Regulation of serum hepcidin levels in sickle cell disease

The peptide hormone hepcidin exerts its function by binding to the transmembrane cellular iron exporter ferroportin and inducing its internalization and degradation, resulting in decreased intestinal iron uptake and iron retention in the reticuloendothelial (RE) macrophages. Inflammatory cytokines and iron loading increase hepcidin production, while increased bone marrow activity, and anemia suppress hepcidin synthesis. However, most of the evidence of these regulatory processes is obtained by molecular in vitro work and mice models, and much is still unknown about how these different stimuli interact in man.

Sickle cell disease (SCD) patients are characterized by chronic hemolytic anemia, increased erythropoiesis and a chronic inflammatory state with endothelial activation and enhanced red cell and leukocyte adhesion. Sickle cell patients have iron overload due to chronic blood transfusions in the treatment or prevention of the severe sickle cell-related complications such as stroke. SCD has been associated with low urinary hepcidin levels in children. However, serum hepcidin 25-amino acid isoform (hepcidin-25) levels, which are directly responsible for the biological effect, have not been documented and factors that contribute to hepcidin regulation in this disease have not been assessed.

Table 1. Characteristics of study populations of adult sickle cell disease patients in steady state of their disease.

<table>
<thead>
<tr>
<th>Gender (M/F)</th>
<th>Age (years)</th>
<th>Transfused PCU (kg/m²)</th>
<th>BMI (mmol/L)</th>
<th>Hb (mg/L)</th>
<th>MCV (U/L)</th>
<th>ALT (µg/L)</th>
<th>Ferritin (mg/L)</th>
<th>TS (mg/L)</th>
<th>CRP (mg/L)</th>
<th>sTfR (mg/L)</th>
<th>Reticulocytes (%)</th>
<th>Hepcidin-25 (mmol/L)</th>
<th>Urine Hepcidin-25 (mmol/L)</th>
<th>Urine sTfR (mmol/L)</th>
<th>Urine CRP (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 F</td>
<td>24</td>
<td>32</td>
<td>SS</td>
<td>31.9</td>
<td>5.9</td>
<td>92.2</td>
<td>81</td>
<td>4470</td>
<td>39.5</td>
<td>50</td>
<td>7.79</td>
<td>11.00</td>
<td>5.5</td>
<td>1.7</td>
<td>1.2</td>
</tr>
<tr>
<td>2 M</td>
<td>22</td>
<td>15</td>
<td>SS</td>
<td>19.4</td>
<td>6.0</td>
<td>60</td>
<td>21</td>
<td>213</td>
<td>71.7</td>
<td>5</td>
<td>8.93</td>
<td>-</td>
<td><LLOD</td>
<td>0.1</td>
<td>2.3</td>
</tr>
<tr>
<td>3 F</td>
<td>52</td>
<td>16</td>
<td>SS</td>
<td>23.9</td>
<td>5.4</td>
<td>110</td>
<td>8</td>
<td>2051</td>
<td>44.4</td>
<td>8</td>
<td>5.36</td>
<td>10.80</td>
<td>9.5</td>
<td>2.5</td>
<td>1.2</td>
</tr>
<tr>
<td>4 F</td>
<td>45</td>
<td>67</td>
<td>SS</td>
<td>18.9</td>
<td>4.6</td>
<td>85.8</td>
<td>16</td>
<td>108</td>
<td>24.1</td>
<td><5</td>
<td>5.85</td>
<td>8.80</td>
<td><LLOD</td>
<td>0.1</td>
<td>4.6</td>
</tr>
<tr>
<td>5 F</td>
<td>18</td>
<td>2</td>
<td>SS</td>
<td>21.1</td>
<td>6.0</td>
<td>96.2</td>
<td>16</td>
<td>140</td>
<td>42.6</td>
<td><5</td>
<td>4.85</td>
<td>10.00</td>
<td><LLOD</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>6 F</td>
