The following full text is a postprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/81443

Please be advised that this information was generated on 2017-07-08 and may be subject to change.
Title Page

Title:
A curve fitting approach to estimate the arterial plasma input function for estimation of the glucose metabolic rate and response to treatment

Foot Line:
Fitted Input Function to Estimate MR_{glc}

Authors:
Dennis Vriens, Lioe-Fee de Geus-Oei, Wim J.G. Oyen, Eric. P. Visser

Affiliations:
Department of Nuclear Medicine
Radboud University Nijmegen Medical Center
Nijmegen, the Netherlands

Correspondence:
Dennis Vriens
Radboud University Nijmegen Medical Center, department of Nuclear Medicine 444
P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
Tel: +31-24-3665047; Fax: +31-24-3618942; E-Mail: D.Vriens@nucmed.umcn.nl

Word count whole document:
4677
Abstract

Rationale: For quantification of dynamic 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) PET studies, the arterial plasma time activity concentration curve (APTAC) needs to be available. This can be obtained by serial arterial blood sampling or by using an image derived input function (IDIF). Arterial sampling is invasive and often not feasible in practice; IDIF’s are biased due to partial volume effects and cannot be used when no large arterial blood pool is in the field of view. We propose a mathematical function to describe the APTAC, consisting of initial linear rising activity concentration followed by a tri-exponential decay. This function was fitted to 80 oncological patients and verified for 40 different oncological patients by comparing areas under the curves, Patlak glucose metabolic rate (MR_{glc}) estimation and therapy response monitoring ($\Delta\text{MR}_{\text{glc}}$). The proposed function was compared with the gold standard (serial arterial sampling) and the IDIF.

Materials and Methods: To determine the free parameters of the function, plasma time activity curves based on arterial samples in 80 patients were fitted after normalization for administered activity (AA) and initial distribution volume (iDV) of 18F-FDG. The medians of these free parameters were used for the model. In 40 other patients (20 baseline and 20 follow-up dynamic 18F-FDG-PET scans) this model was validated. The population-based curve, individually calibrated by AA and iDV (APTAC$_{\text{AA/IDV}}$), by 1 late arterial sample (APTAC$_{1\text{sample}}$) and the individual IDIF (APTAC$_{\text{IDIF}}$) were compared to the gold standard of serial arterial sampling (APTAC$_{\text{sampled}}$) using the area under the curve (AUC). Additionally, these three methods of APTAC determination were evaluated with Patlak MR_{glc} estimation and with $\Delta\text{MR}_{\text{glc}}$ for therapy effects using serial sampling as gold standard. **Results:** Excellent individual fits to the function were derived with significantly different decay constants ($p<0.001$). Correlations between AUC from APTAC$_{\text{AA/IDV}}$, APTAC$_{1\text{sample}}$ and APTAC$_{\text{IDIF}}$ with the gold standard (APTAC$_{\text{sampled}}$) were 0.880, 0.994 and 0.856 respectively. For MR_{glc} these correlations were 0.963, 0.994 and 0.966 respectively.
In response monitoring these correlations were 0.947, 0.982 and 0.949 respectively. Additional scaling by one late arterial sample showed a significant improvement (p<0.001).

Conclusion: The fitted input function calibrated for AA and iDV had similar performance as an IDIF. Using one late arterial sample, this improved significantly. The proposed model can be used where an IDIF is not available or when serial arterial sampling is not feasible.

Keywords: [^{18}F]FDG – Positron emission tomography – Chemotherapy – Therapy Monitoring – Input Function – Theoretical Models – Pharmacokinetics – Body Fluid Compartments – Least-Squares Analysis – Tissue Distribution
Introduction

Pharmacokinetic analysis of $[^{18}\text{F}]-2$-fluoro-2-deoxy-D-glucose ($^{18}\text{F}-\text{FDG}$) by dynamic positron emission tomography (PET) requires both the arterial plasma time activity concentration curve (APTAC, $C_p(t)$ or input function) and the tissue time activity curve measured by PET (TTAC or $C_t(t)$) to be available to create a Patlak plot ($I (C_p(t)/C_p(t)$ versus $\int_0^t C_p (\tau) d\tau/C_p(t)$), from which the glucose metabolic rate (MR_{glc}) in the tissue of interest can be derived. Special interest in this type of quantitative analysis has risen for oncological patients for prognostic stratification and response monitoring of disease.

