Measurement of Dijet Azimuthal Decorrelations in pp Collisions at $\sqrt{s} = 7$ TeV

The ATLAS Collaboration

Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full dataset ($\int dt = 36 \text{pb}^{-1}$) acquired by the ATLAS detector during the 2010 $\sqrt{s} = 7$ TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high energy regime.

PACS numbers: 13.87.Ce, 12.38.Qk

The production of events containing high transverse-momentum (p_T) jets is a key signature of quantum chromodynamic (QCD) interactions between partons in pp collisions at large center-of-mass energies (\sqrt{s}). The Large Hadron Collider (LHC) opens a window into the dynamics of interactions with high-p_T jets in a new energy regime of $\sqrt{s} = 7$ TeV. QCD predicts the decorrelation in the azimuthal angle between the two most energetic jets, $\Delta \phi$, as a function of the number of partons produced. Events with only two high-p_T jets have small azimuthal decorrelations, $\Delta \phi \sim \pi$, while $\Delta \phi \ll \pi$ is evidence of events with several high-p_T jets. QCD also describes the evolution of the shape of the $\Delta \phi$ distribution, which narrows with increasing leading jet p_T. Decorrelations in $\Delta \phi$ therefore test perturbative QCD (pQCD) calculations for multiple jet production without requiring the measurement of additional jets. Furthermore, a detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the Standard Model.

In this Letter, we present a measurement of dijet azimuthal decorrelations with jet p_T up to 1.3 TeV as measured by the ATLAS detector, beyond the reach of previous colliders. The normalized differential cross section $(1/\sigma) (d\sigma/d\Delta \phi)$ is based upon an integrated luminosity $\int dt = (36 \pm 4) \text{pb}^{-1}$. The $\Delta \phi$ distribution is normalized by the inclusive dijet cross section, σ, integrated over the same phase space. This construction minimizes experimental and theoretical uncertainties. Previous measurements of $\Delta \phi$ from the D0 and CMS collaborations are extended here to higher jet p_T values.

Jets are reconstructed using the anti-k_t algorithm (implemented with FASTJET) with radius $R = 0.6$, and the jet four-momenta are constructed from a sum over its constituents, treating each as an (E, \vec{p}) four-vector with zero mass. The anti-k_t algorithm is well-motivated since it is infrared-safe to all orders, produces geometrically well-defined cone-like jets, and is used for pQCD calculations (from partons), event generators (from stable particles), and the detector (from energy clusters). The azimuthal decorrelation, $\Delta \phi$, is defined as the absolute value of the difference in azimuthal angle between the jet with the highest p_T in each event, p_T^{max}, and the jet with the second-highest p_T in the event. There are nine analysis regions in p_T^{max}, where the lowest region is bounded by $p_T^{\text{max}} > 110$ GeV and the highest region requires $p_T^{\text{max}} > 800$ GeV. Only jets with $p_T > 100$ GeV and $|y| < 2.8$, where y is the jet rapidity, are considered. The two leading jets that define $\Delta \phi$ are required to satisfy $|y| < 0.8$, restricting the measurement to a central y region where the momentum fractions (x) of the interacting partons are roughly equal and the experimental acceptance for multijet production is increased. In this region where $0.02 \lesssim x \lesssim 0.14$, the parton distribution function (PDF) uncertainties are typically $\pm 3\%$ (at fixed factorization scale). The cross sections, measured over the range $\pi/2 \leq \Delta \phi \leq \pi$ and normalized independently for each analysis region, are compared with expectations from a pQCD calculation that is next-to-leading order (NLO) in three-parton production. The perturbative prediction for the cross section is $\mathcal{O}(\alpha_s^4)$, where α_s is the strong coupling constant.

