The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/92034

Please be advised that this information was generated on 2017-10-15 and may be subject to change.
Measurement of Dijet Azimuthal Decorrelations in \(pp \) Collisions at \(\sqrt{s} = 7 \) TeV

The ATLAS Collaboration

Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full dataset \((\mathcal{L} dt = 36 \, \text{pb}^{-1}) \) acquired by the ATLAS detector during the 2010 \(\sqrt{s} = 7 \) TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high energy regime.

PACS numbers: 13.87.Ce,12.38.Qk

The production of events containing high transverse-momentum (\(p_T \)) jets is a key signature of quantum chromodynamic (QCD) interactions between partons in \(pp \) collisions at large center-of-mass energies (\(\sqrt{s} \)). The Large Hadron Collider (LHC) opens a window into the dynamics of interactions with high-\(p_T \) jets in a new energy regime of \(\sqrt{s} = 7 \) TeV. QCD predicts the decorrelation in the azimuthal angle between the two most energetic jets, \(\Delta \phi \), as a function of the number of partons produced. Events with only two high-\(p_T \) jets have small azimuthal decorrelations, \(\Delta \phi \sim \pi \), while \(\Delta \phi \ll \pi \) is evidence of events with several high-\(p_T \) jets. QCD also describes the evolution of the shape of the \(\Delta \phi \) distribution, which narrows with increasing leading jet \(p_T \). Decorrelations in \(\Delta \phi \) therefore test perturbative QCD (pQCD) calculations for multiple jet production without requiring the measurement of additional jets. Furthermore, a detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the Standard Model.

In this Letter, we present a measurement of dijet azimuthal decorrelations with jet \(p_T \) up to 1.3 TeV as measured by the ATLAS detector, beyond the reach of previous colliders. The normalized differential cross section \((1/\sigma) (d\sigma/d\Delta \phi) \) is based upon an integrated luminosity \(\mathcal{L} dt = (36 \pm 4) \, \text{pb}^{-1} \). The \(\Delta \phi \) distribution is normalized by the inclusive dijet cross section, \(\sigma \), integrated over the same phase space. This construction minimizes experimental and theoretical uncertainties. Previous measurements of \(\Delta \phi \) from the D0 and CMS collaborations are extended here to higher jet \(p_T \) values.

Jets are reconstructed using the anti-\(k_t \) algorithm (implemented with FASTJET) with radius \(R = 0.6 \), and the jet four-momenta are constructed from a sum over its constituents, treating each as an \((E, \vec{p}) \) four-vector with zero mass. The anti-\(k_t \) algorithm is well-motivated since it is infrared-safe to all orders, produces geometrically well-defined cone-like jets, and is used for pQCD calculations (from partons), event generators (from stable particles), and the detector (from energy clusters). The azimuthal decorrelation, \(\Delta \phi \), is defined as the absolute value of the difference in azimuthal angle between the jet with the highest \(p_T \) in each event, \(p_T^{\text{max}} \), and the jet with the second-highest \(p_T \) in the event. There are nine analysis regions in \(p_T^{\text{max}} \), where the lowest region is bounded by \(p_T^{\text{max}} > 110 \) GeV and the highest region requires \(p_T^{\text{max}} > 800 \) GeV. Only jets with \(p_T > 100 \) GeV and \(|y| < 2.8 \), where \(y \) is the jet rapidity, are considered. The two leading jets that define \(\Delta \phi \) are required to satisfy \(|y| < 0.8 \), restricting the measurement to a central \(y \) region where the momentum fractions \((x) \) of the interacting partons are roughly equal and the experimental acceptance for multijet production is increased. In this region where \(0.02 \leq x \leq 0.14 \), the parton distribution function (PDF) uncertainties are typically \(\pm 3\% \) (at fixed factorization scale). The cross sections, measured over the range \(\pi/2 \leq \Delta \phi \leq \pi \) and normalized independently for each analysis region, are compared with expectations from a pQCD calculation that is next-to-leading order (NLO) in three-parton production. The perturbative prediction for the cross section is \(\mathcal{O}(\alpha_s^4) \), where \(\alpha_s \) is the strong coupling constant.

