Bending modes, elastic constants and mechanical stability of graphitic systems

G. Savini, Y. J. Dappe, S. Ö Berg, J.-C. Charlier, M. I. Katsnelson, and A. Fasolino

1 Institute for Molecules and Materials, Radboud University Nijmegen, 6525ED Nijmegen, The Netherlands
2 Department of Engineering, University of Cambridge, CB3 0FA Cambridge, United Kingdom
3 Institut de Physique et Chimie des Matériaux, CNRS, F-67034 Strasbourg, France
4 Department of Mathematics, Luleå University of Technology, S-97187 Luleå, Sweden
5 Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, Place Croix du Sud 1 (NAPS-Boltzmann), B-1348 Louvain-la-Neuve, Belgium

The thermodynamic and mechanical properties of graphitic systems are strongly dependent on the shear elastic constant $C_{44}$. Using state-of-the-art density functional calculations, we provide the first complete determination of their elastic constants and exfoliation energies. We show that stacking misorientations lead to a severe lowering of $C_{44}$ of at least one order of magnitude. The lower exfoliation energy and the lower $C_{44}$ (more bending modes) suggest that flakes with random stacking should be easier to exfoliate than the ones with perfect or rhombohedral stacking. We also predict ultralow friction behaviour in turbostratic graphitic systems.

I. INTRODUCTION

Graphitic systems are used for a wide variety of industrial applications, ranging from lubricant and refractory materials to neutron moderators in nuclear fission reactors and plasma shields in the next generation of fusion reactors. The recent realization of graphene (single graphitic layer) and the discovery of its unusual electronic properties have raised interest on flake graphitic systems as a route to produce graphene samples of high quality and in large scale.

Despite the technological and scientific importance of graphitic systems, the knowledge of their elastic properties is unexpectedly poor and new insights are needed. The values of the elastic constants describe the mechanical behaviour and are decisive in engineering design to avoid material failure. In layered materials, they are even more important for the thermodynamic properties due to a low-lying branch of acoustic vibrations, the bending modes, predicted by Lifshitz over fifty years ago. Here we show that the shear elastic constant $C_{44}$ affects the mechanism of exfoliation that is relevant for the production of graphene.

The most reliable experimental studies of the elastic constants have been obtained by inelastic x-ray scattering and ultrasonic, sonic resonance, and static test methods. The sample used in the first study was single-crystalline Kish graphite, characterized by an extraordinary high degree of ordering, the closest approximation to turbostratic stacking. The second study was done using highly oriented pyrolytic graphite, the closest approximation to turbostratic graphite where the graphitic layers are randomly oriented around the c-axis.

Except for $C_{44}$ and $C_{13}$, both studies are in agreement within the experimental uncertainties. The $C_{13}$ value in turbo-g was determined only by the less accurate static test method and it may be affected by errors. Conversely, $C_{44}$ in turbo-g was determined from the sound velocity and its value ranges between 0.18-0.35 GPa, one order of magnitude lower than 5.03 GPa found in hex-g.

The discrepancy on $C_{44}$ is attributed to the existence of mobile basal dislocations. After neutron irradiation, the elastic constant $C_{44}$ increases by up to an order of magnitude, suggesting that interstitial defects could pin the dislocation motions, whence the intrinsic value of $C_{44}$ is measured. A principal difficulty with this explanation is that interstitial atoms inevitably increase the shear resistance between graphitic layers and therefore they may increase the $C_{44}$ value by themselves.

The aim of this study is to investigate from first principles the elastic constants of graphitic systems with respect to the stacking misorientations between layers, and to describe the key role of the shear elastic constant $C_{44}$ on the bending modes (thermal property) and mechanical stability. We show that stacking misorientations greatly affect $C_{44}$ and that graphitic systems with perfect (hex-g) and random (turbo-g) stacking should be considered as two distinct materials described by their own elastic and thermodynamic properties.