The angular decorrelation is sensitive to multijet configurations such as those produced by event generators like SHERPA, which matches higher-order tree-level pQCD diagrams with a dipole parton-shower model. Samples for $2 \to 2 - 6$ jet production are combined using an improved CKKW matching scheme. The progression of the parton shower is vetoed to avoid double counting of emissions. Event generators such as PYTHIA and HERWIG use 2 $\to 2$ leading order pQCD matrix elements matched with phenomenological parton-cascade models to simulate higher-order QCD effects. Such models have been successful at reproducing other QCD processes measured by the ATLAS collaboration.

The ATLAS detector consists of an inner tracking system surrounded by a thin superconducting solenoid providing a 2T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer based on large superconducting toroids. Jet measurements depend most heavily on the calorimeters. The electromagnetic calorimeter is a lead liquid-argon (LAr) detector with an accordion geometry. Hadron calorimetry is based on two different detector technologies, with scintillator tiles or LAr as the active medium, and with either steel, copper, or tungsten as the absorber material. The pseudorapidity (η) and ϕ segmentations of
sets of triggered events with different integrated luminos-
ities are selected by a single trigger with a given
energy threshold, and the lower end of the range is chosen above
the jet p_T at which that trigger is ≈ 100% efficient. Three
sets of triggered events with different integrated luminos-
ity are considered: 2.3 pb$^{-1}$ for $110 < p_T^{\text{max}} \leq 160$ GeV,
9.6 pb$^{-1}$ for $160 < p_T^{\text{max}} \leq 260$ GeV, and 36 pb$^{-1}$ for
$p_T^{\text{max}} > 260$ GeV. Events are also required to have
a reconstructed primary vertex within 15 cm in z of
the center of the detector; each vertex had > 5 asso-
ciated tracks. The inputs to the anti-k_t jet algorithm
are clusters of calorimeter cells seeded by cells with en-
ergy that is significantly above the measured noise [3].
Jets reconstructed in the detector, whether in data or the
GEANT4-based simulation [19, 20], are corrected for the
effects of hadronic shower response and detector-material
distributions using a p_T- and η-dependent calibration [7]
based on the detector simulation and validated with ex-
likely to have arisen from detector noise or cosmic rays
are rejected [22].

The resulting $\Delta \phi$ distribution is shown in Fig. 1 for
jets with $p_T > 100$ GeV. There are 146788 events in
the data sample, 85 of which have at least five jets with
$p_T > 100$ GeV. Also shown is the PYTHIA sample with
MRST 2007 LO PDF [23] and ATLAS MC09 underly-
ing event tune [24], processed through the full detector
simulation and normalized to the number of events in
the sample, lie within $\pm 9\%$ of unity. The leading sources
of systematic uncertainty on the normalized cross sec-

FIG. 1. The $\Delta \phi$ distribution for ≥ 2, ≥ 3, ≥ 4, and ≥ 5 jets
with $p_T > 100$ GeV. Overlaid on the calibrated but otherwise
uncorrected data (points) are results from PYTHIA processed
through the detector simulation (lines). All uncertainties are
statistical only.

FIG. 2. The differential cross section $(1/\sigma)(d\sigma/d\Delta \phi)$ binned
in nine p_T^{max} regions. Overlaid on the data (points) are re-
sults from the NLO pQCD calculation. The error bars on
the data points indicate the statistical (inner error bar) and
systematic uncertainties added in quadrature in this and sub-
sequent figures. The theory uncertainties are indicated by the
hatched regions. Different bins in p_T^{max} are scaled by multi-

licative factors of ten for display purposes. The region near
the divergence at $\Delta \phi \to \pi$ is excluded from the calculation.

The measured differential $\Delta \phi$ distributions in data are
corrected in a single step with a bin-by-bin unfolding method [7]
to compensate for trigger and detector inefficiencies and the effects of finite experimental resolutions.
These correction factors, evaluated using the PYTHIA
sample, lie within $\pm 9\%$ of unity. The leading sources
of systematic uncertainty on the normalized cross sec-

the calorimeters are sufficiently fine to ensure that an-
gular resolution uncertainties are negligible compared to
other sources of systematic uncertainty.