<td>22</td>
<td>5</td>
<td>SS</td>
<td>21.9</td>
<td>5.2</td>
<td>93.1</td>
<td>14</td>
<td>438</td>
<td>39.6</td>
<td><5</td>
<td>7.69</td>
<td>19.20</td>
<td>1.5</td>
<td>0.3</td>
<td>3.4</td>
</tr>
<tr>
<td>7 F</td>
<td>33</td>
<td>51</td>
<td>SS</td>
<td>19.8</td>
<td>4.0</td>
<td>90.1</td>
<td>26</td>
<td>210</td>
<td>41.9</td>
<td>10</td>
<td>10.40</td>
<td>17.50</td>
<td>1.5</td>
<td>0.3</td>
<td>3.4</td>
</tr>
<tr>
<td>8 F</td>
<td>45</td>
<td>24</td>
<td>SS</td>
<td>18.0</td>
<td>6.1</td>
<td>99.9</td>
<td>68</td>
<td>739</td>
<td>23.3</td>
<td><5</td>
<td>5.81</td>
<td>7.50</td>
<td>3.4</td>
<td>1.4</td>
<td>7.3</td>
</tr>
<tr>
<td>9 F</td>
<td>46</td>
<td>11</td>
<td>SS</td>
<td>31.3</td>
<td>5.2</td>
<td>125</td>
<td>10</td>
<td>293</td>
<td>31.2</td>
<td>12</td>
<td>6.14</td>
<td>13.10</td>
<td>2.4</td>
<td>0.4</td>
<td>8.2</td>
</tr>
<tr>
<td>10 F</td>
<td>19</td>
<td>8</td>
<td>SS</td>
<td>22.5</td>
<td>5.4</td>
<td>84.2</td>
<td>52</td>
<td>180</td>
<td>25.5</td>
<td>10</td>
<td>6.87</td>
<td>8.30</td>
<td>1.2</td>
<td>0.5</td>
<td>6.7</td>
</tr>
<tr>
<td>11 F</td>
<td>41</td>
<td>43</td>
<td>SS</td>
<td>19.3</td>
<td>4.9</td>
<td>88.9</td>
<td>49</td>
<td>826</td>
<td>42.0</td>
<td>10</td>
<td>5.50</td>
<td>7.80</td>
<td>7.6</td>
<td>0.6</td>
<td>9.2</td>
</tr>
<tr>
<td>12 F</td>
<td>33</td>
<td>30</td>
<td>SS</td>
<td>24.4</td>
<td>6.0</td>
<td>65.5</td>
<td>7</td>
<td>392</td>
<td>21.8</td>
<td>6</td>
<td>7.96</td>
<td>6.30</td>
<td>1.2</td>
<td>0.5</td>
<td>3.1</td>
</tr>
<tr>
<td>13 F</td>
<td>24</td>
<td>n.a.</td>
<td>SC</td>
<td>21.2</td>
<td>5.9</td>
<td>74.7</td>
<td>7</td>
<td>40</td>
<td>23.5</td>
<td><5</td>
<td>4.03</td>
<td>3.00</td>
<td><LLOD</td>
<td>0.1</td>
<td>12.5</td>
</tr>
<tr>
<td>14 M</td>
<td>32</td>
<td>19</td>
<td>SC</td>
<td>27.6</td>
<td>8.6</td>
<td>85.7</td>
<td>26</td>
<td>91</td>
<td>32.8</td>
<td><5</td>
<td>2.72</td>
<td>2.70</td>
<td>1.4</td>
<td>0.1</td>
<td>15.4</td>
</tr>
<tr>
<td>15 F</td>
<td>29</td>
<td>4</td>
<td>SC</td>
<td>22.8</td>
<td>6.6</td>
<td>73.1</td>
<td>13</td>
<td>65</td>
<td>21.6</td>
<td><5</td>
<td>2.23</td>
<td>1.60</td>
<td>3.6</td>
<td>0.5</td>
<td>55.4</td>
</tr>
<tr>
<td>16 F</td>
<td>40</td>
<td>n.a.</td>
<td>SC</td>
<td>24.2</td>
<td>7.3</td>
<td>71.1</td>
<td>6</td>
<td>49</td>
<td>18.5</td>
<td><5</td>
<td>3.15</td>
<td>1.60</td>
<td>1.7</td>
<td>0.2</td>
<td>34.7</td>
</tr>
<tr>
<td>Med.n.a. 18 (range 18-52)</td>
<td>18</td>
<td>(0-67)</td>
<td>n.a.</td>
<td>22.2</td>
<td>(4.0-31.9)</td>
<td>45.8</td>
<td>19</td>
<td>212</td>
<td>32.0</td>
<td>10</td>
<td>(5-50)</td>
<td>(2.33-10.40)</td>
<td>8.30</td>
<td>(0.5-9.5)</td>
<td>(0.1-17.2)</td>
</tr>
<tr>
<td>Med.n.a. 37 (range 25-61)</td>
<td>37</td>
<td>(15-20.5)</td>
<td>n.a.</td>
<td>26.9</td>
<td>8.6</td>
<td>80.6</td>
<td>6</td>
<td>79</td>
<td>36.7</td>
<td><5</td>
<td>0.76</td>
<td>1.70</td>
<td>1.8</td>
<td>1.5</td>
<td>22.8</td>
</tr>
</tbody>
</table>

Table 1. Characteristics of study populations of adult sickle cell disease patients in steady state of their disease.