This paper is structured as follow. In Sec. II, we give a brief summary of the theoretical methods and a discussion of the LCAO-$S^2+vdW$ formalism to include the long-range van der Waals (vdW) interactions. The consequences of shear elastic constant $C_{44}$ on the bending modes and mechanical stability are shown in Sec. II A and II B respectively.

The elastic constants in the case of high-symmetric systems (hexagonal, orthorhombic, rhombohedral and AA hexagonal stackings) and for graphitic layers randomly oriented around the c-axis (turbostratic stacking) are presented in Sec. II C and II D respectively. Finally, we summarize and comment on our results in Sec. IV.

II. METHOD

All the calculations are performed using density functional theory, within the local density approximation scheme (LDA), norm-conserving pseudopotentials and plane waves with cut-off energy of 150 Ry.
For each elastic constant we have applied 21 strain derivative of the total energy with respect to the strains. In its current stage, the analysis of the internal stresses is not implemented yet, thus the elastic constants that change the in-plane bond lengths \((C_{11}, C_{12}, C_{13})\) are overestimated by up to 15\%. However, for \(C_{44}\) and \(C_{33}\) that describe the weak interaction between layers, the internal stresses are negligible, and the calculated values are expected to be very accurate.

The elastic constants are determined using two different approaches. The first one uses the response-function, implemented in the ABINIT code, to calculate the second derivative of the total energy with respect to the strains. The second approach uses the elastic energy density. For each elastic constant we have applied 21 strain components \(\varepsilon_{ij}\) to the equilibrium crystal structures \((\varepsilon_{ij}\) were typically ranging between 0.01 with increments 0.001). The elastic constants are found by fitting the calculated energies to a polynomial function in the strains. Both approaches yield results in agreement within 0.2\%.

### III. RESULTS AND DISCUSSION

#### A. Bending modes

The bending modes are atomic vibrations that can be excited even at low temperature and strongly influence the thermal properties of layered materials. In 1952, Lifshitz\(^{[11]}\) obtained the following dispersion law for the out-of-plane acoustic mode \(\omega\):

\[
\rho \times \omega^2(q) = C_{44} \left(q_x^2 + q_y^2\right) + C_{33} q_z^2 + \kappa \left(q_x^2 + q_y^2\right)^2 / c^2 \quad (1)
\]

where \(\rho\) is the density, \(c\) is the interlayer distance, \(q_x, q_y, q_z\) are the wave vectors and \(\kappa\) describes the intralayer forces characterizing the bending rigidity (1.1 eV\(^{[33]}\)).

The small value of \(C_{44}\) (characteristic of graphitic systems, see Table I) leads to a predominant contribution of the transversal bending modes \((q_z = 0)\) in the phonon dispersion curves. These modes are sinusoidal displacements that propagate along the planes and change the local stacking between layers (see Fig. 1). For nearly flat planes the shear stacking \(\Delta d\) is almost zero, whereas, for positive (or negative) slope \(\Delta d\) becomes positive (or negative). Using trigonometric considerations, it can be shown that the maximum value of \(\Delta d\) (see boxes in Fig. 1) is given by:

\[
\Delta d = \frac{\pi \tilde{a} c}{\lambda} \times \frac{1}{\sqrt{1 + \left(\frac{2 \pi \tilde{a}}{\lambda}\right)^2}} \quad (2)
\]

where \(\tilde{a}\) is the amplitude, \(\lambda\) is the wavelength and \(c\) is the interlayer distance.

The crystal resistance to the stacking shear\(^{[20]}\) is proportional to \(E \propto C_{44} \times \Delta d^2\), and by lowering \(C_{44}\) more
bending modes can be excited at lower temperature. In the limit of \( C_{44} = 0 \), graphitic systems approach the graphene behaviour, where indeed bending modes (or ripples) are always present.

**B. Mechanical stability**

By imposing the elastic strain energy as positively definite, the stability conditions are given by:

\[
2C_{13}^2 < C_{33}(C_{11} + C_{12}) \quad C_{11}, C_{12}, C_{33}, C_{44} > 0 \quad (3)
\]

Note that \( C_{13} \) does not affect the stability: a positive (or negative) value means that under in-plane compression the out-of-plane distance tends to expand (or contract).

