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Purpose: To evaluate in-vivo thrombus compressibility in abdominal aortic aneurysms
(AAAs) to hopefully shed light on the biomechanical importance of intraluminal thrombus.
Methods: Dynamic electrocardiographically-gated computed tomographic angiography
was performed in 17 AAA patients (15 men; mean age 73 years, range 69–76): 11 scheduled
for surgical repair and 6 under routine surveillance. The volumes of intraluminal thrombus,
the lumen, and the total aneurysm were quantified for each phase of the cardiac cycle.
Thrombus compressibility was defined as the percent change in thrombus volume
between diastole and peak systole. Continuous data are presented as medians and
interquartile ranges (IQR).
Results: A substantial interpatient variability was observed in thrombus compressibility,
ranging from 0.4% to 43.6% (0.2 to 13.5 mL, respectively). Both thrombus and lumen
volumes varied substantially during the cardiac cycle. As lumen volume increased (5.2%,
IQR 2.8%–8.8%), thrombus volume decreased (3.0%, IQR 1.0%–4.6%). Total aneurysm
volume remained relatively constant (1.3%, IQR 0.4–1.9%). Changes in lumen volume were
inversely correlated with changes in thrombus volume (r520.73; p50.001).
Conclusion: In-vivo thrombus compressibility varied from patient to patient, and this
variation was irrespective of aneurysm size, pulse pressure, and thrombus volume. This
suggests that thrombus might act as a biomechanical buffer in some, while it has virtually
no effect in others. Whether differences in thrombus compressibility alter the risk of
rupture will be the focus of future research.
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Elective aneurysm repair aims to prevent
aneurysm rupture and is considered when the
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risk of rupture exceeds the risks of repair.1 In
general, an abdominal aortic aneurysm (AAA)

larger than 5.5 cm is repaired, whereas small
AAAs (,5.5 cm) are kept under surveillance.
This commonly used 5.5-cm threshold for
intervention was confirmed in 2 large clinical
trials that showed a low annual rupture risk
(0.6%–1%) in small AAAs.2–4 However, as 60%
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of all patients in the observation groups
underwent elective repair for rapid expansion
or symptoms, it is questionable whether
these data accurately reflect the natural
history of AAA.5 The simple observation that
even small aneurysms rupture questions the
validity of maximum diameter as the single
criterion for surgical intervention.1,6,7

To differentiate rupture-prone from ‘‘sta-
ble’’ aneurysms, several investigators have
focused on the biomechanical properties of
associated intraluminal thrombus and sug-
gested that thrombus could act as a potential
mechanical buffer or cushion.8–10 Results
from these studies were, however, based
upon 2-dimensional testing of relatively well
organized thrombus and little is known about
the biomechanical role of thrombus in vivo.
We used dynamic electrocardiographically
(ECG)-gated computed tomographic angiog-
raphy (CTA) and volumetric analysis to quan-
tify changes in thrombus volume (compress-
ibility) during the cardiac cycle.

METHODS

Patient Characteristics and
Data Acquisition

Under a protocol approved by the local
ethics committee and with written patient
consent, dynamic CTA was performed in 17
consecutive AAA patients (15 men; mean age
73 years, range 69–76) scheduled for diag-
nostic CTA imaging. Patient medical history
and use of medication were prospectively
collected and are summarized in the Table.
All patients were scanned using a 64-slice CT
scanner (Somatom Sensation; Siemens, Er-
langen, Germany) and simultaneous ECG
registration. Data acquisition started after
reaching a predefined contrast enhancement
threshold (bolus triggering), seconds after
intravenous contrast administration (Xenetix
350; Guerbet, Paris, France). Radiation dose
and scanning parameters were similar to
conventional CTA and included a tube voltage
of 120 kV/120 mAs and a pitch of 0.34.
Reconstruction of the raw data resulted in 1-
mm slice thickness with 0.75-mm overlap.

Blood pressure was recorded before and
directly after CT data acquisition using a
standard cuff. Systemic pulse pressure was

calculated by subtracting diastolic from sys-
tolic blood pressure.

