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The peaks of magnetic resonance (MR) spectra can be shifted due to variations in physiological and
experimental conditions, and correcting for misaligned peaks is an important part of data processing prior
to multivariate analysis. In this paper, five warping algorithms (icoshift, COW, fastpa, VPdtw and PTW)
are compared for their feasibility in aligning spectral peaks in three sets of high resolution magic angle
spinning (HR-MAS) MR spectra with different degrees of misalignments, and their merits are discussed.
In addition, extraction of information that might be present in the shifts is examined, both for simulated
data and the real MR spectra. The generic evaluation methodology employs a number of frequently used
quality criteria for evaluation of the alignments, together with PLS-DA to assess the influence of alignment
on the classification outcome.
etabolomics
eak shifts
ultivariate analysis

Peak alignment greatly improved the internal similarity of the data sets. Especially icoshift and COW
seem suitable for aligning HR-MAS MR spectra, possibly because they perform alignment segment-wise.
The choice of reference spectrum can influence the alignment result, and it is advisable to test several
references. Information from the peak shifts was extracted, and in one case cancer samples were success-
fully discriminated from normal tissue based on shift information only. Based on these findings, general
recommendations for alignment of HR-MAS MRS data are presented. Where possible, observations are

type
generalized to other data

. Introduction

Nuclear magnetic resonance spectroscopy, or just magnetic
esonance spectroscopy (MRS) in a medical context, is a highly
eproducible and robust technique for examining the metabolic
rofiles of fluids or tissue specimens. By using high resolution
agic angle spinning (HR-MAS) MRS, intact tissue samples can

e analysed while peak broadening caused by anisotropic inter-
ctions is reduced [1]. The result is well-resolved spectra in which
he metabolites are represented by sharp peaks. The peak posi-
ions in an MR spectrum may, however, be shifted, or misaligned,
mong spectra in a data set. In general, two types of misalignment
re conceivable: non-systematic and systematic misalignments.

on-systematic misalignments can be caused by differences in

emperature, intermolecular interactions and other variations due
o imperfect control of experimental conditions [2–6], while sys-
ematic misalignments contain information about the biological

∗ Corresponding author. Tel.: +31 24 3653180; fax: +31 24 3652653.
E-mail address: l.buydens@science.ru.nl (L.M.C. Buydens).

1 These authors contributed equally.

003-2670/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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s (e.g. chromatographic data).
© 2010 Elsevier B.V. All rights reserved.

origin of the sample. It has for instance been shown that tumour tis-
sue has a lower pH than normal tissue, possibly due to the Warburg
effect [7]. A different pH or ionic strength of samples influences the
ionization state of basic or acidic groups and thus their associated
chemical shifts [4,8,9]. Metabolite–protein interactions are another
possible source of misalignment [10] which is especially impor-
tant to consider when dealing with HR-MAS data of whole-tissue
samples. In general, chemical interactions between substances and
different background matrices might provide circumstantial evi-
dence for differences between samples by systematic changes in
chemical shifts [4,10,11].

Misalignments between corresponding peaks will affect multi-
variate analysis of the data. Therefore, it is generally recommended
to correct for them [3,5,8,12]. Minor misalignment problems can
be overcome by binning the data (typically using a bin width
of 0.04 ppm), or by using more sophisticated peak alignment
algorithms. An important disadvantage of binning is the loss of

resolution and the resulting loss of interpretability [9]. For major
misalignments, binning is not a feasible approach due to the result-
ing loss of resolution, and alignment would be preferable. Several
different alignment methods exist. Amongst these, the so-called
warping methods are most prominent [13–19], but other methods

dx.doi.org/10.1016/j.aca.2010.09.026
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:l.buydens@science.ru.nl
dx.doi.org/10.1016/j.aca.2010.09.026
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Table 1
Characteristics of alignment algorithms.

Alignment method Optimization criterion Optimization method Alignment unit Aligns by Parameters to optimize

Icoshift Correlation per segment Cross-correlation by FFT Segments Shifting 2
COW Total correlation Dynamic programming Segments Stretching/shrinking 2
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2.1.2. Correlation optimized warping (COW)
Correlation optimized warping [14,15] is another segmented

warping method. It aims to optimize the overall correlation
between two spectra. The spectra are aligned by shrinking or
stretching the segments, rather than by shifting them as in icoshift.
Fastpa Correlation per segment Beam search
VPdtw L1 norm Dynamic Programming
PTW Weighted cross-correlation Nelder–Meada simplex [46]

a Default, different optimization algorithms are available.

ave been described as well [6,20–22]. Most algorithms have their
oots in chromatography, but some were specifically developed for
RS. It is not clear, however, which algorithm is the best choice

or aligning HR-MAS MRS data and whether the methods origi-
ating in chromatography are indeed less suited for this type of
ata.

In this study, we investigated the suitability of five different
arping algorithms—icoshift [13], COW [14,15], fastpa [16], VPdtw

17], and PTW [18]—for aligning HR-MAS MRS data. Of these,
coshift and fastpa were developed specifically for MRS data. The
erformances of COW and PTW have previously been compared
or chromatographic data [23] and capillary electrophoresis (CE)
ata [24]. The performance of VPdtw for chromatographic data was
riefly compared with that of PTW in the original VPdtw paper
17], and the original icoshift [13] paper discusses comparisons
ith COW and a number of fastpa-related methods for MRS data.
e used three different cancer-related HR-MAS MRS data sets for

valuation, all containing samples from two distinct classes. All
hree data sets represent complex biological samples with varying
egrees of misalignments. The various algorithms are compared,
nd their pros and cons will be discussed in this paper. Because
here is no gold standard for assessing alignment quality, the align-

ents were evaluated with a number of commonly used criteria
escribing the similarity of the spectra and quantifying their change
ue to alignment. In addition, the data were classified using partial

east squares discriminant analysis (PLS-DA) [25,26] to investigate
he effect of alignment on the classification outcome. Although
e limited our evaluation to MRS data, the presented evaluation
ethodology is generic and equally valid for other types of data.
Apart from the warping algorithm, the spectrum to use as the

eference for aligning might influence the end result. Therefore, in
ll evaluations a number of different references were considered
nd their influence will be discussed.

