The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/91710

Please be advised that this information was generated on 2017-10-01 and may be subject to change.
Determination of the pole and $\overline{\text{MS}}$ masses of the top quark from the $t\bar{t}$ cross section

(The D0 Collaboration*)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Universidade Federal do ABC, Santo André, Brazil
5Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada
7University of Science and Technology of China, Hefei, People’s Republic of China
8Universidad de los Andes, Bogotá, Colombia
9Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
10Czech Technical University in Prague, Prague, Czech Republic
11Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12Universidad San Francisco de Quito, Quito, Ecuador
13LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
14LPC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
15CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
16LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
17LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
18CEA, Ifeu, SPP, Saclay, France
19IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
20IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
22Physikalisches Institut, Universität Freiburg, Freiburg, Germany
23II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
24Institut für Physik, Universität Mainz, Mainz, Germany
25Ludwig-Maximilians-Universität München, München, Germany
26Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
27Panjab University, Chandigarh, India
28Delhi University, Delhi, India
29Tata Institute of Fundamental Research, Mumbai, India
30University College Dublin, Dublin, Ireland
31Korea Detector Laboratory, Korea University, Seoul, Korea
32CINVESTAV, Mexico City, Mexico
33FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
34Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
35Joint Institute for Nuclear Research, Dubna, Russia
36Institute for Theoretical and Experimental Physics, Moscow, Russia
37Moscow State University, Moscow, Russia
38Institute for High Energy Physics, Protvino, Russia
39Petersburg Nuclear Physics Institute, St. Petersburg, Russia
40Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
41Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden
42Lancaster University, Lancaster LA1 4YB, United Kingdom
43Imperial College London, London SW7 2AZ, United Kingdom
44The University of Manchester, Manchester M13 9PL, United Kingdom
45University of Arizona, Tucson, Arizona 85721, USA
46University of California Riverside, Riverside, California 92521, USA
47Florida State University, Tallahassee, Florida 32306, USA
48Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
49University of Illinois at Chicago, Chicago, Illinois 60607, USA
50Northern Illinois University, DeKalb, Illinois 60115, USA
The mass of the top quark (m_t) has been measured with a precision of 0.6%, and its current Tevatron average value is $m_t = 173.3 \pm 1.1$ GeV [1]. Beyond leading-order quantum chromodynamics (LO QCD), the mass of the top quark is a convention-dependent parameter. Therefore, it is important to know how to interpret this experimental result in terms of renormalization conventions [2] if the value is to be used as an input to higher-order QCD calculations or in fits of electroweak precision observables and the resulting indirect Higgs boson mass bounds [3].

The definition of mass in field theory can be divided into two categories [4]: (i) driven by long-distance behavior, which corresponds to the pole-mass scheme, and (ii) driven by short-distance behavior, which, for example, is represented by the $\overline{\text{MS}}$ mass scheme. The difference between the masses in different schemes can be calculated as a perturbative series in α_s. However, the concept of the pole mass is ill-defined, since there is no pole in the quark propagator in a confining theory such as QCD [5].

There are two approaches to directly measure m_t from the reconstruction of the final states in decays of top-antitop ($t\bar{t}$) pairs. One is based on a comparison of Monte Carlo (MC) templates for different assumed values of m_t with distributions of kinematic quantities measured in data. In the second approach, m_t is extracted from the reconstruction of the final states in data using a calibration curve obtained from MC simulation. In both cases the quantity measured in data therefore corresponds to the top quark mass scheme used in the MC simulation, which we refer to as m_t^{MC}.