The angular decorrelation is sensitive to multijet configurations such as those produced by event generators like SHERPA, which matches higher-order tree-level pQCD diagrams with a dipole parton-shower model. Samples for \(2 \to 2 \) jet production are combined using an improved CKKW matching scheme. The progression of the parton shower is vetoed to avoid double counting of emissions. Event generators such as PYTHIA and HERWIG use 2 \(\to 2 \) leading order pQCD matrix elements matched with phenomenological parton-cascade models to simulate higher-order QCD effects. Such models have been successful at reproducing other QCD processes measured by the ATLAS collaboration.

The ATLAS detector consists of an inner tracking system surrounded by a thin superconducting solenoid providing a 2T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer based on large superconducting toroids. Jet measurements depend most heavily on the calorimeters. The electromagnetic calorimeter is a lead liquid-argon (LAr) detector with an accordion geometry. Hadron calorimetry is based on two different detector technologies, with scintillator tiles or LAr as the active medium, and with either steel, copper, or tungsten as the absorber material. The pseudorapidity (\(\eta \)) and \(\phi \) segmentations of
the calorimeters are sufficiently fine to ensure that angular resolution uncertainties are negligible compared to other sources of systematic uncertainty.

A hardware-based calorimeter jet trigger identified events of interest; the decision was further refined in software. Events with at least one jet that satisfied a minimum transverse energy \(E_T \) requirement were recorded for further analysis. The events in each \(p_T^{\text{max}} \) range are selected by a single trigger with a given \(E_T \) threshold, and the lower end of the range is chosen above the jet \(p_T \) at which that trigger is \(\approx 100\% \) efficient. Three sets of triggered events with different integrated luminosity are considered: 2.3 pb\(^{-1}\) for \(110 < p_T^{\text{max}} \leq 160 \) GeV, 9.6 pb\(^{-1}\) for \(160 < p_T^{\text{max}} \leq 260 \) GeV, and 36 pb\(^{-1}\) for \(p_T^{\text{max}} > 260 \) GeV. Events are also required to have a reconstructed primary vertex within 15 cm in \(z \) of the center of the detector; each vertex had \(\geq 5 \) associated tracks. The inputs to the anti-\(k_t \) jet algorithm are clusters of calorimeter cells seeded by cells with energy that is significantly above the measured noise. Jets reconstructed in the detector, whether in data or the GEANT4-based simulation, are corrected for the effects of hadronic shower response and detector-material distributions using a \(p_T \)- and \(\eta \)-dependent calibration, based on the detector simulation and validated with extensive test-beam and collision data studies. Jets likely to have arisen from detector noise or cosmic rays are rejected.

The resulting \(\Delta \phi \) distribution is shown in Fig. 1 for jets with \(p_T > 100 \) GeV. There are 146788 events in the data sample, 85 of which have at least five jets with \(p_T > 100 \) GeV. Also shown is the PYTHIA sample with \(p_T^{\text{max}} \) scaled by multiplicative factors of ten for display purposes. The region near the divergence at \(\Delta \phi \rightarrow \pi \) is excluded from the calculation.

The resulting \(\Delta \phi \) distribution is shown in Fig. 2 for jets with \(p_T > 100 \) GeV. Overlaid on the calibrated but otherwise uncorrected data (points) are results from PYTHIA processed through the detector simulation (lines). All uncertainties are statistical only.