1Patients 3 and 9 receive maintenance therapy with hydroxyurea; # patients with co-inherited β-thalassemia; ^ these controls are race matched carriers and do not have anemia, enhanced hemolysis or inflammation; – indicates lab results are not available; n.a. not applicable; LLOD: lower limit of detection (0.5 nM). CRP is set <5 mg/L when there is no indication of inflammation. Reticulocytes are expressed as the % reticulocytes of the population of red blood cells and reticulocytes. PCU: packed cell units; BMI: body mass index; Hb: hemoglobin; MCV: mean corpuscular volume; ALT: alanine aminotransferase; TS: transferrin saturation; CRP: C-reactive protein; sTfR: soluble transferrin receptor; RS: ratios of the total transferrin receptor in the body and reflects both the cellular need for iron and the rate of erythropoiesis; cr: creatinine. Reference range Caucasian controls hepcidin-25 (n=24), serum 0.5-13.9 nm and urine 0.01-10.6 nmol/mmol creatinine (www.hepcidinanalysis.com); MCV 80-98 fL; serum TS female 15-50%; TS male 20-50%; ferritin female premenopausal 6-80 µg/L, ferritin female postmenopausal 6-190 µg/L, ferritin male 15-280 µg/L; sTfR 0.76-1.76 mg/L.
Samples were collected from adult steady state SCD patients with various hemoglobin (Hb) genotypes (9 HbSS, 3 HbSβ-thalassemia and 4 HbSC, Table 1) between February 2005 and February 2006, and stored in polypropylene tubes at −80°C until analysis. Patients received no transfusions or chemotherapy for two months prior to sampling. Race matched controls were heterozygous for HbS or C. Serum and urinary hepcidin-25 measurements were performed in November and December 2007 by use of surface enhanced laser desorption ionization-time of flight mass spectrometry (SELDI-TOF MS) as previously described. The hepcidin regulators’ inflammation, iron store and erythropoiesis (reflected in the serum markers C-reactive protein (CRP), ferritin and soluble transferrin receptor (sTfR), respectively) were assessed to delineate the regulatory pathways of hepcidin. Approval for the study was obtained from the Medical Ethics Committee of the Academic Medical Center in Amsterdam.

We found the various serum parameters to vary widely within this population (Table 1). Of note is the pattern of the serum iron parameters, which shows highly variable ferritin levels, not simply related to the transfusion history and in the presence of normal transferrin saturation (TS). This suggests an iron distribution pattern of the anemia of chronic disease, with relatively more iron in the RE system.

Serum hepcidin-25 levels were below the lower limit of detection (LLOD <0.5 nM) in 5 SCD patients, while in the rest, the levels were between 1 and 10 nM, which is considered to be the normal range (Table 1). The median serum and urine hepcidin-25 levels were similar for patients and controls (p=0.2), but hepcidin-25/ferritin ratio’s as a measure of appropriateness of hepatocyte-produced hepcidin for the iron burden, were significantly lower for patients (p<0.01) (Table 1). However, as ferritin in SCD might be increased by inflammation and iron loading of RE cells by transfusions, this ratio might not be suitable in the evaluation of the adequacy of hepcidin in response to hepatocyte iron loading.

Results confirm that erythropoiesis down-regulates hepcidin-25, i.e. when only sTfR is increased, serum hepcidin-25 levels are in the lower normal range or even not detectable (<LLOD-3.6 nM; patients 2, 4, 5, 13-16). In cases where next to a substantially increased sTfR inflammation and/or high iron stores are also present, serum hepcidin-25 levels are in the normal range (1.2-9.5 nM; patients 1, 3, 6, 8-12) confirming the induction of hepcidin by inflammation and elevated iron stores in sickle cell patients. Interestingly, in patient 7 the low hepcidin-25 level due to increased erythropoiesis (highly elevated sTfR) is not compensated by low grade inflammation (CRP of 10 mg/L) and a slightly elevated iron store (ferritin of 210 µg/L), resulting in undetectable serum hepcidin-25 levels.