Current MC simulations are performed in LO QCD, and higher order effects are simulated through parton showers at modified leading logarithms (LL) level. In principle, it is not possible to establish a direct connec-
tion between \(m_t^{\text{MC}} \) and any other mass scheme, such as the pole or \(\overline{\text{MS}} \) mass scheme, without calculating the parton showers to at least next-to-leading logarithms (NLL) accuracy. However, it has been argued that \(m_t^{\text{MC}} \) should be close to the pole mass \(m_t \). The relation between \(m_t^{\text{MC}} \) and the top quark pole mass \((m_t^{\text{pole}}) \) or \(\overline{\text{MS}} \) mass \((m_t^{\overline{\text{MS}}})\) is still under theoretical investigation. In calculations such as in Ref. [8] it is assumed that \(m_t^{\text{MC}} \) measured at the Tevatron is equal to \(m_t^{\text{pole}} \).

In this Letter, we extract the pole mass at the scale of the pole mass, \(m_t^{\text{pole}} \), and the \(\overline{\text{MS}} \) mass at the scale of the \(\overline{\text{MS}} \) mass, \(m_t^{\overline{\text{MS}}} \), comparing the measured inclusive \(t\bar{t} \) production cross section \(\sigma_{\ell\ell} \) with fully inclusive calculations at higher-order QCD that involve an unambiguous definition of \(m_t \) and compare our results to \(m_t^{\text{MC}} \). This extraction provides an important test of the mass scheme as applied in MC simulations and gives complementary information, with different sensitivity to theoretical and experimental uncertainties than the direct measurements of \(m_t^{\text{MC}} \) that rely on kinematic details of the mass reconstruction.

We use the measurement of \(\sigma_{\ell\ell} \) in the lepton+jets channel in \(pp \) collisions at \(\sqrt{s} = 1.96 \text{ TeV} \) using 5.3 fb\(^{-1}\) of integrated luminosity collected by the DØ experiment [8]. We calculate likelihoods for \(\sigma_{\ell\ell} \) as a function of \(m_t \), and use higher-order QCD predictions based on the pole-mass or the \(\overline{\text{MS}} \)-mass conventions to extract \(m_t^{\text{pole}} \) or \(m_t^{\overline{\text{MS}}} \), respectively.

The criteria applied to select the sample of \(t\bar{t} \) candidates used in the cross section measurement introduce a dependence of the signal acceptance, and therefore of the measured value of \(\sigma_{\ell\ell} \), on the assumed value of \(m_t^{\text{MC}} \). This dependence is studied using MC samples of \(t\bar{t} \) events generated at different values of \(m_t^{\text{MC}} \) in intervals of at least 5 GeV and is found to be much weaker than the dependence of the theoretical calculation of \(\sigma_{\ell\ell} \) on \(m_t \). The \(t\bar{t} \) signal is simulated with the ALPGEN event generator [4], and parton evolution is simulated with PYTHIA [10]. Jet-parton matching is applied to avoid double-counting of partonic event configurations [11]. The resulting measurement of \(\sigma_{\ell\ell} \) can be described by

\[
\sigma_{\ell\ell}(m_t^{\text{MC}}) = \frac{1}{(m_t^{\text{MC}})^4} \left[a + b (m_t^{\text{MC}} - m_0) \right] + c (m_t^{\text{MC}} - m_0)^2 + d (m_t^{\text{MC}} - m_0)^3,
\]

