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The promoter regions of genes that are differentially 
regulated in the synovial membrane during the course of 
rheumatoid arthritis (RA) represent attractive candidates 
for application in transcriptionally targeted gene therapy. 
In this study, we applied an unbiased computational 
approach to define proximal-promoters from a gene 
expression profiling study of murine experimental arthri-
tis. Synovium expression profiles from progressing stages 
of collagen-induced arthritis (CIA) were classified into six 
distinct groups using k-means clustering. Using an algo-
rithm based on local over-representation and comparative 
genomics, we identified putatively functional transcription 
factor–binding sites (TFBS) in TATA-dependent proximal-
promoters. Applying a filter based on spacing between 
TATA box and transcription start site (TSS) combined 
with the presence of over-represented nuclear factor κB 
(NFκB), AP-1, or CCAAT/enhancer-binding protein β (C/
EBPβ) sites, 382 candidate murine and human promoters 
were reduced to 66, corresponding to 45 genes. In vitro, 9 
out of 10 computationally defined promoter regions con-
ferred cytokine-inducible expression in murine cells and 
human synovial fibroblasts. Under these conditions, the 
serum amyloid A3 (Saa3) promoter showed the strongest 
transcriptional induction and strength. We applied this 
promoter for driving therapeutically efficacious levels of 
the interleukin-1 receptor antagonist (Il1rn) in a disease-
regulated fashion. These results demonstrate the value of 
bioinformatics for guiding the selection of endogenous 
promoters for transcriptionally targeted gene therapy.
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18 August 2009. doi:10.1038/mt.2009.182

IntroductIon
Selective spatial and temporal expression of a therapeutic trans
gene has a major impact on the safety and efficacy of gene thera
peutic treatments for human disease. This can be  accomplished 

by transcriptional targeting using endogenous or synthetic 
cisregulatory DNA regions, which facilitate tissue/cellspecific 
or physiologically regulated expression. Predominantly in cancer 
gene therapy, numerous tumor/tissuespecific or drug/radiation
inducible promoters have been developed and applied.1

With emphasis on the discontinuous clinical course of rheu
matoid arthritis (RA), which is characterized by spontaneous 
remissions and exacerbations of joint inflammation, transcrip
tionally targeted gene therapy appears ideally suited. The few 
endogenous promoters that have been tested in RA thus far were 
empirically derived. Efficacious inflammationresponsive expres
sion in experimental arthritis has been accomplished using the 
promoter elements of the murine acutephase response gene 
complement factor 3 (C3) (refs. 2,3) and the human cytokine 
gene interleukin6 (IL6) (ref. 4). Although IL6 and C3 promoters 
showed high specificity toward inflammation, they only conferred 
weak transcriptional activity that had to be enhanced artificially 
using an interleukin1 enhancer region5 or a recombinant human 
immunodeficiency virus1tat transcriptional activator,6 respec
tively. However, the application of the latter approach is hampered 
due to the immunogenic properties of human immunodeficiency 
virus1 tat.

The promoter of a gene is defined as the cisregulatory DNA 
region that drives transcription in response to environmental sig
nals. Roughly, a promoter can be divided into a core, proximal, 
and distalpromoter region. The corepromoter encompasses the 
80–100 base pair (bp) region surrounding the transcription start 
site (TSS) and is required for assembly of the preinitiation com
plex.7 Bioinformatic analyses of mammalian core promoters have 
revealed that the spacing between the TATA box and TSS affects 
the transcriptional specificity of the downstream transcript, and 
the highest specificity has been observed for TATATSS distances 
between −32 and −29 (ref. 8). In mouse, the most common TATA
TSS spacings are 30 and 31 bp (ref. 9), and most functional TATA 
boxes reside in a window ranging from positions −34 to −27 rela
tive to the TSS.8 The proximalpromoter (−500/+200 relative to 
the TSS) contains modules of transcription factor–binding sites 
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(TFBS) that confer tissue and contextspecific expression.10 Several 
bioinformatics tools have been developed for computational iden
tification of these TFBS in eukaryotic promoters (reviewed in 
ref. 11). The accuracy of prediction of TFBS that are functional 
in vivo has been significantly enhanced using the combination of 
phylogenetic footprinting with sets of coregulated genes.12 These 
methods have been used to successfully identify cartilage13 or 
musclespecific14 cisregulatory elements in mammals.

In this study, we computationally designed and verified 
endogenous proximal promoters from a gene expression profil
ing study of murine collageninduced arthritis (CIA) for tran
scriptionally targeted gene therapy for RA. The 201 genes that 
were significantly regulated during advancing CIA severity stages 
were divided in clusters of distinct expression profiles using 
k-means clustering. Next, overrepresented TFBS per cluster were 
 calculated in  proximalpromoter sequences of the genes and their 
human orthologs that contained a putative TATA box within the 
−44 to −17 bp region relative to the TSS. We investigated the tran
scriptional properties of 10 computationally identified proximal
 promoter regions in vitro using lentiviral luciferase reporters. Nine 
out of ten promoters drove gene expression in a cytokine inducible 
fashion. The serum amyloid A3 (Saa3) proximalpromoter con
ferred high transcriptional specificity and activity toward inflam
mation, and we demonstrated that this promoter improved the 
efficacy of transcriptionally targeted adenoviral gene therapy 
using interleukin1 receptor antagonist (Il1rn) as a transgene.

results
K-means clustering of cIA gene expression profiles
In local gene therapy for RA, the synovial tissue (which is) a thin layer 
of connective tissue consisting of fibroblast and macrophagelike 
cells is transduced by viral vectors.15 To elucidate candidate genes 
whose proximalpromoter might confer inflammationinducible 
expression, we analyzed gene expression profiles in inflamed syn
ovium of mice with CIA. Whole genome expression profiles were 
obtained from synovial tissue biopsies of knee joints from both 
naive and DBA/1J mice at day 30 of CIA using the Mouse Genome 
430 2.0 array (Figure 1a). Prior to isolation, we semiquantitatively 
scored the degree of joint inflammation and subdivided samples 
in four advancing stages of disease severity (Figure 1b). For each 
stage, hybridization experiments were performed in triplicate and 
data normalized using MAS 5.0 software. Using EXPANDER 4.1 
software,16 we obtained 234 Affymetrix probes that correspond to 
201 unique Ensembl genes whose expression was at least tenfold 
upregulated in at least three severity stages compared to naive con
ditions. Next, the standardized (mean 0 and variance 1) expression 
profiles were partitioned into distinct clusters using the kmeans 
algorithm. Partitioning into six clusters resulted in the most opti
mal average separation (0.913) and homogeneity (0.938) of clus
ters. The average standardized expression levels of the clusters are 
plotted in Figure 1c. The annotation of the probe identities per 
cluster is documented in Supplementary Table S1.