A possible drawback of correcting for misalignments is that any
nformation that might be present as systematic misalignments in
he chemical shifts is lost from the spectra. In that case, correc-
ion via alignment or binning might be counterproductive. At the
ame time, it may be possible to align the spectra while extracting
otential shift information from the warping path that describes
he transformation from unaligned into aligned spectra. This pos-
ibility will be discussed in this article.

To evaluate the effect of alignment on data that display system-
tic shifts, a number of simple data sets were simulated in which
lass information was added as intensity differences, shift differ-
nces or a combination of the two. These data were aligned, and
lassification was performed on both the raw and aligned data,
s well as on the shift information (i.e. the coefficients resulting
rom the alignment procedures) and to a combination of these with
he aligned spectra. The insights from this procedure were subse-
uently used in an attempt to enhance the classification results for
he real data.
Based on the results from this study, general recommendations
or choosing an alignment method for HR-MAS MRS data and get-
ing the optimal alignment are described. The validity of these
esults and recommendations for other types of data will be dis-
ussed.
gments Shifting and stretching/shrinking 3
ints Shifting 2
mplete spectrum Polynomial model 2

2. Experimental

2.1. Description of the alignment algorithms

Five different alignment methods were used in this study, and
will be elaborated here. Characteristics of the different alignment
algorithms are summarized in Table 1. Fig. 1 shows typical warping
paths, or warping functions, (the new x-axes as a function of the old
x-axis) for all five methods. For clarity, the differences between the
new x-axes and the old x-axis are drawn, rather than just the new
x-axes.

2.1.1. Interval correlated shifting (icoshift)
Interval correlated shifting was developed specifically for MRS

data [13]. It divides spectra into segments, and aligns these to the
corresponding segments of a reference spectrum. The alignment is
performed by shifting the segments sideways so as to maximize
their correlation. In practice, this involves calculating the cross-
correlation between the segments by a fast Fourier transform (FFT)
engine that aligns all spectra of a data set simultaneously. The seg-
ments can be user-defined or of constant length. Missing parts on
the segment edges are either filled with ‘missing values’, or by
repeating the value of the boundary point. The maximum shift cor-
rection of the segments can either be equal to a constant defined
by the user, or the algorithm can search for the best value for each
segment [13]. Icoshift is available as a tool for Matlab from Ref. [27].
Fig. 1. A comparison of the warping paths of the different alignment methods.
Warping paths depicting the fine structures of the different alignment methods
are shown. The same query and reference spectra were used for all methods. For
clarity, the y-scale is set to the difference between the warping paths proper and
the original x-axis.
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nother difference with icoshift is that the optimization takes all
egments into account instead of aligning each segment separately,
.e. stretching a segment causes subsequent segments to shift. The

aximum allowed change in segment length is determined by the
o-called slack parameter defined by the user. In addition, the user
ust specify the segment length.
The alignment is performed using a dynamic programming

lgorithm [28]. The algorithm uses linear interpolation to create
tretched (or shrunken) versions of the individual segments within
he limits determined by the slack parameter. It calculates the sums
f the individual correlation coefficients for all combinations of the
tretched segments and picks the combination that leads to the
argest sum (and hence the largest overall correlation) to construct
he aligned spectrum. As all possible combinations are considered,
ynamic programming will always yield the global optimum for
he chosen parameters [14,15].

The slack and segment length parameters of COW can be opti-
ized by a discrete simplex-like optimization routine described by

kov et al. [29]. An optimization space for both parameters must be
pecified, and the initial search is defined by a 5 × 5 grid in both
arameter directions. Each of the 25 parameter combinations is
valuated by calculating the sum of the simplicity value and average
eak factor (see Section 2.5) of the corresponding trial alignment
f the data set. By default, the three best combinations are used as
tarting points for further simplex optimization. COW is available
s a tool for Matlab from Ref. [27].

.1.3. Peak alignment by beam search (fastpa)
Like icoshift, peak alignment by beam search was developed for

RS data [16]. It also divides the spectra into segments, but aligns
hese by both shifting and stretching/shrinking them to maximize
heir respective correlations. Fastpa is based on a routine by For-
hed et al. [30] where the segments are chosen automatically to
void cutting in a peak. However, instead of Forshed’s genetic algo-
ithm, fastpa uses a faster beam search [31,32] as the optimization
outine for finding the optimal alignment. This change of opti-
ization algorithm is possible because the segments are aligned

ndependently, as opposed to COW.
Fastpa requires three input parameters to be specified: the max-

mum number of segments, the maximum range of shifting, and the
aximum range of stretching or shrinking. In addition, the beam
idth k [31,32] has to be specified as either 1 or 2. From the view-
oint of optimization, a larger beam width is always preferable [32],
nd we considered k to be constant at a value of 2.

After choosing segments [30], the algorithm starts by adapting
n initial trial solution of stretches and shifts for the individual seg-
ents. The 2 best adaptations are used as the next trial solutions

n the algorithm. This is repeated until the optimal solution within
he beam search space is found [16]. Fastpa is available as a Matlab
ool upon request from the authors [16].

