Measurement of Dijet Azimuthal Decorrelations in \(pp \) Collisions at \(\sqrt{s} = 7 \) TeV

The ATLAS Collaboration

Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full dataset \((\mathcal{L} \, dt = 36 \text{ pb}^{-1})\) acquired by the ATLAS detector during the 2010 \(\sqrt{s} = 7 \) TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high energy regime.

PACS numbers: 13.87.Ce,12.38.Qk

The production of events containing high transverse-momentum \((p_T) \) jets is a key signature of quantum chromodynamic (QCD) interactions between partons in \(pp \) collisions at large center-of-mass energies \((\sqrt{s}) \). The Large Hadron Collider (LHC) opens a window into the dynamics of interactions with high-\(p_T \) jets in a new energy regime of \(\sqrt{s} = 7 \) TeV. QCD predicts the decorrelation in the azimuthal angle between the two most energetic jets, \(\Delta\phi \), as a function of the number of partons produced. Events with only two high-\(p_T \) jets have small azimuthal decorrelations, \(\Delta\phi \sim \pi \), while \(\Delta\phi \ll \pi \) is evidence of events with several high-\(p_T \) jets. QCD also describes the evolution of the shape of the \(\Delta\phi \) distribution, which narrows with increasing leading jet \(p_T \). Distributions in \(\Delta\phi \) therefore test perturbative QCD (pQCD) calculations for multiple jet production without requiring the measurement of additional jets. Furthermore, a detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the Standard Model [3].

In this Letter, we present a measurement of dijet azimuthal decorrelations with jet \(p_T \) up to 1.3 TeV as measured by the ATLAS detector, beyond the reach of previous colliders. The normalized differential cross section \((1/\sigma) (d\sigma/d\Delta\phi)\) is based upon an integrated luminosity \(\mathcal{L} \, dt = (36 \pm 4) \text{ pb}^{-1} \) [2]. The \(\Delta\phi \) distribution is normalized by the inclusive dijet cross section, \(\sigma \), integrated over the same phase space. This construction minimizes experimental and theoretical uncertainties. Previous measurements of \(\Delta\phi \) from the D0 [3] and CMS [4] collaborations are extended here to higher jet \(p_T \) values.

Jets are reconstructed using the anti-\(k_t \) algorithm [3] (implemented with FASTJET [6]) with radius \(R = 0.6 \), and the jet four-momenta are constructed from a sum over its constituents, treating each as an \((E, \vec{p})\) four-vector with zero mass. The anti-\(k_t \) algorithm is well-motivated since it is infrared-safe to all orders, produces geometrically well-defined cone-like jets, and is used for pQCD calculations (from partons), event generators (from stable particles), and the detector (from energy clusters [7]). The azimuthal decorrelation, \(\Delta\phi \), is defined as the absolute value of the difference in azimuthal angle between the jet with the highest \(p_T \) in each event, \(p_T^{\text{max}} \), and the jet with the second-highest \(p_T \) in the event. There are nine analysis regions in \(p_T^{\text{max}} \), where the lowest region is bounded by \(p_T^{\text{max}} > 110 \) GeV and the highest region requires \(p_T^{\text{max}} > 800 \) GeV [3]. Only jets with \(p_T > 100 \) GeV and \(|y| < 2.8\), where \(y \) is the jet rapidity [8], are considered. The two leading jets that define \(\Delta\phi \) are required to satisfy \(|y| < 0.8\), restricting the measurement to a central \(y \) region where the momentum fractions \((x)\) of the interacting partons are roughly equal and the experimental acceptance for multijet production is increased. In this region where \(0.02 < x < 0.14 \), the parton distribution function (PDF) uncertainties are typically \(\pm 3\% \) (at fixed factorization scale) [9]. The cross sections, measured over the range \(\pi/2 \leq \Delta\phi \leq \pi \) and normalized independently for each analysis region, are compared with expectations from a pQCD calculation [10] that is next-to-leading order (NLO) in three-parton production. The perturbative prediction for the cross section is \(\mathcal{O}(\alpha_s^4) \), where \(\alpha_s \) is the strong coupling constant.

The angular decorrelation is sensitive to multijet configurations such as those produced by event generators like SHERPA [11], which matches higher-order tree-level pQCD diagrams with a dipole parton-shower model [12]. Samples for \(2 \to 2 \to 6 \) jet production are combined using an improved CKKW matching scheme [13]. The progression of the parton shower is vetoed to avoid double counting of emissions. Event generators such as PYTHIA [14] and HERWIG [15] use \(2 \to 2 \) leading order pQCD matrix elements matched with phenomenological parton-cascade models to simulate higher-order QCD effects. Such models have been successful at reproducing other QCD processes measured by the ATLAS collaboration [2,10].