AP-1, c/eBPβ, and nF-κB-binding sites are 
over-represented in tAtA proximal-promoters
To filter for promoters with high transcriptional  specificity 
toward inflammation, we analyzed the murine and human 

orthologous proximalpromoters (−500/+200 region) for the 
presence of a putative TATA box within a −44 to −17 bp window 
relative to the TSS. The promoter sequences of 191 murine and 
human orthologs (Supplementary Table S2) were retrieved from 
the Cold Spring Harbor Promoter database,17 and putative TATA 
box–binding sites were searched with the program PATSER18 
using TATA_01 (M00252) and TBP_01 (M00471) position weight 
matrices (PWMs) in the TRANSFAC 7.0 (ref. 19) database. For 
37 genes, a putative TATA box was predicted in both murine and 
human promoter sequences. Additionally, a single TATA TFBS 
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Figure 1 cluster analysis of gene expression profiles from collagen-
induced arthritis. (a) Schematic overview of the collagen-induced 
arthritis model. DBA/1J mice were immunized at day 0 by intradermal 
injection of bovine collagen type II (bCII). Immunized mice received an 
intraperitoneal booster injection of bCII at day 21 that triggers arthritis 
onset. After 10 days of arthritis progression, knee joints were macro-
scopically scored and divided in the four indicated severity stages. 
(b) Representative hematoxylin and eosin–stained tissue sections of knee 
joints from the four advancing severity stages are shown. M, muscle; 
S, synovium (dotted rectangle); F, femur. (c) Mean expression profiles 
of the eight clusters obtained with k-means clustering in EXPANDER 4.1. 
The y axis represents standardized expression levels. Error bars represent 
the ± 1 SD of the members of each cluster about the mean of the par-
ticular severity stage.
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was predicted in promoter sequences of 21 murine and 12 human 
genes (Table 1). The TATA proximalpromoters were used for 
subsequent identification of over represented cisregulatory ele
ments. For this, we used Transcription Factor MatrixExplorer 
software because it combines motif over representation with 
comparative genomics and takes spatial conservation of cis
regulatory elements into account. Per cluster, overrepresented 
TFBS were searched using PWMs corresponding to human or 
mousebinding factors in the public TRANSFAC and JASPAR20 
databases. Proximalpromoters from clusters 1 and 2 were 

table 1 Putative tAtA-dependent murine and human orthologous 
genes

Gene Posa scoreb ortholog Pos score

Cluster 1

ADAMTS4 −30 5.29

 Arg1 −30 4.58 ARG1 −32 6.36

 Ccl20 −44 7.58 CCL20 −30 9.21

 Clca1 −32 5.32c CLCA1 −30 5.01c

 Cxcl1 −36 8.70 CXCL1 −32 7.64

 Cxcl2 −32 7.86 CXCL2 −44 7.64

CXCL14 −35 5.28

 Il4ra −31 6.22

 Msr1 −29 5.38c

NCAPG −23 5.41c

OLFM4 −32 7.39

 Rrm2 −30 8.12 RRM2 −38 5.58c

SULF1 −40 8.61

 Tnfaip6 −36 5.98c TNFAIP6 −30 5.98c

Cluster 2

 Ccl2 −33 6.88 CCL2 −31 4.33

 Ccl7 −30 9.34 CCL7 −17 9.75

 Cxcl1 −36 8.70 CXCL1 −32 7.64

 Gpr84 −38 4.48 GPR84 −34 3.95c

 Il6 −30 5.28c IL6 −34 3.79c

 Ptgs2 −30 3.67 PTGS2 −30 7.52

 Rrad −33 7.12 RRAD −31 6.47

 Serpbin1a −31 7.38 SERPINB1 −40 8.08

 Socs3 −39 5.41

Cluster 3

 Ankrd1 −32 8.41 ANKRD1 −35 7.43

 Uhrf1 −38 7.67 UHRF1 −21 5.96

Cluster 4

 C1qtnf3 −32 7.29 C1QTNF3 −30 7.67

 Clec4n −31 4.76c

 Cxcl3 −33 9.13

 Ibsp −30 5.28c IBSP −30 5.38c

LRRC15 −31 7.33

 Mmp13 −31 5.53 MMP13 −31 7.50

 Pbk −25 4.27c

 Pmaip1 −30 5.48

 Rspo2 −37 5.67c

 Tnfsf11 −33 4.32c

Cluster 5

CA13 −24 8.70

 Ccl12 −30 5.19

 Clec4e −30 5.69

 Cxcl5 −32 6.41 CXCL6 −33 4.16

EVI2B −29 3.46c

 Has1 −28 4.93

 Il1b −33 7.08 IL1B −33 7.64

 Il1rn −34 7.68 IL1RN −40 4.32c

 Il4ra −31 6.22

 Lcn2 −30 9.39 LCN2 −31 7.71

 Lcp1 −44 6.20c LCP1 −42 6.20c

 Lox −30 3.84c

MS4A7 −29 5.93c

NCAPG −23 5.41c

PAPPA −30 4.98

 Rassf5 −34 7.82

 Timp1 −31 4.06c TIMP1 −30 5.49c

 Tnc −36 8.93 TNC −34 9.38

 Wwox −35 6.71

Cluster 6

 Chi3l1 −23 5.68 CHI3L1 −31 7.63

 Crabp2 −27 8.50

 Hdc −30 4.38c HDC −30 5.70

 Il1rl1 −29 5.98c IL1RL1 −29 3.46c

 Ltb −29 6.73 LTB −30 6.41

 Ltbp2 −29 6.73

 Mmp3 −34 7.89 MMP3 −33 6.95

 Mmp9 −31 4.65c MMP9 −35 4.82

 Mxd1 −31 4.72c

PLEK −31 6.44

 S100a8 −30 9.83 S100A8 −29 8.97

 S100a9 −30 8.31 S100A9 −31 9.81

 Saa3 −33 5.47

 Slpi −30 3.78c SLPI −31 4.99

 Snai2 −36 4.61

 Sox4 −30 5.38c SOX4 −21 5.38c

 Spp1 −30 4.76c SPP1 −32 5.83c

Putative TATA box–binding sites were identified by searching promoter sequences 
with TRANSFAC position weight matrices (PWMs) for TBP_01 (M00471) and 
TATA_01 (M00052) using the PATSER program. Sequences with scores higher 
than the cutoff calculated by PATSER were considered as putative-binding 
site. Promoters with binding sites within the −44/−17 window relative to the 
transcription start site are displayed.
aStart position of the core TATA motif. bPutative transcription factor–binding 
sites based on scores above the numerically calculated cutoff scores for TATA_01 
(range: 4.36–11.76) and TBP_01 (range: 3.45–7.53). cHits for TBP_01 PWM.

table 1 (continued)

Gene Posa scoreb ortholog Pos score
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significantly (P < 10−6) enriched for PWMs corresponding to 
the  transcription  factor Rel/nuclear  factor κB (NFκB). In clus
ters 2, 4, 5, and 6, several PWMs for the transcription  factor 
activator protein1 (AP1) were overrepresented. In contrast, 
promoters of cluster 5/6 genes, whose transcriptional activity 
correlates most closely with disease severity, were enriched for 
CCAAT/enhancerbinding protein β (C/EBPβ) binding sites. 
The majority of overrepresented cisregulatory elements were 
spatially conserved in a narrow 200–100 bp window upstream 
(NFκB −170/−50, AP1 −290/−30, and C/EBPβ –240/−45) of the 
putative TATA box–binding site (Table 2).

