Measurements of underlying-event properties using neutral and charged particles in \(pp \) collisions at \(\sqrt{s} = 900 \) GeV and \(\sqrt{s} = 7 \) TeV with the ATLAS detector at the LHC

The ATLAS Collaboration

Abstract. We present first measurements of charged and neutral particle-flow correlations in \(pp \) collisions using the ATLAS calorimeters. Data were collected in 2009 and 2010 at centre-of-mass energies of 900 GeV and 7 TeV. Events were selected using a minimum-bias trigger which required a charged particle in scintillation counters on either side of the interaction point. Particle flows, sensitive to the underlying event, are measured using clusters of energy in the ATLAS calorimeters, taking advantage of their fine granularity. No Monte Carlo generator used in this analysis can accurately describe the measurements. The results are independent of those based on charged particles measured by the ATLAS tracking systems and can be used to constrain the parameters of Monte Carlo generators.

PACS. 12.38.Qk Experimental tests – 12.38.Aw General properties of QCD

1 Introduction

All hard parton-parton interactions in \(pp \) collisions are accompanied by additional processes which collectively contribute additional particles to those from the hard scatter and which are termed the underlying event (UE). It is impossible to uniquely separate the UE from the hard scattering process on an event-by-event basis. However, observables can be measured which are sensitive to properties of the UE. In order to make high-precision measurements, the UE must be modelled using phenomenological models in Monte Carlo generators [1]. Such models must be tuned to experimental data. In the past, such studies have only been performed using tracks [2–5].

Many physics processes to be studied with the ATLAS detector [6] require precision measurements of jets and missing transverse energy obtained principally from the calorimeter system. Therefore, it is important that the UE measurements are performed using the same instrumental environment and reconstructed objects as those for the calorimeter-based measurements. The fine granularity of the ATLAS calorimeter allows the definition of three-dimensional clusters of energy which are closely associated with individual particles [7,8].

A study of the UE using charged-track densities was recently performed by ATLAS [5]. The present paper extends this measurement by reconstructing particle densities using calorimeter clusters in the region which is most sensitive to the soft QCD processes responsible for the UE: the “transverse” region as shown in Fig. 1. The azimuthal angular distance between a leading particle in transverse momentum (\(p_T \)) and other particles is given by \(\Delta \phi = \phi - \phi_{\text{lead}} \), where \(\phi \) is the azimuthal angle of a particle and \(\phi_{\text{lead}} \) is the azimuthal angle of the leading particle. The transverse region, defined as \(60^\circ < |\Delta \phi| < 120^\circ \), is most sensitive to the UE since it is perpendicular to the axis of hardest scattering, approximated by the direction of the leading particle. As is the case for charged particles, the number density of the clusters and their transverse energy density in this region are sensitive, discriminating observables for UE studies. These distributions are corrected for detector effects to give a measure of the particle activity in the UE and to provide new characteristics which can be used to tune models included in Monte Carlo generators.

![Fig. 1. A schematic representation of regions in the azimuthal angle \(\phi \) with respect to the leading particle (shown with the arrow). In this analysis, the leading particle corresponds to the cluster with the largest transverse momentum.](image-url)
The analysis using calorimeter clusters has several important features. Firstly, its results are sensitive to the entire hadronic final state, including neutral particles, which constitute about 40% of all produced particles. Secondly, the analysis based only on calorimeter clusters has completely independent experimental uncertainties compared to the corresponding analysis \[5\] using charged particles. Finally, as discussed earlier, since jet reconstruction is based almost entirely on energy deposition in the calorimeter, the results of this UE analysis can be used directly to estimate the effect of the underlying event on any jet-based measurement.

2 The ATLAS Detector

The ATLAS detector \[6\] at the Large Hadron Collider was designed to study a wide range of physics. It covers almost the entire solid angle around the collision point with layers of tracking detectors, calorimeters and muon chambers.

