Translational Research in Genomics of Alzheimer’s Disease: A Review of Current Practice and Future Perspectives

Raluca Mihaescu, Symone B. Detmar, Martina C. Cornel, Wiesje M. van der Flier, Peter Heutink, Elly M. Hol, Marcel G.M. Olde Rikkert, Cornelia M. van Duijn, and A. Cecile J.W. Janssens

Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
TNO Quality of Life, Leiden, The Netherlands
Community Genetics, Department of Clinical Genetics/EMGO Institute, VU University Medical Center, Amsterdam, The Netherlands
Alzheimer Center and Department of Neurology, Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
Department of Clinical Genetics, Section of Medical Genomics, VU University Medical Center, Amsterdam, The Netherlands
Department of Astrocyte Biology & Neurodegeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
Department of Geriatrics, Alzheimer Center Nijmegen, Radboud University Hospital Nijmegen, Nijmegen, The Netherlands

Handling Associate Editor: Inga Zerr

Accepted 4 January 2010

Abstract. Alzheimer’s disease (AD) is the most prevalent form of dementia and the number of cases is expected to increase exponentially worldwide. Three highly penetrant genes (AβPP, PSEN1, and PSEN2) explain only a small number of AD cases with a Mendelian transmission pattern. Many genes have been analyzed for the association with non-Mendelian AD, but the only consistently replicated finding is APOE. At present, possibilities for prevention, early detection, and treatment of the disease are limited. Predictive and diagnostic genetic testing is available only in Mendelian forms of AD. Currently, APOE genotyping is not considered clinically useful for screening, presymptomatic testing, or clinical diagnosis of non-Mendelian AD. However, clinical management of the disease is expected to benefit from the rapid pace of discoveries in the genomics of AD. Following a recently developed framework for the continuum of translation research that is needed to move genetic discoveries to health applications, this paper reviews recent genetic discoveries as well as translational research on genomic applications in the prevention, early detection, and treatment of AD. The four phases of translation research include: 1) translation of basic genomics research into a potential health care application; 2) evaluation of the application for the development of evidence-based guidelines; 3) evaluation of the implementation and use of the application in health care practice; and 4) evaluation of the achieved population health impact. Most research on genome-based applications in AD is still in the first phase of the translational research framework, which means that further research is still needed before their implementation can be considered.

Keywords: Alzheimer’s disease, genomics, review, translational research
INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia and the most frequent neurodegenerative disorder associated with aging. Currently, 5.3 million Americans are diagnosed with AD, accounting for 60–80% of all dementia cases in US [1]. As a result of the aging population, the number of patients with AD is expected to increase exponentially [2].

Rapid advances in genomics of AD have fueled enormous expectations about future use of susceptibility variants for prevention, diagnosis, and treatment of the disease [3]. Evidence for a strong genetic contribution has consistently been documented in twin and family-based linkage studies. Heritability estimates from a large twin study suggest that genetic variations may account for about 58% to 80% of AD risk and a few variants for monogenic subtypes have been identified [4]. Large numbers of susceptibility genetic variants are investigated for their putative association with AD and a plethora of translational research exists. With respect to AD, genome-based tests potentially can improve the diagnosis, prognosis or prediction, and treatment of AD.

A clinical diagnosis of AD is based on clinical examination and neuropsychological testing, and mainly involves the exclusion of other causes of dementia. Facilitated by the neuropsychological and structural neuroimaging advances, the accuracy of the clinical diagnosis has increased to 80–90% [5], but a definite diagnosis still awaits neuropathological confirmation. Genome-based tests and improved imaging are envisioned to improve the differential diagnosis and to provide a basis for disease subtypes characterization.

Predicting the development and prognosis of AD is difficult because the disease has a complex etiology with genetic and environmental factors playing an intricate role. The lifetime risk in individuals who have a first-degree relative with late onset AD was evaluated to be about 2 to 4 times higher than in individuals without affected first-degree relatives [6]. The incidence of AD increases from 1.2 per 1000 person years in the 65–69 years age group to 53.5 per 1000 person years in the older than 90-year age group [7]. Advanced age and positive family history are the only risk factors which have become firmly established [8,9]. There also seems to be a gender distribution of risks for AD, with a higher prevalence of dementia in women than in men, predominantly after age 75 [2,8]. Genetic testing is investigated for identifying at risk individuals before the clinical onset of disease, given that preventive measures will be proven to be efficacious.