The gold standard to obtain the APTAC is by measuring decay-corrected activity concentrations in plasma obtained by serial arterial sampling (2). This is an invasive and potentially harmful procedure for the patient and exposes the personnel to radiation. Complications attributed to radial artery cannulation include temporary occlusion (19.7%) and hematoma formation (14.4%), local infection (0.72%), sepsis (0.13%), permanent occlusion (0.09%) and pseudo-aneurysm (0.09%) (3), some of which require medical intervention. Therefore, different methods have been developed to reduce these drawbacks. The major four alternatives to serial arterial sampling are: (arterialized) venous blood sampling (4, 5), estimation of image-derived input functions (IDIF) (6-12), modeling a population-based input function (13-17) and extraction of whole blood input functions using sophisticated mathematical image segmentation methods (i.e. cluster analysis (18) and independent component analysis (19-21)).

A drawback of venous sampling is the time-dependent ratio of $^{18}\text{F}-\text{FDG}$ in venous to arterial blood (0.61-0.88, 5-50 min post-injection) (4, 5). Therefore, shunting of arterial blood to the venous system (the “heated hand” procedure) is used to improve these ratios to 0.92-1.05 (4). This arterialized venous sampling technique still requires cannulation of an extra vein, and exposes personnel to radiation.
IDIFs require a large blood pool (aorta, left ventricle) within the field-of-view of the PET-image. IDIFs show systematic error, since activity concentration is measured in whole blood, which is known to be lower than in plasma (ratio ~0.925 - 0.95) (6-8). Moreover, partial volume effects cause inaccuracy by spill-over of activity from or to the surrounding tissues (e.g. myocardium) (6, 9). Finally, additional noise is introduced due to the limited number of counts in the short early time frames. Since underestimation due to spill-out of the IDIF activity concentration values leads to overestimation of MR_{glc} and overestimation due to spill-in of surrounding IDIF activity concentration values (in later time frames) leads to underestimation of MR_{glc} (6, 9), correction is necessary (10-12).

A population-based APTAC is based on averaging of normalized sampled blood data of multiple patients. Several corrections were introduced, based on administered activity (AA), bodyweight and blood transit time (13) or AA and body surface area (14, 15). The latter provided a reliable estimation of MR_{glc}, but yielded less accurate parameter values in pharmacokinetic analysis. Another method is “fitting” of the sampled data to an equation assuming the 18F-FDG distribution in the vascular system as a compartment model on its own (16, 17, 22).

Here, we describe an APTAC model that is based on fitting of a large series of arterially sampled oncological patients to a mathematical equation (16, 17, 22). The model APTAC was calibrated to individual patients of a separate patient population by either an estimation of the distribution volume of FDG (14, 15) or one late arterial blood sample and compared to the gold standard of arterial sampling and the IDIF. The performance of both models was assessed by comparison of the APTACs themselves and by their influence on Patlak MR_{glc} and therapy response (ΔMR_{glc}) evaluation.
Patients & methods

1. Patient population, arterial sampling procedure

Data of 120 dynamic 18F-FDG-PET scans with serial arterial sampling data were re-analyzed. Scans were randomly distributed over two groups (table 1), a parameter-identification group (n=80) and a parameter-validation group (n=40). For latter group, both a pre-treatment and a follow-up scan, after 2-3 courses of chemotherapy, was included. The details of 18F-FDG-PET and arterial plasma data acquisition are described elsewhere (9) with the only difference that they were reconstructed using OSEM (ordered subsets expectation maximization) with 4 iterations and 16 subsets with a Gauss filter of 5 mm in all directions. In short, fasted normoglycemic patients were injected with 18F-FDG by an automated standardized infusion protocol. Directly thereafter, 17 arterial blood samples were taken at set time points from which plasma was obtained by centrifugation to provide a sampled arterial plasma time activity concentration curve (APTAC$_{sampled}$). Simultaneously, dynamic PET-acquisition, consisting of 16 timeframes of variable length, was obtained to provide both the tissue (TTAC) and the image-derived blood time activity concentration curves (APTAC$_{IDIF}$).