The ATLAS detector [17] consists of an inner tracking system surrounded by a thin superconducting solenoid providing a 2T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer based on large superconducting toroids. Jet measurements depend most heavily on the calorimeters. The electromagnetic calorimeter is a lead liquid-argon (LAr) detector with an accordion geometry. Hadron calorimetry is based on two different detector technologies, with scintillator tiles or LAr as the active medium, and with either steel, copper, or tungsten as the absorber material. The pseudorapidity \((\eta)\) [8] and \(\phi \) segmentations of
the calorimeters are sufficiently fine to ensure that angular resolution uncertainties are negligible compared to other sources of systematic uncertainty.

A hardware-based calorimeter jet trigger identified events of interest; the decision was further refined in software [17, 18]. Events with at least one jet that satisfied a minimum transverse energy (\(E_T\)) requirement were recorded for further analysis. The events in each \(p_T^{\text{max}}\) range are selected by a single trigger with a given \(\frac{E_T}{p}\) and \(\phi\) threshold, and the lower end of the range is chosen above the jet \(p_T\) at which that trigger is \(\approx 100\%\) efficient. Three sets of triggered events with different integrated luminosity are considered: 2.3 pb\(^{-1}\) for 110 < \(p_T^{\text{max}}\) ≤ 160 GeV, 9.6 pb\(^{-1}\) for 160 < \(p_T^{\text{max}}\) ≤ 260 GeV, and 36 pb\(^{-1}\) for \(p_T^{\text{max}}\) > 260 GeV [2]. Events are also required to have a reconstructed primary vertex within 15 cm in \(z\) of the center of the detector; each vertex had \(\geq 5\) associated tracks. The inputs to the anti-\(k_t\) jet algorithm are clusters of calorimeter cells seeded by cells with energy that is significantly above the measured noise [3]. Jets reconstructed in the detector, whether in data or the GEANT4-based simulation [19, 20], are corrected for the effects of hadronic shower response and detector-material distributions using a \(p_T\)- and \(\eta\)-dependent calibration [7] based on the detector simulation and validated with extensive test-beam [17] and collision data [21] studies. Jets likely to have arisen from detector noise or cosmic rays are rejected [22].

The resulting \(\Delta\phi\) distribution is shown in Fig. 1 for jets with \(p_T > 100\) GeV. There are 146788 events in the data sample, 85 of which have at least five jets with \(p_T > 100\) GeV. Also shown is the PYTHIA sample with \(\sqrt{s} = 7\) TeV and 30 pb\(^{-1}\) of \(p_T^{\text{max}}\) regions. Overlaid on the data (points) are results from the NLO pQCD calculation. The error bars on the data points indicate the statistical (inner error bar) and systematic uncertainties added in quadrature in this and subsequent figures. The theory uncertainties are indicated by the hatched regions. Different bins in \(p_T^{\text{max}}\) are scaled by multiplicative factors of ten for display purposes. The region near the divergence at \(\Delta\phi \rightarrow \pi\) is excluded from the calculation.

\(\Delta\phi\) distributions in data are corrected in a single step with a bin-by-bin unfolding method [7] to compensate for trigger and detector inefficiencies and the effects of finite experimental resolutions. These correction factors, evaluated using the PYTHIA sample, lie within \(\pm 9\%\) of unity. The leading sources of systematic uncertainty on the normalized cross sec-

![Fig. 1](image1.png)

Fig. 1. The \(\Delta\phi\) distribution for \(>2\), \(>3\), \(>4\), and \(>5\) jets with \(p_T > 100\) GeV. Overlaid on the calibrated but otherwise uncorrected data (points) are results from PYTHIA processed through the detector simulation (lines). All uncertainties are statistical only.

![Fig. 2](image2.png)

Fig. 2. The differential cross section \((1/\sigma)(d\sigma/d\Delta\phi)\) binned in nine \(p_T^{\text{max}}\) regions. Overlaid on the data (points) are results from the NLO pQCD calculation. The error bars on the data points indicate the statistical (inner error bar) and systematic uncertainties added in quadrature in this and subsequent figures. The theory uncertainties are indicated by the hatched regions. Different bins in \(p_T^{\text{max}}\) are scaled by multiplicative factors of ten for display purposes. The region near the divergence at \(\Delta\phi \rightarrow \pi\) is excluded from the calculation.
FIG. 3. Ratio of the differential cross section \((1/\sigma)(d\sigma/d\Delta \phi)\) measured in data with respect to expectations from NLO pQCD (points). The theory uncertainties are indicated by the hatched regions. The region near the divergence at \(\Delta \phi \to \pi\) is excluded from the comparison.

