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Cortical bones, essential for mechanical support and structure in many animals, involve a large

number of canals organized in intricate fashion. By using state-of-the art image analysis and

computer graphics, the 3D reconstruction of a whole bone (phalange) of a young chicken was

obtained and represented in terms of a complex network where each canal was associated to an

edge and every confluence of three or more canals yielded a respective node. The representation

of the bone canal structure as a complex network has allowed several methods to be applied in

order to characterize and analyze the canal system organization and the robustness. First, the

distribution of the node degrees (i.e. the number of canals connected to each node) confirmed

previous indications that bone canal networks follow a power law, and therefore present some

highly connected nodes (hubs). The bone network was also found to be partitioned into

communities or modules, i.e. groups of nodes which are more intensely connected to one another

than with the rest of the network. We verified that each community exhibited distinct topological

properties that are possibly linked with their specific function. In order to better understand the

organization of the bone network, its resilience to two types of failures (random attack and

cascaded failures) was also quantified comparatively to randomized and regular counterparts.

The results indicate that the modular structure improves the robustness of the bone network

when compared to a regular network with the same average degree and number of nodes.

The effects of disease processes (e.g., osteoporosis) and mutations in genes (e.g., BMP4) that

occur at the molecular level can now be investigated at the mesoscopic level by using network

based approaches.

Introduction

The functionality of several biological systems is closely

related to the respective geometry and spatial structure. For

instance, the docking of proteins is strongly related to their

geometrical shapes. At a more macroscopic scale, the shape of

wings becomes critical for effective flight. To a great extent, the

miracle of life strongly depends on the effective integration

between shape and function not only along the life of indivi-

duals, but throughout the whole evolutionary chain. The

anatomy of vertebrate cortical bones is no exception to the

shape/function paradigm. Here, an intricate network of canals

is used to convey the neurovascular system1,2 so as to remove

toxic substances from the bone interior while nourishing the

bone cells. At the same time, the organization of the canals is

continuously modified in order to enhance the mechanical

strength of the bone structure to the imposed solicitations.2,3

Differently from the others branched structures (typically

trees) present in the human body, including the vessels

network of the brain and the vascular and the system that

conveys oxygen into lungs, the canal network of cortical bone

exhibit a particularly intricate connectivity which includes

many cycles.1

The new area of complex networks4–8 has provided the

means to represent, analyze and model a large number of

biological structures and systems, including protein–protein

interaction,9,10 metabolism,11,12 and neuronal networks.13,14

Basically, complex networks are graphs (i.e. discrete structures

composed by nodes interconnected through links or edges)

that exhibit particularly intricate organization. It has been

shown recently15 that, by associating each canal segment of the

bone network to a link and every confluence of three or more

canals to a respective node, the bone canal networks can be

effectively represented and studied in terms of geographical

complex networks, which consider not only the connectivity

between nodes, but also their spatial positions. In addition to

providing a precise representation of the connectivity of the

bone canals, the transformation of the canal system into a

network allows all the rich concepts and methods developed

for complex networks to be immediately applied in order to

investigate and identify several important structural features

related to canal interconnectivity.

The bone network investigated in the present work was

obtained by using a methodology similar to that applied in a

previous work,15 where we showed that the bone network

obtained from a portion of a cat femur had a degree
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distribution (i.e. the probability distribution of the number of

links of each node) which followed a power law with exponent

g = 5.0. The present work complements and extends our

previous investigation of bone canal systems in terms of

complex networks with respect to two particularly important

issues frequently investigated in complex networks research,

namely modularity (or community structure) and resilience to

attacks. In particular, we apply the method reported by

A. Clauset et al.16 in order to search for modular organization

in a whole bone network extracted from the cortical structure

of a whole chicken phalange. The presence of communities in a

biological network provides valuable information about its

mesoscopic organization, since communities are often closely

related to the functionality and development of the respective

networks. We also investigate the resilience of the bone

network with respect to two different types of attacks, namely

random failure process (RFP)—which simulates random canal

breakdown along the network such as those induced by

osteoporosis, as well as topological failure process (TFP)—

which simulates the behaviour of the bone canals structure

with respect to progressive failures such as those implied by

neoplasies and infections. The term attack has been used in the

complex networks literature in order to express unwanted

modifications in the original topology of a given network.

Typically, one is interested in quantifying the progressive

disruption of different types of attacks on the structure of

the investigated networks, such as by monitoring a given set of

features (e.g. maximum flow or size of the network). In the

present work, the original bone network is artificially altered

according to two different types of attacks in order to simulate

biologically relevant processes such as distributed or localized

injuries and diseases.