A hardware-based calorimeter jet trigger identified
events of interest; the decision was further refined in
software [17, 18]. Events with at least one jet that satis-
fied a minimum transverse energy (E_T) requirement
were recorded for further analysis. The events in each p_T^{max}
range are selected by a single trigger with a given E_T
threshold, and the lower end of the range is chosen above
the jet p_T at which that trigger is ≈ 100% efficient. Three
sets of triggered events with different integrated luminos-
ity are considered: 2.3 pb$^{-1}$ for $110 < p_T^{\text{max}} \leq 160$ GeV,
9.6 pb$^{-1}$ for $160 < p_T^{\text{max}} \leq 260$ GeV, and 36 pb$^{-1}$ for
$p_T^{\text{max}} > 260$ GeV. Events are also required to have
a reconstructed primary vertex within 15 cm in z of
the center of the detector; each vertex had > 5 asso-
ciated tracks. The inputs to the anti-k_t jet algorithm
are clusters of calorimeter cells seeded by cells with en-
ergy that is significantly above the measured noise [3].
Jets reconstructed in the detector, whether in data or the
GEANT4-based simulation [19, 20], are corrected for the
effects of hadronic shower response and detector-material
distributions using a p_T- and η-dependent calibration [7]
based on the detector simulation and validated with ex-
likely to have arisen from detector noise or cosmic rays
are rejected [22].

The resulting $\Delta \phi$ distribution is shown in Fig. 1 for
jets with $p_T > 100$ GeV. There are 146788 events in
the data sample, 85 of which have at least five jets with
$p_T > 100$ GeV. Also shown is the PYTHIA sample with
MRST 2007 LO PDF [23] and ATLAS MC09 underly-
ing event tune [24], processed through the full detector
simulation and normalized to the number of events in
the sample, lie within $\pm 9\%$ of unity. The leading sources
of systematic uncertainty on the normalized cross sec-
tion are the jet energy scale calibration (2 − 17%) \([7]\),
the bin-by-bin unfolding method (1 − 19%),
and the jet energy and position resolutions (0.5 − 5%).
The ranges in parentheses represent the magnitude of the uncertainties
near \(\pi\) and \(\pi/2\), respectively, and correspond to the
analysis region with the smallest statistical uncertainty (160 < \(p_T^{\text{max}}\) ≤ 210 GeV).
Uncertainties due to multiple \(pp\) interactions in the same beam crossing (< 0.8% on the cross section for all analysis regions) are included in the evaluation of the jet energy scale uncertainties.

The normalized differential cross section is shown for each of the nine \(p_T^{\text{max}}\) analysis regions as a function of \(\Delta \phi\) in Fig. 2. As \(p_T^{\text{max}}\) increases, and the probability for the emission of a hard third jet is reduced, the fraction of events near \(\pi\) becomes larger. Overlaid on the data are the results from a NLO pQCD \([\mathcal{O}(\alpha_s^3)]\) calculation, NLOJET++ \([10]\) with fastNLO \([25]\) and using the MSTW 2008 PDF \([8]\).

The factorization and renormalization scales are set to \(p_T^{\text{max}}\) and are varied independently up and down by a factor of two to determine the scale uncertainties. The scale uncertainties are larger between \(\pi/2 < \Delta \phi < 2\pi/3\) where the pQCD calculation is effectively leading order in four-parton production. The PDF uncertainties are treated as the envelope of the 68% CL uncertainties from MSTW 2008 \([8]\), NNPDF 2.0 \([26]\), and CTEQ 10 \([27]\), and are combined with the uncertainties resulting from an \(\alpha_s\) variation of ±0.004; the \(\alpha_s\) contributions dominate. The calculation is corrected for non-perturbative effects due to hadronization and the underlying event \([28, 29]\); the correction is smaller than 3%. The fixed-order calculation fails near \(\Delta \phi \rightarrow \pi\) where soft processes dominate and contributions from logarithmic terms are enhanced. Figure 3 displays the ratio of the cross section with respect to the NLO calculation. In most regions, the theory is consistent with the data. However, the prediction in the range 110 < \(p_T^{\text{max}}\) < 160 GeV is relatively low in the central region of \(\Delta \phi\) where the scale uncertainties are small.