Image Postprocessing

Based upon the simultaneously acquired
CTA and ECG information, 10 datasets per
patient were created to represent a different
phase of the cardiac cycle (one tenth of the R-R
interval) and covered the entire abdominal
aortic volume (from distal renal to iliac bifur-
cation). Based upon these reconstructions, 170
3-dimensional (3D) aneurysm models were
created (Fig. 1), representing 10 complete 3D
aneurysm models per patient, one for each
segment of the R-R interval.

Volumetric Analysis

Thrombus, lumen, and total aneurysm
volumes were quantified from the distal renal
artery to the iliac bifurcation. The models with
maximal and minimal lumen volumes were
considered to represent peak systole and
minimum diastole. Thrombus compressibility
was defined as the difference in thrombus
volume between peak systole and minimum
diastole and is expressed as the relative or

¤ ¤
TABLE

Patient Demographics

Age, y 73 (69–76)
Men 15 (88%)
Hypertension* 13 (77%)
Hypercholesterolemia{ 12 (71%)
Diabetes mellitus 1 (6%)
CAD 5 (29%)
COPD 3 (18%)
Stroke 5 (29%)
PAOD 5 (29%)
Smoking, current 12 (71%)
Anticoagulant therapy{ 15 (88%)
Lipid-lowering therapy 11 (65%)
Antihypertensive therapy 10 (59%)
¤ ¤

Continuous data are presented as means (range);
categorical data are given as counts (percentages).
CAD: coronary artery disease, COPD: chronic
obstructive pulmonary disease, PAOD: peripheral
artery occlusive disease.
* Use of antihypertensive medication or recorded
systolic blood pressure .140 mmHg.
{ Use of lipid lowering therapy (e.g., statin) or LDL
cholesterol .240 mg/dL.
{ Aspirin or warfarin derivates.
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percent change in thrombus volume. Image
postprocessing and volumetric analysis were
performed using validated proprietary soft-
ware (M2S, Inc. West Lebanon, NH, USA).

Statistical Analysis

Continuous data are reported as median
with interquartile range (IQR); p,0.05 was
considered significant. Changes in intralumi-
nal thrombus, lumen, and total aneurysm
volumes were analyzed using the Wilcoxon
signed rank test for paired nonparametric data.
The Spearman correlation coefficient was
calculated to assess any correlation between
changes in thrombus, lumen, and total aneu-
rysm volumes. Any relationships between
changes in thrombus volume and aneurysm
size, pulse pressure, and total intraluminal
thrombus volume were analyzed by means of
a Spearman correlation test. Statistical analy-
sis was performed using SPSS (version 14.0;
SPSS Inc., Chicago, IL, USA).

RESULTS

Median aneurysm size was 54 mm (IQR 45–
55). Thrombus was present in all AAAs;
median thrombus volume was 50.1 mL (IQR
35.7–112.0). A substantial interpatient vari-

ability was observed in thrombus compress-
ibility ranging from 0.4% to 43.6% (0.2 to
13.5 mL, respectively). Both thrombus and
lumen volumes (Fig. 2) changed considerably
during the cardiac cycle (p,0.001). As lumen
volume increased (5.2%, IQR 2.8%–8.8%),
thrombus volume decreased (3.0%, IQR
1.0%–4.6%). Total aneurysm volume re-
mained relatively constant (1.3%, IQR 0.4%–
1.9%). Changes in lumen volume were in-
versely correlated with changes in thrombus
volume (r520.73; p50.001; Fig. 3) but not to
changes in total aneurysm volume (r50.01;
p50.97). Thrombus volume was positively
correlated with aneurysm size (r50.74;
p50.001), while thrombus compressibility
was not correlated with aneurysm size
(r50.07; p50.8), total thrombus volume
(r50.21; p50.4), or pulse pressure (r50.1;
p50.7).

Figure 1¤ Image postprocessing. (A) Segmenta-
tion identifies the aneurysm’s lumen (L), thrombus
(T), and calcified plaque (P). (B) Based upon the
segmentation, a 3D aneurysm model was created
to calculate thrombus, lumen, and total aneurysm
volumes.