Charged tracks and vertices are reconstructed with the inner detector which consists of a silicon pixel detector, a silicon strip detector and a transition radiation tracker, all immersed in a 2 tesla magnetic field provided by a superconducting solenoid. For the measurements presented in this paper, the high-granularity calorimeter systems are of particular importance. The ATLAS calorimeter system provides fine-grained measurements of shower energy depositions over a large range in pseudorapidity, η. Electromagnetic calorimetry in the range $|\eta| < 3.2$ is provided by liquid argon (LAr) sampling calorimeters. This calorimeter system provides measurements of the shower energy in up to four depth segments and with transverse granularity that ranges from 0.003 × 0.10 to 0.05 × 0.025 in $\delta\eta \times \delta\phi$, depending on depth segment and rapidity. The hadronic calorimetry in the range $|\eta| < 1.7$ is provided by a steel/scintillator-tile sampling calorimeter. This system provides measurements of the shower energy deposition in three depth segments at a transverse granularity of typically 0.1×0.1. In the end-caps ($|\eta| > 1.5$), LAr technology is used for the hadronic calorimeters that match the outer η limits of the end-cap electromagnetic calorimeters. This system provides four measurements in depth of the shower energy deposition at a transverse granularity of either 0.1 × 0.1 (1.5 < |η| < 2.5) or 0.2 × 0.2 (2.5 < |η| < 3.2). The LAr forward calorimeters provide both electromagnetic and hadronic energy measurements and extend the calorimeter coverage from |η| = 3.2 to |η| = 4.9. To measure the energy of photons and electrons, all calorimeter cells are initially calibrated to the electromagnetic energy scale using test-beam data \[9\]-\[13\].

This analysis is based on the properties of topological clusters in the calorimeter, which represent an attempt to reconstruct three-dimensional energy depositions associated with individual particles \[7\]-\[8\]. The topological-cluster algorithm proceeds through the following steps. Nearest neighbours are collected around seed cells, which are cells with an absolute signal greater than 4σ above the noise level \[9\]-\[13\]. Then, neighbouring cells are collected into the cluster if the absolute value of their signal significance is above a secondary seed threshold of 2σ. All surrounding cells are iteratively added to the cluster until no further secondary seeds are among the direct neighbours. A final analysis of the resulting cluster looks for multiple local signal maxima; in the case of more than one maximum in a given cluster, it is split into smaller clusters along the signal valleys between the maxima.

The analysis presented in this paper uses calibrated topological clusters \[8\]. The clusters are classified as related to electromagnetic or hadronic energy deposits, using detailed information on the cluster topology. Then, the reconstructed cluster energy is corrected for the non-compensating nature of the ATLAS calorimeter and for inactive material.

3 Data selection

The data taken at $\sqrt{s} = 900$ GeV were collected during 6–15 December 2009. During this running period, there were approximately 3% non-functional channels in the tile hadronic calorimeter and approximately 1% non-functional channels in the LAr calorimeters \[13\]-\[14\]. For an integrated luminosity of 7 μb$^{-1}$, a total of 455 thousand events were collected from colliding proton bunches in which a minimum-bias trigger recorded one or more hits in the scintillators on either side of the detector.

The events to be analysed were selected using a procedure identical to that described in Refs. \[6\]-\[13\]. Events were required to have a primary vertex which is reconstructed using at least two tracks with transverse momentum $p_T > 100$ MeV and a transverse distance of closest approach with respect to the beam-spot position \[16\] of less than 4 mm.

This analysis uses topological clusters with $p_T > 0.5$ GeV and $|\eta| < 2.5$ in order to have the same kinematic range \[6\] as for the previous UE study based on tracks \[5\]. Additional selection criteria were applied to select good-quality clusters: 1) to reject the cosmic and noise background, the leading cell energy of the cluster is required to be less than 90% of the cluster energy; 2) the energy sampling maximum must be in a calorimeter region with good calibration; 3) the fraction of energy in the cluster associated with problematic cells (or dead cells where the
energy contribution is obtained by interpolation from adjacent cells) should be less than 50%.

Data at $\sqrt{s} = 7$ TeV were collected between 30 March and 27 April 2010. Only a fraction of the 7 TeV data, corresponding to an integrated luminosity of about 230 μb$^{-1}$, was used. In total, about 7.7 million events were analysed. Event selection was similar to that for the 900 GeV data, but included the additional requirement of a single primary vertex $\mathbf{5,15}$ to remove events containing more than one pp interaction.

4 Monte Carlo simulation

The QCD predictions for the hadronic final state in inelastic pp collisions are based on several Monte Carlo generators. The PYTHIA 6.4 Monte Carlo generator $\mathbf{17}$ is used as the primary generator for comparisons with the data. The MC09 tune $\mathbf{18}$ of this model was performed by ATLAS. It uses the p_T-ordered parton shower with the MRST LO∗ parton-density function $\mathbf{19}$, followed by fragmentation into final-state particles using the Lund string model $\mathbf{20}$. The parameters of this generator were adjusted to describe charged-particle multiplicity distributions in minimum-bias events measured at $\sqrt{s} = 630$ GeV and $\sqrt{s} = 1.8$ TeV in pp collisions $\mathbf{21}$. Diffractive processes are not included in the simulation for the main samples, but were used for systematic checks (Sect. 7). In addition, the MC09 tune, the following two PYTHIA parameter sets are also used: (1) the Perugia0 set $\mathbf{22}$ in which the soft-QCD part is tuned using only minimum-bias data from the Tevatron and CERN pp colliders; (2) the DW $\mathbf{23}$ PYTHIA tune, which uses virtuality-ordered showers and was derived to describe the CDF Run II underlying event and Drell-Yan data.