Currently available treatment is symptomatic and cannot delay progression of the neurodegenerative process. Cholinesterase inhibitors (donezepil, rivastigmine, and galantamine) and the NMDA partial antagonist memantine are used for the management of the cognitive symptoms, but these agents are moderately effective in 30% to 40% of mild-to-moderate AD patients with side-effects, intolerance, and noncompliance in >60% of treated individuals [10–12]. Additionally, neuroleptic and antidepressant medication is often used for associated psychiatric symptoms. Several Phase I, II, and III clinical trials that investigate new therapeutic strategies, such as γ-secretase modulators, amyloid-β aggregation inhibitors, passive and active vaccination, and light therapy, have shown improvement of cognitive function [13,14]. It is envisioned that genome-based tests can identify subgroups of patients in which the specific therapies may be effective.

In the past few years, there has been increasing interest in investigating the potential clinical and public health applications of genetic tests in AD. This review summarizes the recent advances in translational research, following the framework for the continuum of translation research described by Khoury and colleagues [15]. This framework specifies four stages of scientific evidence in translation research and therewith identifies the most likely applications of genetic testing in the clinical management of AD in the near future. The paper starts with a review of genetic discoveries in AD and presents the future applications against the current place of genetic testing in the prediction, diagnosis and treatment of AD.

To identify applicable articles, we performed a search for publications in MEDLINE from January 2006, and in the lists of references from retrieved articles. We used a combination of the following keywords: “Alzheimer”, “genetic”, “genomic”, “screening”, “prognosis”, “prediction”, “diagnosis”, “therapy”, “treatment”, “intervention”, “risk”, “advances”, “trend”, “innovation”, “progress”, “emerging”, “development”, “insight”, “utility”, “guideline”, “decision making”, “state medicine”, “translational medicine”, and “translational research”. We considered for inclusion in our analysis: editorials, reviews, meta-analyses, original scientific papers published in peer-review journals, and evidence-based practice guidelines. A draft report was written and discussed in an expert meeting to verify and complete all retrieved information.
Table 1
Mutations in families with autosomal dominant Alzheimer’s disease (AD)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Penetrance</th>
<th>Chromosome</th>
<th>Frequency of mutation in families with autosomal dominant AD</th>
<th>Number of pathogenic mutations*</th>
<th>Age of onset</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Established Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSEN1</td>
<td>Complete</td>
<td>14q24.3</td>
<td>20–70%</td>
<td>177</td>
<td>28–50 years</td>
<td>[16, 81]</td>
</tr>
<tr>
<td>AβPP</td>
<td>Complete</td>
<td>21q21</td>
<td>10–15%</td>
<td>32</td>
<td>45–65 years</td>
<td>[16, 81]</td>
</tr>
<tr>
<td>PSEN2</td>
<td>Incomplete</td>
<td>1q31-q42</td>
<td>Rare</td>
<td>14</td>
<td>40–85 years</td>
<td>[16, 81]</td>
</tr>
<tr>
<td>Investigated Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGRN (progranulin gene)</td>
<td>Incomplete</td>
<td>17q21-22</td>
<td>Rare</td>
<td>68</td>
<td>35–89 years</td>
<td>[82]</td>
</tr>
<tr>
<td>MAPT (Tau gene)</td>
<td>Complete</td>
<td>17q21.1</td>
<td>Rare</td>
<td>44</td>
<td>40–60 years</td>
<td>[83]</td>
</tr>
</tbody>
</table>

*From Alzheimer’s Disease & Frontotemporal Dementia Database website [21].

GENETICS OF AD

From a genetic perspective, a distinction is made between Mendelian and non-Mendelian forms of AD. Only a small percentage of cases present with a Mendelian transmission pattern and a disease onset generally before 60–65 years (early-onset Alzheimer’s disease, EOAD). Most AD cases present with a non-Mendelian transmission pattern and have an older age at diagnosis (late-onset Alzheimer’s disease, LOAD). LOAD is mostly sporadic, but in approximately 25% of cases with LOAD, another affected relative can be identified [16]. Non-Mendelian AD is considered to be etiologically more complex than Mendelian AD and may involve multiple susceptibility genes that interact with other genes and with environmental risk factors. The distinction between EOAD and LOAD, however, is arbitrary, since clinical and pathological features are similar in both groups, and it is no longer used by most experts.

So far, three causal genes have been identified in a few hundreds of families in the world, which together account for a small percentage of Mendelian AD: amyloid-β protein precursor (AβPP) gene on chromosome 21 [17], presenilin 1 (PSEN1) gene on chromosome 14 [18], and presenilin 2 (PSEN2) gene on chromosome 1 (Table 1) [19,20]. These genes are not found in non-Mendelian AD [21]. Almost all carriers of a mutation in the AβPP or PSEN1 genes will eventually develop the disease, but the mutations in the PSEN2 gene are not completely penetrant with carriers showing large variations in the age of onset [22].