Target genes of these transcription factors were identified using 
PATSER with high quality TRANSFAC PWMs, compiled from 
>20 experimentally verified binding sites, NFκB65_01 (M00052), 
AP1_01 (M00517), and CEBPB_01 (M00109). Bona fide hits (P < 
10−8) were ranked according to the log ratio of their p values (ln p) 
(Table 3). From the 97 TATAdependent promoters, 66 contained 
a spatially conserved NFκB, AP1, or C/EBPβ TFBS. Without 
taking spatial conservation into account, 81 promoters contained 
a putative binding site. This strategy has narrowed down the num
ber of candidate proximalpromoters for transcriptional targeting 

in arthritis and provides useful information for rational selection 
of the promoter region.

construction and validation of transcriptionally 
targeted sIn lentiviral vectors
We developed 10 transcriptionally targeted lentiviral vectors, in 
which the firefly (Photinus Pyralis) luciferase complementary DNA 
(cDNA) expression is under control of computationally identi
fied proximalpromoters. All promoters comprised the upstream 
region containing the identified overrepresented TFBS, the TSS, 
and a part of the 5′ UTRexon (Figure 2). To evaluate the basal 
transcriptional activity of the cloned promoter regions, murine 
NIH3T3 fibroblasts were cotransfected with promoter constructs 
and as internal control reporter pRLTK encoding constitutively 
active Renilla Reniformis luciferase. Cells were transfected with a 
promoterless or constitutively active cytomegalovirus immediate
early (CMV) promoter construct as negative and positive control, 
respectively. Assessment of the relative luciferase activity at 2 days 
after transfection revealed that the basal transcriptional activity of 
all generated constructs was approximately three to tenfold lower 
than obtained with the CMV promoter (1,141 ± 48). The strongest 

−455

−319

−434 −365

−468 −198

−350

−363

−486

−314

−400

−499 −444 −138 −36 +63

−98 −31 +29

−154 −79 −52 −33 +50

−52 −31 +19

−177 −73 −34 +19

−303 −230 −95 −33 +53

−144 −28 +54

−160 −125 −23 +44

−89 −32 +31

−131

mCxcl1 C/EBPβ

C/EBPβ C/EBPβ

C/EBPβ C/EBPβ

C/EBPβ

C/EBPβ

C/EBPβC/EBPβ

C/EBPβ

C/EB

AP-1

AP-1

AP-1

TATA

TATA

TATA UTR exonκB

TATA UTR exon

UTR exon

UTR exon

TATA UTR exon

TATA UTR exon

AP-1

AP-1

AP-1

TATA UTR exon

TATA UTR exon

TATA UTR exon

TATA UTR exon

κB

κB

mCxcl5

mChi3l1

mHas1

mMmp3

mMmp13

mSaa3

mTimp1

mTnfaip6

mIL1β

−71 −36 +43

Figure 2 schematic map of promoter regions with putative cis-regulatory elements. Indicated promoter regions were inserted upstream of 
the firefly luciferase complementary DNA in a self-inactivating lentiviral backbone. The position of putative binding sites for TATA, NF-κB, AP-1, 
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and lowest basal activity in murine fibroblasts was observed for 
the promoter regions of Cxcl5 (332 ± 12), Il1b (331 ± 10), Mmp13 
(398 ± 26), Tnfaip6 (342 ± 8), Saa3 (96 ± 3), and Mmp3 (112 ± 10), 
respectively (Figure 3a). Next, we determined the responsiveness 
and kinetics of promoter activities to a proinflammatory stimu
lus. Murine RAW 264.7 macrophages (Figure 3b) or NIH3T3 
fibroblasts (Figure 3c) were transduced with lentiviral promoter
luciferase vectors and after 2 days, challenged with lipopolysaccha
ride (50 ng/ml). Luciferase activity was consecutively measured at 
2hour intervals (0–6 hours) and 24 hours. With the exception of 
the Tnfaip6 (−499/+63) promoter, all constructs showed induction 
of promoter activity in response to tolllike receptor 4 triggering by 
lipopolysaccharide in macrophages. In contrast, a clear promoter 
response in fibroblasts was only observed for Saa3 (−314/+50), 
Cxcl1 (−455/+43), Cxcl5 (−319/+31), and Il1b (−350/−53) promot
ers. Because our computational analyses included the promoter 
regions of human orthologs (Table 1) and the majority of over
represented TFBS were conserved between species (Table 3), we 
investigated whether the murine promoters would be responsive 
in synovial fibroblasts isolated from RA patients (RASF). Primary 
synovial fibroblasts (n = 4) were transduced with lentiviral vec
tors containing the Saa3, Cxcl1, Cxcl5, or Mmp13 promoter. Two 
days after transduction, RASF were stimulated for 24 hours with 
either recombinant human IL1β (0.25 ng/ml) or hTNFα (1 ng/ml) 
alone, or the combination of the two cytokines (Figure 3d). The 
Saa3 promoter activity was most strongly induced by stimulation 
with hIL1β (17 ± 2) or hTNFα (15 ± 2), and the induction was 
less than additive for the combination of stimuli (22 ± 3). As in 
murine fibroblasts, the Cxcl5 and Mmp13 were modestly and non
responsive, respectively. Strikingly, the Cxcl1 promoter activity 
was induced by hIL1β (4.0 ± 0.3) but only marginally by hTNFα 
(1.6 ± 0.2), whereas the combination of cytokines synergistically 
activated the Cxcl1 promoter (7.0 ± 0.8).

Saa3 promoter drives therapeutically efficacious  
Il1rn in a disease-regulated fashion
Previously, we have demonstrated therapeutic efficacy of tran
scriptionally targeted IL4 gene therapy in CIA using a hybrid pro
moter consisting of the enhancer region of IL1B (−3690/−2720) 
fused to the proximal promoter of IL6 (−163/+12) (IL1E/IL6P).4 