2. Parameter-identification study (n=80)

2.1 Normalization of the APTAC$_{sampled}$

The initial plasma concentration of 18F-FDG ($C_p^*(0), [MBq\cdot L^{-1}]$), was used to normalize the APTAC$_{sampled}$. It was defined as the expected 18F-FDG concentration directly after tracer injection, assuming instant homogenization and is dependent on the administered activity (AA, [MBq]) and the (apparent) initial distribution volume (iDV, [L]) (14, 15). To avoid confusion, an '*' is added, since the sampled activity concentration at $t=0$ is 0 MBq·L$^{-1}$.
In the period between 5 and 30 min post-injection, the plasma and extravascular extracellular \(^{18}\)F-FDG pool of the whole body were assumed to be in equilibrium (23). Before this period, the tracer is being distributed over the body and in the period thereafter, the tracer is mainly being metabolized and excreted. Within this interval we sampled four times (7.5, 12.5, 17.5 and 25 minutes post-injection) (9), therefore to obtain \(C_p^*(0)\), semilogarithmic recordings of these four points were linearly extrapolated back to \(t=0\) (y-intercept) (15, 23).

2.2 Estimation of iDV by bodyweight and height

By definition, the iDV represents the (virtual) volume of the plasma and extravascular extracellular \(^{18}\)F-FDG pool. The iDV can be estimated by (14, 15):

\[
iDV = \frac{\Delta A}{C_p(0)} = c \cdot H^h \cdot W^w
\]

Eq. 1

where \(H\) is patient height [m] and \(W\) is patient bodyweight [kg]. Iteratively \(h, w\) and \(c\) were derived for which the coefficient of variation of \(c\) \((CV_c = \frac{\text{standard deviation}_c}{\text{mean}_c})\) is smallest in the parameter-identification data.

2.3 Fitting of the normalized APTAC\(_\text{sampled}\)

Using the three-compartment model for the blood pool as proposed by Feng \textit{et al.} (16), simplified by Eberl \textit{et al.} (17), the normalized APTAC\(_\text{sampled}\) can be approximated by:

\[
\frac{\text{APTAC}_{\text{sampled}}(t)}{C_p(0)} = \begin{cases}
0 & t < -\frac{b}{a} \\
 a \cdot t + b & -\frac{b}{a} \leq t < \tau \\
\sum_{i=1}^{3} A_i \cdot e^{-\lambda_i (t - \tau)} & t \geq \tau
\end{cases}
\]

Eq. 2

where \(\tau\) is the time to peak activity concentration. The normalized sampled plasma curves were fitted by linear curve fitting (\(t<\tau\)) and by nonlinear least squares (\(t\geq\tau\)) to obtain the eight free parameters in every patient of the parameter-identification study. Since
Chemotherapy might influence 18F-FDG distribution and clearance, the parameter values were compared between scans made in patients who did and did not receive chemotherapy.

3. Parameter-validation study ($n=40$)

3.1 Image derived input function and tumor time-activity curves

The $\text{APTAC}_{\text{IDIF}}$ was determined in manually placed volumes of interest (VOIs) over the ascending aorta (thoracic images) or descending aorta (abdominal images), known to correlate best with the gold standard (9) on summed images of the period 30-90 sec post-injection. The TTAC was obtained semi-automatically by placing VOIs in the summed images of the period 20-50 min post-injection over the largest lesion, fully present in the field of view, using a threshold of 50% of its maximum voxel value. All image analysis was performed using the Inveon Research Workplace (IRW version 2.2, Siemens, Knoxville, TN, USA).

3.2 Comparison of calibrated plasma time activity curves and glucose metabolic rates

Median values of APTAC-parameters derived from the parameter-identification study were used for the population-based APTAC which was calibrated to each individual patient, using two methods: by multiplication by either AA [MBq] divided by iDV [L] (estimated using equation 1), further mentioned as $\text{APTAC}_{\text{AA/iDV}}$ or by the plasma activity concentration of one late arterial sample ($\text{APTAC}_{\text{sample}}$).

The performance of the three curves ($\text{APTAC}_{\text{AA/iDV}}$, $\text{APTAC}_{\text{sample}}$ and $\text{APTAC}_{\text{IDIF}}$) was compared to that of the gold standard ($\text{APTAC}_{\text{sampled}}$) by their area under the curve (AUC), determined by trapezoid integration.