The data are also compared to the PHOJET Monte Carlo generator $\mathbf{24}$, which includes a simulation of the diffractive component. This generator is based on the two-component Dual Parton Model which includes soft hadronic processes described by Pomeron exchange and semi-hard processes described by perturbative parton scattering. The description of the fragmentation is the same as in the PYTHIA generator.

In addition, the HERWIG Monte Carlo generator $\mathbf{25}$ $\mathbf{26}$ was used for comparisons with the data. This generator has similar matrix-element calculations as PYTHIA, but uses the cluster fragmentation model to hadronise partons into hadrons. HERWIG is interfaced with the JIMMY model $\mathbf{27}$ in order to describe multiple parton interactions.

Monte Carlo events were processed through the ATLAS detector simulation program $\mathbf{28}$, which is based on GEANT4 $\mathbf{29}$. They were reconstructed using the same trigger and event selection as for the data. The size and position of the collision beam-spot and the detailed description of detector conditions during the data-taking runs were included in the simulation.

Monte Carlo events after the detector simulation program were used for correcting the data to the stable-particle level defined as follows. The PYTHIA MC09 is used to generate the primary samples for unfolding the effects of the detector. Monte Carlo stable particles are selected if their mean lifetimes are larger than $3 \cdot 10^{-11}$ seconds. Neutrinos are excluded from consideration. According to this definition, K^0_s, Λ and Σ^\pm are among those treated as stable particles. This definition allows a direct comparison between the results of previous track-based studies $\mathbf{5}$ and the present measurement.

5 Properties of calorimeter clusters

Figures 2 and 3 show the distributions of p_T and η for topological clusters in data and simulated PYTHIA MC09 events at $\sqrt{s} = 900$ GeV and $\sqrt{s} = 7$ TeV, respectively. The distributions in each case are normalised to the number of entries. In addition, the ratio plots show the ratio of simulation to data in the transverse region alone. The figures show overall good agreement between the data and the PYTHIA MC09 tune, with 20% discrepancies in some phase-space regions. While not shown in these figures, the Perugia0 tune agrees with the data to a similar extent. The contribution of the discrepancy in the high-p_T tail is expected to be small on particle densities measured at $p_T > 0.5$ GeV, and it was taken into account using re-weighting as described below. The observed differences between the data and the PYTHIA MC09 event sample for the η distributions are addressed in the studies of systematic uncertainties.

Figures 4(a) and 5(a) show the multiplicity of topological clusters, with $p_T > 0.5$ GeV and $|\eta| < 2.5$, versus the number of stable particles (charged and neutral) in simulated events for $\sqrt{s} = 900$ GeV and $\sqrt{s} = 7$ TeV. A strong correlation is observed between the number of topological clusters and the number of stable particles, indicating that clusters are a good representation of the particle activity in inelastic pp events.

Figures 4(b) and 5(b) show the correlation between the number of topological clusters and the number of primary tracks selected in the same way as in the track-based studies $\mathbf{5,15}$. These figures also show a strong correlation. The Monte Carlo simulation shown in Fig. 4(c) and 5(c) reproduces these distributions well: the means and the root-mean-square deviations of one-dimensional projections of these distributions agree with the Monte Carlo simulation within less than one percent for $N(\text{tracks}) > 4$. For events with a lower number of tracks, the data show a smaller mean value of the projection onto the x-axis than seen in the PYTHIA MC09 simulation. This is attributed to the absence of diffraction in the generated samples.

A Monte Carlo simulation study based on PYTHIA MC09 indicates that the probability that a second particle lies within $\sqrt{\delta p_T^2 + \delta p^2} < 0.2$ of a first in the selected inelastic pp events is below 1%. This simplifies the present analysis since there is negligible potential bias due to cluster overlap.

For the UE studies based on topological clusters, a good position measurement is required. The quality of the position reconstruction of the clusters was studied by com-
Fig. 2. A comparison between uncorrected data and the Monte Carlo simulation for topological cluster p_T (a) and η (b) for pp collisions at $\sqrt{s} = 900$ GeV. The ratio plots show the inclusive sample (solid lines) and the transverse region (dashed lines).