table 2 over-represented transcription factor–binding sites in 
k-means clusters

PWM location P value nha nsb

Cluster 1

 NFKAPPAB65_01 −0095/−0049 8.53 × 10−15 14 47%

 p65 −0095/−0050 4.06 × 10−12 12 42%

 MEF2 −0048/−0019 5.67 × 10−12 15 66%

 CREL_01 −0095/−0049 6.55 × 10−12 12 38%

 cREL −0095/−0049 1.10 × 10−11 12 38%

 NFKB_C −0156/−0048 7.25 × 10−11 15 52%

 NRSF_01c +0008/+0171 6.55 × 10−09 23 61%

 IK_01c −0119/−0046 3.82 × 10−08 12 38%

 FREAC7 −0060/−0029 4.24 × 10−08 13 47%

 NFκB −0096/+0061 1.02 × 10−07 13 52%

Cluster 2

 NFKAPPAB65_01 −0168/−0053 6.21 × 10−11 14 58%

 p65 −0186/−0053 6.22 × 10−10 14 64%

 CREL_01 −0165/−0053 1.06 × 10−08 12 52%

 cREL −0165/−0053 1.79 × 10−08 12 52%

 NFκB −0168/−0067 9.46 × 10−08 10 52%

 NFKB_Q6 −0170/−0057 1.29 × 10−07 11 58%

 NRSF_01c + 0026/+0102 1.48 × 10−07 13 52%

 cFos −0284/−0037 6.41 × 10−07 19 76%

 SRF −0145/−0018 7.75 × 10−07 10 47%

 NFKAPPAB_01 −0168/−0070 8.10 × 10−07 9 52%

Cluster 4

 FREAC7 −0273/−0029 2.62 × 10−10 32 76%

 FOXD3_01 −0428/−0026 1.08 × 10−08 42 84%

 MEF2 −0445/−0028 1.53 × 10−08 34 92%

 AP1_C −0276/+0185 4.83 × 10−08 24 76%

 FREAC7_01d −0438/−0020 1.01 × 10−07 40 84%

 OCT1_02 −0247/−0098 1.30 × 10−07 16 61%

 AP1_Q6 −0050/−0004 9.81 × 10−07 8 53%

Cluster 5

 CEBPB_01 −0238/−0044 1.31 × 10−07 25 50%

 FREAC7_01d −0051/−0020 3.30 × 10−07 14 50%

 GR_Q6 −0377/−0035 4.15 × 10−07 36 57%

 AP1_Q6 −0239/−0047 4.41 × 10−07 22 57%

 HLF −0098/+0050 5.73 × 10−07 19 53%

 SPIB −0138/−0036 8.70 × 10−07 15 42%

Cluster 6

 cEBP −0454/−0052 3.32 × 10−11 39 64%

 CEBPB_02 −0493/−0041 1.75 × 10−10 43 71%

 NF1_Q6 −0491/−0047 1.60 × 10−09 30 60%

 SPI1 −0273/−0066 4.91 × 10−09 47 78%

 CEBPB_01 −0183/−0078 2.12 × 10−08 20 50%

 AP1_C −0198/−0072 1.14 × 10−07 18 35%

 PAX4_04d +0120/+0167 3.50 × 10−07 17 50%

 Gfi −0228/−0051 3.56 × 10−07 22 53%

 CEBPA_01 −0282/−0078 3.78 × 10−07 27 50%

 S8_01d −0236/−0162 4.13 × 10−07 16 39%

Abbreviations: PWM, position weight matrix; TFBS, transcription factor–binding 
sites.
Over-representation of hits for TRANSFAC and JASPAR PWMs in promoter sequences 
with a putative TATA box between positions −44/−17 (Table 1) was calculated 
using TFM-Explorer. Hits with a P value < 10−6 are regarded as significant.
aTotal number of hits for PWM within promoter sequences. bPercentage of 
promoter sequences containing at least one hit for PWM. cTFBS for which only 
human-binding factors have been described. dTFBS for which only murine-
binding factors have been described.

table 2 (continued)

PWM location P value nha nsb
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However, when the IL4 cDNA was replaced for the Il1rn cDNA, 
we failed to prevent the development and progression of CIA 
(data not shown) as described for constitutive overexpression 
of this transgene.2,21 We sought to address this efficacy issue by 
substituting the IL1E/IL6P promoter for a computationally identi
fied promoter. Based on in vitro validations of promoter strength 
and responsiveness (Figure 3), the Saa3 promoter was selected 
as the most promising candidate for such a substitution. First, 

we compared the promoter strength under arthritic conditions 
in vivo. Knee joints of C57Bl/6 mice were transduced by lenti
viral vectors, and after 7 days, an acute arthritis was induced by 
intraarticular injection of zymosan A (180 µg). Twentyfour 
hours after challenge, we assessed luciferase activity ex vivo 
(Figure 4a). To control for amplification of transgene expression 
by inflammationinduced proliferation of lentivirally transduced 
synovium,22 knee joints were transduced with a vector encoding 

table 3 significant transcription factor–binding sites for nF-κB, AP-1, and c/eBPβ in tAtA-dependent genes

nFκB65_01a AP1_01b ceBPB_01c

Gene Pos ln (P) Gene Pos ln (P) Gene Pos ln (P)