To date, the most commonly replicated genetic risk factor for sporadic AD is the gene coding for the apolipoprotein E, located on chromosome 19 [23]. Three common alleles of the APOE gene have been identified: ε2, ε3, and ε4. The APOE ε4 allele is more frequent in patients with non-Mendelian AD, compared to controls [24]. About half of the patients with sporadic AD carry an APOE ε4 allele [25]. The APOE gene is moderately penetrant, with each additional copy of the ε4 allele increasing the risk of AD (OR = 2 to 8 depending on the population studied) and correlating with a slightly younger age at dementia onset [25,26]. In individuals with a positive family history, the risk of AD for carriers of a single APOE ε4 allele was estimated to be 3 times higher compared to other APOE genotypes, and carrying two ε4 alleles was associated with a 15 to 30 fold increase in risk of AD [27]. The association between APOE ε4 allele and AD is stronger among women than among men [25]. Although the association between APOE ε4 and the risk of AD is evident in all ages between 40 and 90 years, it becomes weaker after the age of 70 years [25].

In the past decades, numerous studies have tried to identify susceptibility genes for AD investigating hundreds of putative risk alleles in more than 500 genes [28]. The genome-wide association studies (GWAS) performed in the field of AD research confirmed the APOE locus as the major susceptibility gene for non-Mendelian AD [29]. All other newly identified susceptibility genes each confer only a small increase in disease risk (Table 2) [30], and altogether explain only a small part of the genetic risk of AD. Based on evidence from meta-analyses of genetic association studies, several genes are considered candidates for association with AD risk (Table 3) [28]. To be noted, however, the very modest relative risks which confirm the expectations that probably no other single gene will account for a high percentage of non-Mendelian AD. Improvements in the characterization of patients, e.g., by further distinction of subtypes, may still uncover other strong genetic variants, and strong effects might be expected from gene-gene and gene-environment interactions.
Table 2
Genome wide association studies in non-Mendelian Alzheimer’s disease*