.1.4. Variable penalty dynamic time warping (VPdtw)
Dynamic time warping (DTW) [33] is generally considered to be

he first full-fledged warping method that has been developed. It
orks by shifting individual points of the query spectrum, rather

han complete segments, as in icoshift. Many different sets of rules
xist for allowed shifts [33,34]. Variable penalty DTW is a recent
mplementation of asymmetric DTW [17]. Instead of optimizing the
orrelation between the spectra, VPdtw tries to optimize the L1
orm, i.e. the sum of the absolute differences between the variables

n the spectra.

Regular DTW is notorious for causing artifacts in aligned data,

y allowing too many shifts [17,35]. The variable penalty in VPdtw
ims to prevent these from occurring by adding a penalty to the
1 norm for each shift. Clifford and Stone [17] propose to use a
orphological dilation (i.e. a running maximum) of the reference
Fig. 2. Breast cancer data. A representative HR-MAS MR spectrum from the breast
cancer data set. The inset shows the misalignment for the peaks between 3.18 and
3.30 ppm. a.u., arbitrary units.

spectrum as a penalty. This results in a high penalty being added
to the L1 norm for a shift at or near the position of peaks, whereas
in a baseline region, it would result in almost no extra increase. A
maximum allowed shift and the penalty must be specified by the
user [17]. VPdtw is available as a package in R from Ref. [36].

2.1.5. Parametric time warping (PTW)
Rather than point-wise shifting, or dividing the spectra into seg-

ments that can subsequently be shifted and/or stretched, PTW [18]
explicitly produces a global polynomial model (the warping func-
tion) of the misalignment:

w(t) =
∑K

k=0
aktk

The first two coefficients, a0 and a1, in the warping function
can readily be interpreted as an overall shift and stretch/shrinkage,
respectively. Further coefficients correspond to higher order
stretching or shrinking that are useful to model changes in the mis-
alignment along the retention time axis. Bloemberg et al. recently
proposed to use the weighted cross-correlation (WCC) [37] as the
optimization criterion in PTW [19]. In their implementation, the
user has to specify the order of the warping function and the width
of the triangular weighting function for the WCC.

The continuity and smoothness of the PTW warping function
imply that PTW does not lead to artifacts like ‘decapitated’ peaks.
In the absence of many high-order terms, the polynomial model
makes PTW a somewhat restrained method. This means that it may
have difficulties in correcting strongly nonlinear misalignments,
but also that overfitting is very unlikely to occur [18,19]. PTW is
available as a package in R from Ref. [38].

2.2. Data

Three different cancer-related data sets were used in this study:
data from cervix, breast, and colon tissue. All three data sets contain
data from two biologically distinct classes of tissue. The data sets
represent different degrees of misalignment: the cervical cancer
data display minor misalignments, colon cancer has major mis-

alignments and the breast cancer data show something in between.
Fig. 2 shows the MR spectra from the breast cancer set as an exam-
ple. In addition to these HR-MAS MRS data sets, simulated data sets
with varying degrees of misalignment were generated.
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ig. 3. Classification results of simulated data. The results are the averages of thr
s contained in the peak shifts; (c) class information is contained in both intensitie
ercentage of correctly classified samples.

.2.1. Simulated data
A large number of simple data sets were simulated. Each set

onsists of 100 spectra—50 of class 1 and 50 of class 2—with a
pectral width of 1000 variables and two peaks only of width ∼10
oints. Bivariate class information was added as intensity differ-
nces (mean differences ranging from 1% to 10% of peak height),
hift differences (means ranging from 1 to 25 points) or a com-
ination of the two. For each set, six copies were produced with

ncreasing non-systematic shifts (see Fig. 3), but exactly simi-
ar simulation parameters otherwise. Furthermore, all simulations

ere performed in triplicate; all reported results are the averages of
he results obtained on three sets with similar settings for the ran-
omly generated normal distributions that were used to generate
ealistic intensity and shift distributions.

.2.2. Cervical cancer data
This data set is fully described in Ref. [39]. In short, cervical tissue

amples (n = 16) were collected after hysterectomy of cervical can-
er patients (n = 8) and patients with non-malignant disease (n = 8).
he samples were analysed by HR-MAS MRS on a Bruker Avance
RX600, using a water and lipid suppressing spin-echo sequence

cpmgpr, Bruker BioSpin GmbH, Germany). All experiments were
erformed at room temperature and without buffering. The chem-

cal shifts were referenced to the lactate doublet at 1.32 ppm,
nd the spectral region between 4.7 and 0.5 ppm was saved in a
atrix of 16 × 3736 variables. The spectra were baseline corrected

sing asymmetric least squares [18] with parameters � = 1e5 and
= 0.0001, and the minimum value of each spectrum was set to
ero by subtracting the lowest value. The spectra were normalized
o equal total area.

.2.3. Breast cancer data
This data set is fully described in Ref. [40]. Breast cancer tissue

amples (n = 208) were excised from estrogen receptor (ER) positive
n = 161) and negative (n = 47) patients. The samples were analysed
y HR-MAS MRS using a cpmgpr sequence. All experiments were
erformed at 4 ◦C, and the samples were buffered with phosphate-
uffered saline (PBS). Chemical shifts were referenced to the TSP
eak at 0 ppm. The spectral region between 4.8 and 0.6 ppm, rep-
esented by 8251 variables, was extracted for further analyses. The
pectra were baseline corrected by subtracting the lowest value of
ach spectrum, and normalized to equal total area.