MR_{glc} was determined using all four plasma input curves by Patlak graphical analysis (1). In the Patlak approximation, the lumped constant, accounting for the difference in
glucose and 18F-FDG affinity was set to 1 and the tumor blood fraction was set to 0, therefore the slope of the Patlak plot was K_i and the intercept was $\frac{K'_1 \cdot k_2}{(k_2 + k_3)^2}$. MR$_{glc}$ can then be determined by multiplying the linear regression (5-50 min post-injection) by the plasma glucose concentration.

4. Statistical analysis

All variables were assessed for normality (Shapiro-Wilk, skewness and kurtosis) and are either displayed as mean (\pm standard deviation) or median (interquartile range, IQR). Comparison between two independent groups was performed by the t-test, the Mann-Whitney U-test or χ^2 test. Comparison of $\lambda_1-\lambda_3$ was performed by Friedman’s analysis of variance (ANOVA). Correlations between the AUC, MR$_{glc}$ and ΔMR$_{glc}$ of the different curves compared to the gold standard were assessed by Pearson’s r or Spearman’s ρ and linear regression and are displayed as Bland-Altman plots. Confidence intervals for correlation coefficients were compared after Fisher’s z transformation (24). Analysis was performed by SPSS 16.0.2. Two-sided significance was set at the 0.050 level.

RESULTS

1. Parameter-identification study

A median idV of 12.7 L (corresponding to 0.1683 L per kg bodyweight) was calculated. Iterative determination of the function to estimate the idV led to $h=1.257$, $w=0.582$ and $c=0.533 \, \text{L} \cdot \text{m}^{-1.257} \cdot \text{kg}^{-0.582}$ (minimum CV,$c=0.171$, adjusted $R^2=0.3181$).

Fitting of the 80 APTAC$_\text{sampled}$ by equation 2 led to a minimum adjusted R^2 of 0.8533, 80% of fits had an adjusted $R^2 > 0.9500$. Resulting parameters for the normalized APTAC$_\text{sampled}$ are provided in table 2. No significant difference in 18F-FDG-clearance could
be detected \((p>0.326)\) between patients that did and did not receive chemotherapy. The three decay constants \((\lambda_1-\lambda_3)\) were significantly different \((p<0.001, \text{ figure } 1)\).

2. **Parameter-validation study**

The correlation between the AUC of the APTAC\(_{AA/iDV}\) and APTAC\(_{sampled}\) was 0.880. Using one arterial sample for calibration, this improved to 0.994 \((p<0.001)\). The mean AUC of APTAC\(_{AA/iDV}\) was similar \((462 \pm 119 \text{ MBq·L}^{-1}\text{·min})\) and of APTAC\(_{sampled}\) slightly lower \((468 \pm 107 \text{ MBq·L}^{-1}\text{·min})\) than the gold standard \((\text{APTAC\(_{sampled}\)): 475 \pm 108 \text{ MBq·L}^{-1}\text{·min}, \ p=0.156 \text{ and } p<0.001 \text{ respectively})\). The APTAC\(_{IDIF}\) showed much lower AUCs than APTAC\(_{sampled}\) \((392 \pm 99 \text{ MBq·L}^{-1}\text{·min}, p<0.001)\) with a correlation coefficient between these parameters of 0.856.

Comparison between MR\(_{glc}\) is shown in figure 2 (left panels). Adding one arterial sample \((25 \text{ min post-injection})\) improved correlation between MR\(_{glc}\) determined by APTAC\(_{AA/iDV}\) and APTAC\(_{sampled}\) from \(\rho=0.963\) to \(\rho=0.994\) \((p<0.001)\). MR\(_{glc}\) determined by IDIF was significantly higher than the gold standard; correlation was similar to that of APTAC\(_{AA/iDV}\) \((\rho=0.966)\).

Comparison between therapy effects \((\Delta \text{MR\(_{glc}\))\) is shown in figure 2 (right panels). Adding one arterial sample \((25 \text{ min post-injection})\) improved correlation between \(\Delta \text{MR\(_{glc}\))\) determined by APTAC\(_{AA/iDV}\) and APTAC\(_{sampled}\) from \(\rho=0.947\) to \(\rho=0.982\) \((p=0.012)\). \(\Delta \text{MR\(_{glc}\))\) determined by APTAC\(_{IDIF}\) had similar correlation to the gold standard as APTAC\(_{AA/iDV}\) \((\rho=0.949)\).