<table>
<thead>
<tr>
<th>Reference</th>
<th>Population size</th>
<th>Gene</th>
<th>Chromosome</th>
<th>Marker</th>
<th>OR (95% CI)†</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coon et al., 2007</td>
<td>664 cases and 422 controls from USA and Netherlands</td>
<td>14 kb distal to APOE ε</td>
<td>19q13.32</td>
<td>rs4420638†</td>
<td>4.01</td>
<td>5.3×10^{-24}</td>
</tr>
<tr>
<td>Grune et al., 2007</td>
<td>Discovery: 380 cases and 1428 controls from UK</td>
<td>TOMM40</td>
<td>19q13.32</td>
<td>rs157581†</td>
<td>2.73 (2.46–3.05)</td>
<td><10^{-8}</td>
</tr>
<tr>
<td></td>
<td>Replication: 396 cases and 1666 controls from UK and USA</td>
<td>APOE</td>
<td>19q13.32</td>
<td>rs405909†</td>
<td>1.43 (1.3–1.57)</td>
<td><10^{-8}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>APOC2</td>
<td>19q13.32</td>
<td>rs1132899†</td>
<td>1.19 (1.08–1.30)</td>
<td>7.6 \times 10^{-6}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TNK1</td>
<td>17p13.1</td>
<td>rs1554848</td>
<td>1.19 (1.08–1.30)</td>
<td>6.3 \times 10^{-6}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GALP</td>
<td>19q13.43</td>
<td>rs374833</td>
<td>1.20 (1.09–1.32)</td>
<td>5 \times 10^{-5}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCK1</td>
<td>20q13.31</td>
<td>rs182708</td>
<td>1.29 (1.12–1.49)</td>
<td>9.9 \times 10^{-6}</td>
</tr>
<tr>
<td>Li et al., 2007</td>
<td>Discovery: 753 cases and 736 controls from Canada</td>
<td>APOC1</td>
<td>19q13.32</td>
<td>rs4420638†</td>
<td>§</td>
<td>2.3×10^{-14}</td>
</tr>
<tr>
<td></td>
<td>Replication: 418 cases and 249 controls from UK</td>
<td>GOLPH2</td>
<td>9q21.33</td>
<td>rs7019241</td>
<td>0.51 (0.31–0.85)</td>
<td>9.82 \times 10^{-3}</td>
</tr>
<tr>
<td>Reiman et al.,</td>
<td>Discovery: 446 neuropathologically confirmed cases and 290 controls</td>
<td>GAB2</td>
<td>11q14.1</td>
<td>rs2373115#</td>
<td>4.06 (2.81–14.69)</td>
<td>9 \times 10^{-11}</td>
</tr>
<tr>
<td>2007 [86]</td>
<td>Neuropathological replication: 197 cases and 114 controls</td>
<td></td>
<td></td>
<td>rs7115850#</td>
<td>3.93 (2.51–6.11)</td>
<td>2.8 \times 10^{-10}</td>
</tr>
<tr>
<td>Webster et al.,</td>
<td>Discovery: 664 neuropathologically confirmed cases and 422 controls from USA</td>
<td>SORL1</td>
<td>11q24.1</td>
<td>rs7131432</td>
<td>1.73 (1.00–3.67)</td>
<td>0.03869</td>
</tr>
<tr>
<td>2008 [87]</td>
<td>and Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poduslo et al.,</td>
<td>9 cases and 10 controls from USA</td>
<td>TRPC4AP</td>
<td>20q11.22</td>
<td>rs6087664</td>
<td>§</td>
<td>9.98×10^{-5}</td>
</tr>
<tr>
<td>2008 [88]</td>
<td>199 cases and 225 controls from USA</td>
<td></td>
<td></td>
<td>rs608892</td>
<td>§</td>
<td>8.99×10^{-5}</td>
</tr>
<tr>
<td>Abraham et al.,</td>
<td>1082 cases and 1239 controls from Germany and 1400 controls from UK</td>
<td>13 kb from LRAT</td>
<td>4q32.1</td>
<td>rs727153</td>
<td>§</td>
<td>3.4×10^{-6}</td>
</tr>
<tr>
<td>2008 [89]</td>
<td>LRAT</td>
<td>4q32.1</td>
<td>rs201825</td>
<td>1.3 (1.2–1.4)</td>
<td>6.1 \times 10^{-7}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD block containing LRAT</td>
<td>4q32.1</td>
<td>rs12501328</td>
<td>1.32 (1.1–1.6)</td>
<td>0.0032</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rs201823</td>
<td>1.21 (1.1–1.3)</td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rs156901</td>
<td>1.2 (1.1–1.4)</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rs439401†</td>
<td>3.85 (3.55–4.15)**</td>
<td>9.15 \times 10^{-11}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rs197380†</td>
<td>§</td>
<td>3.87 \times 10^{-11}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rs81069221</td>
<td>§</td>
<td>3.96 \times 10^{-14}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rs6859‡</td>
<td>§</td>
<td>6.09 \times 10^{-14}</td>
<td></td>
</tr>
</tbody>
</table>
Table 2, continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Population size</th>
<th>Gene</th>
<th>Chromosome</th>
<th>Marker</th>
<th>OR (95% CI)†</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertram et al., 2008 [90]</td>
<td>Discovery: 941 cases and 404 controls from 410 families</td>
<td>$\text{NTLP2663}_13.60$</td>
<td>19q13.32</td>
<td>rs4420638†</td>
<td>§</td>
<td>5.7×10^{-14}</td>
</tr>
<tr>
<td></td>
<td>Replication: 1767 cases and 838 controls from 875 families from USA</td>
<td>$\text{NTLP1110}_0.848$</td>
<td>14q31.2</td>
<td>rs1159647</td>
<td>1.4††</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>Beecham et al., 2009 [91]</td>
<td>Discovery: 492 cases and 496 controls</td>
<td>$10\text{kb downstream of FAM113B}$</td>
<td>12q13.11</td>
<td>rs1159647</td>
<td>§</td>
<td>3.45×10^{-7}</td>
</tr>
<tr>
<td></td>
<td>Replication: 238 cases and 220 controls from USA</td>
<td>APOE</td>
<td>19q13.32</td>
<td>rs11610206</td>
<td>§</td>
<td>§</td>
</tr>
<tr>
<td></td>
<td>Imputation approach</td>
<td>DISCI</td>
<td>1q42.2</td>
<td>rs12044355</td>
<td>§</td>
<td>9.2×10^{-6}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZNF224</td>
<td>19q13.31</td>
<td>rs508518</td>
<td>§</td>
<td>1.95×10^{-6}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19q13.31</td>
<td>rs3746319</td>
<td>§</td>
<td>3.01×10^{-6}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6q14.1</td>
<td>rs3213247</td>
<td>§</td>
<td>2.4×10^{-5}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4q28.3</td>
<td>rs1425967</td>
<td>§</td>
<td>1.25×10^{-5}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4q28.3</td>
<td>rs4416533</td>
<td>§</td>
<td>1.13×10^{-5}</td>
</tr>
<tr>
<td>Carrasquillo et al., 2009 [92]</td>
<td>Discovery: 844 cases and 1255 controls</td>
<td>PCDH11X</td>
<td>Xq21.31</td>
<td>rs5984894</td>
<td>1.30 (1.18-1.43)</td>
<td>2.2×10^{-7}</td>
</tr>
<tr>
<td></td>
<td>Replication: 1547 cases and 1209 controls from USA</td>
<td>APOE=ε4</td>
<td>19q13.32</td>
<td>rs2075650</td>
<td>3.29 (2.97-3.65)</td>
<td>3.7×10^{-120}</td>
</tr>
<tr>
<td>Harold et al., 2009 [93]</td>
<td>Discovery: 3941 cases and 7848 controls</td>
<td>CLU</td>
<td>8p21.1</td>
<td>rs11136000</td>
<td>0.86 (0.82-0.90)</td>
<td>8.5×10^{-10}</td>
</tr>
<tr>
<td></td>
<td>Replication: 2023 cases and 2340 controls form Europe and USA</td>
<td>PICALM</td>
<td>11q14.2</td>
<td>rs3851179</td>
<td>0.86 (0.82-0.90)</td>
<td>1.3×10^{-9}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRI</td>
<td>1q32.2</td>
<td>rs408077</td>
<td>1.17 (1.09-1.25)</td>
<td>8.3×10^{-6}</td>
</tr>
</tbody>
</table>