The data are also compared with predictions from SHERPA, PYTHIA, and HERWIG in Fig. 4. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at \(\Delta \phi \rightarrow \pi\); all three provide a good description of the data in this region. In the region \(\pi/2 < \Delta \phi < 5\pi/6\), where multijet contributions are significant, this observable distinguishes between the three generators. SHERPA, which explicitly includes higher-order tree-level diagrams, performs well in most \(\Delta \phi\) and \(p_T^{\text{max}}\) regions. Having phenomenological parameters that have been adjusted to previous ATLAS measurements, PYTHIA \([28]\) and HERWIG \([24]\) also describe the data.

In summary, we present a measurement of dijet azimuthal decorrelations in events produced in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. The normalized differential cross sections
are based on the full dataset ($\mathcal{L} dt = 36 \text{ pb}^{-1}$) collected by the ATLAS collaboration during the 2010 run of the LHC. Expectations from NLO pQCD \([O(\alpha_s^3)]\) and those of several event generators successfully describe the general characteristics of our measurements, including the increasing slope of the $\Delta \phi$ distribution with p_T^{max} and the shape near $\Delta \phi \sim \pi/2$ where events with multiple jets make a considerable contribution. Our data, which include jets with p_T values that significantly exceed earlier measurements, explore QCD in a new kinematic region.

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; CMS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[8] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Rapidity is defined as $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z}\right)$, where E is the energy and p_z is the longitudinal component of the momentum along the beam direction.

Athens, Greece
The University of Texas at Arlington, Department of Physics, Box 19059, Arlington, TX 76019, United States of America

University of Athens, Nuclear & Particle Physics, Department of Physics, Panepistimioupoli, Zografou, GR 15771 Athens, Greece

National Technical University of Athens, Physics Department, 9-Iroon Polytechniou, GR 15780 Zografou, Greece

Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan

Institut de Física d’Altes Energies, IFAE, Edifici Cn, Universitat Autònoma de Barcelona, ES - 08193 Bellaterra (Barcelona), Spain

University of Belgrade\(^{(a)}\), Institute of Physics, P.O. Box 57, 11001 Belgrade; Vinca Institute of Nuclear Sciences\(^{(b)}\) M. Petrovica Alasa 12-14, 11000 Belgrade, Serbia, Serbia

University of Bergen, Department for Physics and Technology, Allegaten 55, NO - 5007 Bergen, Norway

Lawrence Berkeley National Laboratory and University of California, Physics Division, MS50B-6227, 1 Cyclotron Road, Berkeley, CA 94720, United States of America

University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, Sidlerstrasse 5, CH - 3012 Bern, Switzerland

University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, United Kingdom

University of Bonn, Physikalisches Institut, Nussallee 12, D - 53115 Bonn, Germany

Boston University, Department of Physics, 590 Commonwealth Avenue, Boston, MA 02215, United States of America

Brandeis University, Department of Physics, MS057, 415 South Street, Waltham, MA 02454, United States of America

Universidade Federal do Rio De Janeiro, COPPE/EE/IF \(^{(a)}\), Caixa Postal 68528, Ilha do Fundao, BR - 21945-970 Rio de Janeiro; \(^{(b)}\)Universidade de Sao Paulo, Instituto de Fisica, R.do Matao Trav. R.187, Sao Paulo - SP, 05508 - 900, Brazil

Brookhaven National Laboratory, Physics Department, Bldg. 510A, Upton, NY 11973, United States of America