Any arterial sample taken after 7.5 min post-injection showed similar high correlations when comparing MR\(_{glc}\) \((\rho \geq 0.9916)\) or \(\Delta \text{MR\(_{glc}\))\) \((\rho \geq 0.9759)\) measured by APTAC\(_{sampled}\) and APTAC\(_{1sample}\).
Discussion

This study describes the performance of a population-based APTAC based on fitting patient data to a mathematical equation on Patlak determination of \(\text{MR}_{\text{glc}} \) and on chemotherapy response evaluation. Its accuracy is comparable to that of an IDIF, explaining 93% of variance in \(\text{MR}_{\text{glc}} \) (90% in response evaluation by \(\Delta \text{MR}_{\text{glc}} \)), but addition of one late arterial sample improves this to 99% (96% in response evaluation by \(\Delta \text{MR}_{\text{glc}} \)). Where the IDIF is fully individual, the proposed method is a population average, calibrated to individual patient parameters without the need for serial arterial sampling. It can be used when scanning body regions where blood-pools are unavailable, such as the extremities. The model can be further improved by including one arterial sample. It can be expected that a late arterialized venous sample might adequately replace the arterial sample, since more than ~30 min after \(^{18}\text{F}-\text{FDG} \) injection, activity concentrations of arterial and arterialized venous blood are highly similar (4, 5). This sample might also be used to obtain an accurate measurement of the plasma glucose level, as long as radiation safety regulations do not prohibit this analysis in the clinical chemistry laboratory. As shown, \(\text{MR}_{\text{glc}} \) was significantly overestimated using an IDIF compared to the gold standard. Both the partial-volume effect and the fact that whole blood activity concentrations are lower than in plasma cause underestimation of the (integral of the) APTAC. From the Patlak-equation it can be derived that an underestimation of the APTAC as well as its integral, cause overestimation of the \(\text{MR}_{\text{glc}} \). The quality of the IDIF can be improved by correction for the partial-volume and spill-over effects (25). Moreover, correction for the activity concentrations in whole blood to plasma concentrations can be performed using correction by hematocrit (19) or modeled erythrocyte uptake (26). In addition the noise in the short early time frames contribute to its inaccuracy. Recently eight methods for the estimation of the carotid IDIF in human brain studies were compared to the reference input function (arterially sampled) with respect to cerebral \(\text{MR}_{\text{glc}} \) and individual rate constants in a study consisting of
phantoms and healthy volunteers. The authors concluded that blood-sample-free methods provided less reliable results as compared with those obtained using the methods that require the use of blood samples, even when limited to a single sample (27). Therefore, calibration of our IDIFs by one late venous sample would probably have improved its accuracy. The advantage of a more patient-specific rather than a generic input function is especially of importance for pharmacokinetic analysis, since the exact shape of the APTAC in the artery feeding the tumor is vital and is usually different from a remote artery (due to delay and dispersion by the intra-individual variation in the impulse-response characteristics of the vascular system).

One method of calibration of the population-based curve was by the method of Sadato et al. (23) (AA/iDV). They report a mean iDV scaled to bodyweight (iDV[BW]) of 0.1627 L·kg⁻¹ similar to this study (median iDV[BW] of 0.1683 L·kg⁻¹). Around 50%-60% of the bodyweight of an average adult is water, of which 25%-45% (0.18 L·kg⁻¹) is extracellular fluid (the volume of water in which ¹⁸F-FDG dissolves), stressing both the concordance and plausibility of this result (28). We used the function of Shiozaki et al. (15) to fit the iDV. They reported: iDV[mL]=39.0·H[cm]⁰.₈₀·W[kg]⁰.₃₅. This appears different from the present study (iDV[L]=0.533·H[m]¹.²⁵⁷·W[kg]⁰.₅₈₂), but they were only slightly off our optimum (CVᵦ=0.18 versus CVᵦ=0.17). A dissimilar distribution of body habitus in their (Asian) population might causative for this difference.