where \(\sigma_{\ell\ell} \) and \(m_t^{\text{MC}} \) are in pb and GeV, respectively, \(m_0 = 170 \text{ GeV} \), and \(a, b, c, d \) are free parameters. For the mass extraction, we consider the experimental \(t\bar{t} \) cross section measured using the b-jet identification technique [8]. This \(\sigma_{\ell\ell} \) determination provides the weakest dependence on \(m_t^{\text{MC}} \) of the results presented in Ref. [8], which leads to a smaller uncertainty on the extracted \(m_t \), and thereby reduces the ambiguity of whichever convention (here pole or \(\overline{\text{MS}} \)) best reflects \(m_t^{\text{MC}} \). When using b-tagging, the data sample is split into events with 0, 1 or > 1 b-tagged jets, and the numbers of events in each of the three categories, corrected for mass-dependent acceptance, yield the measurement of \(\sigma_{\ell\ell} \). The other methods used in Ref. [8] rely on additional topological information that introduces a stronger dependence of the measured \(\sigma_{\ell\ell} \) on \(m_t^{\text{MC}} \). They are therefore not used in this analysis. The parameters derived from a fit of \(\sigma_{\ell\ell} \) to Eq. (1) are: \(a = 6.95 \times 10^9 \text{ pb GeV}^4 \), \(b = 1.25 \times 10^8 \text{ pb GeV}^3 \), \(c = 1.16 \times 10^4 \text{ pb GeV}^2 \), and \(d = -2.55 \times 10^3 \text{ pb GeV} \). Possible fit shape changes due to the uncertainties on these parameters are small compared to the experimental uncertainties on the \(\sigma_{\ell\ell} \) measurement which are almost fully correlated between different \(m_t \). For \(m_t^{\text{MC}} = 172.5 \text{ GeV} \), we measure \(\sigma_{\ell\ell} = 8.13^{+1.92}_{-0.90} \text{ pb} \).

We compare the obtained parameterization to a pure next-to-leading-order (NLO) QCD calculation, to a calculation including NLO QCD and all higher-order soft-gluon resummations in NLL [13], to a calculation including also all higher-order soft-gluon resummations in next-to-next-to-leading logarithms (NNLL) [14] and to two approximations of the next-to-next-to-leading-order (NNLO) QCD cross section that include next-to-next-to-leading logarithms (NNLL) relevant in NNLO QCD [13, 10]. The computations in Ref. [13] were obtained using the program documented in Ref. [17].

Following the method of Refs. [13, 19], we extract the most probable \(m_t \) values and their 68% C.L. bands for the pole-mass and \(\overline{\text{MS}} \)-mass conventions by computing the most probable value of a normalized joint-likelihood function:

\[
L(m_t) = \int f_{\exp}(\sigma|m_t) \left[f_{\text{scale}}(\sigma|m_t) \otimes f_{\text{PDF}}(\sigma|m_t) \right] \, d\sigma.
\]

The first term \(f_{\exp} \) corresponds to a function for the measurement constructed from a Gaussian function with mean value given by Eq. (1) and with standard deviation (sd) equal to the total experimental uncertainty which is described in detail in Ref. [8]. The second term \(f_{\text{scale}} \) in Eq. (2) is a theoretical likelihood formed from the uncertainties on the renormalization and factorization scales of QCD, which are taken to be equal, and varied up and down by a factor of two from the default value. Within this range, \(f_{\text{scale}} \) is taken to be constant [13, 10]. It is convoluted with a term that represents the uncertainty of parton density functions (PDFs), taken to be a Gaussian function, with rms equal to the uncertainty determined in Refs. [13, 10]. Table I summarizes the theoretical predictions from different calculations for \(m_t^{\text{pole}} = 175 \text{ GeV} \) used as an input to the likelihood fit.

In Refs. [13, 14] \(\sigma_{\ell\ell} \) is calculated as a function of \(m_t^{\text{pole}} \) and, consequently, comparing the measured \(\sigma_{\ell\ell}(m_t^{\text{MC}}) \) to these theoretical predictions provides a value of \(m_t^{\text{pole}} \). Therefore, we extract \(m_t^{\text{pole}} \) (i) assuming that the definition of \(m_t^{\text{MC}} \) is equivalent to \(m_t^{\text{pole}} \), and (ii) taking \(m_t^{\text{MC}} \) to be equal to \(m_t^{\overline{\text{MS}}} \) to estimate the effect of interpreting \(m_t^{\text{MC}} \) as any other mass definition. For case (i), Fig. 4 shows the parameterization of the measured and the predicted \(\sigma_{\ell\ell}(m_t^{\text{pole}}) \) [14, 16]. The results for the de-
TABLE I: Theoretical predictions for $\sigma_{t\bar{t}}$ with uncertainties $\Delta\sigma$ due to scale dependence and PDFs at the Tevatron for $m_t^\text{pole}=175$ GeV from different theoretical calculations used as input to the mass extraction. Note that Refs. 12 and 13 use the CTEQ6.6 PDF set while Refs. 14, 15, and 16 use the MSTW08 PDF set.