.2.4. Colon cancer data

Colon tissue samples (n = 32) were excised from the tumour

rea (n = 17) and normal mucosa (n = 15) of colon cancer patients,
nd the samples were analysed by HR-MAS MRS using a cpmgpr
equence. These samples are part of a larger patient cohort
escribed in Ref. [41]. All experiments were performed at 4 ◦C,
licates. (a) Class information is contained in the intensities; (b) class information
shifts. Abbreviations: Unal.: unaligned; coef.: coefficients; comb.: combined; %CC:

and the samples were buffered with phosphate-buffered saline. In
order to induce random misalignments in the data, this data set
was not chemical shift referenced. The spectral region between 4.8
and 0 ppm, represented by 9661 variables, was extracted for fur-
ther analyses. The spectra were baseline corrected by subtracting
the lowest value of each spectrum, and normalized to equal total
area (excluding polyethylene glycol pollution at 3.71 ppm).

2.3. Alignment of simulated data

All simulated data sets were aligned using the five warping
methods and alignment was performed using the first spectrum
as the reference. Icoshift was set to align the data in two segments,
whereas PTW was set to align using a linear warping function, cor-
responding to an overall shift and stretch. Unexpectedly, COW ran
into memory problems when the segment length was chosen to be
half the spectral width (500 points), and the segment length was set
to one tenth of the spectral width (100 points). VPdtw was unable
to produce well-aligned data consistently and the fastpa algorithm
was too unstable in its current form to allow high-throughput anal-
ysis of a large number of data sets.

The obtained warping coefficients correspond to two (integer)
shifts for icoshift (one shift coefficient per segment), a shift and a
stretch coefficient for PTW and ten segment endpoints for COW.
For classification purposes, the icoshift coefficients were used ‘as
is’, whereas the stretch coefficient for PTW was multiplied by the
number of data points (1000) after subtracting 1 (the default for
‘no alignment’) from it, as described in Ref. [19]. In this way, the
shift and stretch coefficients are on comparable scales. For COW,
the original segment endpoints were subtracted from the new end-
points, so as to provide the differences between them.

2.4. Alignment of real data

The cervix, colon, and breast cancer data sets were aligned using
the five different warping methods, as described below. Ten differ-
ent reference spectra were used subsequently for aligning the data;
this in order to examine the influence of choosing different refer-
ences and also to examine the robustness of the warping methods.
Four spectra were chosen from each of the two classes in a data set:
two randomly chosen ones and the two spectra having the high-
est average correlation with the other spectra in the data set. In
addition, the mean and the median spectra were used as references.
2.4.1. Icoshift
The optimal number of segments for icoshift was determined by

visual inspection of trial alignments and by the average overall cor-
relation, and ranged from 20 to 150 for the different data sets and
references. The maximum allowed shifts were determined by the
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lgorithm. For some matrices this led to artifacts, and the maximum
llowed shift was manually determined instead. A full spectrum
orrection was performed prior to alignment of the segments. Miss-
ng parts on the segment edges were replaced by repeating the
alue of the boundary point. Both user-defined segments and seg-
ents of constant length were tested.

.4.2. COW
Parameters for COW were determined using the optimization

outine by Skov et al. [29]. The search interval for segment length
as based on the average peak width, as suggested by the authors,

nd the slack size search space ranged from 1 to 15. The search
pace was increased if the limit values were chosen as the opti-
al parameter. Optimal segment length ranged from 30 to 300

ariables.

.4.3. Fastpa
Fastpa parameters were optimized by visual inspection of trial

lignments, and the overall average correlation. The spectra were
ero-padded prior to alignment to avoid cutting off peaks at the
pectrum edges. This was also done because fastpa does not align
he last segment of the spectra. The ranges of segment number,
ideways movement and interpolation were 40–170, 10–150 and
0–100, respectively.

.4.4. VPdtw
Alignments were performed on the normalized data, after addi-

ional square-root scaling, as this turned out to provide better
lignment results than for unscaled data. The resulting warping
aths were applied to the normalized data. The penalties that were
sed for the alignment were morphological dilations of the data, as
escribed in Ref. [17]. Penalties were determined by trial and error
ntil satisfactory alignment results were produced. The maximum
llowed shift (the width of the Sakoe-Chiba band [33]) ranged from
00 to 300 variables.

.4.5. PTW
Prior to alignment, the data were zero-padded, as described

n Ref. [19]. The resulting warping coefficients were transformed
ccordingly and applied to the unpadded data. Triangle widths for
he weighted cross-correlation measure were on the order of the
argest misalignment in the data, as determined by visual inspec-
ion and ranged from 2 to 100 variables.

.5. Evaluation criteria

The alignment results were assessed based on different mea-
ures:

.5.1. Correlation
The spectra of a data set will be more uniform after successful

lignment, and thereby have a higher correlation. The correlation
etween all the spectra of a data set was calculated before and after
lignment.

.5.2. Simplicity value
The simplicity value is related to principal component analysis

PCA) by singular value decomposition (SVD) of a matrix, where

he singular values state how much variance is explained by each
omponent. Aligned spectra will have more variance explained by
he first components. The simplicity value of a matrix is defined as
he sum of all singular values of the matrix—scaled to a total sum of
quares of one—taken to the fourth power, and will be larger when
himica Acta 683 (2010) 1–11 5

more variation is explained by the first components [29].

Simplicity =
∑

⎛
⎜⎜⎜⎜⎝SVD

⎛
⎜⎜⎜⎜⎝

X√∑
i

∑
j

xij
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

4

2.5.3. Peak factor
The peak factor gives an estimate of how much the area and the

shape of the peaks have changed in a spectrum after alignment. It
compares the Euclidian length, or norm, of a spectrum before and
after alignment. If the peak area and shape stay almost the same,
the difference between the norms before and after alignment will
be small [29]. The optimal value for the peak factor is 1, meaning
that there is no change in peak shape.