The elastic constants \( C_{11}, C_{12} \) describe in-plane deformations and they possess the highest values due to the strong sp\(^2\) bonding interactions within the graphene planes. The elastic constant \( C_{33} \) describes out-of-plane compression or expansion and it has always a positive value for perfect and stacking misorientations (see Table I).

The elastic constant \( C_{44} \) corresponds to a shear between graphene layers. Due to the weak interaction between planes, the \( C_{44} \) value is the lowest and can be positive or negative depending on the stacking misorientations (see Table I). The latter elastic constant is the only one that can break the mechanical stability condition \( \text{i.e.} \ C_{44} < 0 \).

**C. Elastic constants in high-symmetric graphitic systems**

By imposing a translation vector between graphitic layers we found four high-symmetric stackings that correspond to stationary points on the stacking-fault energy surface. To calculate the stacking-fault energy surface (for graphitic systems is often called corrugation energy surface) we have used 16-atoms unit cell model of eight layers in AB sequence in which the stacking at the unit cell boundary is changed by imposing a shear displacement. This represents an intrinsic stacking fault between layers at the unit cell boundaries whereas the others remains stacked in the AB sequence. The multiple layers repeat along the c-axis (8 layers) makes negligible self-interaction of the intrinsic fault. The stationary points, indicated with square and circle symbols in Fig. 2, correspond to the four high symmetric structures (hexagonal, rhombohedral, orthorhombic and AA hexagonal graphite, see Fig. 2). The in-plane lattice parameter was 2.45 Å very close to the experimental value 2.463 Å, with no significant changes among all the graphitic structures.

The origin in Fig. 2 corresponds to hex-g (black square symbol), the global minimum of the energy surface with an interlayer separation of 3.34 Å (experimental value 3.356 Å). With the exception of the \( C_{33} \) value (29 GPa), the calculated elastic constants (given in Table I) are in agreement within the experimental uncertainties found in hex-g. Using the LCAO-S\(^2\)+vdW formalism, the out-of-plane elastic constant \( C_{33} \) becomes 42 GPa, very close to the experimental value 38.7 ± 7 GPa.

The local minimum at \( 1/3(1\bar{1}00) \) (black circle symbol) represents the rhombohedral stacking (rhom-g). This structure possesses the same interlayer separation and elastic constants of hex-g (the differences are beyond the accuracy of the calculations) with formation energy of 0.10 meV/atom for ortho-g, 9.29 meV/atom for rhom-g and 2.90 meV/atom for AA hex-g (see text).

![FIG. 2: (a) Stacking-fault energy surface (also called corrugation energy surface). The square and circle symbols indicate the stationary points corresponding to the following high-symmetric structures; (b) The hexagonal, orthorhombic, rhombohedral and AA hexagonal stackings viewed perpendicular (above), parallel (below) to the c-axis. The energies of these structures with respect to hex-g are 1.66 meV/atom for ortho-g, 0.10 meV/atom for the rhom-g and 9.29 meV/atom for AA hex-g (see text).](image)
proposed by Kolmogorov and Crespi. To overcome this difficulty we used the method to combine with the finite-size constraint required by calculation, since the incommensurate nature of these stackings must come commensurate when rotated by an angle \( \theta \) with respect to the starting supercell (as we increase \( n, m \) the supercell surface and number of atoms rapidly increase). (c) Stacking fault energy surface (or corrugation energy surface) of a graphene bilayer with supercell vector (2,1). The respective elastic constants are calculated on the local minima of the energy surface. Notice that the energy surface becomes much flatter leading to a reduction of \( C_{44} \). 