As shown in figure 2, the difference between MR_glc calculated by APTACampled and APTACsampled was small, therefore the net influx constant determined by Patlak analysis was accurate. For determination of the individual rate-constants however, the inaccuracy will probably be much higher. For Patlak analysis, only the integral of the APTAC and the late (>5 min) activity concentrations of the arterial plasma are of relevance, but for the accurate estimation of the individual rate constants of glucose pharmacokinetics, the exact shape of the APTAC is vital, due to both the function (including a convolution operation) and the method for parameter estimation (non-linear least squares). The delay and
dispersion between the APTAC in the artery feeding the tissue of interest and a remote artery, is of major importance for the accurate determination of the fast rate constants (K_1 and k_2) and blood fraction (V_b). Moreover, the use of a generic input function for pharmacokinetic analysis should be considered because of the large intra-individual variation of the slow clearance rate constants of 18F-FDG (λ_3 (and in lesser extent in λ_2) in figure 1 and table 2). The assumption of a single clearance profile for all patients might therefore lead to inaccurate estimation of the slower rate constants (k_3 and (if exists) k_4) of individual patients.

The proposed model therefore should be evaluated further for purpose of microparameter estimation before implementation. This, however, was out of the scope of this study.

None of the previously published articles on population-based input curve used an IDIF for comparison and most studies consist of small series of non-oncological patients, but reproducibility is high (table 3). The studies that used tri-exponential clearance of 18F-FDG as function for the APTAC (16, 17, 22) found similar decay as this study (figure 3). The results shown in figure 1 suggest a high (linear) correlation between A_3 and λ_3. This suggests that the model might be simplified omitting one parameter. We did not verify this in this study.

Conclusion

The current model of the APTAC of 18F-FDG, calibrated by one late arterial sample shows high accuracy for Patlak MR$_{glc}$ calculation and treatment response monitoring. It allows dynamic scanning of areas without large vessels in the FOV, such as the extremities, is less invasive and causes less radiation exposure to personnel than arterial sampling. Even
without a calibrating sample available, this model has the same accuracy as an IDIF without its inherent disadvantages.
Figures

Figure 1: Scatter plot of $\log_{10}(A_i)$ versus $\log_{10}(\lambda_i)$, showing clustering of the three decay constants.

Figure 2: Bland-Altman plots of comparison between any of the three evaluated APTACs and the gold standard. In the Bland-Altman plots the mean difference is displayed by the solid line and the 95% confidence interval (95CI) by the dotted lines. Unstandardized regression coefficients are displayed with corresponding 95CI. 1# sample: calibrated by one arterial sample at 25 min post injection; AA/iDV: calibrated by administered activity and initial distribution volume, APTAC: arterial plasma time activity concentration curve, IDIF: image derived input function, MR_glc: glucose metabolic rate.

Figure 3: Comparison of tri-exponential 18F-FDG-clearance in our study and 3 previous publications (16, 17, 22). Functions were normalized to the total area under the curve. Dif.: absolute differences of our clearance curve compared to the three found in literature.
Tables

Table 1: Comparison between parameter-identification and parameter-validation group with statistical significance of group difference.

<table>
<thead>
<tr>
<th></th>
<th>Identification</th>
<th>Validation</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET scans (individual patients)</td>
<td>80 (49)</td>
<td>40 (20)</td>
<td>0.327*</td>
</tr>
<tr>
<td>Male sex [% of scans]</td>
<td>60</td>
<td>70</td>
<td>0.320*</td>
</tr>
<tr>
<td>Median age (range) [years]</td>
<td>60.7 (44.8; 78.9)</td>
<td>60.1 (44.7; 71.9)</td>
<td>0.225†</td>
</tr>
<tr>
<td>Mean administered activity (SD) [MBq]</td>
<td>207 (40.1)</td>
<td>200 (35.8)</td>
<td>0.314‡</td>
</tr>
<tr>
<td>Median plasma glucose concentration (range) [mmol·L⁻¹]</td>
<td>5.3 (4.2; 10.0)</td>
<td>5.3 (4.2; 8.3)</td>
<td>0.125†</td>
</tr>
<tr>
<td>Median BMI (range) [kg·m⁻²]</td>
<td>25.8 (22.7; 27.4)</td>
<td>25.9 (19.8; 33.7)</td>
<td>0.508†</td>
</tr>
<tr>
<td>Cancer localization [% of scans]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung (non-small cell)</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td>45</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>5</td>
<td>10</td>
<td>0.618*</td>
</tr>
</tbody>
</table>

