The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/91265

Please be advised that this information was generated on 2017-08-04 and may be subject to change.
TEMPERATURE DEPENDENCE OF THE FAR INFRARED TRANSMISSION OF THE MODULATED STRUCTURE Rb$_2$ZnBr$_4$

Th. RASING, J.H.M. STOELINGA and P. WYDER
Physics Laboratory, University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands
A. JANER and T. JANSSEN
Institute of Theoretical Physics, University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands

Abstract—The far infrared transmission between 5 and 140 cm$^{-1}$ of Rb$_2$ZnBr$_4$ has been measured as a function of temperature from 4 to 400 K. We have observed a temperature dependent mode, which broadens strongly with increasing temperature. Moreover, we have found strong indications of a new phase transition at 50 K.

From structural investigations, Rb$_2$ZnBr$_4$ is known to have an incommensurate structure between 200 K (= T$_c$) and 353 K (= T$_q$) with a modulation wave vector of 0.3 c$^{-1}$, while below T$_c$ the modulation is commensurate with a wave vector of 1/3 c$^{-1}$. The space group in the normal phase (> T$_c$) is Pcmn (same setting as in ref. 1), with a pseudo hexagonal c-axis. In the modulated phase, the three dimensional periodicity is lost, which means that the crystal cannot be described by one of the known crystallographic space groups. As has been shown by de Wolff$^2$ and Janner and Janssen$^3$ the proper symmetry group is a space group in more than three dimensions, the so-called superspace group. The detailed structure of the incommensurate phase of Rb$_2$ZnBr$_4$ is not yet known. On the basis of the data available so far$^4$, the superspace group assigned to it is P$^*$$_{cmm}$. The meaning of the symbols used to label this four dimensional space group is explained in ref. 5.

The superspace group approach has already been successful in explaining X-ray diffraction results. Work is in progress showing that it also can be used for deriving the selection rules for I.R. and Raman active modes in Rb$_2$ZnBr$_4$. In order to have a first understanding of the low temperature transition (at ± 50 K) in addition to the already observed phase transition at 200 K, a model is proposed for incommensurate crystals undergoing a lock-in transition. More details hereon can be found elsewhere in these proceedings$^6$.

The order parameter of a modulated crystal can be written as $u(x) = ve^{ip(x)}$, with $\varphi(x) = qx + h(x)$, $q = 2\pi/p$, for Rb$_2$ZnBr$_4$ $p = 3$. If $h(x) = h_0x$ ($h_0$ = constant ≠ 0) then $\varphi = (q + h_0)x$ and the structure will in general be incommensurate and can be described by a superspace group. If $h(x)$ is constant over a length $L$ and then has a jump of $2\pi/n$, one gets a domain-like structure of commensurate pieces. As a result, part of the translation symmetry of the superspace group is then lost, leading to a subgroup of index $p$ (the supercell is $p$ times larger). With decreasing temperature, the number of domains decreases until finally the whole crystal becomes commensurate. According to this picture, we may expect the following phases going from high to low temperatures: first (at $T_c$) the crystal becomes incommensurate modulated, at $T_c$ there is a transition to a domain structure while at $T_c$. 

707
the whole crystal becomes commensurate. At $T_1$ and $T_c$, we have transitions between a normal and a superspace group while at $T_c$ there is a transition between two superspace groups.

We have measured the far infrared transmission on single crystals of $\text{Rb}_2\text{ZnBr}_4$ using a Michelson interferometer and a He-cooled bolometer. In figure 1 the transmission along the $a$- and $c$-axis is presented between 20 and 140 cm$^{-1}$ for three temperatures. There is only a substantial transmission around 140 cm$^{-1}$ and at very low frequencies, where some additional structure is present. For both directions, the spectrum resembles that of a strong optical mode with $\omega_0 = 45$ and 30 cm$^{-1}$ respectively for the $a$- and $c$-direction, and some less stronger modes at lower frequencies. From neutron data, only one optical branch is known, with $\omega(k=0) = 31$ cm$^{-1}$.

By looking at the structure of $\text{Rb}_2\text{ZnBr}_4$, we can qualitatively understand the origin of these rather low frequencies. In the $c$-direction there are chains of alternating $\text{ZnBr}_4$ tetrahedra and $\text{Rb}$ atoms, and chains of only $\text{Rb}$ atoms, so that the latter have a relative large freedom of motion resulting in a low frequency mode. Perpendicular to the $c$-axis the structure of $\text{Rb}_2\text{ZnBr}_4$ is approximately hexagonal except for the two planes at $c = 0$ and $c = \frac{1}{2}$. Here only half of the atoms, necessary for a hexagonal cell are present which allows a large freedom of motion in the $a$-direction (see figure 2).

With respect to the spectra, the first mode will be active in the spectrum measured along the $a$-axis and the second in the spectrum along the $c$-axis. Without approximation we would expect 39 I.R. active modes in the orthorhombic cell, while in the hexagonal approximation and taking the tetrahedra as rigid, only 2 active $A_{1u}$ and 2x2 (degenerate) $E_{1g}$ modes are expected. For a clear identification of the modes a more detailed analysis will be necessary.

![FIGURE 1](image-url) Transmission of $\text{Rb}_2\text{ZnBr}_4$ along two different crystal axes between 20 and 140 cm$^{-1}$ for three temperatures.
The most interesting part of the spectra is shown in figure 3 for the c-direction. The two most striking features are the following: the mode at 22 cm\(^{-1}\) broadens very strongly with increasing temperature while the mode at 14 cm\(^{-1}\), present at 40 K, disappears in the 60 K spectrum, leading to an increase in transmission at that frequency. From the complete transmission data, measured in steps of 5 K, we found that the actual transition takes place at \(\approx 50\) K.

This sudden change in the spectrum must be the consequence of a phase transition where the selection rules for the I.R. active modes change. According to the ideas mentioned in the first part of this paper, this transition might be the real lock-in, below which the structure is commensurate. Between 50 K and 200 K, the crystal then would have a domain structure. This would mean that at 50 K there is a transition between a normal and a superspace group, while at 200 K there would be a transition between two superspace groups.

In figure 3, the 200 K transition is much less pronounced. A more careful analysis of the spectra showed that the strong broadening of the 22 cm\(^{-1}\) mode, slowly relaxates towards 200 K, indicating more a second than a first order phase transition, in agreement with the group-subgroup relation of these two phases (see above). The observed strong broadening also may explain the overdamped nature of the neutron results of ref. 1.

In conclusion, we would like to state that we have found from our far infrared transmission data of \(\text{Rb}_2\text{ZnBr}_4\), in addition to the known phase transitions, evidence...
for a new transition at 50 K. Tentatively the latter is ascribed to the lock-in transition while the higher transition at 200 K can then be understood as a transition between two incommensurate crystal structures, the one with essentially a sinussoidal modulation, the other with a periodic succession of commensurate microdomains separated by rapidly varying modulation phases. The spectra at all temperatures above ± 100 K are very smooth and relaxation like, due to the strong broadening of a mode at 22 cm⁻¹. A more quantitative analysis will be presented shortly.

Part of this work has been supported by the "Stichting voor Fundamenteel Onderzoek der Materie" (FOM) with financial support of the "Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek" (ZWO).

References

4. G. de Jager and P.M. de Wolff, private communications.
6. T. Janssen and A. Janner, these proceedings.