While this is a small study, the results only describe the qualitative contribution of the various parameters to hepcidin-25 levels. Nevertheless, Spearman’s correlation analysis showed that serum hepcidin-25 levels were significantly correlated with urine hepcidin-25, log ferritin, Body Mass Index (BMI)2,3 (Figure 1A-C) and age, but not with CRP, sTfR, TS (Figure 1D-F) and hemoglobin.

In conclusion, this proof of principle study in a heterogeneous group of SCD patients indicates that: (i) previous results obtained in vitro and mice studies of hepcidin-25 suppression by increased erythropoietic activity that is counterbalanced by iron stores and (low grade) inflammation are also valid in man; (ii) larger studies are needed to determine the quantitative contribution of various factors to hepcidin-25 regulation in this disease. The insights gained in this study could be clinically beneficial in the identification and treatment of patients most at risk of iron mediated tissue damage.

Joyce J.C. Kroot, Coby M.M. Laarakkers, Erwin H.J.M. Kemna, Bart J. Biemond, and Dorine W. Swinkels

1Dept. of Clinical Chemistry, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands; 2Dept. of Hematology, Amsterdam Medical Center, Amsterdam, The Netherlands

Correspondence: Dorine W. Swinkels, Department of Clinical Chemistry 444, Radboud University, Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
Phone: international +31.24.3618957. Fax: international +31.24.3541743. E-mail: d.swinkels@akc.umcn.nl

Key words: serum hepcidin, sickle cell disease.

Citation: Kroot JJC, Laarakkers CMA, Kemna EHJM, Biemond BJ, and Swinkels DW. Regulation of serum hepcidin levels in sickle cell disease. Haematologica 2009;94:885-887. doi:10.3324/haematol.2008.003152

References
5. van Beers EJ, Nieuwdorp M, Duits AJ, Evers LM, Schnog
70 and CD38) change in the course of the disease.

earliest disease stages and never (IgVH) or rarely (ZAP-
IgVH gene status, ZAP-70 and CD38, which represent
compared to the newer biological markers, such as
predictive power particularly at the early disease stages
Therefore,
is low, irrespective of the subsequent clinical outcome.
constraints the predictive value of
serum concentration could vary in the course of the disease and be r ela-
premises the predictive value of
and urine: analytical aspects and clinical implications.

Swinkels DW, Girelli D, Laarakkers C, Kroot J, Camptostrini N, Kemna EH, et al. Advances in quantita-
tive hepcidin measurements by time-of-flight mass spect-

Kemna EH, Kartikasari AE, van Tits LJ, Pickkers P, Tjalsma H, Swinkels DW. Regulation of hepcidin:
insights from biochemical analyses on human serum

Swinkels DW, Drenth JP. Hepcidin in the management of
patients with mild non-hemochromatotic iron overload:

Bekri S, Gual P, Anty R, Luciani N, Dahman M, Ramesh
B, et al. Increased adipose tissue expression of hepcidin in
severe obesity is independent from diabetes and NASH.
Gastroenterology 2006;131:788-96.

Predictive value of β2-microglobulin (β2-m) levels in chronic lymphocytic leukemia since
Binet A stages

We read with interest the study by Rossi and co-
workers, reporting CD49d expression as risk factor of
treatment free survival (TFS) in Binet A CLL patients.1 In
this paper, a close association between CD49d and
CD38, LDH and β2-m is also described. We would like
to add further information about the prognostic power of
β2-m. It is generally believed that β2-m is released
constitutively by CLL cells and that its level approxi-
mately correlates with tumor mass.2 Based on these
premises the predictive value of β2-m serum concentra-
tion could vary in the course of the disease and be rela-
tively low in the early disease stages, when tumor mass
is low, irrespective of the subsequent clinical outcome.
Therefore, β2-m determination could exhibit a lower
predictive power particularly at the early disease stages
compared to the newer biological markers, such as
IgVH gene status, ZAP-70 and CD38, which represent
intrinsic cell features that can be determined since the
earliest disease stages and never (IgVH) or rarely (ZAP-
70 and CD38) change in the course of the disease.