The normalized differential cross section is shown for each of the nine \(p_T^{\text{max}}\) analysis regions as a function of \(\Delta \phi\) in Fig. 2. As \(p_T^{\text{max}}\) increases, and the probability for the emission of a hard third jet is reduced, the fraction of events near \(\pi\) becomes larger. Overlaid on the data are the results from a NLO pQCD \([\mathcal{O}(\alpha_s^3)]\) calculation, NLOJET++ \([10]\) with fastNLO \([25]\) and using the MSTW 2008 PDF \([2\text{b}]\). The factorization and renormalization scales are set to \(p_T^{\text{max}}\) and are varied independently up and down by a factor of two to determine the scale uncertainties. The scale uncertainties are larger between \(\pi/2 < \Delta \phi < 2\pi/3\) where the pQCD calculation is effectively leading order in four-parton production. The PDF uncertainties are treated as the envelope of the 68% CL uncertainties from MSTW 2008 \([3]\), NNPDF 2.0 \([24]\), and CTEQ 10 \([27]\), and are combined with the uncertainties resulting from an \(\alpha_s\) variation of \(\pm 0.004\); the \(\alpha_s\) contributions dominate. The calculation is corrected for non-perturbative effects due to hadronization and the underlying event \([26, 29]\); the correction is smaller than 3%. The fixed-order calculation fails near \(\Delta \phi \to \pi\) where soft processes dominate and contributions from logarithmic terms are enhanced. Figure 3 displays the ratio of the cross section with respect to the NLO calculation. In most regions, the theory is consistent with the data. However, the prediction in the range \(110 < p_T^{\text{max}} < 160\) GeV is relatively low in the central region of \(\Delta \phi\) where the scale uncertainties are small.

The data are also compared with predictions from SHERPA, PYTHIA, and HERWIG in Fig. 4. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at \(\Delta \phi \to \pi\); all three provide a good description of the data in this region. In the region \(\pi/2 < \Delta \phi < 5\pi/6\), where multijet contributions are significant, this observable distinguishes between the three generators. SHERPA, which explicitly includes higher-order tree-level diagrams, performs well in most \(\Delta \phi\) and \(p_T^{\text{max}}\) regions. Having phenomenological parameters that have been adjusted to previous ATLAS measurements, PYTHIA \([28]\) and HERWIG \([24]\) also describe the data.

In summary, we present a measurement of dijet azimuthal decorrelations in events produced in pp collisions at \(\sqrt{s} = 7\) TeV. The normalized differential cross sections...
are based on the full dataset ($\mathcal{L} \, dt = 36 \, \text{pb}^{-1}$) collected by the ATLAS collaboration during the 2010 run of the LHC. Expectations from NLO pQCD [$O(\alpha_s^4)$] and those of several event generators successfully describe the general characteristics of our measurements, including the increasing slope of the $\Delta \phi$ distribution with p_T^{max} and the shape near $\Delta \phi \sim \pi/2$ where events with multiple jets make a considerable contribution. Our data, which include jets with p_T values that significantly exceed earlier measurements, explore QCD in a new kinematic region.

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICyT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; CMS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

The crucial computing support from all WLCG partners is gratefully acknowledged, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[8] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Rapidity is defined as $y = \frac{1}{2} \ln[(E + p_z)/(E - p_z)]$, where E is the energy and p_z is the longitudinal component of the momentum along the beam direction.

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL - 31342 Krakow, Poland

Southern Methodist University, Physics Department, 106 Fondren Science Building, Dallas, TX 75275-0175, United States of America

University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America

DESY, Notkestr. 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany

TU Dortmund, Experimentelle Physik IV, DE - 44221 Dortmund, Germany

Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany

Duke University, Department of Physics, Durham, NC 27708, United States of America

University of Edinburgh, SUPA - School of Physics and Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

Fachhochschule Wiener Neustadt; Johannes Gutenbergstrasse 3 AT - 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, via Enrico Fermi 40, IT-00044 Frascati, Italy

Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Hermann-Herder Str. 3, D - 79104 Freiburg i.Br., Germany

Université de Genève, Section de Physique, 24 rue Ernest Ansermet, CH - 1211 Geneve 4, Switzerland

INFN Sezione di Genova(a); Università di Genova, Dipartimento di Fisica(b), via Dodecaneso 33, IT - 16146 Genova, Italy