BMI: body mass index, PET: positron emission tomography. SD: standard deviation. *χ² test, †Mann-Whitney U test, ‡independent samples t-test

Table 2: Results of fitting of the normalized plasma data of the parameter-identification group and subgroup analysis between pre-therapy scans and post-therapy scans.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All scans (n=80)</th>
<th>Pre-therapy scans (n=40)</th>
<th>Follow-up scans (n=40)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>-2.077 [-2.817; -1.321]</td>
<td>-1.195 [-2.805; -1.096]</td>
<td>-2.225 [-2.961; -1.503]</td>
<td>0.168</td>
</tr>
<tr>
<td>λ₃ [min⁻¹]</td>
<td>0.7085 [0.6492; 0.8011]</td>
<td>0.6966 [0.6340; 0.8434]</td>
<td>0.7229 [0.6694; 0.8130]</td>
<td>0.589</td>
</tr>
<tr>
<td>λ₄ [min⁻¹]</td>
<td>0.2541 [0.2075; 0.3071]</td>
<td>0.2400 [0.1881; 0.3423]</td>
<td>0.2592 [0.2285; 0.2847]</td>
<td>0.805</td>
</tr>
<tr>
<td>λ₅ [min⁻¹]</td>
<td>0.7721 [0.7177; 0.8070]</td>
<td>0.7699 [0.6861; 0.8286]</td>
<td>0.7741 [0.7385; 0.7970]</td>
<td>0.920</td>
</tr>
<tr>
<td>λ₆ [min⁻¹]</td>
<td>0.01443 [0.01248; 0.01595]</td>
<td>0.01446 [0.01206; 0.01656]</td>
<td>0.01434 [0.01260; 0.01590]</td>
<td>0.562</td>
</tr>
</tbody>
</table>

IQR: interquartile range; *Mann-Whitney U-test.
<table>
<thead>
<tr>
<th>Reference</th>
<th>n</th>
<th>Method</th>
<th>Calibration</th>
<th>AUC</th>
<th>MRglc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takikawa (13)</td>
<td>10 / 24</td>
<td>Arithmetic mean</td>
<td>2 arterial</td>
<td>0.998</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 AVS</td>
<td></td>
<td>0.989</td>
</tr>
<tr>
<td>Tsuchida (14)</td>
<td>44 / 10</td>
<td>Arithmetic mean</td>
<td>-</td>
<td>+3.5%±2.2%</td>
<td>+2.9%±1.9%</td>
</tr>
<tr>
<td>Shiozaki (15)</td>
<td>101 / 192</td>
<td>Arithmetic mean</td>
<td>AA/iDV</td>
<td>+7.2%±5.7%</td>
<td>+8.9%±7.3%</td>
</tr>
<tr>
<td>Bentourkia (29)</td>
<td>20 / same 20</td>
<td>Fit to equation</td>
<td>-</td>
<td></td>
<td>0.998</td>
</tr>
<tr>
<td>Eberl (17)</td>
<td>26 / 26</td>
<td>Fit to equation</td>
<td>2 AVS</td>
<td>-</td>
<td>0.995</td>
</tr>
<tr>
<td>de Geus-Oei (9)</td>
<td>136</td>
<td>IDIF</td>
<td>-</td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>This study</td>
<td>80 / 40</td>
<td>Fit to equation</td>
<td>AA/iDV</td>
<td>0.880</td>
<td>0.963</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 arterial</td>
<td>0.994</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IDIF</td>
<td>0.856</td>
<td>0.966</td>
</tr>
</tbody>
</table>

AA/iDV: administered activity/initial distribution volume of 18F-FDG; APTAC: arterial plasma time activity concentration curve; AUC: correlation or mean % difference between area under the curve of population-based curve and serial arterial sampling; AVS: arterialized venous samples; IDIF: image-derived input function; MRglc: correlation or mean % difference between glucose metabolic rate of population-based curve and serial arterial sampling; n: number of patients (to derive curve / to validate curve).
References