The leading two jets: \(|y| < 0.8\), \(p_T^{\text{max}} > 110 \) GeV. Data \(L \text{d}t = 36 \text{ pb}^{-1} \) (o) \(\geq 2 \) jets, \(\geq 3 \) jets, \(\geq 4 \) jets, \(\geq 5 \) jets. PYTHIA

Data \(L \text{d}t = 36 \text{ pb}^{-1} \)

- \(p_T^{\text{min}} > 800 \) GeV \((\times 10^3) \)
- \(500 < p_T^{\text{min}} \leq 600 \) GeV \((\times 10^3) \)
- \(400 < p_T^{\text{min}} \leq 500 \) GeV \((\times 10^3) \)
- \(310 < p_T^{\text{min}} \leq 310 \) GeV \((\times 10^3) \)
- \(280 < p_T^{\text{min}} \leq 290 \) GeV \((\times 10^3) \)
- \(160 < p_T^{\text{min}} \leq 210 \) GeV \((\times 10^3) \)
- \(110 < p_T^{\text{min}} \leq 160 \) GeV \((\times 10^3) \)

\(\alpha \) PDF \(\, \text{unc.} \)

NLO pQCD \([O(\alpha_s^3)] \)

PDF & \(\alpha_s \) unc.

scale unc.

NLO pQCD \([O(\alpha_s^3)] \)

PDF & \(\alpha_s \) unc.

scale unc.

The measured differential \(\Delta \phi \) distributions in data are corrected in a single step with a bin-by-bin unfolding method to compensate for trigger and detector inefficiencies and the effects of finite experimental resolutions. These correction factors, evaluated using the PYTHIA sample, lie within \(\pm 9\% \) of unity. The leading sources of systematic uncertainty on the normalized cross sec-
tion are the jet energy scale calibration (2 − 17%) [7], the bin-by-bin unfolding method (1 − 19%), and the jet energy and position resolutions (0.5 − 5%). The ranges in parentheses represent the magnitude of the uncertainties near π and π/2, respectively, and correspond to the analysis region with the smallest statistical uncertainty (160 < p_{T}^{\text{max}} \leq 210 \text{ GeV}). Uncertainties due to multiple pp interactions in the same beam crossing (< 0.8% on the cross section for all analysis regions) are included in the evaluation of the jet energy scale uncertainties.

The normalized differential cross section is shown for each of the nine p_{T}^{\text{max}} analysis regions as a function of Δφ in Fig. 2. As p_{T}^{\text{max}} increases, and the probability for the emission of a hard third jet is reduced, the fraction of events near π becomes larger. Overlaid on the data are the results from a NLO pQCD [Q(\alpha_{s}^{2})] calculation, NLOJET++ [10] with fastNLO [25] and using the MSTW 2008 PDF [9]. The factorization and renormalization scales are set to p_{T}^{\text{max}} and are varied independently up and down by a factor of two to determine the scale uncertainties. The scale uncertainties are larger between π/2 < Δφ < 2π/3 where the pQCD calculation is effectively leading order in four-parton production. The PDF uncertainties are treated as the envelope of the 68% CL uncertainties from MSTW 2008 [9], NNPDF 2.0 [26], and CTEQ 10 [27], and are combined with the uncertainties resulting from an α_{s} variation of ±0.004; the α_{s} contributions dominate. The calculation is corrected for non-perturbative effects due to hadronization and the underlying event [28, 29]; the correction is smaller than 3%. The fixed-order calculation fails near Δφ → π where soft processes dominate and contributions from logarithmic terms are enhanced. Figure 3 displays the ratio of the cross section with respect to the NLO calculation. In most regions, the theory is consistent with the data. However, the prediction in the range 110 < p_{T}^{\text{max}} < 160 \text{ GeV} is relatively low in the central region of Δφ where the scale uncertainties are small.

The data are also compared with predictions from SHERPA, PYTHIA, and HERWIG in Fig. 4. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at Δφ → π; all three provide a good description of the data in this region. In the region π/2 < Δφ < 5π/6, where multijet contributions are significant, this observable distinguishes between the three generators. SHERPA, which explicitly includes higher-order tree-level diagrams, performs well in most Δφ and p_{T}^{\text{max}} regions. Having phenomenological parameters that have been adjusted to previous ATLAS measurements, PYTHIA [28] and HERWIG [24] also describe the data.