Cxcl2 −70 −14.07 CXCL14 −96 −13.23 IL6 −158 −15.90

Cxcl1 −71 −14.07 Rrad −143 −12.74 Has1 −198 −12.83

CXCL1 −79 −14.07 Mmp9 −90 −12.63 Il6 −158 −12.35

Cxcl5 −89 −14.07 MMP9 −79 −12.51 Cxcl1 −131 −11.94

CXCL2 −90 −14.07 Il1rn −137 −12.13 Saa3 −79 −11.86

CXCL6 −92 −14.07 MMP13 −52 −11.80 Saa3 −154 −11.28

LTB −86 −12.96 IL6 −286 −11.62 LCN2 −146 −11.11

Ltb −89 −12.96 LRRC15 −52 −11.54 PLEK −52 −10.91

NCAPG −65 −12.35 Il6 −279 −11.37 MMP3 −115 −10.81

Cxcl3 −74 −12.24 MMP3 −75 −11.35 Arg1 −233 −10.19

RRAD −112 −12.17 Mmp13 −52 −11.31 CXCL14 −110 −10.02

Rrad −163 −12.17 OLFM4 −140 −10.71 MMP9 −166 −9.91

Il6 −71 −11.75 Wwox −200 −10.63 Chi3l1 −160 −9.53

IL6 −73 −11.75 TNFAIP6 −132 −10.52 LCN2 −85 −9.51

CCL20 −79 −11.68 Tnfaip6 −138 −10.52 S100A8 −136 −9.06

Ccl20 −96 −11.68 Chi3l1 −125 −10.37 Ccl12 −79 −9.02

Wwox −100 −11.28 Timp1 −98 −9.90 IL1B −95 −8.98

SOX4 −99 −10.59 TIMP1 −105 −9.90 Lcn2 −188 −8.86

Rspo2 −119 −10.34 Ccl2 −58 −9.73 SLPI −96 −8.74

Il1rl1 −138 −10.13 Socs3 −201 −9.29 ARG1 −81 −8.68

Ccl2 −154 −9.83 Lcn2 −277 −8.83 Il1b −95 −8.66

Il1b −230 −8.79 Has1 −144 −8.62

Ptgs2 −279 −8.78

LCP1 −449 −12.71 EVI2B −401 −11.95 ANKRD1 −304 −13.92

Ptgs2 −403 −12.17 Ccl2 −456 −10.93 Wwox −422 −13.79

PTGS2 −449 −12.17 CHI3L1 −367 −10.84 Ccl7 −460 −12.86

LCN2 −175 −10.79 Mmp9 −488 −10.37 Wwox −400 −12.56

Lcn2 −229 −10.79 Il4ra −416 −10.06 Ankrd1 −301 −11.79

IL1B −296 −10.71 Arg1 −410 −10.04 MMP9 −269 −11.05

Il1b −303 −10.64 CXCL6 −323 −9.81 Slpi −458 −10.97

TNC −222 −10.57 Slpi −490 −9.81 Serpinb1a −408 −10.60

CCL7 −306 −10.38 IL6 −490 −9.58 Slpi −281 −10.34

PLEK −337 −10.27 TIMP1 −359 −9.56 Chi3l1 −356 −9.85

MMP9 −329 −10.20 Cxcl5 −417 −9.56 MMP9 −446 −9.65

MS4A7 −494 −9.83 UHRF1 −468 −9.49 Tnfaip6 −444 −9.41

Abbreviations: AP-1, transcription factor activator protein-1; C/EBPβ, CCAAT/enhancer-binding protein β; NF-κB, nuclear factor κB.
Putative-binding sites were identified by PATSER using TRANSFAC matrices for aNF-κB (M00052), bAP-1 (M00517), and cC/EBPβ (M00117). Hits are ranked according 
to their ln (P) values and separated into hits lying within (top) or outside (bottom) the conserved windows identified by TFM-Explorer (Table 2).
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phosphoglycerate kinase1 (PGK) promoterdriven,  constitutively 
expressed luciferase. Under naive conditions, transcriptionally 
targeted vectors exhibited equal and low luciferase activities, 
approximately a logfold lower compared to PGKdriven expres
sion. One day after induction of arthritis, we measured a twofold 
upregulation of PGKdriven luciferase expression. In contrast, 
under arthritic conditions, Saa3 and IL1E/IL6P promoter activi
ties were 25 and eightfold upregulated, respectively, and Saa3 
promoter strength was approximately sixfold higher compared to 
IL1E/IL6P. Next, we generated adenoviral vectors encoding Saa3 
or IL1E/IL6Pdriven Il1rn, and measured the Il1rn protein levels 
under basal and stimulated conditions. HeLa cells were transduced 
[multiplicity of infection (MOI) 10] at day 1, and the day thereafter, 
left untreated or stimulated for 24 hours with hTNFα (10 ng/ ml). 
Basal and induced levels were 152.9 ± 34.2 versus 325.0 ± 50.8 ng/
ml (CMV) and 2.8 ± 0.2 versus 49.6 ± 8.1 ng/ml (Saa3) (n = 4). 
Protein levels for IL1E/IL6Pdriven Il1rn were around the detec
tion limit of the enzymelinked immunosorbent assay (ELISA) 
(1 ng/ml). Next, we tested therapeutic efficacy of these vectors in 
an in vitro assay system (Figure 4b). NIH3T3 fibroblasts stably 
transfected with the luciferase gene downstream of five tandem 
repeats of NFκBbinding sites were transduced (MOI 10) at day 1 

with adenovirus encoding transcriptionally targeted Il1rn and at 
day 2 with  constitutively expressed Il1b. As a positive and negative 
control, cells were transduced at day 1 with adenovirus encod
ing constitutively expressed Il1rn (CMV) or nonencoding adeno
virus (del). At day 3, we assessed Il1rn protein levels by ELISA 
and IL1βinduced NFκB activation by luciferase assay at day 3. 
As expected, CMVdriven Il1rn expression (56.8 ± 11.8 ng/ ml) 
completely suppressed IL1βinduced NFκB activation (P < 
0.01). Empty control virus and IL1E/IL6Pdriven Il1rn expression 
(undetectable) failed to significantly inhibit NFκB activation. In 
contrast, Saa3driven Il1rn expression (11.1 ± 1.7 ng/ml) led to a 
significant (P < 0.01) reduction (~56%) of IL1βinduced NFκB 
activation. These results indicate that the promoter strength and 
responsiveness of Saa3 might be sufficient to provide therapeuti
cally efficacious protein levels in a transcriptionally targeted Il1rn 
gene therapy approach for experimental arthritis.

dIscussIon
Endogenous proximalpromoters that confer a range of transcrip
tional activities in an inflammationspecific fashion are of great 
value toward tailormade transcriptionally targeted gene therapy 
for RA. To this end, we used a gene expression profiling study of 
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Figure 3 experimental verification of transcriptionally targeted vectors. (a) Dual luciferase assay of basal promoter activity in NIH-3T3 fibroblasts. 
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vectors (black bars) served as negative and positive controls, respectively. Promoter activity is expressed as relative (firefly/Renilla) luciferase activity ± 
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days after transduction with lentiviral vectors, cells were stimulated for indicated time points with lipopolysaccharide (50 ng/ml). Luciferase activities 
are represented as fold induction over unstimulated conditions. (d) Induction of promoter activity in rheumatoid arthritis synovial fibroblasts (n = 4 
donors). Fibroblasts were transduced with lentiviral vectors and stimulated for 24 hours with either recombinant human IL-1β (0.25 ng/ml) or hTNFα 
(1 ng/ml) alone, or the combination. Luciferase activities are expressed as fold induction ± SEM. LPS, lipopolysaccharide.
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CIA for elucidating diseaseregulated genes and performed com
putational analyses on the proximalpromoter regions to define 
DNA regulatory elements that can be applied for transcriptional 
targeting. Using this approach, we narrowed down the number 
of candidate murine and human promoters from 382 to 66, cor
responding to 45 unique genes.

In our approach, we took the spacing between TATA box and 
TSS as a filtering parameter for transcriptional specificity. The 
rationale for this was derived from recent studies8,9 showing the 
association of TATAdependent transcription with tissue/context
specific gene expression. Moreover, these studies demonstrate that 
the TATATSS spacing affects the transcriptional specificity of the 
downstream transcript. We predicted putative bona fide TATA 
boxes in using matching of PWM models. Generally, the score of 
a predictive PWM model is highly correlated with the strength of 
the protein–DNA interaction.23 However, a genomewide charac
terization of the interaction between the TATA box and the pre
initiation complex has revealed the absence of a global correlation 
between PWM score and tissue specificity.8 These findings are 
reflected in our computations in which we could not establish any 
correlation between PWM score and spacing. Accordingly, in the 
experimental verifications using promoterluciferase constructs, 
we did neither find an apparent correlation between TATA box 
scores and basal promoter activity in a murine fibroblast cell line.