Peak factor =
∑I

i=1(1 − min (ci, 1)2)

I

where

ci =
∣∣∣∣norm(xi,after) − norm(xi,before)

norm(xi,before)

∣∣∣∣
2.5.4. Classification

Correcting for misalignments should improve the classification
results for data sets distorted by random shifts. However, it is
also possible that information arising from biological differences
between different classes may be removed when the spectra are
aligned. In PLS, latent variables (LVs) are derived to maximize the
covariance between the spectra and a quantity to be modelled. PLS-
DA is a special case of PLS that attempts to discriminate between
classes, represented by discrete numbers. Here, PLS-DA was used
to evaluate the classifiability of aligned and unaligned data. In addi-
tion, the warping path or warping parameters were used as input
to investigate possible shift information.

2.5.5. Visual inspection
Quantitative measures are valuable means for comparing spe-

cific characteristics of large sets of data at a glance, but they also
have their limits. The human eye and brain are still unsurpassed as a
pattern recognition tool. In the context of alignment, especially the
assessment of alignment quality and detection of artifacts benefit
from visual inspection.

2.6. Classification of simulated sets

Each data set was classified using PLS-DA. Classification was per-
formed on the unaligned spectra, the aligned spectra, the warping
coefficients and a combination of the aligned spectra and the coeffi-
cients. The latter was achieved by simply concatenating the spectra
with the coefficients and multiplying the latter with a large number
(on the scale of the average-scaled spectra, typically 100 was used)
to make sure they would be contained in the first latent variables
of the PLS model.

PLS-DA, including mean centering, was performed using full

leave-one-out cross-validation (LOO-CV), and the number of LVs
giving the first minimum in prediction error was chosen for the
model. PLS-DA was performed in Matlab 7.7.0.471 (R2008b, The
Mathworks, Inc., Natick, USA) using PLS toolbox 5.5.1 (Eigenvector
Research, Wenatchee, USA).
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.7. Classification of real data

The data sets were classified using PLS-DA, as described for
he simulated data. Classification was performed on the unaligned
pectra, the aligned spectra, the warping coefficients, and a
ombination of aligned spectra and coefficients (multiplied by
00).

Pollutions from ethanol and fatty residuals, and from polyethy-
ene glycol for the colon cancer data, were removed from the
pectra prior to classification. Single outlying spectra were removed
rom the colon cancer and breast cancer data sets. For the breast
ancer data, the spectra were square-root scaled prior to analysis.

. Results and discussion

.1. Simulated data

Fig. 3a shows the average classification results for the sets
n which classes are coded as intensity differences. Fastpa and
Pdtw were not capable of correctly aligning the simulated data.
s expected, classification rates for unaligned data decreased as
andom misalignment increased. Aligned data, on the other hand,
elivered stable classification results. The warping coefficients did
ot contain class information, as expected, since the simulated
hifts were completely random.

The average classification results for three data sets where class
nformation is purely contained as peak shifts are depicted in
ig. 3b. As expected, the situation here was completely opposite
o the previous one. The raw data gave better results than the
ligned data; alignment removes the information of interest from
he spectra. Now, the coefficients do contain information and in
his case the coefficients give even better classification results than
he raw data themselves. This is most likely due to less noise being
resent in the coefficients than in the data. Because classification is
ased on intensities, the intensity noise in the unaligned data will
ave a negative influence on the result. By extracting the positional

nformation of the peaks into the warping coefficients, it effectively
ecomes available as information without the intensity noise that
as present in the spectra.

When class information is present in both the shifts and the
ntensities, as might be expected with real data, the situation will be
omewhere in between the two extremes discussed above. Where
xactly depends on the data at hand. In that respect, any simulation
s rather arbitrary and we should not over-interpret the results. It
s clear from the example in Fig. 3c however, that—if discrimina-
ion is the main interest—there are situations in which aligned data
n their own can be a sub-optimal choice as input for multivariate
nalyses when there is information present in the shifts. In these
ases, for icoshift and PTW, the combination of aligned data with
he warping coefficients delivered the best classification results.
he COW results for the combination of data and coefficients were
lot worse than those of the other two methods; this may have to do
ith the sub-optimal parameter settings that were used to prevent

he program from running into memory problems. Furthermore, it
s likely that the good results for PTW are due to the simplicity of the
ata and the resulting suitability of a warping function of degree 1
or modelling the misalignments. Bearing in mind the conclusions
rom Refs. [23,24], it is to be expected that individual shifts in more
omplex MR data cannot be modelled very well with the global PTW

odel. Icoshift and COW are more likely to extract positional infor-
ation in a way that is suited for multivariate analyses, although

he cumulative character of the COW warping path might ‘smear
ut’ misalignment information over several segments, making it
arder to interpret.
himica Acta 683 (2010) 1–11

3.2. Real data

3.2.1. Correlation and simplicity value
A plethora of similarity and distance measures are used as opti-

mization criteria in different alignment algorithms. Icoshift, COW
and fastpa are all optimized using correlation as a criterion. DTW is
available with various distance measures [34] and VPdtw employs
the L1 norm as a criterion for optimization. PTW optimization was
originally based on the root mean square difference (RMS) between
spectra [18], but the current implementation uses the weighted
cross-correlation as a similarity measure [19]. There is still no gen-
erally accepted gold standard measure for assessing alignment
quality. However, the combination of simplicity value and peak
factor introduced by Skov et al. [29] is an interesting choice. Both
measures, together with the correlation, were used to assess align-
ment quality in this study. In addition, the RMS and WCC criteria
were examined, but these measures did not provide extra infor-
mation. It should be kept in mind that methods optimizing the
correlation will very likely be biased towards that measure and
it is not certain that the results for the simplicity value will be
completely independent.