Fig. 3. A comparison between uncorrected data and the Monte Carlo simulation for topological cluster p_T (a) and η (b) for pp collisions at $\sqrt{s} = 7$ TeV. The ratio plots show the inclusive sample (solid lines) and the transverse region (dashed lines).

Comparing the impact point of charged particles with the associated cluster position in the calorimeter. Charged particles are deflected in the magnetic field of the solenoid. Their trajectories are extrapolated to the calorimeter using a Monte Carlo simulation which includes a detailed field map as well as the effect of the material in front of the calorimeter. The Monte Carlo simulation describes the topological-cluster positions relative to the positions of the extrapolated tracks on the surface of the LAr calorimeter within the granularity of its second layer (0.025×0.025 in $\delta\eta \times \delta\phi$).

As the correction for detector effects is based on the Monte Carlo simulation, an essential issue is the accuracy with which the simulation reproduces the energy reconstruction in the calorimeter. For charged particles, the energy scale was studied 30 using isolated tracks by extrapolating tracks to the calorimeter surface and matching them to topological clusters. The average value of the ratio E/p was reconstructed, where E is the cluster energy.
Fig. 4. ATLAS data at $\sqrt{s} = 900$ GeV: The correlations between the multiplicities of, (a) topological clusters ($N(\text{clusters})$) and stable particles ($N(\text{truth})$) from simulated pp interactions, (b) topological clusters and primary reconstructed tracks ($N(\text{tracks})$) from pp interactions, and (c) topological clusters and primary reconstructed tracks from simulated pp interactions. Inelastic events generated by PYTHIA MC09 (without diffraction) passed through the selection were used to produce the plots (a) and (c).

Fig. 5. ATLAS data at $\sqrt{s} = 7$ TeV: The correlations between the multiplicities of, (a) topological clusters ($N(\text{clusters})$) and stable particles ($N(\text{truth})$) from simulated pp interactions, (b) topological clusters and primary reconstructed tracks ($N(\text{tracks})$) from pp interactions, and (c) topological clusters and primary reconstructed tracks from simulated pp interactions. Inelastic events generated by PYTHIA MC09 (without diffraction) passed through the selection were used to produce the plots (a) and (c).

in the calorimeter and p is the track momentum. Figure 6 shows the average response $\langle E/p \rangle$ for calibrated topological clusters as a function of η for tracks with $p > 0.5$ GeV. The data and PYTHIA MC09 agree within 5% in most η regions, while discrepancies increase in the transition region (1.5 < $|\eta|$ < 1.8) between barrel and end-cap.

To estimate the relative energy-scale uncertainty, the double ratio $\langle E/p \rangle_{MC}/\langle E/p \rangle_{MC}$ was calculated, where the ratio $\langle E/p \rangle_{MC}$ was determined from the Monte Carlo simulation. The double ratio as a function of η is shown in Fig. 6 (bottom). The double-ratio distributions were measured for a wide range of track momenta and η as described in Refs. [30, 31]. The comparison between data and Monte Carlo predictions for the shapes of the E/p distribution is shown in Fig. 7. The peak at zero corresponds to isolated tracks that have no associated cluster in the calorimeter. These are predominantly due to hadronic interactions in the material in front of the calorimeter [31]. The contribution of the discrepancies observed for $E/p = 0$ between the data and PYTHIA MC09 to uncertainties on the reconstruction efficiencies of topological clusters is below 1%. This effect was taken into account as described in Sect. 7. More details on the energy scale of topological clusters can be found in Refs. [30, 32].

The energy scale for electromagnetic clusters was estimated using the π^0 peak reconstructed in inelastic pp
To verify the Monte Carlo performance for p_T^{lead}, the ratio of p_T^{lead} of topological clusters to p_T^{lead} of primary tracks was reconstructed. The agreement between the data and the PYTHIA MC09 tune for such distributions was found to be within ±5% in most regions, while discrepancies at the level of 20% were found for the tails of the ratio distributions. The impact of such discrepancies in the simulation of the p_T^{lead} resolution on the final measurement has been estimated as discussed in Sect. 7.

Monte Carlo studies show that the rate of events in which a low-p_T particle is reconstructed as a high-p_T cluster is not negligible. This results in a low purity for topological clusters at high p_T^{lead}. Therefore, the analysis was performed for leading topological clusters with transverse momenta less than 8 GeV (14 GeV) for the $\sqrt{s} = 900$ GeV (7 TeV) data in order to limit this effect and to ensure that the reconstruction purity even at the highest transverse momenta considered is larger than 50%.