The modelling of turbostratic stacking is challenging since the incommensurate nature of these stackings must combine with the finite-size constraint required by calculations. To overcome this difficulty we used the method proposed by Kolmogorov and Crespi\(^ {22} \) in which a layer with supercell basis vector \((n, m)\) becomes commensurate with a second layer for a specific rotation angle of:

\[
\phi = \cos^{-1} \left[ \frac{2n^2 + 2nm - m^2}{2(n^2 + nm + m^2)} \right] \quad \text{with } n > m \quad (4)
\]

Figure 3a,b shows the case of the two smaller supercell with basis vector \((2, 1)\) and \((3, 1)\) (corresponding to 14, 26 atoms/layer and rotation angles of 38.21°, 32.20°, respectively). Figure 3c shows the stacking energy surface for a bilayer supercell of basis vector \((2, 1)\). To better describe the complete misorientation of turbostratic stacking we have increased the number of layers along the c-axis. Each layer was rotated with respect to each other and randomly translated along the basal plane (see Fig. 4). The rotation angles used are 15 values ranging from 6.01° to 53.99°. The smallest supercell contains 28 atoms with 2 layers rotated with respect to each other by 38.21°, whereas the largest one contains 456 atoms with 12 layers and rotation angle of 46.83°.

For each model we carried out extensive structural optimizations starting from different translation vectors along the basal plane. The corrugation energy is about one order of magnitude lower than commensurate structure (see Fig. 3d) with a maximum value of 0.9 meV/atom (see Fig. 3d). As we increased the size of the supercell over the basal plane we found that the average corrugation energy tends to decrease up to 20% for the largest size (basis vector 8,3 with 194 atoms/layer). Extrapolating these results in the ideal case of infinite layers, we suggest corrugation energy virtually flat with layers mutual independent.

For all the supercell studied the in-plane lattice parameters remain almost equal to the value found in hex-g, whereas the interlayer distances were on average slightly larger, 3.42±0.01 Å, with formations energies of 3.03±0.6 meV/atom.

The interlayer binding energy between graphitic layers (i.e. exfoliation energy) was 21±1 meV/atom (70±4 meV/atom with vdW), a value slightly lower than the 24 meV/atom found in hex-g (80 meV/atom with vdW). Note that LDA values yield to a binding energy within a factor of 2-3 with respect to LCAO-S\(^2\)+vdW formalism and experiment values (43 meV/atom found in heat-of-wetting experiment\(^ {37} \), 35±10 meV/atom found by analyzing TEM images of twisted collapsed nanotubes\(^ {38} \), and 52±5 meV/atom by studying thermal desorption of polyaromatic hydrocarbons\(^ {39} \)). In Table I we report the calculated values of the elastic constants. With the exception of \( C_{44} \), these values hardly change among all the studied turbostratic stackings with no clear dependence.
on the rotation angles and number of layers. The elastic constants $C_{11}$, $C_{13}$ slightly decrease by about 3% with respect to hex-g, remaining within the experimental uncertainties found in turbostratic samples. As previously found in hex-g, LDA calculations underestimate the $C_{33}$ value (27±2 GPa) with respect to the vdW correction (36±1 GPa) and the experimental value of 36.5±1 GPa. Conversely, we found $C_{13}=-2.7±0.5$ GPa in disagreement with the experimental value 15±5 GPa. The latter value was only indirectly obtained as a function of the other elastic constants by the less accurate static test method. This method requires larger strains than ultrasonic experiments and non-linear behaviour of stress-strain curve may affect the measured value. Furthermore, the linear bulk modulus $B_a$ calculated from these elastic constants is far too large (2080 GPa), almost double than the one found in diamond (1326 GPa).

The linear bulk modulus $B_a$ describes the variation of the lattice parameter $a$ as a function of the hydrostatic pressure and it is given by:

$$B_a = \frac{C_{33}(C_{11} + C_{12}) - 2C_{13}^2}{C_{33} - C_{13}} \quad (5)$$

This modulus is strongly weighted by $C_{13}$. For example, if we use the measured value found in hex-g 0±3 GPa (instead of 15±5 GPa), $B_a$ becomes 1240 GPa (instead of 2080 GPa).