Apart from the TATATSS spacing, the identification of putative 
TFs that govern a particular expression profile was the second key 
determinant for selection of promoter regions. As demonstrated in 
similar approaches,13,14 the combination of coregulated genes with 
phylogenetic footprinting proved fruitful for identification of over
represented TFBS. Supporting evidence for the functional rele
vance of the predicted overrepresented TFBSs in RA is substantial. 
The overrepresentation of NFκB and AP1binding sites corre
spond to the pivotal role that has been implied for these factors 
in human RA, CIA, and immunity.24–27 Enhanced expression and 
DNAbinding activity of C/EBPβ in synovial tissue of RA patients 
has been implicated in the pathology28 and chronicity29 of disease. 
The latter coincides with the enrichment of C/EBPβbinding sites 
in the CIA clusters in which the gene expression profile was closely 
correlated with disease severity. The additional enrichment of 
Spi1 (Pu.1) and C/EBPα binding sites in cluster 6 is expected to 
arise from the increasing infiltration of the inflamed joint in CIA 
by myeloid (monocytes, dendritic cells, and neutrophils) and lym
phoid (T and B cells) cells. Pu.1 and C/EBPα are key factors in 
development of myeloid and B cells.30 Interestingly, promoters of 
myeloid and Bcellspecific genes often contain a regulatory mod
ule consisting of a C/EBPα motif in close proximity (<60 bp) of the 
Pu.1 motif.31 Indeed, the conserved locations of Pu.1 (−273/−66) 
and C/EBPα (−282/−78) in our analyses indicate the presence of 
such myeloidspecific modules. Because synovial fibroblasts repre
sent the target cells for local gene therapy,15,32 the identification of 
myeloidspecific modules might be exploited to further refine the 
number of candidate promoters. Besides aforementioned TFs, we 
expect a contribution of the TF signal transducers and activators 
of transcription1/3 (STAT1/3) (ref. 33), and interferon regula
tory factor1 (ref. 34) in synovial inflammation. Indeed, scanning 
TATAdependent promoters with corresponding PWMs (STAT_01 
and IRF1_01), we found 15 and 36 promoters with a putative bind
ing site, respectively (data not shown). However, these hits were 
evenly dispersed over the clusters on a wide range (−500/−100) of 
positions, which explains the absence of overrepresentation for 
these TFBS in our analyses. The accuracy of the approach for infer
ring functional cisregulatory elements is not only demonstrated 
by our experimental verifications but also by literature confirming 
the functionality of computationally identified topranking TFBS 
in several promoters such as Il1b,35 Cxcl1(ref. 36), Saa3 (ref. 37), 
Timp1, and Mmp3/13 (ref. 38).

The strength of our approach lies in the combination of gene 
expression profiling for identification of candidate genes with com
putational prediction of functional endogenous proximal promot
ers. These are expected to contain evolutionarily conserved optimal 
combinations of and spacings between TFBSs. This represents 
a major advantage over recent efforts that aim at tailoring gene 
expression using genetic engineering of synthetic promoters.25,39,40 
Although these studies have demonstrated encouraging results 
for modulating transgene expression in prokaryotes, the extrapo
lation to eukaryotic transcriptional regulation by modules proves 
far more complex and the screening of hundreds of randomly 
assembled synthetic promoters is laborious and timeconsuming. 
Still, the identified overrepresented TFBS and their distance con
straints might be useful for guiding the rational design of a syn
thetic promoter. For example, it was demonstrated for RA gene 
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Figure 4 comparison of therapeutic efficacy using Saa3 versus IL1E/
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activity in transduced synovium of naive and arthritic C57Bl/6 mice. 
Knee joints were injected with 300 ng p24gag equivalent lentivirus encod-
ing PGK, Saa3, or IL1E/IL6P-luciferase. Seven days after transduction, 
arthritis was induced by intra-articular injection of 180 µg zymosan A. 
After 24 hours, luciferase activity was assessed ex vivo. Data are repre-
sented as individual relative luciferase activities; horizontal bars indicate 
the means per group. (b) Efficacy of transcriptionally targeted adenovi-
ral vectors expressing Il1rn. NIH-3T3-5xNF-κB-Luc were transduced at a 
multiplicity of infection (MOI) of 10 with control vector (del) or adenovi-
rus encoding CMV, Saa3, and IL1E/IL6P-driven Il1rn. After 24 hours, cells 
were transduced at an MOI of 10 with control vector (del) or Ad5.CMV-
Il1b. The day thereafter, IL-1β-induced NF-κB activation was assessed 
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ance with Dunnett’s post-test. **P < 0.01.
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therapy that a synthetic promoter consisting of six tandem repeats 
of NFκB consensus sites drives efficacious41 expression of anti
TNFα. The functionality of this promoter might be explained by 
the fact that the construct consists of a TFBS that is overrepre
sented in inflammationinduced genes and positioned within the 
evolutionary conserved −170/−50 region upstream of the TSS.

The pitfall of using Il1rn as a transgene lies in the fact that 
it needs to be present in at least 100fold molar excess in order 
to block the effects of IL1β on synoviocytes and chondrocytes.42 
However, using Saa3driven Il1rn expression, we obtained >50% 
inhibition of an CMVdriven, exaggerated, and nonphysio logical 
amount of IL1β. The relatively high transcriptional strength of 
the Saa3 proximal promoter has been demonstrated by Varley 
and coworkers.43 In their study, Saa3driven luciferase expression 
exceeded that of the CMV promoter in response to cytokinerich 
conditioned medium prepared from the culture supernatant of 
lipopolysaccharide stimulated human peripheral blood mono
cytes. In combination with our computational analyses and 
 verifications, the Saa3 promoter is the most appropriate endog
enous promoter for transcriptionally targeted Il1rn gene therapy 
for arthritis.

For the panel of inflammationresponsive promoters, we envis
age two major applications. First, these promoters can be applied 
in noninvasive imaging approaches of joint inflammation or acti
vation of particular transcription factors, e.g., AP1 (Mmp13) ver
sus NFκB (Cxcl1), in human and experimental arthritis. Whether 
these proximal promoters confer differential expression patterns 
during experimental arthritis will be investigated using an in vivo 
imaging approach. Second, differential transcriptional activities 
can be exploited for gene therapy tailored to transgene properties, 
e.g., a promoter with strong transcriptional activity for generating 
the required excess of Il1rn expression and a promoter with low 
basal activity for minimizing Il4induced side effects.

MAterIAls And Methods
Animals. Male 10–12weekold DBA/1J mice were obtained from Janvier 
(Le GenestSaintIsle, France). C57Bl/6 mice were obtained from Charles 
River Laboratories (Sulzfeld, Germany). During viral experiments, mice 
were housed in lowpressure isolator cages. The animals were fed a stan
dard diet with food and water ad libitum. All in vivo studies complied with 
national legislation and were approved by the local authorities of the Care 
and Use of Animals.

Induction of CIA. Bovine collagen type II (bCII) was dissolved in 
0.05 mol/l acetic acid to a concentration of 2 mg/ml and was emulsi
fied in equal volumes of Freund’s complete adjuvant (2 mg/ml of 
Mycobacterium tuberculosis strain H37Ra; Becton Dickinson, Detroit, 
MI). DBA1/J mice were immunized intradermally at the base of the 
tail with 100 µl of emulsion (100 µg of bCII). On day 21, the mice were 
given an intraperitoneal booster injection of 100 µg bCII dissolved in 
phosphatebuffered saline (PBS). Mice were sacrificed on day 30 by cer
vical dislocation. Prior to biopsy, knee joints were scored visually using 
four grades: nondiseased, mild (minor swelling and color change due to 
infiltration), moderate (marked swelling), and severe (severe swelling 
and patellar tendon structure not visible). Synovial tissue samples from 
the lateral and medial sites (n = 24, 12 knee joints per severity stage) 
were isolated in a standardized manner using a 3 mm biopsy punch 
(Stiefel, Wächtersbach, Germany), as described previously.44 Samples 
were pooled in a randomized fashion to generate triplicates consisting 
of eight biopsies.