In summary, we present a measurement of dijet azimuthal decorrelations in events produced in pp collisions at \sqrt{s} = 7 \text{ TeV}. The normalized differential cross sections...
are based on the full dataset ($L dt = 36 \text{ pb}^{-1}$) collected by the ATLAS collaboration during the 2010 run of the LHC. Expectations from NLO pQCD [$O(\alpha_s^4)$] and those of several event generators successfully describe the general characteristics of our measurements, including the increasing slope of the $\Delta \phi$ distribution with p_T^{max} and the shape near $\Delta \phi \sim \pi/2$ where events with multiple jets make a considerable contribution. Our data, which include jets with p_T values that significantly exceed earlier measurements, explore QCD in a new kinematic region.

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; CMS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

8. ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Rapidity is defined as $y = \frac{1}{2} \ln[(E + p_z)/(E - p_z)]$, where E is the energy and p_z is the longitudinal component of the momentum along the beam direction.

22. ATLAS Collaboration, ATLASH-CNF-2010-038.
7 The University of Texas at Arlington, Department of Physics, Box 19059, Arlington, TX 76019, United States of America
8 University of Athens, Nuclear & Particle Physics, Department of Physics, Panepistimioupoli, Zografou, GR 15771 Athens, Greece
9 National Technical University of Athens, Physics Department, 9-Iroon Polytechniou, GR 15780 Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan
11 Institut de Física d’Altes Energies, IFAE, Edifici Cn, Universitat Autònoma de Barcelona, ES - 08193 Bellaterra (Barcelona), Spain
12 University of Belgrade\(^{(a)}\), Institute of Physics, P.O. Box 57, 11001 Belgrade; Vinca Institute of Nuclear Sciences\(^{(b)}\), M. Petrovica Alasa 12-14, 11000 Belgrade, Serbia, Serbia
13 University of Bergen, Department for Physics and Technology, Allegaten 55, NO - 5007 Bergen, Norway
14 Lawrence Berkeley National Laboratory and University of California, Physics Division, MS50B-6227, 1 Cyclotron Road, Berkeley, CA 94720, United States of America
15 Humboldt University, Institute of Physics, Berlin, Newtonstr. 15, D-12489 Berlin, Germany
16 University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, Sidlerstrasse 5, CH - 3012 Bern, Switzerland
17 University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, United Kingdom
18 Bogazici University\(^{(a)}\), Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul; Dogus University\(^{(b)}\), Faculty of Arts and Sciences, Department of Physics, 34722, Kadikoy, Istanbul; \(^{(c)}\)Gaziantep University, Faculty of Engineering, Department of Physics Engineering, 27310, Sehitkamil, Gaziantep, Turkey; Istanbul Technical University\(^{(d)}\), Faculty of Arts and Sciences, Department of Physics, 34469, Maslak, Istanbul, Turkey
19 INFN Sezione di Bologna\(^{(a)}\); Università di Bologna, Dipartimento di Fisica\(^{(b)}\), viale C. Berti Pichat, 6/2, IT - 40127 Bologna, Italy
20 University of Bonn, Physikalisches Institut, Nussallee 12, D - 53115 Bonn, Germany
21 Boston University, Department of Physics, 590 Commonwealth Avenue, Boston, MA 02215, United States of America
22 Brandeis University, Department of Physics, MS057, 415 South Street, Waltham, MA 02454, United States of America
23 Universidade Federal do Rio de Janeiro, COPPE/EE/IF \(^{(a)}\), Caixa Postal 68528, Ilha do Fundao, BR - 21945-970 Rio de Janeiro; \(^{(b)}\)Universidade de Sao Paulo, Instituto de Fisica, R.do Matao Trav. R.187, Sao Paulo - SP, 05508 - 900, Brazil
24 Brookhaven National Laboratory, Physics Department, Bldg. 510A, Upton, NY 11973, United States of America
25 National Institute of Physics and Nuclear Engineering\(^{(a)}\)Bucharest-Magurele, Str. Atomistilor 407, P.O. Box MG-6, R-077125, Romania; University Politehnica Bucharest\(^{(b)}\), Rectorat - AN 001, 313 Splaiul Independentei, sector 6, 060042 Bucuresti; West University\(^{(c)}\) in Timisoara, Bd. Vasile Parvan 4, Timisoara, Romania
26 University of Buenos Aires, FCEyN, Dto. Fisica, Pab I - C. Universitaria, 1428 Buenos Aires, Argentina
27 University of Cambridge, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
28 Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada
29 CERN, CH - 1211 Geneva 23, Switzerland
30 University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637, United States of America
31 Pontificia Universidad Católica de Chile, Facultad de Física, Departamento de Física\(^{(a)}\), Avda. Vicuna Mackenna 4860, San Joaquin, Santiago; Universidad Técnica Federico Santa María, Departamento de Física\(^{(b)}\), Avda. España 1680, Casilla 110-V, Valparaíso, Chile
32 Institute of High Energy Physics, Chinese Academy of Sciences\(^{(a)}\), P.O. Box 918, 19 Yuquan Road, Shijing Shan District, CN - Beijing 100049; University of Science & Technology of China (USTC), Department of Modern Physics\(^{(b)}\), Hefei, CN - Anhui 230026; Nanjing University, Department of Physics\(^{(c)}\), Nanjing, CN - Jiangsu 210093; Shandong University, High Energy Physics Group\(^{(d)}\), Jinan, CN - Shandong 250100, China
33 Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, FR - 63177 Aubiere Cedex, France
34 Columbia University, Nevis Laboratories, 136 So. Broadway, Irvington, NY 10533, United States of America
35 University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, DK - 2100 København, Denmark
36 INFN Gruppo Collegato di Cosenza\(^{(a)}\); Università della Calabria, Dipartimento di Fisica\(^{(b)}\), IT-87036 Arcavacata di Rende, Italy
37 Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology, (FPACS, AGH-UST), al. Mickiewicza 30, PL-30059 Cracow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL - 31342 Krakow, Poland