†Values are per-allele odds ratios unless indicated otherwise.
‡In linkage disequilibrium with APOE ε4 locus.
§Not provided.
¶Hazard ratio.
#In APOE ε4 carriers.
**Odds ratio for the APOE ε4 allele.
††Associated with age of onset.
CURRENT APPLICATIONS OF GENETIC TESTING

A number of evidence-based guidelines of genetic testing in AD are currently available [31–33]. At present, genetic testing is mainly used for monogenic forms of AD, solely in presymptomatic and diagnostic settings and so far has no application in therapeutic strategies.

Presymptomatic testing

Presymptomatic testing for mutations in AβPP, PSEN1, and PSEN2 genes can be performed in the presence of a positive family history of autosomal dominant inheritance and if a mutation is documented in an affected relative [33,34]. Criteria for the definition of a positive family history are, however, unclear. Prenatal diagnosis and preimplantation genetic diagnosis (PGD) are two options available for families with autosomal dominant disease with a documented causal mutation [35]. Prenatal diagnosis establishes the carrier status in an offspring during the pregnancy, whereas PGD consists of testing the embryos before the pregnancy is established [36,37]. Presymptomatic testing in children of adults with known mutations is not encouraged because of ethical and psychological concerns [31].

Presymptomatic genetic testing is available only for monogenic forms of disease. APOE genotyping for presymptomatic testing of non-Mendelian AD is not recommended, because the sensitivity and specificity of APOE testing with respect to detection of individuals at risk for AD are too low, i.e., not all patients with AD carry the ε4 allele and not all ε4 carriers will develop AD [33,34]. APOE genotyping is discouraged because of the presumed psychological harm, the impact on the relatives of a patient carrying two APOE ε4 alleles, and the lack of specific treatment for individuals at genetic risk [38]. However, despite the scarce evidence to support the role of predictive genetic testing for AD, several commercial companies already offer direct-to-consumer testing to predict risk of AD, basing their prediction on testing the APOE related single-nucleotide polymorphisms [39]. The Risk Evaluation and Education for Alzheimer’s Disease (REVEAL) study evaluated the 1 year effect of APOE genotype disclosure to adults with a parent with AD and found no difference between levels of anxiety and depression between individuals who received and those who did not receive APOE genotype disclosure [40]. However, effects may differ with longer follow-up and outside research settings, when it is unknown if people receive information about the limitations of single genetic tests [41].

Diagnosis

Differential diagnosis in patients with clinical diagnosis of AD and a family pattern of autosomal dominant inheritance may involve testing for known pathogenic mutations [33]. Testing for common mutations in AβPP, PSEN1, and PSEN2 genes can also be considered in cases presenting with clinical symptoms of dementia at younger age but without a positive family history [42]. Genetic testing is also done postmortem in families with autosomal dominant disease to assist the future diagnosis of at risk relatives [33].

APOE testing is considered potentially useful to identify the cause of a dementia syndrome, i.e., to test whether the dementia is caused by AD. However, genetic testing for APOE gene is not part of the routine
Developments in genomics research in Alzheimer’s disease (AD) according to the framework for translation research [15]

<table>
<thead>
<tr>
<th>Phase of Translational Research</th>
<th>Discovery to candidate health application</th>
<th>Health application to evidence-based practice guidelines</th>
<th>Practice guidelines to health practice</th>
<th>Practice to population health impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presymptomatic Testing</td>
<td>Prediction of AD and predementia using prediction models with genetic and non-genetic risk factors</td>
<td>APOE testing to identify high-risk groups: clinical validity, attitudes, behavioral change and psychological impact</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Prevention</td>
<td>None</td>
<td>Clinical validity of APOE testing for more accurate dementia diagnosis in sporadic cases</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>None</td>
<td>Pharmacogenetics: – Interaction between genetic factors and treatment – Genetic profiles for prediction of treatment results</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Therapy</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory investigations during the differential diagnosis of dementia, because the positive and negative predictive values of the test are too low [32].

