Single picojoule pulse switching of magnetization in ferromagnetic (Ga,Mn)As

A. H. M. Reid,1,a) G. V. Astakhov,2 A. V. Kimel,1 G. M. Schott,2 W. Ossau,2 K. Brunner,2 A. Kirilyuk,1 L. W. Molenkamp,2 and Th. Rasing1

1Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
2Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

(Received 30 August 2010; accepted 14 November 2010; published online 6 December 2010)

The recently demonstrated photoinduced reduction of the coercive field in (Ga,Mn)As is shown to display a pronounced increase in efficiency when triggered by short laser pulses. This is due to the relaxation timescale of the effect that is measured to be about 1.5 ns. In addition, a single 100-fs-pulse with only 80 pJ of energy is found to be sufficient to write a magnetic domain. © 2010 American Institute of Physics. [doi:10.1063/1.3524525]

Optical methods for writing magnetic information have recently gathered a considerable interest. Perhaps the two most heralded are heat assisted magnetic recording1 and all-optical switching.2 These rely on modifying the magnetic switching characteristics via a heat pulse, and then reversing via an external or an optically generated magnetic field.3 A third method has been demonstrated in ferromagnetic (Ga,Mn)As; this is the photoinduced depinning of magnetic domains.4 Here, the exposure to light in the visible region of the spectrum, strongly reduces their coercive field, which is the magnetic field required to switch magnetization. Unlike other optical methods, this photococercivity effect (PCE)4,5 occurs at low optical intensities that are easily realizable by commercial laser diodes and do not lead to excessive thermal stress on the sample. This stands in contrast to nonlinear mechanisms where high electric fields are required, thus necessitating high optical intensities, which give rise to substantial increase in temperature.5–8

At low temperatures, magnetization reversal is primarily governed by domain wall propagation as nucleation events are rare.9,10 The PCE arises from the photomodification of the domain wall pinning site energies, most likely from the photogenerated holes enhancing the local exchange interaction1,11,12 (although the photomodification of anisotropy could also play a role13), reducing the energy barrier and thus the coercive field.14 This is evidenced in (Ga,Mn)As as the effect correlates with the onset of a strong increase in resistance at low temperatures, which corresponds to hole localization and phase separation.15 Previous static experiments show that exposing (Ga,Mn)As to light reduces the coercive field during the exposure time (more than 60% at an illumination of approximately 1 W cm−2).4 In this letter, we demonstrate that the effect is both faster and more efficient than previously thought. Using a subpicosecond pulse, the coercive field can be reduced almost to zero in an area of approximately 100 μm2 using only 0.08 nJ of energy. This compares very favorably with the 10–100 nJ of energy per bit written of current hard drives,16 and even with magnetic RAM (0.15 nJ) and flash (10 nJ) solid state memories.17 Furthermore, using a double-pulse experiment, we have found that the coercivity restores to the “in-dark” value within a few nanoseconds; this determines how fast a bit can be rewritten.

Measurements are performed on a low-doped (Ga,Mn)As layer grown by molecular beam epitaxy on (001) orientated GaAs;18,19 note that this is the same wafer as studied in Astakhov et al.4 The (Ga0.98−x,Mnx)As layer is 360 nm in thickness with a nominally Mn concentration of x = 0.01, a Curie temperature TC ≈ 25 K, and perpendicular magnetic anisotropy. It is further noted that the layer shows a sharp increase in resistivity below 5 K. In the measurement, the (Ga,Mn)As sample is mounted in a helium bath cryostat with optical access, with the measured temperature in the range of 1.5–1.6 K. A magnetic field could be applied perpendicular to the sample surface using a split-pair superconducting magnet.

Measurements are made of the magneto-optical Kerr effect (MOKE) in a confocal polar geometry (see Fig. 1). A high numerical aperture lens (NA = 0.68) is mounted inside the cryostat to improve the focusing (spot diameter ≈ 10 μm). The laser source used in the experiment is a Ti:sapphire oscillator, which produced 9 nJ pulses of 100 fs at a repetition rate of 80 MHz. To reduce the number of pulses incident on the sample a “pulse picker” is employed; this is a commercially available electronic shutter that consists of a Pockels’ cell placed between crossed polarizers. Due to the imperfect extinction of the pulse picker, a small

FIG. 1. (Color online) A scheme of the experimental setup.

aElectronic mail: a.reid@science.ru.nl.

