
(cross validation)

Heart Failure β Odds β Odds β Odds

Intercept -11.373 (0.0%) -11.20 (0.0%) -11.24 (0.0%)
Age 0.101 1.106 0.101 1.106 0.105 1.111
Gender (ref=male) -0.195 0.823 -0.204 0.815 -0.160 0.852
Overweight/obesity 0.524 1.689 0.470 1.600
Diabetes mellitus 0.228 1.256 0.726 2.067 0.330 1.391
Lipid disorder 0.159 1.172 -0.832 0.435
Hypertension 0.728 2.071 0.425 1.530 0.963 2.618
Atherosclerosis 0.482 1.619 0.231 1.260 0.655 1.925
Retinopathy 0.270 1.310 0.099 1.104
Angina pectoris 0.795 2.214 0.781 2.184
Stroke / CVA 0.328 1.388 0.334 1.397
Renal disease 0.630 1.878 0.632 1.881 0.720 2.054
Cardiovasc. symptoms 0.954 2.596 0.969 2.636
Urbanity (ref=urban)
strongly urban 0.135 1.145 0.147 1.158
modestly urban 0.166 1.181 0.176 1.192
little urban 0.352 1.422 0.375 1.456
not urban 0.289 1.335 0.276 1.318

Model validation
average accuracy 89% 89% 95%
(cross validation)

Table 1. Parameter estimations and cross validation of multilevel analysis for Heart
Failure and Diabetes Mellitus. RIGLS = restrictive iterative general least square
method for the multilevel logistic regression model, MCMC-fixed = Monte Carlo
Markov Chain method for the multilevel Bayesian network without structure learn-
ing, MCMC-learn = same as MCMC-fixed but with structure learning.

a Bernoulli distribution. Parameter estimates and the average accuracy of pre-
dicting heart failure and diabetes mellitus are presented in in Table 1. Validated
using a 10-fold validation, the table shows that the MBN model is in line with
results obtained by multilevel regression.

The next step is structure learning of predictors and outcome variables while
maintaining the multilevel structure as mentioned in Section 4. Diseases are ob-
viously not a cause of practice and patient characteristics such as age and gender.
The bnlearn package [17] in the statistical software R provides both constraint
based as scoring algorithms to learn the structure of a Bayesian network. The
score based methods reveal the most appealing structure for the available data.
See Fig. 4a for the resulting Bayesian network structure.

Some of the directions of certain edges is opposite to what the domain ex-
perts would expect, e.g. angina pectoris and heart failure is pointing towards
atherosclerosis, but in reality the latter is seen as a cause of the first and not a
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Fig. 4. Structure learning of Heart Failure and Diabetes in Family Practices, (a) with
inter-level restrictions only, and (b) with intra-level restrictions (expert opinions /
evidence from other research) as well.

obesity diabetes lipid hyper- athero- renal heart angina stroke retino-
/overw. mellitus disorder tension sclerosis disease failure pectoris /CVA pathy

Learned 89% 88% 84% 86% 96% 95% 95% 94% 96% 97%
Restricted 89% 88% 85% 87% 96% 95% 95% 95% 96% 97%

Table 2. Accuracy for predicting diseases in a multilevel Bayesian network for the
model containing both heart failure and diabetes mellitus. The ’Learned’ model corre-
sponds with Fig 4a, and the ’Restricted’ model corresponds with Fig 4b.

consequence. Probably, this opposite direction is due to the fact that atheroscle-
rosis is mostly diagnosed clinically by interpreting symptoms and signs of the
disease. By incorporating domain knowledge into the model and re-running the
structure learning algorithm, we obtain the model as shown in Fig. 4b.

We have learned the probability distributions of both the learned and re-
stricted model. Using a 10-fold cross validation we the calculated the accuracy
of predicting not only diabetes mellitus and heart failure, but also for the other
diseases present in the MBN. See Table 1 and 2 for an overview of the results.
The accuracy of predicing diabetes mellitus is similar to the previous models,
whereas the accuracy of predicting heart failure is 6% better. The accuracies
for the other disease variables, ranging between 84% and 97%, are slightly bet-
ter in the restricted model. Looking into interactions between predictors, the
structured model is more accurate when looking to heart failure. Table 3 shows
the estimated and true prevalences of heart failure in the presence of multiple
comorbidities. The estimations of the structured model are closer to the actual
data. Clearly, the problem with the regression model is that it does not recog-
nize the fact that the prevalence of heart failure is independent of obesity when
conditioned on hypertension and diabetes mellitus.



obesity no obesity
diabetes no diabetes diabetes no diabetes

hyper- no hyper- hyper- no hyper- hyper- no hyper- hyper- no hyper-
Heart Failure tension tension tension tension tension tension tension tension

Multilevel Regression 10 5.1 8.1 4.1 6.5 3.2 5.2 2.6
Multilevel Network 9.1 0.0 4.1 0.7 9.3 0.3 5.2 0.6

Calculated from data 10 0.0 4.3 0.7 10.3 0.3 5.5 0.6

Table 3. Prevalences (in percentages) of heart failure in the presence of obesity, dia-
betes and hypertension, based on model parameters compared to actual values.

6 Discussion

In this paper we introduced Bayesian networks as an interpretation of multilevel
analysis. Using patient data from family practices, its predictive value for heart
failure and diabetes mellitus is just as good compared to traditional methods
such as multilevel regression analysis, despite a reduced number of predictors.

The advantage of multilevel Bayesian networks is that it allows multiple out-
come variables within one model, reducing redundancy of multiple multilevel
regression models. Furthermore, we can add intra-level structures between vari-
ables giving extra insight into dependencies. Bayesian networks can be used to
model conditional independence between variables, as we have seen with heart
failure. We could perform a complete structure learning of the data, ignoring the
hierarchy of variables.

But in practice the model is then very prone to assign causality from lower
level variables to higher level variables, which in fact is not possible if we define
the hierarchy properly. In case of patient data within a multimorbidity setting
it is appealing to use the hierarchical topology: genes and environment (e.g.
urbanity) – patient characteristics (e.g. age, gender, habits) – pathophysiology
(diseases, syndromes) – and symptomatology (e.g. symptoms, signs, laboratory
results), which can be modeled well using multilevel Bayesian networks.

The disadvantage of using patient data from family practices, is that it is
driven by the actions of the physician. Since most diabetic patients are sent to
an eye doctor, obviously we will find a overestimated relation between diabetes
and retinopathy. Data of specific pathophysiologic tests are not available (yet),
so diagnoses are not strict but act with a certain probability depending on the
specificity of the tools used in family practice. Future work will also focus on
patient data retrieved from randomized controlled trials, with the additional
difficulty to learn multiple parameters using low patient counts.

Furthermore, since the data available will never provide a full causal model,
it is important to make use of expert input. Besides putting restrictions on
existing variables, one might also introduce variables that are missing from the
data, but which may add crucial explanatory power. This is possible in BNs,
and thus MBNs can also use the same expertise to quantify the probabilistic
relationships involving these missing variables even though no data exists for
them. So, multilevel Bayesian networks enforces a kind of supervised structural
learning with respect to variance explained by higher level variables.
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