Fig. 4 shows box plots of the mutual correlations between all
samples in the three HR-MAS data sets, before alignment and after
alignment with each of the five warping methods for ten different
references. It is clear that for all methods, the correlation distri-
butions of the aligned data are better than for the unaligned data.
This is especially pronounced for the colon cancer data set which
has the largest misalignments. Here, all warping methods greatly
improved the correlations, with PTW scoring lower than the other
methods. For the cervical cancer data, where the unaligned data
displayed only minor misalignments, VPdtw resulted in the lowest
correlation values, while the other methods performed compara-
ble.

The simplicity values for the raw and aligned data in Fig. 4 con-
vey the same general picture as the correlations. There are some
differences, however. The most striking ones are the PTW and
VPdtw results for the colon cancer data set. When looking at the
correlations, the PTW correlations are clearly lower than the ones
for icoshift, COW, and fastpa, and comparable to the VPdtw correla-
tions. The PTW simplicity values, however, are comparable to those
of icoshift, COW, and fastpa, whereas the VPdtw simplicity values
are much lower. The simplicity value is influenced by the intensi-
ties of the peaks, and peaks with high intensities influence the value
more than low intensity peaks. The colon cancer data displayed a
high intensity peak at 3.71 ppm, resulting from polyethylene glycol.
When the peak was removed from the data set, the simplicity val-
ues were more in accordance with the correlations. This example
shows a weakness of the simplicity value, and it might be advisable
to scale the data prior to simplicity calculations.

Fig. 4 also shows that the choice of reference can have a large
influence on the alignment result for one-dimensional HR-MAS MR
spectra, contrary to the observation made in Ref. [21] for LC–MS
data. The breast cancer data generally provided stable results, but
demonstrated that a bad choice of reference had a larger influ-
ence on the correlations than the particular warping method that
is used. Icoshift, COW and fastpa, which are all segmented warping
methods, appeared to be less influenced by the choice of reference,
whereas PTW gave worse results than the unaligned data for some
of the randomly chosen reference spectra. It is therefore advisable
to try different references when aligning. Using the spectrum that
has the highest average correlation to the other spectra does not

seem to be a bad choice; however, it does not always give the opti-
mal alignment. For data sets consisting of two or more classes,
it is conceivable that the alignment will be affected by the class
the reference belongs to. Trying references from both classes may
therefore be advisable. Using the mean or median spectrum as a
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Fig. 4. Correlation and simplicity values for different alignment methods. In all plots, for each method, results from 10 different reference spectra are shown. From left to
right: the spectrum having the highest average correlation with all other spectra, the (on average) second most highly correlated spectrum from the same class, and two
random spectra from the same class; the most highly correlated spectrum, the second most highly correlated spectrum, and two random spectra from the other class, and
t ation
s e of th
o value
v

r
s
w
c
d

he overall mean and median spectra. The box plots show the distributions of correl
how the simplicity values of the data sets; the red line depicts the simplicity valu
f the cervical cancer data; (c) correlations of the breast cancer data; (d) simplicity
alues of the colon cancer data.
eference is also an option. This may not be a good choice for data
ets with big misalignments though, as the mean/median spectrum
ill have broad peaks and may not resemble a real spectrum. This

an be overcome by using an iterative procedure, i.e. by aligning the
ata and then recalculating the reference spectrum. This was tested
values for the data sets; the red box stands for the unaligned data. The scatter plots
e unaligned data. (a) Correlations of the cervical cancer data; (b) simplicity values
s of the breast cancer data; (e) correlations of the colon cancer data; (f) simplicity
for the colon cancer data in this study, and the resulting alignments
then resembled those for the other references (results not shown).

In some cases, similarity measures can give the wrong impres-
sion of the alignment quality. An example of this is when peaks are
badly deformed in order to give a high correlation, as in unpenal-
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ig. 5. Peak factors for different alignment methods. Results from the same 10 dif
eak factors for the breast cancer data; (c) peak factors for the colon cancer data.

zed DTW [17,35]. Other examples were encountered when using
coshift: when using segments of constant length, the segment
dges would sometimes be located in a peak, leading to major
rtifacts in the peak shapes, while the correlation of the spec-
ra remained high. For some parameter choices for icoshift, the
eaks were displaced to the wrong position, but again correlations
emained high. Therefore, visual inspection of the data after align-
ent remains of the utmost importance. This will however put a

imit to the complexity of the data of interest. While HR-MAS spec-
ra of tissues have quite well-defined peaks, MR spectra from fluids

ay be more crowded, making visual inspection of the aligned data
hallenging. For these data, other methods may be more suitable,
or instance the one described by Alm et al. [6].

.2.2. Peak factor
Peak factor calculations for the different warping methods are

hown in Fig. 5. The differences between the methods are small, and
verall, all methods performed well. Icoshift and VPdtw gave the
ighest peak factors. This result was as expected for icoshift, as it
nly shifts segments of the spectra, as opposed to fastpa, COW and
TW that do shrinking and stretching. For VPdtw, the high peak
actors are noteworthy, given that DTW has a history of strongly
eforming peaks. Clearly, the variable penalty of VPdtw does what

t is intended to do.
COW’s parameters are optimized based on peak factor, and COW

ave the best results of the warping methods that do shrinking and
hifting. On average, fastpa had the lowest peak factor values, and
as thus the method that changed the data most after alignment.

his is also obvious from the warping functions in Fig. 1; fastpa
ypically had the most extreme warping path. As for correlation
nd simplicity value, icoshift and COW provided stable results for
ifferent reference spectra. The results for fastpa and PTW varied
ore, and it appears that the choice of reference is more critical for

hese methods.