Figure 2¤Changes in lumen (A), thrombus (B),
and total AAA (C) volumes during the cardiac cycle
in the 17 individual aneurysm patients.
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DISCUSSION

During the cardiac cycle, changes in throm-
bus volume are inversely correlated to chang-
es in lumen volume. As lumen volume
increases, thrombus volume decreases. This
compensatory volume effect of thrombus
was, however, not observed in all patients,
which strongly suggests that thrombus could
act as a biomechanical buffer in some, while it
has little to no effect in others. The observed
differences in thrombus compressibility are
not correlated with aneurysm size. This is of
particular interest as it shows that ECG-gated
CTA has the potential to quantify differences in
thrombus compressibility for equally sized
AAA. Future studies will have to focus on the
possible effect of differences in thrombus
compressibility on aneurysm rupture risk.
The effect of thrombus on rupture risk is con-
troversial. Previous imaging studies showed
increased thrombus volume in expanding and
ruptured AAA.11,12 This, however, could simply
result from the fact that large aneurysms have
an increased risk of rupture and also contain
more thrombus.13–15 A later study confirmed
this theory, showing no difference in thrombus
volume between diameter-matched intact and
ruptured AAAs.16 Results from the present
study support these findings, as large AAAs
contained more thrombus. Interestingly,
thrombus compressibility was not related to
thrombus volume or pulse pressure and there-
fore most likely results from intrinsic biome-
chanical properties of thrombus.

The development of intraluminal thrombus
is a complex and dynamic process. Near the

luminal surface, fibrin is deposited by pene-
trating platelets, resulting in a dense luminal
layer. At the abluminal surface, thrombus
contains fewer viable cells and shows in-
creased fibrin degradation.17 This remodeling
process results in different biomechanical
properties for different thrombi and even for
different layers within the same thrombus.9

The net effect of this rather heterogeneous
material on pressure transmission and aneu-
rysm rupture risk has been studied extensively.
Based upon in-vitro studies, it was postulated
that aneurysm wall stress and thus rupture risk
is reduced in the presence of thrombus.10,18–20

Although this is an important finding, it results
from in-vitro testing of excised, well-structured
thrombus. Because of the limitations related to
in-vitro biomechanical testing, extrapolating
experimental data to in-vivo thrombus dynam-
ics might be inappropriate. The present study
using dynamic ECG-gated CTA describes the
distinct in-vivo response of different thrombi in
3 dimensions.

Previous studies using dynamic CTA
and magnetic resonance angiography have
shown 2D changes in AAA geometry during
the cardiac cycle and addressed the possible
impact of dynamic imaging on patient selec-
tion for endovascular aneurysm repair.21–23

The current study focused on the potential of
dynamic CTA to quantify 3D changes in
thrombus volume (compressibility) and the
possible impact on aneurysm biomechanics.
This required a novel approach using dynam-
ic CTA and advanced 3D volumetric analysis.

As with any measurement, the accuracy of
3D volumetric analysis depends on many
factors, including pixel spacing, slice spacing,
and size of the volume being measured. The
smaller the volume, the more uncertainty
there is in the measurement. However, the
software used in this study is widely recog-
nized as an accurate tool for measuring AAA
volumes: using standard CT scanning param-
eters (2-mm slice spacing, 0.74-mm pixel
spacing) results in accurate (to ,2%) volume
measurements for blood vessels.

Limitations

A possible limitation of the current study is
that the data do not provide information on the

Figure 3¤Correlation between changes in throm-
bus and lumen volume during the cardiac cycle.
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biomechanical properties of the aneurysm wall.
If we assume a completely rigid aneurysm wall
lined with an extremely compliant thrombus, it
requires little force to compress the thrombus.
The remaining force will still be exerted to the
rigid aneurysm wall, leaving total aneurysm
volume unchanged. However, even in this
rather hypothetical situation, thrombus de-
forms and thus absorbs energy. In addition,
our results are in line with a previous 8-patient
dynamic ultrasound imaging study that sug-
gested that thrombus acts as a biomechanical
buffer.24 However, we observed larger varia-
tions in thrombus compressibility (ranging
from 0.1% to 43.6%) and therefore assumed
that thrombus could act as a biomechanical
buffer in some patients and not in others.

Conclusion

In-vivo thrombus compressibility varies con-
siderably from patient to patient, and this
variation is irrespective of aneurysm size, pulse
pressure, and thrombus volume. This suggests
that intraluminal thrombus might act as a
biomechanical buffer in some, while it has
virtually no effect in others. Whether differenc-
es in thrombus compressibility alter the risk of
rupture will be the focus of future research.
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