In order to explore this issue, we have measured
β2-m value in 222 Binet stage A patients at diagnosis. IgVH
gene status and CD38 expression were also determined in
all cases studied. Unlike β2-m, which was measured
at diagnosis, these markers were determined in the
course of the disease when marker determinations
became available. This approach, although irrelevant for
the IgVH gene status, may introduce some, albeit minor,
biases for CD38 for the reasons alluded to above. The
median β2-m value was 2 mg/dl (range 0.4-19). ROC
analysis determined that the cut-off value capable of
discriminating between patients whose disease pro-
gressed and required treatment from those with stable
disease was 2.4 mg/dL (AUC:0.67, p = 0.005). Accordingly 149/222 patients (67%) were β2-m<30% and
73/222 (33%) as β2-m≥30%. Overall, the results did not
substantially change when arbitrary cut offs used by
other authors were employed.

The patients’ features are summarized in Table 1. β2-
m levels overlap with CD38 expression in 128/219 cases
(63%) [β2-m<30%/CD38<30% cases: 23/55 (41.8%), β2-
m≥30%/CD38≥30% cases: 115/164 (70.1%)], while β-m

levels overlap with IgVH status in 125/195 cases
(64.1%) [β2-m<30%/IgVHmutated cases: 29/62 (46.8%),
β2-m≥30%/IgVHmutated: 96/133 (72.2%)]. Finally, the
concordance between CD38 expression and IgVH muta-
tional status was 77.6% (149/192 cases)
[IgVHmutated/CD38≥30% cases: 35/52 (67.3%),
IgVHmutated/CD38<30% cases: 114/140 (81.4%)].

After a median follow-up of 3.5 years, 55 of 222 Binet
stage A (25%) required treatment. β2-m≥30% cases showed
a significantly longer TFS than β2-m<30% cases; in particu-
lar the projected median TFS was 5.3 years for β2-m<30%
versus not reached for β2-m≥30% (Figure 1A). TFS repre-
sented a reliable measure of disease progression since all
centers agreed to follow NCI guidelines for treatment
start.

In order to ascertain whether β2-m identifies a patient
subset of those with good prognostic markers, we calcu-
lated TFS of both CD38<30% and IgVHmutated CLL
cases grouped according to the β2-m expression. β2-m<30%,
CD38<30% cases exhibited a TFS which was signifi-
cantly lower than that of β2-m≥30% CD38<30% cases (3.5-
years TFS probability: β2-m<30% vs. β2-m≥30% 91% vs. 83%;
p = 0.05). However, these differences were not seen in
the IgVHmutated cases (3.5-years TFS probability: β2-
m<30% vs. β2-m≥30% 89% vs. 84%; p = ns).

At Cox univariate analysis, β2-m<30% (HR:2.3, p = 0.003),
CD38>30% (HR:3.9, p < 0.0001) and IgVHmutated (HR:3.2,
p < 0.0001) showed a statistically significant impact on TFS. At Cox multivariate analysis, all the
three markers maintained an independent prognostic
impact (β2-m<30%, HR:1.8, p = 0.047; CD38>30%, HR:2.0,
p = 0.03; IgVHmutated, HR:2.7, p = 0.022). When a
scoring system in which one point was assigned to each
unfavorable prognostic marker was utilized, the risk of
an early treatment was highest (Figure 1B) in patients
presenting all the three adverse prognostic markers.
Cases with two, one or none of the unfavorable prog-
nostic factors showed lower risk for an early treatment
(Figure 1C).

Collectively, this study shows that β2-m levels repre-
sent valuable predictors in early CLL stages, when the
neoplastic cell burden is low. This finding raises a num-
ber of questions regarding the mechanisms governing
the β2-m levels. This molecule is constantly shedded

Table 1. Comparisons of clinical and laboratory features among
chronic lymphocytic leukemia patients devised according to β2-m
expression.

<table>
<thead>
<tr>
<th>All patients</th>
<th>β2-m <2.4 mg/d</th>
<th>β2-m ≥2.4 mg/d</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. of patients</td>
<td>222</td>
<td>149 (67)</td>
<td>73 (33)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤65</td>
</tr>
<tr>
<td>>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IgVH mutational status (n=195)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutated</td>
</tr>
<tr>
<td>Germinal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CD38 expression (n=219)</th>
</tr>
</thead>
<tbody>
<tr>
<td><30%</td>
</tr>
<tr>
<td>≥30%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
</tr>
<tr>
<td>yes</td>
</tr>
</tbody>
</table>

Letters to the Editor | 2009; 94(6) | 887 |