Institute of Physics of the Georgian Academy of Sciences, 6 Tamarashvili St., GE - 380077 Tbilisi; Tbilisi State University, HEP Institute, University St. 9, GE - 380086 Tbilisi, Georgia

Justus-Liebig-Universität Giessen, II Physikalisches Institut, Heinrich-Buff Ring 16, D-35392 Giessen, Germany

University of Glasgow, SUPA - School of Physics and Astronomy, Glasgow G12 8QQ, United Kingdom

Georg-August-Universität, II. Physikalisches Institut, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier, CNRS-IN2P3, INPG, Grenoble, France, France

Hampton University, Department of Physics, Hampton, VA 23668, United States of America

Harvard University, Laboratory for Particle Physics and Cosmology, 18 Hammond Street, Cambridge, MA 02138, United States of America

Ruprecht-Karls-Universität Heidelberg: Kirchhoff-Institut für Physik(a), Im Neuenheimer Feld 227, D-69120 Heidelberg; Physikalisches Institut(b), Philosophenweg 12, D-69120 Heidelberg; ZITI Ruprecht-Karls-University Heidelberg(c), Lehrstuhl für Informatik V, B6. 23-29, DE - 68131 Mannheim, Germany

Hiroshima University, Faculty of Science, 1-3-1 Kagamiyama, Higashihiroshima-shi, JP - Hiroshima 739-8526, Japan

Hiroshima Institute of Technology, Faculty of Applied Information Science, 2-1-1 Miyake Saeki-ku, Hiroshima-shi, JP - Hiroshima 731-5193, Japan

Indiana University, Department of Physics, Swain Hall West 117, Bloomington, IN 47405-7105, United States of America

Institut für Astro- und Teilchenphysik, Technikerstrasse 25, A - 6020 Innsbruck, Austria

University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242-1479, United States of America

Iowa State University, Department of Physics and Astronomy, Ames High Energy Physics Group, Ames, IA 50011-3160, United States of America

Joint Institute for Nuclear Research, JINR Dubna, RU-141980 Moscow Region, Russia, Russia

KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801, Japan

Kobe University, Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, JP Kobe 657-8501, Japan

Kyoto University, Faculty of Science, Oiwake-cho, Kitashirakawa, Sakyou-ku, Kyoto-shi, JP - Kyoto 606-8502, Japan

Kyoto University of Education, 1 Fukakusa, Fujimori, fushimi-ku, Kyoto-shi, JP - Kyoto 612-8522, Japan

Universidad Nacional de La Plata, FCE, Departamento de Física, IFLP (CONICET-UNLP), C.C. 67, 1900 La Plata, Argentina

Lancaster University, Physics Department, Lancaster LA1 4YB, United Kingdom

INFN Sezione di Lecce(a); Università del Salento, Dipartimento di Fisica(b) Via Arnesano IT - 73100 Lecce, Italy

University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX, United Kingdom

Jožef Stefan Institute and University of Ljubljana, Department of Physics, SI-1000 Ljubljana, Slovenia

Queen Mary University of London, Department of Physics, Mile End Road, London E1 4NS, United Kingdom
SLAC National Accelerator Laboratory, Stanford, California 94309, United States of America

Comenius University, Faculty of Mathematics, Physics & Informatics\(^{(a)}\), Mlynska dolina F2, SK - 84248 Bratislava; Institute of Experimental Physics of the Slovak Academy of Sciences, Dept. of Subnuclear Physics\(^{(b)}\), Watsonova 47, SK - 04353 Kosice, Slovak Republic

\(^{(a)}\)University of Johannesburg, Department of Physics, PO Box 524, Auckland Park, Johannesburg 2006;
\(^{(b)}\)School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa, South Africa

Stockholm University: Department of Physics\(^{(a)}\); The Oskar Klein Centre\(^{(b)}\), AlbaNova, SE - 106 91 Stockholm, Sweden

Royal Institute of Technology (KTH), Physics Department, SE - 106 91 Stockholm, Sweden

Stony Brook University, Department of Physics and Astronomy, Nicolls Road, Stony Brook, NY 11794-3800, United States of America

University of Sussex, Department of Physics and Astronomy Pevensey 2 Building, Falmer, Brighton BN1 9QH, United Kingdom

University of Sydney, School of Physics, AU - Sydney NSW 2006, Australia

Institute of Physics, Academia Sinica, TW - Taipei 11529, Taiwan

Technion, Israel Inst. of Technology, Department of Physics, Technion City, IL - Haifa 32000, Israel

Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Ramat Aviv, IL - Tel Aviv 69978, Israel

Aristotle University of Thessaloniki, Faculty of Science, Department of Physics, Division of Nuclear & Particle Physics, University Campus, GR - 54124, Thessaloniki, Greece

The University of Tokyo, International Center for Elementary Particle Physics and Department of Physics, 7-3-1 Hongo, Bunkyo-ku, JP - Tokyo 113-0033, Japan

Tokyo Metropolitan University, Graduate School of Science and Technology, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

Tokyo Institute of Technology, Department of Physics, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan

University of Toronto, Department of Physics, 60 Saint George Street, Toronto M5S 1A7, Ontario, Canada

TRIUMF\(^{(a)}\), 4004 Wesbrook Mall, Vancouver, B.C. V6T 2A3; \(^{(b)}\)York University, Department of Physics and Astronomy, 4700 Keele St., Toronto, Ontario, M3J 1P3, Canada

University of Tsukuba, Institute of Pure and Applied Sciences, 1-1-1 Tennoudai, Tsukuba-shi, JP - Ibaraki 305-8571, Japan

Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, United States of America

University of California, Irvine, Department of Physics & Astronomy, CA 92697-4575, United States of America

INFN Gruppo Collegato di Udine\(^{(a)}\); ICTP\(^{(b)}\), Strada Costiera 11, IT-34014, Trieste; Università di Udine, Dipartimento di Fisica\(^{(c)}\), via delle Scienze 208, IT - 33100 Udine, Italy

University of Illinois, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, United States of America

University of Uppsala, Department of Physics and Astronomy, P.O. Box 516, SE -751 20 Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) Centro Mixto UVEG-CSIC, Apdo. 22085 ES-46071 Valencia, Dept. Física At. Mol. y Nuclear; Dept. Ing. Electrónica; Univ. of Valencia, and Inst. de Microelectrónica de Barcelona (IMB-CNM-CSIC) 08193 Bellaterra, Spain

University of British Columbia, Department of Physics, 6224 Agricultural Road, CA - Vancouver, B.C. V6T 1Z1, Canada

University of Victoria, Department of Physics and Astronomy, P.O. Box 3055, Victoria B.C., V8W 3P6, Canada

Waseda University, WISE, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan

The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL - 76100 Rehovot, Israel

University of Wisconsin, Department of Physics, 1150 University Avenue, WI 53706 Madison, Wisconsin, United States of America

Julius-Maximilians-University of Würzburg, Physikalisches Institute, Am Hubland, 97074 Würzburg, Germany

Bergische Universität, Fachbereich C, Physik, Postfach 100127, Gauss-Strasse 20, D- 42097 Wuppertal, Germany

Yerevan Physics Institute, Alikhanian Brothers Street 2, AM - 375036 Yerevan, Armenia

Centre de Calcul CNRS/IN2P3, Domaine scientifique de la Douna, 27 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

\(^{(a)}\) Also at LIP, Portugal
" Also at Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal
" Also at CPPM, Marseille, France.
" Also at TRIUMF, Vancouver, Canada
" Also at FPACS, AGH-UST, Cracow, Poland
" Also at Department of Physics, University of Coimbra, Coimbra, Portugal
" Also at Università di Napoli Parthenope, Napoli, Italy
" Also at Institute of Particle Physics (IPP), Canada
" Also at Louisiana Tech University, Ruston, USA
" Also at Universidade de Lisboa, Lisboa, Portugal
" At California State University, Fresno, USA
" Also at Faculdade de Ciencias, Universidade de Lisboa and at Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa, Portugal
" Also at California Institute of Technology, Pasadena, USA
" Also at University of Montreal, Montreal, Canada
" Also at Baku Institute of Physics, Baku, Azerbaijan
" Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
" Also at Manhattan College, New York, USA
" Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
" Also at Taiwan Tier-1, ASGC, Academia Sinica, Taipei, Taiwan
" Also at School of Physics, Shandong University, Jinan, China
" Also at Rutherford Appleton Laboratory, Didcot, UK
" Also at Departamento de Física, Universidade de Minho, Braga, Portugal
" Also at Department of Physics and Astronomy, University of South Carolina, Columbia, USA
" Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
" Also at Institute of Physics, Jagiellonian University, Cracow, Poland
" Also at Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa, Portugal
" Also at Department of Physics, Oxford University, Oxford, UK
" Also at CEA, Gif sur Yvette, France
" Also at LPNHE, Paris, France
" Also at Nanjing University, Nanjing Jiangsu, China
" Deceased