6 Measured observables and correction procedure

Following earlier track-based analyses [5], particle densities are studied as a function of the distance $\Delta \phi$ in the azimuthal angle between the leading cluster and all other clusters in an event, and as a function of p_T of the leading cluster in the event. The scalar p_T sum for stable particles per unit area in $\eta-\phi$ in the transverse region is also presented. This provides complementary information to that which can be obtained from the particle densities.

The particles and clusters are required to have $p_T > 0.5$ GeV and $|\eta| < 2.5$. Clusters are selected if they pass the criteria described in Sect. 3. The measured observables at the particle and detector levels are:

- p_T^{lead} - Transverse momentum of the stable particle with maximum p_T in the event. At the detector level, this corresponds to the transverse momentum of the selected topological cluster with maximum p_T in the event.
- $d\langle N \rangle/d\phi$ - The average number of particles as a function of the azimuthal-angle difference between the leading particle and other particles in an event. The leading particle at $\Delta \phi = 0$ is excluded from this distribution. At the detector level, it corresponds to the mean number of selected topological clusters as a function of the azimuthal-angle distance between the leading topological cluster and other clusters in an event. This density [5] is defined per unit of pseudorapidity $N/\langle N_{ev} \cdot (\eta_{\text{max}} - \eta_{\text{min}}) \rangle$, where N is the number of entries in $\Delta \phi$ bins, $\eta_{\text{max}} - \eta_{\text{min}} = 5$ represents the full pseudorapidity range, and N_{ev} is the number of events selected by requiring a particle with p_T^{lead} above the specified value.
- $\langle d^2N/d\eta d\phi \rangle$ - Mean number of stable particles per unit area in $\eta-\phi$. At the detector level, this corresponds to the mean number of selected topological clusters per unit area in $\eta-\phi$. This density is measured as a function of p_T^{lead} [5].
– \(\langle d^2 \sum p_T / d\eta d\phi \rangle \) - Mean scalar \(p_T \) sum for stable particles per unit area in \(\eta - \phi \). At the detector level, this corresponds to the mean scalar \(p_T \) sum for selected topological clusters per unit area in \(\eta - \phi \). This quantity is defined following the convention used in the previous ATLAS publication [5].

A bin-by-bin correction procedure is used to correct the observed distributions to the stable-particle level. The correction factors

\[C = \frac{A_{\text{gen}}}{A_{\text{det}}} \]

are evaluated separately for each observable. In the above expression, \(A_{\text{gen}} \) is calculated at the stable-particle level of PYTHIA MC09 and \(A_{\text{det}} \) is calculated after full detector simulation and reconstruction. The corrected value for an observable is found by multiplying its measured value by the relevant correction factor \(C \). These factors correct the data to the stable-particle level and include the effects of event selection, reconstruction efficiency, bin migrations and smearing, including the case when the leading particle is mis-identified and a cluster corresponding to a sub-leading particle is used to define the event orientation and \(p_T^{\text{lead}} \).

The bin-by-bin correction depends on the choice of the Monte Carlo event generator. This affects the efficiency correction (mainly due to variations in particle types) and the purity (different stable-particle level distributions have different fractions of poorly reconstructed objects in each bin as well as different bin migrations). To reduce the model dependence of the correction procedure, bin-by-bin migrations were minimised by using bin sizes larger than the reconstruction resolutions for the distributions presented. In addition, the analysis was restricted to the \(p_T^{\text{lead}} \) ranges where the purity of leading clusters is above 50% (see Sect. 5).

The bin-by-bin correction factors for the particle densities typically have values of around 1.3 and do not exceed 1.4. The largest single contributor is the reconstruction inefficiency of topological clusters, which leads to a bin-by-bin correction factor of approximately 1.2 on average and has a maximum value of 1.3 at low \(p_T \). The other significant contributor is the event reorientation which results from inefficiency of the reconstruction of the leading topological cluster in an event. This causes bin migrations, which were studied by replacing the leading cluster \(p_T^{\text{lead}} \) by the leading track \(p_T^{\text{lead}}(\text{track}) \), for which the efficiency is known to be high [5]. The bin-by-bin corrections for the average scalar \(p_T \) sum have a maximum value of 1.5 for low \(p_T^{\text{lead}} \) and decrease to 1.3 for \(p_T^{\text{lead}} > 6 \text{ GeV} \).