This paper is organized as follows. First, we present some of

the principal biological concepts in bone formation and

maintenance, as well as the procedures through which the

bone network investigated in this work has been obtained.

After describing the main concepts and methods for network

analysis, the results regarding the modularity and resilience of

the bone canals structure are described and discussed.

Biological concepts

The bone canal network is continuously broken down by

osteoclasts and rebuilt by osteoblasts in a process called

remodelling which is regulated by genetic, biological, and

biomechanical factors17. At birth, cortical bone consists

largely of woven bone with vascular spaces lined with osteo-

blasts. The osteoblasts reduce the volume of the vascular

spaces by deposition of successive layers of new bone. The

areas that remain are called primary osteons. These osteons

are often, but not always, parallel to the long bone axis and

may contain one to several vascular canals. In the adult

cortical bone, new canals are created by osteoclasts, which

excavate through the bone to create a ‘‘cutting cone’’, followed

by a closing cone of osteoblasts that fill the canal with new

bone18 until the diameter of the cavity is reduced to a small,

singular vascular canal. The newly formed bone cylinders are

called secondary osteons or Haversian systems. It has been

observed that the orientation of osteons is predominantly

parallel to the marrow canal, which relates to the local primary

loading direction.19 The Haversian canals are arranged in

parallel to the marrow canal, and their diameters vary from

20 to 150 mm. This variation depends on the canal age,

position in bone and the animal species.20 The Volkman’s

canals are similarly organized, but perpendicularly to the

marrow canal. The shapes of the Haversian and Volkman’s

canals are almost cylindrical.3

During growth, load increases gradually, leading to a

change in bone density and architecture.21,22 In cortical bone,

it is particularly important that such a new structure be able to

withstand the increasing bending load. Bending strength can

be enhanced by enlarging the circumference of the bone,

thereby increasing the cross-sectional moment of inertia. This

expansion involves newly formed bone at the periosteal sur-

face, in which blood vessels can be entrapped. Of the resultant

canals, primary osteons are formed which are filled with bone

by osteoblasts. If growth occurs rapidly, it may lead to a

highly porous bone structure due to the rapid formation of

primary osteons at the periosteal surface and the incomplete

filling by the osteoblasts. Therefore, the organization of the

bone canals system is intrisically related to molecular pro-

cesses required for the signalling, development, and mainte-

nance of the cellular framework within whole bones.

Despite the great importance of such canals for vasculariza-

tion, mechanical properties, development and molecular

processes, relatively few works have focused the comprehen-

sive characterization and analysis of their connectivity and

structure. Cohen and Harris23 studied this structure from 3D

reconstruction of histological sections and more recently,

advanced techniques of computational tomography have been

proposed2,24 in order to help the study of bone structure.

The acquisition of the bone network

In this article we investigate a complex network representing

the canals structure of a cortical bone, corresponding to the

whole phalange from the right leg of a young chicken. This

bone was submitted to classical histological procedure

resulting in about 800 two-dimensional slices. The 3D

reconstruction of the bone canals and respective representa-

tion as a network was obtained by using a methodology

similar to that described in a previous paper15, but with a

higher level of automation as well as a smaller degree operator

intervention. Initially, the slices were assembled in order to

build the respective 3D volume. The VTK25 class library was

used to visualize this volume and process it. Each canal was

tracked and the intersections between canals were represented

as nodes of a complex network, while the canals yielded the

edges. A similar mapping procedure was also used by

J. Buhl et al.26 in order to study the galleries built by ants

and by S. Laemmer et al.27 as the means to investigate the

topology of urban roads.

Communities

Many real-world networks present a modular structure, where

sets of nodes concentrate many edges while being weakly

connected one another. Generally, such a set is called a
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community. Some authors have suggested28–31 that each com-

munity has a specific function within a network and that its

respective properties can differ strongly from the properties of

the entire network. The detection of communities in complex

network has been intensively explored along the last years and

many algorithms have been developed for this purpose, such

as spectral,32,33 hierarchical13,34 and modularity based35,36

methods. Here, we applied the algorithm presented by Clauset

et al.16 in order to identify the communities in the bone

network. This algorithm is based on the maximization of the

modularity (Q) measurement, which quantifies the degree of

separation between the communities. Generally, a modularity

value above 0.3 is understood as a strong indication of

modularity in the network.37

Network resilience to failures

One particularly important feature of the connectivity of

specific types of networks regards their respective resilience

to attacks and failures.38,39 For instance, how long can a given

network undergoing random loss of edges keep most of its

nodes connected? In the case of bone networks, resilience is

required with respect to a certain degree of failures implied by

obstruction of channels occurring as a consequence of diseases

or injuries. One way to quantify the resilience of a network to

failure consists in monitoring the size of its giant connected

component40 (i.e. the largest set of connected nodes in the

graph, in the sense of each of these nodes being reachable from

any other node in the component through at least one path)

while the network is undergoing degradation. The results

reported in the literature38,39 show that networks tend to

present a giant component bellow a critical fraction pc of

deleted edges. Above this value, the network is fragmented and

its functionality is undermined. Cascade failure is another type

of degradation of networks related, now with respect to the

edge capacity. When the flow through an edge is higher than

its capacity, the edge is lost and the flow is redirected to the

neighbouring edges. However, such neighbouring edges can be

overloaded too, so that the process can propagate continu-

ously through all edges up to the network final breakdown.