RNA isolation. Total RNA from biopsy punches was prepared by TRIzol 
extraction (Invitrogen Life Technologies, Carlsbad, CA), and purified on 
an affinity resin (RNeasy Kit; Qiagen, Hilden, Germany) according to the 
manufacturer’s instructions. Quantity and purity were assessed by the 
absorbance at λ = 260 nm (A260nm), and the ratio A260nm/A280nm. Integrity 
of the RNA was confirmed by nondenaturing agarose gel electrophoresis. 
Total RNA was stored at −80 °C until further processing.

Oligonucleotide array. One microgram of total RNA was used as a start
ing material for cDNA preparation. Generation of biotinylated cRNA and 
subsequent hybridization, washing and staining of MOE 430_2 oligonucle
otide arrays (Affymetrix, Santa Clara, CA) were performed according to 
the Affymetrix Expression Analysis Technical Manual for onecycle ampli
fication. The arrays were then scanned using a laser scanner GeneChip 
Scanner (Affymetrix), and data were analyzed and normalized using 
Affymetrix Microarray Suite (MAS) 5.0 software according to the manu
facturer’s instruction. The gene expression data were deposited in the Gene 
Expression Omnibus database under accession number GSE13071.

Cluster analysis. Filtering, standardization, and cluster analysis were per
formed using Expression Analyzer and Displayer (EXPANDER) software 
version 4.1 (ref. 16). The mean (n = 3) expression values calculated from 
the normalized microarray data using Excel served as input. After filtering 
for tenfold regulated probes, the expression values were standardized using 
the mean 0 and variance 1 algorithm. Cluster analyses were performed 
using k-means clustering with the number of clusters set to six.

Promoter sequence retrieval. Affymetrix probe identifiers were con
verted into Ensembl gene identifiers (National Center for Biotechnology 
Information m37 mouse assembly) and RefSeq DNA identifiers (mm8) 
using BioMart (http://www.biomart.org). Human orthologs were retrieved 
from the Mouse Genome Database.45 We extracted the proximal promoter 
regions of these genes (−500/+200) from the Cold Spring Harbor 
Laboratory mammalian promoter database17 using RefSeq identifiers. 
When multiple promoters existed for a gene, we selected either a promoter 
from the Eukaryotic Promoter Database or Database of Transcription Start 
Sites. When the prior two were unavailable, we selected the promoter with 
the shortest distance to the gene.

Identification of TFBS. The PATSER program18 at the Regulatory Sequence 
Analysis Tools server (http://rsat.ulb.ac.be/rsat)46 was used to search 
position weight matrix models collected from the public TRANSFAC 
7.0 database.19 Both strands of the promoter sequences were scanned in 
our analyses. Sequences with scores higher than the cutoff calculated by 
PATSER were considered as putative TFBS.47

Identification of over-represented TFBS. Promoter sequences with a 
putative TATAbinding site were scanned, per cluster, for 322 vertebrate 
matrices from the TRANSFAC 7.0 and JASPAR20 databases using TFM
Explorer (http://bioinfo.lifl.fr/TFME).12 The ratio parameter, indicating 
the minimal average density of hits in the cluster relative to the reference 
model, was set to 4.0. PWMs with a P value < 10−6 were regarded as sig
nificantly overrepresented.

Cell culture. Mouse embryonic fibroblasts (NIH3T3), macrophages 
(RAW 264.7), and human HeLa cells were cultivated in Dulbecco’s modi
fied Eagle’s medium (DMEM) with 1 mmol/l pyruvate, 40 µg/ml gentami
cin, and 5 or 10% fetal calf serum (FCS), respectively. Earlypassage RA 
synovial fibroblasts (kind gift from R.W. Kinne, University Hospital Jena, 
Eisenberg, Germany) were maintained in DMEM supplemented with 
1 mmol/l pyruvate, 80 µg/ml gentamicin, and 10% FCS. Cells were kept at 
37 °C in a humid atmosphere containing 5% CO2.

Plasmids. Renilla luciferase vector pRLTK was obtained from Promega 
(Madison, WI). For generation of recombinant lentiviral vectors, we made 
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use of the thirdgeneration selfinactivating (SIN) transfer vectors pRLL 
cPPTPGKmcsPRESIN containing the human phosphoglycerate kinase 
(PGK) promoter and the promoterless pRLLcPPTmcsPRESIN (kind gift 
from J. Seppen, AMC Liver Center, Amsterdam, the Netherlands). For clon
ing, we used Pfu DNA polymerase (Stratagene, La Jolla, CA) and T4 DNA 
Ligase (New England Biolabs, Ipswich, MA). All generated constructs were 
verified by sequencing. The firefly luciferase cDNA from pGL3b (Promega) 
was transferred as an NheI/XbaI fragment into the multiple cloning site 
generating pRLLcPPTPGKLucPRESIN and pRLLcPPTLucPRE
SIN. The plasmid pRLLcPPTCMVLucPreSIN was generated by PCR 
cloning the CMV promoter from pShuttleCMV (Stratagene) into SalI/
HpaI sites using primers FW 5′ GTCGACTAGTAATCAATTACGGGG3′ 
and RV 5′GTTAACGGATCTGACGGTTCAC3′. The murine promoter 
sequences were PCR cloned from liver genomic DNA into SalI/NheI sites of 
pRLLcPPTmcsLucPRESIN using primers in Supplementary Table S3. 
The IL1E/IL6P promoter was transferred as a SalI/NheI fragment from 
pGL3IL1E/IL6P5 into pRLLcPPTmcsLucPRESIN. The cDNA of the 
mouse Il1rn gene was transferred as a SalI/XbaI fragment from pShuttle
CMVIl1rn48 into pRLLcPPTPGKmcsPRESIN. For constructing 
pRLLcPPTSaa3Il1rnPRESIN, Il1rn was amplified from pShuttleCMV
Il1rn using primers FW 5′GCTAGCGCCACCATGGAAATCTGCTGGG
GAC3′ and RV 5′TCTAGACTATTGGTCTTCCTGGAAG3′ introduc
ing a 5′ NheI and 3′ XbaI site, and blunt ligated into the SrfI site of pCR
Script Amp SK(+) (Stratagene). The luciferase cDNA was removed from 
pRLLcPPTSaa3LucPRESIN by restriction with NheI/NsiI and religated 
with a NheI/PstI fragment from pPCRScriptIl1rn (−). A SalI/XbaI frag
ment from pRLLcPPTSaa3Il1rnPRESIN containing the Saa3 promoter 
and Il1rn cDNA was transferred to pShuttlepolyA to give pShuttleSaa3
Il1rnpolyA. The cDNA of mouse interleukin1 β (Il1b) was PCR cloned 
from reverse transcribed C57Bl/6 synovial tissue RNA into the KpnI/XhoI 
sites of pShuttleCMV using primers FW 5′AAAGGTACCGCTATGGCA
ACTGTTCC3′ and RV 5′TTTCTCGAGTTAGGAAGACAC3′.