To study the contribution from diffractive events, the PYTHIA [17] and PHOJET [21] Monte Carlo generators were used. Non-diffractive inelastic \(pp \) events were mixed with single and double diffractive events in accordance with the corresponding generator cross-sections for such processes. The diffractive contribution was found to be below 1% for the \(d\langle N \rangle / d\Delta \phi \) densities at \(p_T^{\text{lead}} > 1 \text{ GeV} \) in PYTHIA, and almost entirely concentrated at low multiplicities (fewer than four topological clusters). The contribution of diffractive events is larger for \(\langle d^2 N / d\eta d\phi \rangle \) and \(\langle d^2 \sum p_T / d\eta d\phi \rangle \) measured at \(p_T^{\text{lead}} < 3 \text{ GeV} \), but becomes negligible for \(p_T^{\text{lead}} > 3 \text{ GeV} \). Diffractive contributions are higher for PHOJET, but their contribution was found to be smaller than the systematic uncertainties on the final

Fig. 7. \(E/p \) distributions at \(\sqrt{s} = 7 \text{ TeV} \) for topological clusters matched to tracks in several bins of track momentum: (a) \(0.5 < p < 1.2 \text{ GeV} \), (b) \(1.2 < p < 2.2 \text{ GeV} \) and (c) \(2.2 < p < 10 \text{ GeV} \). The peak at zero corresponds to the events without a good match between a topological cluster and a track. A similar level of agreement between data and Monte Carlo was obtained for the \(\sqrt{s} = 900 \text{ GeV} \) data (not shown).
measurements. No attempt to subtract diffractive events from the final measurements was made.

7 Systematic uncertainties

The systematic uncertainties on the measured distributions were determined by changing the selection or the analysis procedure and repeating the analysis. The largest uncertainties are described below:

- The following procedure was used to estimate the effect of the relative energy-scale uncertainty on the final measurements. The double ratio \(<E/p>_{MC}/<E/p>\) was calculated for isolated single particles as described in Sect. 5. The effect of the energy-scale uncertainty on the measured densities was found by decreasing and increasing the \(p_T\) of topological clusters in the Monte Carlo simulation, keeping the same cluster \(p_T\) in the data. The magnitude of the variation was set by the value of the double ratio calculated in a grid defined in \(\eta\) and \(p\). To simplify the calculation of the systematic uncertainties, a common variation was used for all topological clusters independent of their origin (hadronic or electromagnetic). The effect of the energy-scale uncertainty is significantly larger than that due to the event selection (including trigger) \[15\].

- The dependence of the bin-by-bin corrections on the detector material description was estimated by recalculating the corrections using two further samples: one with an extra 10% of material in the tracking system, and the other with ~ 15% additional material in the region \(|\eta| > 2\). The physics-model dependence of the bin-by-bin corrections was estimated using the Perugia0 tune \[22\] instead of PYTHIA MC09. This uncertainty was symmetrised.

- A comparison of multiplicities of topological clusters in bins of track multiplicities indicated some discrepancy between data and Monte Carlo for events with low track multiplicities (see Sect. 5). To estimate a systematic uncertainty to account for this discrepancy, the bin-by-bin acceptance corrections were calculated after re-weighting the PYTHIA MC09 detector-level distributions. For this, cluster multiplicity distributions were measured in bins of track multiplicity and reweighting factors were calculated by taking the ratio of the above distribution in data and PYTHIA MC09. The re-weighting procedure also addresses the uncertainties on the noise description used in the Monte Carlo simulation and other effects related to the cluster-reconstruction efficiencies.

- A systematic uncertainty was estimated to account for differences in the \(p_T\) resolution of leading topological clusters in data compared to the Monte Carlo expectation. Discrepancies in the tails of the distributions of \(p_T^{\text{lead}}\) (clusters)/\(p_T^{\text{lead}}\) (tracks) were used to extract weighting factors, which were then used to recalculate the acceptance corrections.

Table 4 shows the values of the systematic uncertainties discussed above as a percentage of the measured values. Only the largest values are shown for the bins with the most significant effect from the selection variations or change in the experimental procedure.

In addition to these uncertainties, the following systematic variations were also included: 1) in order to reduce the contribution from diffractive events, the measurement was repeated after removing events with fewer than four clusters; 2) the positions of cluster centres in \(\eta\) and \(\phi\) were shifted by the size of one cell; 3) an alternative model (FTFP-Bertini) for the hadronic-shower simulation in GEANT4 was used to extract the correction factors; 4) the calorimeter transition region of 0.94 < |\(\eta| < 1.06\), which is not well described by the Monte Carlo simulation was removed in the data and in the simulated PYTHIA MC09 sample. These variations each give systematic uncertainties below 2%, with the exception of that for diffractive events which indicate a 7 ~ 10% systematic uncertainty for the \(\langle d^2N/d\eta d\phi\rangle\) and \(\langle d^2\sum \sigma_T/d\eta d\phi\rangle\) densities measured at \(p_T^{\text{lead}} < 3\) GeV. As an additional systematic check, the measurement was also repeated using topological clusters at the electromagnetic energy scale and similar differences between data and Monte Carlo simulations were observed.