The size of the giant component40 and the global efficiency

E,41 defined as the inverse of the path length between the node

i and j averaged over all pairs (i, j), have been used in order to

evaluate the damage of cascade failure.

The effect of modular structure in cascade failure processes

was recently investigated by Jiang-jun Wu et al.42 Those

authors showed that global efficiency of higher modular

networks tends to be larger than networks with small

modularity values during the cascade process. Moreover, the

average shortest path length is smaller in the higher modular

networks. These findings indicate that community organiza-

tion tends to improve the performance of networks in presence

of failures. Here, we considered two types of failures. The first,

called random failure process (RFP) is similar to random

breakdown38–40 and can be used to simulate random canal

breakdown along the network, as shown in Fig. 1B. The RFP

type of failure can also be used to model the effects of

osteoporosis, which degrades calcium in the canals at random

places along the bone. The second type of failure considered in

the current work is the topological failure process (TFP),

similar to cascade failure but without considering weights, in

which the damage spreads from a specific seed (i.e. a node)

through its successive neighbours. From such a seed, the

failure spreads and deletes all neighbouring edges until the

network border is reached, as shown in Fig. 1C. The TFP

simulates the effects of a lesion, where all canals at specific

places are damaged, as well as diseases which progress through

adjacent canals, such as neoplasies and infections.

Random bone network and regular bone network

In order to compare the robustness of the bone network with a

null reference model, we considered a randomized version of

the bone network, obtained by using the algorithm proposed

by S. Maslov and K. Sneppen,43 where pairs of edges are

randomly selected and their extremities swapped. The random

version of the bone network generated by this method retains

the degree distribution, but looses all correlation among the

node degrees. We also generated a regular bone network, i.e.

with the same average degree and the same number of nodes as

the original bone network. In order to do so, we placed nodes

on randomly chosen positions of a three-dimensional grid

and added the corresponding number of edges between

neighbours. Such a procedure was performed so as to obtain

only one connected component.

The robustness of the bone network and its random and

regular versions against both RFP and TFP attacks was

investigated through two measures: the size of giant component

and the maximum flow, described as follows:

(i) Size of giant component (S): Corresponds to the number

of nodes present in the largest component of the network. This

measurement is important because, as the bone network

should be able to convey nourishment to all bone cells, the

size of the giant connected component should be as large as

possible.

(ii) Maximum flow (F): Another important feature related

to transportation in networks is the maximum flow.44 In

transportation networks, the edges have maximum transpor-

tation capacity, which can be related to the diameter and

length of the canals diameter, as well as the physical properties

of the materials used in the network. Thus, it is natural to ask

what is the maximum flow that can circulate from source to

sink in a particular network. Here we consider that all edges

Fig. 1 Types of failures considered in the current paper. (A) Sample

of a generic network. (B) Random failure process (RFP): edges are

randomly selected and deleted from the network. (C) Topological

failure process (TFP): starting from a seed node, all edges are deleted

until the network extremity is reached (the seed node is shown in

purple). Note that RFP can be used to simulate osteoporosis, while

TFP is analogous to lesions along the bone structure. The deleted

edges are shown within the blue region.
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have unitary capacity. In order to evaluate the transportation

robustness of the bone network, the maximum flow was

monitored during the attack dynamics.

Results and discussion

In Fig. 2A we show the bone network obtained by using the

methodology described above. It contains 5592 nodes and

average degree hki = 2.37. Fig. 2B, C and D show some of

the main topologic features of the obtained bone network,

including its degree distribution, shortest path length distribu-

tion and degree–degree correlation matrix. We can see that, as

in the previous paper,15 this bone network also follows a degree

power-law with exponent g = 6.0 and cut-off kc = 10, which is

a consequence of the spatial restriction of the system. Another

implication of this restriction is the absence of the small-world

phenomena (i.e. a small value of average shortest path lengths

between pairs of nodes), as we can observe in Fig. 2C, where the

average shortest path length is close to hLi = 30. In addition,

Fig. 2C shows that the most common connection in this

network occurs between nodes with degree k = k0 = 3. Since

the same result was obtained for the cat femur network,15 it

suggests a possible universal feature of bone canals system.