<table>
<thead>
<tr>
<th>Theoretical prediction</th>
<th>$\sigma_{t\bar{t}}$ (pb)</th>
<th>$\Delta\sigma_{\text{scale}}$ (pb)</th>
<th>$\Delta\sigma_{\text{PDF}}$ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLO [12]</td>
<td>6.31</td>
<td>$+0.14$</td>
<td>-0.10</td>
</tr>
<tr>
<td>NLO+NLL [13]</td>
<td>6.61</td>
<td>$+0.26$</td>
<td>-0.14</td>
</tr>
<tr>
<td>NLO+NNLL [14]</td>
<td>5.93</td>
<td>$+0.19$</td>
<td>-0.22</td>
</tr>
<tr>
<td>Approximate NNLO [15]</td>
<td>6.71</td>
<td>$+0.28$</td>
<td>$+0.17$</td>
</tr>
<tr>
<td>Approximate NNLO [16]</td>
<td>6.66</td>
<td>$+0.11$</td>
<td>$+0.42$</td>
</tr>
</tbody>
</table>

TABLE II: Values of m_t^pole, with their 68% C.L. uncertainties, extracted for different predictions of $\sigma_{t\bar{t}}$. The results assume that $m_t^{\text{MC}} = m_t^\text{pole}$ (left column). The right column shows the change Δm_t^pole between these results if it is assumed that $m_t^{\text{MC}} = m_t^\text{MS}$. The combined experimental and theoretical uncertainties are shown.

<table>
<thead>
<tr>
<th>Theoretical prediction</th>
<th>m_t^pole (GeV)</th>
<th>Δm_t^pole (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC mass assumption</td>
<td>$m_t^{\text{MC}} = m_t^\text{pole}$</td>
<td>$m_t^{\text{MC}} = m_t^\text{MS}$</td>
</tr>
<tr>
<td>NLO [12]</td>
<td>$164.8^{+5.7}_{-5.4}$</td>
<td>-3.0</td>
</tr>
<tr>
<td>NLO+NLL [13]</td>
<td>$166.5^{+5.5}_{-4.8}$</td>
<td>-2.7</td>
</tr>
<tr>
<td>NLO+NNLL [14]</td>
<td>$163.9^{+5.1}_{-4.6}$</td>
<td>-3.3</td>
</tr>
<tr>
<td>Approximate NNLO [15]</td>
<td>$167.5^{+5.2}_{-4.5}$</td>
<td>-2.7</td>
</tr>
<tr>
<td>Approximate NNLO [16]</td>
<td>$166.7^{+5.2}_{-4.5}$</td>
<td>-2.8</td>
</tr>
</tbody>
</table>

determination of m_t^pole are given in Table I. In case (ii) the cross section predictions use the pole-mass convention, and the value of $m_t^{\text{MC}} = m_t^\text{MS}$ is converted to m_t^pole using the relationship at the three-loop level [3, 22]:

$$m_t^\text{pole} = m_t^\text{MS}(m_t^\text{MS}) \left[1 + \frac{4 \pi^2}{3} (\frac{m_t^\text{MS}}{\bar{s}_s})^2 \right].$$