TRANSLATIONAL GENOMIC RESEARCH IN AD

Although only limited opportunities are available for genetic testing in the prevention, early detection, and treatment of AD, there is extensive ongoing research aiming at integrating the genetic discoveries into clinically useful tools. It has been acknowledged that several research stages are required before genetic discoveries can be implemented into health care. Khoury and colleagues have described a framework for the continuum of translational research that is required to move genomics research findings to clinical and public health applications that benefit population health [15]. The four phases of translation research include: 1) translation of basic genomics research into a potential health care application; 2) evaluation of the application for the development of evidence-based guidelines; 3) evaluation of the implementation and use of the application in health care practice; and 4) evaluation of the achieved population health impact [15]. Thus, the framework indicates how close a genetic application is to clinical and public health practice. The major developments in genomics of AD, for each phase of translation research, are summarized in Table 4.

Discovery to candidate health application

Examples of relevant candidate health applications in AD research are the development of single gene tests and construction of genomic profiles, to be used for prediction, screening, diagnosis, and targeted treatment of the disease. The aim of phase one translation research is to determine the sensitivity, specificity, and positive predictive value of the genetic tests for these applications [15].

Genome-based prediction of AD

Apart from testing for monogenic subtypes in high-risk patients, where clinical utility is clear, genetic prediction of complex diseases consists of testing multiple genes, or multiple genes added to traditional risk factors. A recent study suggested that polymorphisms in 10 genes (APOE, LDLr, CST3, CTSD, TNF, BACE1, MAPT, STH, eNOS, TFCP2) may help to distinguish among three clusters of patients with non-Mendelian AD: a young group of 60–69 years with a risk allele on genes related to plaque deposition, a second group of 70–80 years and risk alleles on genes related to neurofibrillary tangles formation, and a third group of <65 and 70–85 years and risk alleles on inflammation genes [43]. Other case-control studies have identified AD-risk profiles based on clusters of genes related to cholesterol or inflammation with promising predictive values [43–47]. Further research is needed to validate whether these genomic profiles can prospectively identify individuals at risk to develop AD.

To date, only a few studies have included multiple variants in AD prediction models, but most have considered only the APOE genotype among other non-genetic risk predictors. An example of AD risk prediction model that incorporates APOE status is the development of risk curves specific to ethnicity, age, gender, and APOE genotype from the REVEAL study [48]. Motivated by an increased risk for AD in African Amer-
Genetic testing to improve diagnostic accuracy

Genetic tests may add to other laboratory tests commonly used to identify whether the dementia is due to AD. A large study that assessed the clinical validity of adding the APOE status to the clinical diagnosis showed that the area under the ROC curve (AUC) increased from 0.84 based on clinical factors to 0.87 when APOE was added to the clinical factors [5]. This difference in AUCs was statistically significant, suggesting that genotyping for APOE provides additional information in patients who meet the clinical criteria for AD.

Genetic risk factors are also used in research settings to uncover the biological markers related to sub-clinical stages of the disease. The correlation between APOE genotypes and different endophenotypes were investigated by a number of prospective clinical multicentre trials which aimed to find new variables for detection of preclinical AD [51,53,54]. These studies suggested that APOE ε4 genotype correlates most strongly with the cerebrospinal fluid levels of amyloid-β protein 42 amino acid form, cerebral glucose metabolism, and quantitative EEG (i.e., decreased alpha rhythm during rest and dysfunction of deep brain structures during hyperventilation). Another example comes from a study that tested 500 transcripts of AD associated genes for their use in prediction of incipient AD [55]. In two datasets of around 30 postmortem brain samples each from the hippocampus (i.e., Blalock dataset) and the entorhinal cortex (i.e., Dunkley dataset), increased or decreased amounts of specific gene products were consistently found in individuals with incipient AD (i.e., Braak stages III-IV), indicating that testing for these genes may be useful in identifying individuals at subclinical stages of the disease [55].

Genome-based prediction of treatment response

Genetic testing can improve the treatment by increasing drug efficacy and safety. Also, genetic tests can be used to select patients for therapies that target specific genes or gene products. Several recent studies of pharmacogenomic research in AD have suggested that therapeutic response to cholinergic agents might depend on genotype at APOE, PSEN1, PSEN2, and CYP2D6 genes, however, results are conflicting [12, 51,56]. For example, some studies reported worse response to cholinergic enhancers in APOE ε4 carriers, but others found no association between the APOE genotype and response to galantamine [51]. However, recent studies showed that APOE genotype is correlated to clinical phenotype in terms of cognitive impairment in AD, supporting the existence of different subtypes of AD that may influence therapeutic response [57–59]. In addition, studies of neurotransmitter genes suggest that neuroleptic and antidepressant medication may be effective in selected groups of patients based on their genetic profile [51,60]. For example, variants in dopamine 2 and serotonin 2A receptors have been associated with early response to neuroleptics and response to clozapine and risperidone, respectively [60].