National Institute of Physics and Nuclear Engineering\(^{(a)}\)Bucharest-Magurele, Str. Atomistilor 407, P.O. Box MG-6, R-077125, Romania; University Politehnica Bucuresti\(^{(b)}\), Rectorat - AN 001, 313 Splaiul Independentei, sector 6, 060042 Bucuresti; West University\(^{(c)}\) in Timisoara, Bd. Vasile Parvan 4, Timisoara, Romania

University of Buenos Aires, FCEyN, Dto. Fisica, Pab I - C. Universitaria, 1428 Buenos Aires, Argentina

University of Cambridge, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom

Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada

CERN, CH - 1211 Geneva 23, Switzerland

University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637, United States of America

Pontificia Universidad Catolica de Chile, Facultad de Fisica, Departamento de Fisica\(^{(a)}\), Avda. Vicuna Mackenna 4860, San Joaquin, Santiago; Universidad Técnica Federico Santa Maria, Departamento de Fisica\(^{(b)}\), Avda. España 1680, Casilla 110-V, Valparaíso, Chile

Institute of High Energy Physics, Chinese Academy of Sciences\(^{(a)}\), P.O. Box 918, 19 Yuquan Road, Shijing Shian District, CN - Beijing 100049; University of Science & Technology of China (USTC), Department of Modern Physics\(^{(b)}\), Hefei, CN - Anhui 230026; Nanjing University, Department of Physics\(^{(c)}\), Nanjing, CN - Jiangsu 210093; Shandong University, High Energy Physics Group\(^{(d)}\), Jinan, CN - Shandong 250100, China

Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, FR - 63177 Aubiere Cedex, France

Columbia University, Nevis Laboratory, 136 So. Broadway, Irvington, NY 10533, United States of America

University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, DK - 2100 København 0, Denmark

INFN Gruppo Collegato di Cosenza\(^{(a)}\); Università della Calabria, Dipartimento di Fisica\(^{(b)}\), IT-87036 Arcavacata di Rende, Italy

Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology, (FPACS, AGH-UST), al. Mickiewicza 30, PL-30059 Cracow, Poland
<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy</td>
<td>440 West Brooks, Room 100,</td>
</tr>
<tr>
<td></td>
<td>Norman, OK 73019-0225, United</td>
</tr>
<tr>
<td></td>
<td>States of America</td>
</tr>
<tr>
<td>Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater</td>
<td>OK 74078-3072, United</td>
</tr>
<tr>
<td></td>
<td>States of America</td>
</tr>
<tr>
<td>Palacký University, 17.listopadu 50a, 772 07 Olomouc, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>University of Oregon, Center for High Energy Physics, Eugene, OR 97403-1274, United States of</td>
<td></td>
</tr>
<tr>
<td>America</td>
<td></td>
</tr>
<tr>
<td>LAL, Univ. Paris-Sud, IN2P3/CNRS, Orsay, France</td>
<td></td>
</tr>
<tr>
<td>Osaka University, Graduate School of Science, Machikaneyama-machi 1-1, Toyonaka, Osaka</td>
<td>560-0043, Japan</td>
</tr>
<tr>
<td>University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO - 0316 Oslo 3, Norway</td>
<td></td>
</tr>
<tr>
<td>Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford</td>
<td>OX1 3RH, United Kingdom</td>
</tr>
<tr>
<td>INFN Sezione di Pavia (a); Università di Pavia, Dipartimento di Fisica Nucleare e Teorica</td>
<td>Via Bassi 6, IT-27100 Pavia,</td>
</tr>
<tr>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>University of Pennsylvania, Department of Physics, High Energy Physics Group, 209 S. 33rd</td>
<td>Philadelphia, PA 19104,</td>
</tr>
<tr>
<td>Street, Philadelphia, PA 19104, United States of America</td>
<td></td>
</tr>
<tr>
<td>Petersburg Nuclear Physics Institute, RU - 188 300 Gatchina, Russia</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Pisa (a); Università di Pisa, Dipartimento di Fisica E. Fermi (b), Largo B.</td>
<td>Italy</td>
</tr>
<tr>
<td>Pontecorvo 3, IT - 56127 Pisa, Italy</td>
<td></td>
</tr>
<tr>
<td>University of Pittsburgh, Department of Physics and Astronomy, 3941 O'Hara Street, Pittsburgh,</td>
<td>PA 15260, United States of</td>
</tr>
<tr>
<td>PA, United States of America</td>
<td></td>
</tr>
<tr>
<td>Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP (a), Avenida Elias</td>
<td>Lisboa, Portugal</td>
</tr>
<tr>
<td>Garcia 14-1, PT - 1000-149 Lisboa, Portugal; Universidad de Granada, Departamento de Fisica</td>
<td></td>
</tr>
<tr>
<td>Teorica y del Cosmos and CAFPE (b), E-18071 Granada, Spain</td>
<td></td>
</tr>
<tr>
<td>Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ - 18221</td>
<td>Prague 8, Czech Republic</td>
</tr>
<tr>
<td>Research Center Institute for High Energy Physics, Moscow Region, 142281, Protvino, Pobeda</td>
<td>Russia</td>
</tr>
<tr>
<td>University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP), Santa</td>
<td>Cruz, CA 95064, United States</td>
</tr>
<tr>
<td>Cruz, CA 95064, United States of America</td>
<td></td>
</tr>
<tr>
<td>University of Washington, Seattle, Department of Physics, Box 351560, Seattle, WA 98195-1560</td>
<td></td>
</tr>
<tr>
<td>Charles University in Prague, Faculty of Mathematics and Physics, Institute of Particle and</td>
<td></td>
</tr>
<tr>
<td>Nuclear Physics, V Holesovickach 2, CZ - 18000 Prague 8, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Czech Technical University in Prague, Zikova 4, CZ - 166 35 Prague 6, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>State Research Center Institute for High Energy Physics, Moscow Region, 142281, Protvino,</td>
<td></td>
</tr>
<tr>
<td>Pobeda street, 1, Russia</td>
<td></td>
</tr>
<tr>
<td>Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science</td>
<td></td>
</tr>
<tr>
<td>and Innovation Campus, Didcot OX11 0QX, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>University of Regina, Physics Department, Canada</td>
<td></td>
</tr>
<tr>
<td>Ritsumeikan University, Noji Higashi 1 chome 1-1, JP - Kusatsu, Shiga 525-8577, Japan</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Roma I (a); Università La Sapienza, Dipartimento di Fisica (b), Piazzale A.</td>
<td>Roma, Italy</td>
</tr>
<tr>
<td>Moro 2, IT- 00185 Roma, Italy</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Roma Tor Vergata (a); Università di Roma Tor Vergata, Dipartimento di Fisica</td>
<td>via della Ricerca Scientifica,</td>
</tr>
<tr>
<td>(b), via della Vasca Navale 84, IT-00146 Roma, Italy</td>
<td>IT-00133 Roma, Italy</td>
</tr>
<tr>
<td>INFN Sezione di Roma Tre (a); Università Roma Tre, Dipartimento di Fisica (b), via della</td>
<td></td>
</tr>
<tr>
<td>Vasca Navale 84, IT-00146 Roma, Italy</td>
<td></td>
</tr>
<tr>
<td>Réseau Universitaire de Physique des Hautes Energies (RUPHE): Université Hassan II, Faculté</td>
<td></td>
</tr>
<tr>
<td>des Sciences Ain Chock (b), B.P. 5366, MA - Casablanca; Centre National de l’Energie des</td>
<td></td>
</tr>
<tr>
<td>Sciences Techniques Nucleaires (CNESTEN) (b), B.P. 1382 R.P. 10001 Rabat 10001; Université</td>
<td></td>
</tr>
<tr>
<td>Mohamed Premier (c), LPTPM, Faculté des Sciences, B.P.717. Bd. Mohamed VI, 60000, Oujda ;</td>
<td></td>
</tr>
<tr>
<td>Université Mohammed V, Faculté des Sciences (d), 4 Avenue Ibn Battouta, BP 1014 RP, 10000</td>
<td></td>
</tr>
<tr>
<td>Rabat, Morocco</td>
<td></td>
</tr>
<tr>
<td>CEA, DSM/IRFU, Centre d’Etudes de Saclay, FR - 91191 Gif-sur-Yvette, France</td>
<td></td>
</tr>
<tr>
<td>University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP), Santa</td>
<td>Cruz, CA 95064, United States</td>
</tr>
<tr>
<td>Cruz, CA 95064, United States of America</td>
<td></td>
</tr>
<tr>
<td>University of Washington, Seattle, Department of Physics, Box 351560, Seattle, WA 98195-1560</td>
<td></td>
</tr>
<tr>
<td>University of Sheffield, Department of Physics & Astronomy, Hounsfield Road, Sheffield S3 7RH,</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Shinshu University, Department of Physics, Faculty of Science, 3-1-1 Asahi, Matsumoto-shi,</td>
<td></td>
</tr>
<tr>
<td>JP - Nagano 390-8621, Japan</td>
<td></td>
</tr>
<tr>
<td>Universität Siegen, Fuchbereich Physik, D 57068 Siegen, Germany</td>
<td></td>
</tr>
<tr>
<td>Simon Fraser University, Department of Physics, 8888 University Drive, CA - Burnaby, BC V5A</td>
<td></td>
</tr>
<tr>
<td>1S6, Canada</td>
<td></td>
</tr>
</tbody>
</table>
SLAC National Accelerator Laboratory, Stanford, California 94309, United States of America
Comenius University, Faculty of Mathematics, Physics & Informatics\(^{(a)}\), Mlynska dolina F2, SK - 84248, Bratislava; Institute of Experimental Physics of the Slovak Academy of Sciences, Dept. of Subnuclear Physics\(^{(b)}\), Watsonova 47, SK - 04353 Kosice, Slovak Republic