where \bar{s}_s is the strong coupling in the $\overline{\text{MS}}$ scheme, and $N_f = 5$ is the number of light quark flavors. The strong coupling $\bar{s}_s(m_t^\text{pole})$ is taken at the three-loop level from Ref. 23. By iteratively rederviving the MS mass using Eq. (3) $\bar{s}_s(m_t^\text{pole})$ is transformed into $\bar{s}_s(m_t^\text{MS})$ leading to a difference of only 0.1 GeV to the final extraction of m_t^MS. For $m_t^\text{pole} = 173.3$ GeV, the MS mass $m_t^\text{MS}(m_t^\text{MS})$ is lower by 9.8 GeV. With this change of the m_t^{MC} interpretation in Eq. (1), we form a new likelihood $f_{\exp}(m_t)$ and extract m_t^pole using Eq. (2). The difference Δm_t^pole between assuming $m_t^{\text{MC}} = m_t^\text{pole}$ and $m_t^{\text{MC}} = m_t^\text{MS}$ is given in Table I. Given the uncertainties, interpreting m_t^{MC} as either m_t^pole or as m_t^MS has no significant bearing on the value of the extracted m_t. We include half of this difference symmetrically in the systematic uncertainties. As a result we extract $m_t^\text{pole} = 163.0^{+5.4}_{-4.9}$ GeV using the NLO+NNLL calculation of Ref. 14 and $m_t^\text{pole} = 167.5^{+5.4}_{-4.9}$ GeV using the approximate NNLO calculation of Ref. 15. Our measurement of m_t^pole based on the approximate NNLO cross section calculation is consistent within 1 sd with the Tevatron measurement of m_t from direct reconstruction of top quark decay products, $m_t = 173.3 \pm 1.1$ GeV [1]. The result based on the NLO+NNLL calculation is consistent within 2 sd.

Calculations of the $t\bar{t}$ cross section [14, 15] have also
been performed as a function of $m_t^{\overline{\text{MS}}}$. Comparing the
dependence of the measured $\sigma_{\ell\ell}$ to theory as a function of
m_t provides an estimate of $m_t^{\overline{\text{MS}}}$. We note that a previous
extraction of $m_t^{\overline{\text{MS}}}$ [12] ignored the m_t dependence of the
measured $\sigma_{\ell\ell}$. We extract the value of $m_t^{\overline{\text{MS}}}$, again, for
two cases: (i) assuming that the definition of m_t implemented in the
MC simulation is equal to m_t^{pole}, and (ii) assuming that
m_t^{MC} corresponds to $m_t^{\overline{\text{MS}}}$. For case (i), m_t^{pole} must first
be converted to $m_t^{\overline{\text{MS}}}$ using Eq. 3. Figure 2 shows the
measured $\sigma_{\ell\ell}$ as a function of $m_t^{\overline{\text{MS}}}$, together with the
calculation that includes NLO+NNLL QCD resumation [14] and the approximate NNLO calculation [15].

The results for the extracted values of $m_t^{\overline{\text{MS}}}$ are given in
Table III

In case (ii), we assume that the mass definition in the
MC simulation corresponds to the MS mass. We set
$m_t^{\text{MC}} = m_t^{\overline{\text{MS}}}$ in Eq. (2), form a new likelihood $f_{\text{exp}}(\sigma|m_t)$
and extract $m_t^{\overline{\text{MS}}}$ using Eq. (2) for the two calculations
of Fig. 2. The difference $\Delta m_t^{\overline{\text{MS}}}$ between assuming that
$m_t^{\text{MC}} = m_t^{\text{pole}}$ and assuming $m_t^{\text{MC}} = m_t^{\overline{\text{MS}}}$ is given in

<table>
<thead>
<tr>
<th>Theoretical prediction</th>
<th>$m_t^{\overline{\text{MS}}}$ (GeV)</th>
<th>$\Delta m_t^{\overline{\text{MS}}}$ (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC mass assumption</td>
<td>$m_t^{\overline{\text{MS}}}$ (GeV)</td>
<td>$\Delta m_t^{\overline{\text{MS}}}$ (GeV)</td>
</tr>
<tr>
<td>NLO+NNLL [14]</td>
<td>154.5 +4.0 −4.3</td>
<td>−2.9</td>
</tr>
<tr>
<td>Approximate NNLO [15]</td>
<td>160.0 +4.8 −4.3</td>
<td>−2.6</td>
</tr>
</tbody>
</table>