Clinical trials of new therapeutic strategies may also benefit from genetic testing. Combining APOE status with information from neuroimaging studies has proven to be a useful strategy for early detection of subtle brain abnormalities that may precede more advanced stages of AD (i.e., 4% left posterior cingulated metabolic decline at 2 years follow-up in APOE ε4 carriers), suggesting that a combination of genetic variants and cerebral metabolic rates may be useful in monitoring experimental treatment response [61].

Apart from modifying the efficacy of available drugs, the discovery of new variants has also led to the development of drug treatments that target specific genes. For example, risk profile carrier status on genes related to inflammation or estrogen metabolism may determine the response to therapeutic strategies in these
pathways. Studies of genetic profiles of immune related gene polymorphisms indicated that only patients with early onset AD and fast clinical deterioration show definite pro-inflammatory genetic profiles, suggesting that anti-inflammatory drugs may be especially useful in these patients [62]. Considering the role of estrogens in the pathology of AD and the differences in vulnerability to cognitive dysfunctions in women, other groups have looked at the genetic variability in estrogen receptors [63]. Polymorphisms in estrogen receptors α and β were associated with an increased risk of AD, with a recent study showing that estrogen receptor α splice variants expression pattern changes with aging and in AD [63,64]. Observational studies and meta-analyses suggested a neuroprotective effect of the hormone replacement therapy [63], but this failed to be confirmed by a large RCT trial that was stopped due to an increased risk for breast cancer and stroke in the treatment groups [65].

Finally, Phase I and II clinical trials evaluate a large number of disease modifying drugs, many of them targeting the amyloid-β pathway [66,67]. Most of these drug trials also evaluate genetic markers among other baseline characteristics of the subjects enrolled in the study, and this may provide further insight on genetic variation associated with treatment response. For example, a Phase II clinical trial of the PPARγ agonist rosiglitazone showed improvement in cognitive functioning in treated patients compared to placebo, but only if they were non-carriers of the APOE ε4 allele [68]. Similar results were reported in trials of the anti-amyloid-β monoclonal antibody bapineuzumab [69] and the ketogenic compound AC-1202 [70], indicating that APOE genotyping is relevant in pharmacogenomic research. Conversely, studies which aim to identify risk profiles (i.e., inflammatory profiles comprised of alleles of pro/anti-inflammatory cytokines) will potentially allow both the early identification of individuals susceptible of developing AD and the possible design or utilization of a drug with enhanced safety [71].

Health application to evidence-based practice guidelines

The second phase of translation research starts after there is convincing evidence on genetic tests performance. In this phase, the clinical validity and utility of genetic tests are measured in the population settings for which the tests are primarily intended. Results from the second phase of translation research should lead to evidence based reviews and guidelines for clinical and public health practice [15]. Although there is increasing use of genetic testing for clinical and scientific use, current practices vary across memory research centers.

To date, all guidelines recommend against APOE genotype testing for screening, early detection, or diagnosis of AD due to a low sensitivity, specificity, and positive predictive value and the possible negative health outcomes associated with testing. However, recent data from the REVEAL study showed that APOE genotype disclosure in adult children of patients with AD has no negative short-term psychological impact in carriers and non-carriers of the risk allele [40]. This is in line with the findings reported by a systematic review of psychological and behavioral consequences of genetic testing [72].

Assessment of social and behavioral issues linked to genetic tests is an important aspect of second phase of translation research. The REVEAL study showed that women, highly educated persons, and persons below 60 seemed to be more interested in genetic testing for AD, and that primary motivation for undertaking the tests were advance planning and emotional coping with the threat of disease [73]. Health behavior analyses in the REVEAL study suggested that disclosing increased risk status can motivate adoption of activities believed to lower the risk of AD, such as dietary and lifestyle changes [73].

Practice guidelines to health practice and practice to population health impact

The third phase of translation research addresses the spreading and integration of knowledge gained through the second phase research. It involves both public and professional/private participation for adoption of proved genomic application [15]. The fourth phase of translation research focuses on clinical and public health outcomes of adopted guidelines and includes measures of disease incidence, quality-of-life indicators, clinical decision modeling, and cost-effectiveness analysis, among others [15].