Southern Methodist University, Physics Department, 106 Fondren Science Building, Dallas, TX 75275-0175, United States of America

University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America

DESY, Notkestr. 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany

TU Dortmund, Experimentelle Physik IV, DE - 44221 Dortmund, Germany

Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany

Duke University, Department of Physics, Durham, NC 27708, United States of America

University of Edinburgh, SUPA - School of Physics and Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

Fachhochschule Wiener Neustadt; Johannes Gutenbergstrasse 3 AT - 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, via Enrico Fermi 40, IT-00044 Frascati, Italy

Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Hermann-Herder Str. 3, D - 79104 Freiburg i.Br., Germany

Universität de Genève, Section de Physique, 24 rue Ernest Ansermet, CH - 1211 Geneve 4, Switzerland

INFN Sezione di Genova (a): Università di Genova, Dipartimento di Fisica (b), via Dodecaneso 33, IT - 16146 Genova, Italy

Institute of Physics of the Georgian Academy of Sciences, 6 Tamarashvili St., GE - 380077 Tbilisi; Tbilisi State University, HEP Institute, University St. 9, GE - 380086 Tbilisi, Georgia

Justus-Liebig-Universität Giessen, II Physikalisches Institut, Heinrich-Buff Ring 16, D-35392 Giessen, Germany

University of Glasgow, SUPA - School of Physics and Astronomy, Glasgow G12 8QQ, United Kingdom

Georg-August-Universität, II. Physikalisches Institut, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier, CNRS-IN2P3, INPG, Grenoble, France, France