\(^{(a)}\)University of Johannesburg, Department of Physics, PO Box 524, Auckland Park, Johannesburg 2006; \(^{(b)}\)School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa, South Africa

Stockholm University: Department of Physics\(^{(a)}\); The Oskar Klein Centre\(^{(b)}\), AlbaNova, SE - 106 91 Stockholm, Sweden
Royal Institute of Technology (KTH), Physics Department, SE - 106 91 Stockholm, Sweden
Stony Brook University, Department of Physics and Astronomy, Nicolls Road, Stony Brook, NY 11794-3800, United States of America

University of Sussex, Department of Physics and Astronomy Pevensey 2 Building, Falmer, Brighton BN1 9QH, United Kingdom

University of Sydney, School of Physics, AU - Sydney NSW 2006, Australia

Institute of Physics, Academia Sinica, TW - Taipei 11529, Taiwan

Technion, Israel Inst. of Technology, Department of Physics, Technion City, IL - Haifa 32000, Israel

Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Ramat Aviv, IL - Tel Aviv 69978, Israel

Aristotle University of Thessaloniki, Faculty of Science, Department of Physics, Division of Nuclear & Particle Physics, University Campus, GR - 54124, Thessaloniki, Greece

The University of Tokyo, International Center for Elementary Particle Physics and Department of Physics, 7-3-1 Hongo, Bunkyo-ku, JP - Tokyo 113-0033, Japan

Tokyo Metropolitan University, Graduate School of Science and Technology, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

Tokyo Institute of Technology, Department of Physics, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan

University of Toronto, Department of Physics, 60 Saint George Street, Toronto M5S 1A7, Ontario, Canada