The overall systematic uncertainty was determined by adding the above uncertainties in quadrature.

8 Results

Figure 8 shows the density distribution \(d\langle N\rangle/d\Delta\phi\) of stable-particles as a function of the distance in azimuthal angle between the leading particle and other particles in an event for \(\sqrt{s} = 900\) GeV. This density, defined in Sect. 3, is calculated for events selected by requiring a particle with \(p_T^{\text{lead}}\) above the values indicated on the figure. The detector correction for this density is discussed in Sect. 5. The total uncertainty, computed from the addition of statistical and systematic uncertainties in quadrature, is shown as a shaded band on all measurements.

The angular distribution shown in Fig. 8 has a peak at \(\Delta\phi \approx 0\) which reflects the particle activity from the hard interaction. The peak narrows as \(p_T^{\text{lead}}\) increases. The shape of this distribution is similar to that observed in the recent track-based publications \[2\,\[5\], and also similar to the transverse-momentum flow around jets observed at a lower \(\bar{p}p\) collision energy \[24\]. The particle densities measured using topological clusters are higher than the charged-particle densities measured using tracks \[5\], which is expected from the neutral-particle contribution.

Figure 9 shows the \(\Delta\phi\) density distributions for \(\sqrt{s} = 7\) TeV. The distributions show narrower peaks, for a given \(p_T^{\text{lead}}\) threshold, than for the \(\sqrt{s} = 900\) GeV data.

The data are compared to the PYTHIA Monte Carlo generator with the MC09, Perugia0 and DW tunes, PHOJET and HERWIG+JIMMY. The Monte Carlo generators reproduce the general features of the data, but fail to describe the detailed behaviour, as can be seen in the figures. The MC09 and Perugia0 PYTHIA tunes are closest
A summary of the most important systematic uncertainties. The table lists the values of contributions from different groups of systematic checks. Only the largest values are shown, taken from the bins with the largest effect when the systematic variation was applied.

<table>
<thead>
<tr>
<th>Check</th>
<th>$d\langle N\rangle/d\Delta \phi$</th>
<th>$d^2\langle N\rangle/d\eta d\phi$</th>
<th>$d^2\sum_{p_T}^\text{lead}/d\eta d\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy scale</td>
<td>±4.3%</td>
<td>±4%</td>
<td>±5.6%</td>
</tr>
<tr>
<td>Additional material</td>
<td>+3.5%</td>
<td>+3%</td>
<td>+3.6%</td>
</tr>
<tr>
<td>Model dependence</td>
<td>±3.5%</td>
<td>±5%</td>
<td>±4.5%</td>
</tr>
<tr>
<td>Multiplicity reweighting</td>
<td>±4.5%</td>
<td>±10%</td>
<td>±11%</td>
</tr>
<tr>
<td>Resolution reweighting</td>
<td>±0.4%</td>
<td>±6%</td>
<td>±6%</td>
</tr>
</tbody>
</table>

Fig. 8. The average number of particles per unit of pseudorapidity as a function of the azimuthal separation between the leading particle and other particles in inelastic pp collisions at $\sqrt{s} = 900$ GeV. The shaded band shows the statistical and systematic uncertainties added in quadrature. The densities are shown for (a) $p_T^{\text{lead}} > 1$ GeV, (b) $p_T^{\text{lead}} > 2$ GeV and (c) $p_T^{\text{lead}} > 3$ GeV.

Fig. 9. The average number of particles per unit of pseudorapidity as a function of the azimuthal separation between the leading particle and other particles in inelastic pp collisions at $\sqrt{s} = 7$ TeV. The shaded band shows the statistical and systematic uncertainties added in quadrature. The densities are shown for (a) $p_T^{\text{lead}} > 1$ GeV, (b) $p_T^{\text{lead}} > 2$ GeV and (c) $p_T^{\text{lead}} > 3$ GeV.
to the data. The PHOJET generator significantly underestimates the particle densities, while the PYTHIA DW and HERWIG overestimate the data at $\Delta \phi \sim 0$. The data are seen to have a large discriminating power and are thus useful to constrain the parameters of Monte Carlo generators.