0003-6951/2010/97(23)/232503/3/$30.00 97, 232503-1 © 2010 American Institute of Physics

Downloaded 11 May 2012 to 131.174.17.23. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions
amount of light (90 µW) is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.

Measurements are made of static MOKE hysteresis cycles with and without incident pulses from the pulse picker. With the pulse picker switched off, a square hysteresis cycle is observed with and without incident pulses from the pulse detector. This is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.

Measurements are made of static MOKE hysteresis cycles with and without incident pulses from the pulse picker. With the pulse picker switched off, a square hysteresis cycle is observed with and without incident pulses from the pulse detector. This is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.

Measurements are made of static MOKE hysteresis cycles with and without incident pulses from the pulse picker. With the pulse picker switched off, a square hysteresis cycle is observed with and without incident pulses from the pulse detector. This is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.

Measurements are made of static MOKE hysteresis cycles with and without incident pulses from the pulse picker. With the pulse picker switched off, a square hysteresis cycle is observed with and without incident pulses from the pulse detector. This is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.

Measurements are made of static MOKE hysteresis cycles with and without incident pulses from the pulse picker. With the pulse picker switched off, a square hysteresis cycle is observed with and without incident pulses from the pulse detector. This is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.

Measurements are made of static MOKE hysteresis cycles with and without incident pulses from the pulse picker. With the pulse picker switched off, a square hysteresis cycle is observed with and without incident pulses from the pulse detector. This is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.

Measurements are made of static MOKE hysteresis cycles with and without incident pulses from the pulse picker. With the pulse picker switched off, a square hysteresis cycle is observed with and without incident pulses from the pulse detector. This is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.

Measurements are made of static MOKE hysteresis cycles with and without incident pulses from the pulse picker. With the pulse picker switched off, a square hysteresis cycle is observed with and without incident pulses from the pulse detector. This is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.

Measurements are made of static MOKE hysteresis cycles with and without incident pulses from the pulse picker. With the pulse picker switched off, a square hysteresis cycle is observed with and without incident pulses from the pulse detector. This is transmitted through in the "closed" position. This is employed as a quasiconstant beam and used to measure the static MOKE signal from the sample. The Kerr rotation is detected using a balanced diode detector.
The double-pulse experiments are performed using a beam splitter at the intersection of two interferometer arms to create pulses of nearly equal intensity with a relative time delay (Fig. 1). Again MOKE hysteresis loops are recorded. Figure 4(e) shows the measured coercive field H_c as a function of the delay between the pulses t_d for fixed pulse energies $J_{s1} = 38 \, \text{pJ}$ and $J_{s2} = 31 \, \text{pJ}$. As expected, increasing the delay between the pulses causes an increase in the coercive field toward the level observed with a single pulse. The reduction of the PCE is well fitted to Eq. (1) with a time constant $\tau = 1.48 \pm 0.22 \, \text{ns}$. This time can therefore be taken as characteristic of the decay rate of the PCE.

Summarizing, in this letter, we have demonstrated that the photocoeffect in (Ga,Mn)As is a fast and efficient method for switching the magnetization direction. It has been observed that femtosecond pulses with an energy <100 \, \text{pJ} can reduce the coercive field in a micrometer sized area of the magnetic semiconductor from over 50 mT to less than 1 mT. Further experiments show that a single pulse is sufficient to fully reduce the coercive field, and that this reduction is sufficiently long to allow the magnetization to be switched. Using a double-pulse experiment, the photocoeffect can be shown to decay on a timescale of 1.5 ns.

The authors wish to thank A. Toonen and A. van Etteger for technical support. This work is supported by the European networks Ultramagnetron (Grant No. NMP3-SL-2008-214469) and FANTOMAS (Grant No. 214810); the Dutch national organizations for scientific research FOM and NWO. G.V.A. acknowledges support from the Deutsche Forschungsgemeinschaft (Grant No. AS 310/2-1).