TRIUMF\(^{(a)}\), 4004 Wesbrook Mall, Vancouver, B.C. V6T 2A3; \(^{(b)}\)York University, Department of Physics and Astronomy, 4700 Keele St., Toronto, Ontario, M3J 1P3, Canada

University of Tsukuba, Institute of Pure and Applied Sciences, 1-1-1 Tennoudai, Tsukuba-shi, JP - Ibaraki 305-8571, Japan

Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, United States of America

University of California, Irvine, Department of Physics & Astronomy, CA 92697-4575, United States of America

INFN Gruppo Collegato di Udine\(^{(a)}\); ICTP\(^{(b)}\), Strada Costiera 11, IT-34014, Trieste; Universit`a di Udine, Dipartimento di Fisica\(^{(c)}\), via delle Scienze 208, IT - 33100 Udine, Italy

University of Illinois, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, United States of America

University of Uppsala, Department of Physics and Astronomy, P.O. Box 516, SE -751 20 Uppsala, Sweden

University of California, Davis, Department of Physics, One Shields Avenue, CA 95616-8639, United States of America

University of British Columbia, Department of Physics, 6224 Agricultural Road, CA - Vancouver, B.C. V6T 1Z1, Canada

Waseda University, WISE, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan

The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL - 76100 Rehovot, Israel

University of Wisconsin, Department of Physics, 1150 University Avenue, WI 53706 Madison, Wisconsin, United States of America

Julius-Maximilians-University of Würzburg, Physikalisches Institute, Am Hubland, 97074 Würzburg, Germany

Bergische Universität, Fachbereich C, Physik, Postfach 100127, Gauss-Strasse 20, D- 42097 Wuppertal, Germany

Yale University, Department of Physics, PO Box 208121, New Haven CT, 06520-8121, United States of America

Centre de Calcul CNRS/IN2P3, Domaine scientifique de la Doua, 27 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

\(^{a}\) Also at LIP, Portugal
b Also at Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal
\[^c \] Also at CPPM, Marseille, France.
\[^d \] Also at TRIUMF, Vancouver, Canada
\[^e \] Also at FPACS, AGH-UST, Cracow, Poland
\[^f \] Also at Department of Physics, University of Coimbra, Coimbra, Portugal
\[^g \] Also at Università di Napoli Parthenope, Napoli, Italy
\[^h \] Also at Institute of Particle Physics (IPP), Canada
\[^i \] Also at Louisiana Tech University, Ruston, USA
\[^j \] Also at Universidade de Lisboa, Lisboa, Portugal
\[^k \] At California State University, Fresno, USA
\[^l \] Also at Faculdade de Ciencias, Universidade de Lisboa and at Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa, Portugal
\[^m \] Also at California Institute of Technology, Pasadena, USA
\[^n \] Also at University of Montreal, Montreal, Canada
\[^o \] Also at Baku Institute of Physics, Baku, Azerbaijan
\[^p \] Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
\[^q \] Also at Manhattan College, New York, USA
\[^r \] Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
\[^s \] Also at Taiwan Tier-1, ASGC, Academia Sinica, Taipei, Taiwan
\[^t \] Also at School of Physics, Shandong University, Jinan, China
\[^u \] Also at Rutherford Appleton Laboratory, Didcot, UK
\[^v \] Also at Departamento de Física, Universidade de Minho, Braga, Portugal
\[^w \] Also at Department of Physics and Astronomy, University of South Carolina, Columbia, USA
\[^x \] Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
\[^y \] Also at Institute of Physics, Jagiellonian University, Cracow, Poland
\[^z \] Also at Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
\[^aa \] Also at Department of Physics, Oxford University, Oxford, UK
\[^ab \] Also at CEA, Gif sur Yvette, France
\[^ac \] Also at LPNHE, Paris, France
\[^ad \] Also at Nanjing University, Nanjing Jiangsu, China
\[^* \] Deceased