Lentiviral vector production. Packaging of VSVG pseudotyped recom
binant lentiviruses was performed by transient transfection of 293T cells. 
The day prior to transfection, 293T cells were seeded in a T75 flask at 1 × 
105 cells/cm2 in DMEM supplemented with 10% FCS, 1 mmol/l pyruvate, 
40 µg/ml gentamicin, and 0.01 mmol/l watersoluble cholesterol (Sigma, 
St Louis, MO). Cells were cotransfected with 19 µg transfer vector, 14 µg 
gag/pol packaging plasmid (pMDLg/pRRE), 4.7 µg rev expression plas
mid (RSVREV), and 6.7 µg VSVG expression plasmid (pHITG) by 
calcium phosphate precipitation. Transfections were performed in 6 ml 
DMEM without antibiotics and cholesterol, and proceeded for 16 hours. 
Thereafter, medium was replaced with fully supplemented DMEM and 
supernatant harvested after 24 and 48 hours. Cell debris was removed 
by centrifugation at 1,500 rpm for 5 minutes at 4 °C, followed by pas
sage through a 0.45 µm pore polyvinylidene fluoride Durapore filter 
(Millipore, Bedford, MA). For concentration by ultracentrifugation, 
28 ml supernatant was layered on 4 ml 20% sucrose solution and cen
trifuged at 25,000 rpm in a Surespin 630 rotor (Sorvall; Thermo Fisher 
Scientific, Waltham, MA). Pelleted viruses were resuspended in sterile 
PBS and stored at −80 °C. Viral titers were determined by assaying p24gag 
values with a commercial ELISA kit (Abbott Diagnostics, Hoofddorp, The 
Netherlands) and expressed as ng p24gag/µl.

Adenoviral vectors. Replicationdeficient adenoviral vectors (E1/E3 
deleted) Ad5.Saa3Il1rn, Ad5.IL1E/IL6PIl1rn, Ad5.CMVIl1rn, Ad5.
CMVIl1b, and Ad5.del were prepared according to the AdEasy system 
(Stratagene), with the exception that replicationcompetent recombinant 
free viral particles were produced in E1 transformed N52E6 amniocyte 
cells.49 Viruses were purified by two consecutive CsCl2 gradient purifica
tions and stored in small aliquots at −80 °C in buffer containing 25 mmol/l 
Tris, pH 8.0, 5 mmol/l KCl, 0.2 mmol/l MgCl2, 137 mmol/l NaCl, 730 µmol/l 
Na2HPO4, 0.1% (wt/vol) ovalbumin, and 10% (vol/vol) glycerol. The 

infectious particle titer (focusforming units) was determined by titrat
ing vector stocks on 911 indicator cells and measuring viral capsid protein 
 immunohistochemically 20 hours after transduction.

Luciferase measurements. For in vitro reporter studies, cells were seeded 
at 5 × 104 cells per well in a Krystal 2000 96well plate (Thermo Fisher 
Scientific). The day after, cells were transduced with 50 ng p24gag equivalent 
lentivirus in 50 µl medium supplemented with 8 µg/ml polybrene (Sigma) 
for 4 hours at 37 °C. Cells were serumstarved (1% FCS) for 2 days and 
subsequently stimulated with recombinant human IL1β (R&D Systems 
Europe, Oxford, UK), TNFα (Abcam, Cambridge, UK), or E. Coli lipopoly
saccharide (Sigma) for indicated hours and subsequently lysed in icecold 
lysis buffer (0.5% NP40, 1 mmol/l DTT, 1 mmol/l EDTA, 5 mmol/l MgCl2, 
100 mmol/l KCl, and 10 mmol/l TrisHCl pH 7.5). Luciferase activity was 
quantified using the BrightGlo luciferase assay system (Promega) by add
ing an equal volume of BrightGlo to the cell lysate. Luminescence was 
quantified in a luminometer (LUMIstar; BMG, Offenburg, Germany), 
expressed as relative light units and normalized to total protein content of 
the cell/tissue extracts. For transient transfection experiments, cells were 
seeded at 70% confluency in a 24well plate and cotransfected with 500 ng 
firefly luciferase reporter and 50 ng Renilla luciferase reporter (pRLTK) 
using ArrestIn (Open Biosystems, Huntsville, AL) according to the manu
facturer’s instructions. Cells were serumstarved (1% FCS) for 2 days, and 
firefly and Renilla luciferase activities were quantified using the Dual
Luciferase Reporter Assay System (Promega). For in vivo studies, knee 
joints were injected with 300 ng p24gag equivalent lentivirus in a total vol
ume of 6 µl. Seven days after transduction, knee joints were injected with 
180 µg zymosan A/6 µl PBS (Sigma). After 1 day, patellae with surrounding 
tissue were dissected, put in 250 µl cell culture lysis buffer (Promega) and 
snap frozen in liquid nitrogen. Supernatant was centrifuged at 13,000 rpm 
for 5 minutes and luciferase activity assayed as described above.

In vitro Il1rn-efficacy assay system. NIH3T3 fibroblasts stably transfected 
with a 5xNFκB luciferase reporter were seeded at 5 × 104 cells per well in 
a Krystal 2000 96well plate. The day thereafter, cells were transduced at 
an MOI of 10 with Il1rnencoding or control nonencoding adeno virus 
(Ad5.del) in DMEM for 4 hours at 37 °C. After 24 hours, medium was aspi
rated, cells were rinsed and transduced at an MOI of 10 with Il1bencoding 
or Ad5.del virus in DMEM for 4 hours at 37 °C. The day after the second 
transduction, IL1βinduced NFκB activation was measured by assessing 
the luciferase activity as described above.

Il1rn ELISA. White highbinding flat bottom 96well plates (Greiner Bio
One, Alphen a/d Rijn, the Netherlands) were coated with the capture anti
body rat antimurine Il1rn (MAB480; R&D Systems, Minneapolis, MN) 
at 3 µg/ml in 0.1 mol/l carbonate buffer pH 9.6 and incubated overnight 
at 4 °C. Nonspecific binding sites were blocked with 1% bovine serum 
albumin in PBS for 1 hour at room temperature. Between subsequent 
incubations, wells were rinsed three times with 0.1% Tween20 in PBS. 
Twentyfour hour culture supernatants (100 µl) from 3 × 105 HeLa cells 
transduced with adenoviral Il1rnexpressing vectors at an MOI of 10 were 
added to coated wells and incubated for 3 hours at room temperature. The 
plates were then incubated with the biotinylated goat antimurine Il1rn 
(BAF 480; R&D Systems) at 0.2 µg/ml in 0.1% bovine serum albumin/
PBS for 2 hours, followed by a 30minute incubation with streptavidin
 conjugated horseradish peroxidase (Dako, Glostrup, Denmark) at 
0.25 µg/ ml in PBS. Antibody complexes were detected by incubation 
with the SuperSignal ELISA Pico Chemiluminescent Substrate (Pierce, 
Rockford, IL) and luminescence quantified in a luminometer.

Statistics. Data are represented as means ± SEM, and significant differences 
were calculated using oneway analysis of variance (ANOVA) followed by 
Dunnett’s multiple comparisons test (GraphPad Prism, San Diego, CA). 
P values < 0.05 were regarded significant.
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