Figure 10 shows the mean number of particles per event per unit interval in η and ϕ as a function of p_T^{lead}. None of the Monte Carlo predictions describe the data well. The DW tune is the most similar to the observed data. As is seen in the $\Delta \phi$ distribution, the PHOJET simulation lacks a hard component for $\sqrt{s} = 7$ TeV. The particle density increases almost by a factor of two, going from $\sqrt{s} = 900$ GeV to $\sqrt{s} = 7$ TeV at a similar p_T^{lead}, which is comparable to what is seen in all Monte Carlo generators.

Figure 11 shows the mean scalar p_T sum for stable particles in the transverse region as a function of p_T^{lead}. As for the particle densities, the mean transverse-momentum sum is measured per unit interval in η and ϕ (see Sect. 6). Again, the Monte Carlo predictions do not fully describe the data. The largest discrepancy with the data is found for the PHOJET generator.

9 Conclusions

Particle densities sensitive to the underlying event in pp collisions at centre-of-mass energies of 900 GeV and 7 TeV are presented. This is the first such analysis completely based on calorimetric measurement of three-dimensional energy depositions, which is made possible by the fine granularity of the ATLAS calorimeter with transverse and longitudinal samplings.

The particle densities were studied and compared with several Monte Carlo generators tuned to pre-LHC data. None of the Monte Carlo generators describe the measurements well. In particular, the Monte Carlo predictions have discrepancies with the data for the particle density as a function of the azimuthal angle between the leading particle and any other particle in an event. The Monte Carlo generators typically predict a lower particle density in the transverse region ($|\Delta \phi| \sim \pi/2$), while in the toward region ($\Delta \phi \sim 0$), the PYTHIA DW and HERWIG+JIMMY generators both overestimate the densities. PHOJET significantly fails for the $\sqrt{s} = 7$ TeV data. For the particle densities as a function of p_T^{lead}, all the Monte Carlo generators also fail to describe the data, predicting lower than observed particle activity in the transverse region. A similar conclusion holds for the total transverse momentum of particles in the transverse region.

The particle densities measured using topological clusters are higher than the charged-particle densities mea-
Fig. 11. The average scalar p_T sum for stable particles per unit area in η–ϕ in the transverse region as a function of p_T^{lead} for (a) $\sqrt{s} = 900$ GeV and (b) $\sqrt{s} = 7$ TeV data. The shaded band shows the statistical and systematic uncertainties added in quadrature.

Acknowledgements

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DANSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MIHR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i. Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Science, Hiroshima University, Hiroshima, Japan
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
125 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127 Czech Technical University in Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies - Université Hassan II, Casablanca; (b)Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat; (c)Faculté des Sciences, Université Mohamed Premier et LPTPM, Oujda; (d)Faculté des Sciences, Université Mohamed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
144 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 (a)Department of Physics, Stockholm University; (b)The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a)TRIUMF, Vancouver BC; (b)Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
161 Science and Technology Center, Tufts University, Medford MA, United States of America
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
164 (a)INFN Gruppo Collegato di Udine; (b)ICTP, Trieste; (c)Dipartimento di Fisica, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana IL, United States of America
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMI), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170 Waseda University, Tokyo, Japan
171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison WI, United States of America
173 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
174 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
175 Department of Physics, Yale University, New Haven CT, United States of America
176 Yerevan Physics Institute, Yerevan, Armenia
Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
a Also at Laboratorio de Instrumentaco e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
g Also at Department of Physics, University of Coimbra, Coimbra, Portugal
h Also at Universit`a di Napoli Parthenope, Napoli, Italy
i Also at Institute of Particle Physics (IPP), Canada
j Also at Louisiana Tech University, Ruston LA, United States of America
k Also at California Institute of Technology, Pasadena CA, United States of America
l Also at Louisiana Tech University, Ruston LA, United States of America
m Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
n Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
o Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
p Also at Manhattan College, New York NY, United States of America
q Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
r Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
s Also at High Energy Physics Group, Shandong University, Shandong, China
t Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
u Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
v Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
w Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
x Also at Institute of Physics, Jagiellonian University, Krakow, Poland
y Also at Department of Physics, Oxford University, Oxford, United Kingdom
z Also at DSM/IRFU, CEA Saclay, Gif-sur-Yvette, France
aa Also at Laboratoire de Physique Nuclaire et de Hautes Energies, UPMC and Universit Paris-Diderot and CNRS/IN2P3, Paris, France
ab Also at Department of Physics, Nanjing University, Jiangsu, China
* Deceased