FIG. 2: (Color online) Measured $\sigma_{\ell\ell}$ and theoretical
NLO+NNLL [14] and approximate NNLO [15] calculations
of $\sigma_{\ell\ell}$ as a function of $m_t^{\overline{\text{MS}}}$, assuming that $m_t^{\text{MC}} = m_t^{\text{pole}}$. The colored dashed lines represent the uncertain-
ties for the two theoretical calculations from the choice of
the PDF and the renormalization and factorization scales
-added quadratically). The point shows the measured $\sigma_{\ell\ell}$ for
m_t^{MC}=172.5 GeV, the black curve is the fit to Eq. 1, and the
gray band corresponds to the total experimental uncertainty.

FIG. 3: (Color online) Constraints on the W boson mass from the
LEP-II/Tevatron experiments and the top quark pole mass extracted from the $t\bar{t}$ cross section in NLO+NNLL [14]
(green contour) and approximate NNLO [15] (red contour).
This is compared to the indirect constraints on the W boson
mass and the top quark mass based on LEP-I/SLD data
(dashed contour). In both cases the 68% CL contours are
given. Also shown is the SM relationship for the masses as a
function of the Higgs mass in the region favoured by theory
(< 1000 GeV) and not excluded by direct searches (114 GeV
to 158 GeV and > 173 GeV). The arrow labelled $\Delta \alpha$ shows the
variation of this relation if $\alpha(m_Z^2)$ is varied between -1 and
+1 sd. This variation gives an additional uncertainty to the
SM band shown in the figure.

TABLE III: Values of $m_t^{\overline{\text{MS}}}$, with their 68% C.L. uncertain-
ities, extracted for different theoretical predictions of $\sigma_{\ell\ell}$. The
results assume that m_t^{MC} corresponds to m_t^{pole} (left column).
The right column shows the change $\Delta m_t^{\overline{\text{MS}}}$ between these
results if it is assumed that $m_t^{\text{MC}} = m_t^{\overline{\text{MS}}}$. The combined
experimental and theoretical uncertainties are shown.
Table III. We include half of this difference symmetrically in the systematic uncertainties and derive a value of $m_t^{\text{MS}} = 154.5^{+5.2}_{-4.5}$ GeV using the calculation of Ref. [14] and $m_t^{\text{MS}} = 160.0^{+5.1}_{-4.5}$ GeV using Ref. [12].

To summarize, we extract the pole mass (Table III) and the MS mass (Table III) for the top quark by comparing the measured $\sigma_{t\bar{t}}$ with different higher-order perturbative QCD calculations. The Tevatron direct measurements of m_t are consistent with both m_t^{pole} measurements within 2 sd, but they are different by more than 2 sd from the extracted m_t^{MS}. The results on m_t^{pole} and their interplay with other electroweak results within the SM are displayed in Fig. 3, which is based on Ref. [3].

For the first time, m_t^{MS} is extracted with the m_t dependence of the measured $\sigma_{t\bar{t}}$ taken into account. Our measurements favor the interpretation that the Tevatron m_t measurements based on reconstructing top quark decay products is closer to the pole than to the MS top quark mass.

Acknowledgments

We wish to thank M. Cacciari, S. Moch, M. Neubert, M. Seymour, and P. Uwer for fruitful discussions regarding this analysis. We would also like to thank M. Cacciari, N. Kidonakis, and L. L. Yang for providing us with their latest theoretical computations.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

[7] An estimate for the mass parameter that appears in parton shower algorithms can be obtained by speculating how an ideal all-order algorithm would work [4] using the approach developed in Ref. [2]. Comparing parton shower results with an all-order calculation, a relation between m_t^{pole} and m_t can be derived. Hence, the pole mass of the top quark could be about 1 GeV higher than m_t from direct Tevatron measurements.