Hampton University, Department of Physics, Hampton, VA 23668, United States of America

Harvard University, Laboratory for Particle Physics and Cosmology, 18 Hammond Street, Cambridge, MA 02138, United States of America

Ruprecht-Karls-Universität Heidelberg; Kirchhoff-Institut für Physik (a), Im Neuenheimer Feld 227, D-69120 Heidelberg; Physikalisches Institut (b), Philosophenweg 12, D-69120 Heidelberg; ZITI Ruprecht-Karls-University Heidelberg (c), Lehrstuhl für Informatik V, B6. 23-29, DE - 68131 Mannheim, Germany

Hiroshima University, Faculty of Science, 1-3-1 Kagamiyama, Higashihiroshima-shi, JP - Hiroshima 739-8526, Japan

Hiroshima Institute of Technology, Faculty of Applied Information Science, 2-1-1 Miyake Saeiki-ku, Hiroshima-shi, JP - Hiroshima 731-5193, Japan

Indiana University, Department of Physics, Swain Hall West 117, Bloomington, IN 47405-7105, United States of America

University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242-1479, United States of America

Iowa State University, Department of Physics and Astronomy, Ames High Energy Physics Group, Ames, IA 50011-3160, United States of America

Joint Institute for Nuclear Research, JINR Dubna, RU-141980 Moscow Region, Russia, Russia

KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801, Japan

Kobe University, Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, JP Kobe 657-8501, Japan

Kyoto University, Faculty of Science, Oiwake-cho, Kitashirakawa, Sakyou-ku, Kyoto-shi, JP - Kyoto 606-8502, Japan

Kyoto University of Education, 1 Fukakusa, Fujimori, fushimi-ku, Kyoto-shi, JP - Kyoto 612-8522, Japan

Universidad Nacional de La Plata, FCE, Departamento de Física, IFLP (CONICET-UNLP), C.C. 67, 1900 La Plata, Argentina

Lancaster University, Physics Department, Lancaster LA1 4YB, United Kingdom

INFN Sezione di Lecce (a); Università del Salento, Dipartimento di Fisica (b) Via Arnesano IT - 73100 Lecce, Italy

University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX, United Kingdom

Jožef Stefan Institute and University of Ljubljana, Department of Physics, SI-1000 Ljubljana, Slovenia

Queen Mary University of London, Department of Physics, Mile End Road, London E1 4NS, United Kingdom
b Also at Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal

c Also at CPPM, Marseille, France.

d Also at TRIUMF, Vancouver, Canada

e Also at FPACS, AGH-UST, Cracow, Poland

f Also at Department of Physics, University of Coimbra, Coimbra, Portugal

g Also at Università di Napoli Parthenope, Napoli, Italy

h Also at Institute of Particle Physics (IPP), Canada

i Also at Louisiana Tech University, Ruston, USA

j Also at Universidade de Lisboa, Lisboa, Portugal

k At California State University, Fresno, USA

l Also at Faculdade de Ciencias, Universidade de Lisboa and at Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa, Portugal

m Also at California Institute of Technology, Pasadena, USA

n Also at University of Montreal, Montreal, Canada

o Also at Baku Institute of Physics, Baku, Azerbaijan

p Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

q Also at Manhattan College, New York, USA

r Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

s Also at Taiwan Tier-1, ASGC, Academia Sinica, Taipei, Taiwan

t Also at School of Physics, Shandong University, Jinan, China

u Also at Rutherford Appleton Laboratory, Didcot, UK

v Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal

w Also at Department of Physics and Astronomy, University of South Carolina, Columbia, USA

x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

y Also at Institute of Physics, Jagiellonian University, Cracow, Poland

z Also at Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa, Portugal

aa Also at Department of Physics, Oxford University, Oxford, UK

ab Also at CEA, Gif sur Yvette, France

ac Also at LPNHE, Paris, France

ad Also at Nanjing University, Nanjing Jiangsu, China

* Deceased