.2.3. Classification results
The classification results for unaligned and aligned data are

hown in Fig. 6. For the cervical cancer data, the unaligned data
lready gave good results, with only one out of 16 samples mis-
lassified. In general, the aligned cervical cancer data gave better
lassification results for all methods. For the breast cancer data,
he average classification results, based on the 10 different refer-
nces, improved for all methods except PTW. Here, the use of some
eference spectra improved the classification results while others
ave worse results. Despite the fact that both the correlation and
he simplicity value of the colon cancer data greatly improved by

ligning, the classification results did not improve. After alignment
he average classification results decreased by one or two additional
amples. It is not unlikely that the results for the unaligned data are
etter simply by chance. In theory, it is also possible that peaks have
een aligned to the wrong peaks of the reference spectrum. This is
references as in Fig. 4 are shown (a) peak factors for the cervical cancer data; (b)

unlikely however, as visual inspection of the alignment results gave
no indication of wrong alignments.

Another possibility is that the shifts of the colon cancer data
contained information, resulting from systematic misalignments
of the spectra. Information present in the shifts would get lost after
alignment. This was investigated for all the data sets by classifi-
cation of the warping parameters and a combination of spectra
and parameters. It should be noted that the prediction error from
cross-validated PLS-DA was based on the same data set as the one
used for choosing the optimal number of LVs. Thus, the prediction
error will be slightly biased towards values lower than 0.5, and only
results that differed strongly from 0.5 were considered important.
Classification of the warping parameters alone did not give reliable
predictions for the breast cancer and the colon cancer data. Further-
more, combining the warping parameters with the spectra did not
improve classification. As previously described, cancer tissue can
have a different pH than normal tissue, and the pH of a sample is an
important source of shift variation. For the breast cancer samples,
there are no established hypotheses for pH differences between ER
positive and negative samples, and the results were as expected.
For colon cancer, the samples in the data set were from either nor-
mal or cancer tissue. Therefore, differences in pH are more likely,
even though the samples were buffered prior to HR-MAS analysis
[42]. However, it is likely that shift information that might have
been present in the data was masked by the major random shifts
of the data set, similar to what is shown in Fig. 3b and c for the
simulated data.

For the cervical cancer data, the results clearly indicate that the
warping parameters of icoshift, COW and fastpa contain class infor-
mation. Classification of the parameters gave an average correct
classification of 87%, 84% and 76% for icoshift, COW and fastpa,
respectively (Fig. 6d). Combining the spectra with the parameters
was not beneficial for the overall classification. Thus, the informa-
tion from the parameters was redundant. Nevertheless, the fact that
shift information alone can discriminate between normal cervical
tissue and cancerous tissue is very interesting. The cervical samples
were analysed by HR-MAS without buffering, and therefore pH dif-
ferences related to cancer-induced changes in tissue may be more
pronounced here than for the colon cancer samples. So despite
the redundancy of the shift information for the cervical data, this
result indicates that measuring biological samples without buffer-
ing might reveal biologically relevant differences that would be
obscured otherwise.

It is not hard to see why icoshift and fastpa provided warping
coefficients that are suitable for subsequent multivariate analysis.
These MRS-oriented methods align their segments independently;

therefore corresponding shifts will always occur at the same posi-
tion in the spectra. Opposed to that, for VPdtw, the effect of warping
is cumulative, and the actual stretching occurs at slightly different
places for different spectra even if they have similar misalignments
(results not shown). The alignment of COW is also cumulative, but
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ig. 6. PLS-DA classification results for different alignment methods. Results from t
esults of the unaligned data (a) classification results of the cervical cancer data; (b)
ata; (d) classification results of the cervical cancer warping coefficients.

ts segmented nature largely prevents it from showing many local
ifferences. Thus, it is not surprising that COW’s warping coeffi-
ients for the cervical cancer data also led to good classification
esults. Both for VPdtw and COW, classification was also attempted
sing the cumulative sums of their warping functions instead, to
further) alleviate the local differences, but this did not improve the
esults. For PTW, alignment was performed using a quadratic func-
ion, and it can be assumed that the relevant shifts in the spectra

ere too complex to be modelled well by this function.

To summarize, the results presented here show that alignment
f the data using the warping methods examined in this work not
lways improves the classification results compared to unaligned
ata. However, alignment improved the interpretability of the

able 2
valuation of alignment methodsa.

Alignment method Programming
stability

Memory
efficiency

Speed

Icoshift + + ++
COW + − −
Fastpa − − + 0
VPdtw + + +
PTW + + 0

a ++, very good; +, good; 0, moderate; −, improvement advisable; − −, improvement ne
b COW parameters were optimized to conserve peak shape prior to alignment.
c The alignment quality is assessed based on the end result after optimization of the pa
e 10 different references as in Fig. 4 are shown. The red line denotes classification
cation results of the breast cancer data; (c) classification results of the colon cancer

resulting model by providing less ambiguous loading profiles for
PLS-DA, similar to the observations in Refs. [43–45]. This is espe-
cially important in situations where discriminating between two
classes is not the only interest, but where one is also interested in
looking at the differences in metabolic profiles to interpret biologi-
cal incidences in the tissue. For that purpose, alignment will always
be preferable.
3.2.4. Algorithms
Table 2 summarizes the evaluations of the different warping

algorithms. Overall, icoshift and COW gave good alignment results
and preserved the peak shapes. For COW, the optimization rou-
tine has a large part in this. Icoshift required quite some manual

Optimization of
parameters

Peak
conservation

Artifact- free Alignment
qualityc

0 ++ − +
+ +b ++ ++
− 0 0 +
0 + 0 0
0 0 ++ 0

cessary.

rameters.
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Table 3
Benchmarks. Time consumptions for alignment of the breast cancer data set using
the same reference spectrum.