Currently, there is limited data available on the implementation of the novel genomic applications into health practice. As most of translation research in AD is still in the first phase, studies that assess the population health impact are limited to Mendelian AD, if available at all.
CONCLUSION

AD shows typical characteristics of a Mendelian disorder in a small number of cases, however, in most cases, AD is a complex disorder in which gene-gene and gene-environment interaction play a major role. To date, diagnosis is usually made after the disease processes are likely to be irreversible and therapeutics of AD includes only symptomatic drugs that cannot halt the disease progress. Much hope is placed on the genomic discoveries in AD which are expected to improve presymptomatic testing, diagnosis, and treatment of AD. In this review we have summarized the current use of genomic information in the clinical management of AD and described the most likely future applications in the context of the four translational research phases in genomics of AD. Relevant literature was retrieved from a MEDLINE search, and included editorials, reviews, meta-analyses, original scientific papers published in peer-review journals, and evidence-based practice guidelines subsequently discussed in an expert meeting.

Many genes are analyzed for the association with sporadic AD, but the only consistently replicated finding is the APOE gene, which is found in almost half of the sporadic cases. Given the small predictive value of genetic testing for APOE, it is not considered clinically useful for screening, presymptomatic testing, or clinical diagnosis. All genes identified through GWAS have small effects on disease risk and none of them can be used individually for screening or predictive testing. Instead, testing at multiple loci is evaluated for its role in identifying people at higher risk of developing AD.

Whether genetic profiling can be useful depends on many factors that influence its clinical validity and utility. It has been previously shown that the discriminative accuracy of genetic profiling depends upon the heritability and prevalence of the disease, as well as on the genotype frequency [74]. Besides, disease risk prediction based on multiple factors, each with weak effects, yields a continuum of risks, with only a small proportion of people at high risk, and the majority at a slightly higher or lower disease risk than the average disease risk in the population [75]. Gene-gene and gene-environment interactions may further influence the disease risk.

Moreover, none of the investigated new preventive measures has proven effective, as reflected by inconsistencies in reports from studies of anti-inflammatory agents, estrogens, nerve growth factors, ginkgo biloba, statins, amyloid vaccination, or antioxidants in prevention of AD [33,76,77]. Experts are reluctant on the desirability and usefulness of predictive genetic testing for susceptibility to AD as long as there are no effective opportunities for prevention [78]. While the availability of interventions may be a criterion for the clinical implementation of tests, this does not hold for commercial applications. APOE genotyping is already commercially available in the genome scans offered by companies like Navigenics and deCODEme [39]. The question remains whether healthcare should step into direct to consumer genetic testing and offer genetic testing with better counseling, or if it should refrain from it to make clear that these tests are relatively uninformative.

Treatment is similar for autosomal dominant or sporadic AD. Several genes are good candidates expected to play a role in variability of drug disposition and pharmacodynamics in AD, but the place of genetic profiling for clinical use is not determined yet. At present, therapeutic interventions for AD do not take into account the underlying genetic risk of the patient. Probably, the most important gain from genetic discoveries is the identification of biological pathways involved, which may improve our understanding of the pathological mechanism underlying AD. This in turn may lead to a better definition of disease subtypes and provide us with new targets for drug activity and more effective treatments, by targeting individuals who benefit most.

The limitations of our present understanding and knowledge of the disease, and therefore in prevention and treatment of at risk individuals, raise important ethical concerns regarding current applications of predictive genetic testing. As a result, genetic research and the potential implementation of genetic testing into clinical and public health practice are carefully monitored through the evaluation of the ethical, legal, and social issues [79,80]. The European Dementia Consensus Network (EDCON) has developed a consensus statement on ethics of dementia research [79]. Summarizing the report, top priority was given to the following issues: informed consent, disclosure of diagnosis of dementia, protection of patients, privacy of genetic data, and protection of relatives. Furthermore, it became evident that the most important step for further research is to promote a concerted involvement of researchers, patients’ organizations, funding bodies, and politicians in defining research priorities.

In the future, applications of genetic testing in AD may play a role in the identification of presymptomatic individuals at high risk of developing the disease, the inclusion of genomic profiling into the armamentarium
for early diagnosis of AD, selection of effective interventions, and drug dosage adjustment as predicted by the genetic profiles. Genetic screening and predictive testing for AD will only become useful if genetic tests have sufficient predictive value and effective preventive measures will become available. Genetic variants with strong effects, both rare and common, either on their own or in interaction with other genes or environmental factors, might further improve the prediction of AD in asymptomatic individuals, yet most still need to be discovered. However, most research on genome-based applications in AD is still in the first phase of the translational research framework, which means that massive research is still needed before their implementation can be considered.

ACKNOWLEDGMENTS

This study was supported by the Health Care Insurance Board (CVZ) and the Centre for Medical Systems Biology (CMSB) in the framework of the Netherlands Genomics Initiative (NGI). ACJW Janssens was sponsored by the VIDI grant of the Netherlands Organization for Scientific Research (NWO) and a fellowship of the Erasmus University Medical Center.

REFERENCES