Several x-ray studies have measured the linear bulk modulus $B_a$. In these experiments powder samples were prepared by grinding different types of graphitic materials, ranging from well crystallized to poorly crystallized grains. The good agreement between the experiments (see Fig. 5) indicates that the linear bulk modulus $B_a$ does not strongly depend on the stacking order with a measured value of 1250±70 GPa. By including the latter modulus in the Eq. 5 the elastic constant $C_{13}$ becomes 0.3 GPa. Therefore, we conclude that the $C_{13}$ value does not significantly change between turbo-g and hex-g and we propose that the same value 0±3 GPa should be appropriate also for turbostratic stacking.

FIG. 5: (Color online) In-plane lattice parameters vs. pressure. The solid line represents the results found for hex-g and rhombo-g (perfect and rhombohedral stackings). The dashed line shows the results found here for turbostratic graphite. For comparison, the experimental results are also plotted.

IV. CONCLUSIONS

To summarize, we have discussed the importance of $C_{44}$ as the main parameter that restraints the bending modes and controls the mechanical stability of layered materials. Using advanced ab-initio method, which includes vdW interactions, we have provided the first complete description of the elastic constants in graphitic sys-
TABLE I: Elastic constants in unit of GPa for the different graphitic systems. The values between brackets are calculated using the LCAO-S\textsuperscript{3}+vdW formalism. These results show that the $C_{13}$ values do not significantly change between turbo-g and hex-g and we propose that the same value $0 \pm 3$ GPa should be appropriate also for turbostratic stacking. The shear elastic constants $C_{44}$ found in turbostratic stacking correspond to commensurate structures of area ranging between 36-563 Å\textsuperscript{2}.

<table>
<thead>
<tr>
<th>Fabrics</th>
<th>$C_{11}$</th>
<th>$C_{12}$</th>
<th>$C_{44}$</th>
<th>$C_{13}$</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>hex (AB)</td>
<td>$1109 \pm 16$</td>
<td>$139 \pm 36$</td>
<td>$38.7 \pm 7$</td>
<td>$0 \pm 3$</td>
<td>$5.0 \pm 3.0$</td>
</tr>
<tr>
<td>turbo-g</td>
<td>$1060 \pm 20$</td>
<td>$180 \pm 20$</td>
<td>$36.5 \pm 1$</td>
<td>$15 \pm 5$</td>
<td>$4.5 (4.8)$</td>
</tr>
<tr>
<td>rhombo-g</td>
<td>$1080 \pm 3$</td>
<td>$171 \pm 4$</td>
<td>$27 \pm 2 (36 \pm 1)$</td>
<td>$-2.7 \pm 1$</td>
<td>0.18 / 0.35</td>
</tr>
<tr>
<td>ortho-g</td>
<td>$1107$</td>
<td>$175$</td>
<td>$29 (42)$</td>
<td>$-2.5$</td>
<td>$4.4 (4.8)$</td>
</tr>
<tr>
<td>hex (AA)</td>
<td>$1095$</td>
<td>$173$</td>
<td>$26 (38)$</td>
<td>$-2.6$</td>
<td>$-2.7 / 7.7 (-2.9 / 7.3)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$-3.8 (-3.8)$</td>
</tr>
</tbody>
</table>


Acknowledgments

The authors thank the HPC-EUROPA project for financial and computer supports. Computational re-
sources have also been provided by the Université Catholique de Louvain on the LEMAITRE and GREEN sources of the CISM. J.-C.C. acknowledges financial support from the F.R.S.-FNRS of Belgium; G.S. from JSPS and Grant-in-Aid for Scientific Research.


It is clear that GGA (leading to a distance of 4.2 Å and energy of 2-3 meV/atom) seriously underestimates the interlayer binding energy and is in strong disagreement for the geometry. Thus, even if LDA is unable to describe the dispersion interactions, it is a better choice than the GGA as far as the geometry and energy differences are concerned.


Zhao YX, Spain IL. X-ray diffraction data for graphite to 20 GPa. Phys. Rev. B 1989;40(2):993-997; to estimate $B_a$ they inadvertently used the planar bulk modulus instead of using the linear one (see Schreiber et al. [43]).