Alignment method Time (s)

Icoshift 3.73
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COW 292
Fastpa 87.0
VPdtw 42.8
PTW 149

ptimization, but this was not considered a problem because of
ts speed, and the end results were satisfactory. For the parame-
er combinations allowed by the algorithm, fastpa also gave good
lignment results, but at the expense of larger peak shape changes.
his is not surprising when looking at Fig. 1: fastpa’s warping paths
ere typically more extreme than those of the other algorithms.

he segmentations of the spectra offered by fastpa and its prede-
essor [30] were typically good, however. A combination of this part
f the algorithm with the alignment power of COW or icoshift may
e worthwhile. Both VPdtw and PTW delivered variable results.
he variable penalty in VPdtw clearly prevents the algorithm from
eforming the spectra, but optimizing the resulting alignments is
ot trivial. The polynomial warping function of PTW is probably not
exible enough to model the local shifts occurring in NMR spectra
ery well.

The time consumption for alignment varies a lot among the
ethods. Table 3 shows the benchmarks for alignment of the

reast cancer data set using the same reference spectrum. The
enchmarks were obtained on a Dell Latitude E6400 laptop,
quipped with an Intel Core 2 Duo P9500 processor running at
.53 GHz and 3.48 GB of RAM. The operating system was Microsoft
indows XP SP3 (32 bit). Alignments with icoshift, COW and

astpa were performed in Matlab, version 7.7.0.471 (R2008b),
hile VPdtw and PTW alignments were performed in R, version

.9.2.
Icoshift was the fastest warping method, and alignment of a data

et of 209 spectra was done in a few seconds. COW, on the other
and, was the most time-consuming of the methods tested here,
nd used minutes to perform the same alignment. Also, COW some-
imes runs into memory problems for large data sets. This can be
vercome by choosing different parameters, or by dividing the data
et in smaller subsets. Obviously, this may result in a final alignment
hat is not the optimal one for the data set.

The benchmarks shown here do not include optimization of
he parameters, as that largely depends on the effort put into the
rocedures by the user. For fastpa, three parameters have to be opti-
ized, as opposed to the other methods with only two parameters.

his made fastpa more time-consuming to optimize. In addition,
ome combinations of fastpa parameters will give an error without
ny obvious reason. COW has an automatic optimization procedure
hat is time-consuming; however, it requires a minimum of effort
rom the user.

Although the evaluations in this paper were limited to MRS data,
ome of the observations above can safely be generalized to other
ypes of data. Together with the conclusions in Refs. [23,24] it is
lear that the rigidness of PTW’s polynomial warping function lim-
ts its general applicability compared to COW. (At the same time,
his is not to say that there are no situations in which such a rigid but
lso relatively simple warping function may be preferable; the data
n the original PTW-paper were aligned in a satisfactory manner,
or instance.) The ‘wild’ behaviour of fastpa is also something that

eems to be inherent to that method and is expected to be indepen-
ent of the exact type of data. Time consumption of alignments will
ostly depend on data size and data complexity; the benchmarks

n Table 3 can thus safely be used as an indication, regardless of the
rigins of the data.
himica Acta 683 (2010) 1–11

3.2.5. General recommendations
Based on the observations in this study, we have the follow-

ing recommendations for the alignment of HR-MAS MRS data from
tissue samples:

• As a default method, icoshift is a good choice. It is fast, stable
and gives good results. Its results should be thoroughly checked
by visual inspection, though, and it may require some trial and
error to prevent peaks from disappearing or artifacts to occur.
However, its speed makes this feasible.

• When large local shifts occur in crowded data, or the results do
not get satisfactory, COW is a good alternative. Although it is
rather slow and memory intensive, this problem is alleviated
somewhat by the computational power of current computers.
COW robustly provides good alignment results and because it
uses stretching instead of independent shifting for alignment, it is
well suited to provide alignments exactly when icoshift runs into
trouble. The pre-alignment optimization of the slack and segment
length parameters ensures that peak shapes will be minimally
affected.

• It is a good idea to try out a number of references for alignment.
Although choosing the sample with the highest average correla-
tion never seems to give bad results, it does not necessarily lead
to the optimal result. Trying more references is a small effort and
gives an idea of the variability of the results. Moreover, it is likely
to provide a result close to the optimum that can be achieved.

• In general, a truly automatic warping procedure does not exist.
The best alignment will not be achieved without putting some
effort into optimizing alignment parameters, scaling, and finding
a good reference.

• Visual inspection of the end result is an absolute necessity.
Numerical measures can indicate a good result even if artifacts
are present. At the same time, it should be kept in mind that
visual inspection on its own is not infallible, since it is prone to
subjective judgment.

4. Conclusion

In this paper, we investigated the suitability of five warping algo-
rithms for aligning HR-MAS MR spectra to make them amenable
to further multivariate analysis. Furthermore, we extracted shift
information from the spectra and tested if it can be used in multi-
variate analysis.

Alignment of the data sets greatly improved their internal sim-
ilarity compared to unaligned data. The differences in alignment
quality between the algorithms examined in this study were not
very large in general. Icoshift, COW and fastpa gave a good over-
all alignment result for HR-MAS data, but fastpa currently has too
many drawbacks for general use. Both icoshift and COW also con-
served the peak shapes of the spectra. Whether the algorithms were
designed for chromatographic data or MR spectra did not seem to
have an influence in general on their suitability for aligning MRS
data. Comparison of our results with previous studies on chromato-
graphical and CE data allowed generalization of some observations.

Both the choice of reference and the effort that is put into align-
ing are important factors in reaching the optimal alignment result.
It is therefore advisable to try a number of different spectra as ref-
erences and to optimize the parameter settings of the algorithms.

Based on the previous evaluations, general recommendations
for aligning HR-MAS MRS data were proposed, including a sug-

gestion for the algorithms to choose. The evaluation methodology
discussed in this paper is generic and appropriate for assessing the
suitability of warping methods for other types of data.

Finally, the extraction of shift information from spectra by
means of the five warping algorithms has been demonstrated in
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