The application of Clauset et al.’s algorithm16 led to a

modularity index Q = 0.85, indicating that the bone network

is highly modular. At this value, the network is partitioned

into 15 communities, which are shown in Fig. 3 (geographical

and topological views). We observed that the communities

located at the posterior portion of the bone tend to be denser,

such as the communities 1 and 2 (respectively red and yellow in

Fig. 2A), with respective average degrees hki1 = hki2 = 2.75.

On the other hand, the communities at the anterior portion are

similar to trees, involving fewer cycles. In order to better

characterize the differences among the bone communities, we

obtained relevant measurements (namely hki-average degree,

hCCi-average clustering coefficient, hLi-average shortest path

length and Lmax-diameter or maximum value of the shortest

path length) from each community and used the PCA trans-

formation45 in order to visualize the results. The PCA trans-

formation can be applied in order to project the data into a

two-dimensional space with axis given by linear combinations

of original measurements. In this way, we can observe the

emergence of clusters of communities which share common

features. Fig. 4 illustrates the results obtained by PCA, where

we can identify two main clusters. The smallest of them

contains the most dense communities, all of which located at

Fig. 2 Main Features of the Bone Network. (A) The bone network investigated in this article contains 5592 nodes and average degree

hki= 2.375. Each gray level corresponds to a detected community. The most connected communities are marked in red and yellow, identified as

1 (hki1 = 2.75) and 2 (hki2 = 2.75), respectively. (B) Degree distribution of the bone network. (C) Distribution of shortest path length L, and

(D) degree–degree correlation matrix.
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D
ow

nl
oa

de
d 

by
 R

ad
bo

ud
 U

ni
ve

rs
ite

it 
N

ijm
eg

en
 o

n 
23

 J
an

ua
ry

 2
01

3
Pu

bl
is

he
d 

on
 1

2 
Ja

nu
ar

y 
20

09
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/B
81

41
88

F

View Article Online

http://dx.doi.org/10.1039/b814188f


the posterior region of the bone. That region also includes two

protrusions which are particularly important for the mechan-

ical properties of the bone. It is possible that the stronger

pressures and tensions exerted over these protrusions could be

responsible for the increased connectivity of the communities.

It is also possible that the differences in density of connections

observed along the posterior–anterior axis be a consequence

of different stages of development, in the sense that the

provisionally simple communities at the anterior region may

become denser later.

In order to investigate the resilience of the bone network

against failures, as well as the respective influence of the

modular structure, the following simulations were performed.

The size of the giant connected component (S) and the

maximum flow (F) were monitored while the bone network

and its randomized and regular version were submitted to

RFP and TFP attacks. Fig. 5A shows the damage caused by

RFP on the size of the giant component. The result indicates

that for removals of 35% or less of the edges, the robustness of

the bone network is intermediate to those of the regular and

random versions.

After 45% or more of the edges have been removed, the

behaviour of the bone network becomes almost identical to

that of the respective random bone network, while the regular

bone network allows a better resilience. This result suggests

that the modular bone network is optimized in order to survive

to low injury levels, but not as much as the resilience allowed

by long range connections present in the random bone

network. It may also explain the fact that advanced stages

of several bone diseases, such as osteoporosis, can be so

catastrophic. Under the TFP (Fig. 5B) and for percentages

of removed edges smaller than 35%, the bone network shows a

performance similar to the respective randomized version and

better than regular version. This result suggests that the

modular structure of the bone network can be a possible

means to compensate for the lack of long range connections

that are present in random version. Above this value, the

resilience of the bone network becomes the worst.

Fig. 3 Modular organization of the bone network. Spatial location of each community in the cortical bone structure. Note that the communities 1

and 2 are located in the posterior region of the bone. Also interesting is the increase of community complexity from the posterior to the anterior

parts. For example, the extreme anterior communities, labelled as 10 and 15, have average degrees hki10 = 2.19 and hki15 = 2.12.

This journal is �c The Royal Society of Chemistry 2009 Mol. BioSyst., 2009, 5, 255–261 | 259
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Fig. 5C and D present the results of failure over the

maximum flow in the bone network. These results indicate

that the modular structure of the bone has little influence over

the transportation dynamics. It is important to observe that

these results refer to unweighted networks. It is possible that a

more definite effect of the modularity on resilience be observed

for versions of the bone network where the weights correspond

to the diameter of the canals. However, such effects can be

expected to be limited as the diameters are almost uniform in

the case of the investigated bone.

Conclusions

Several biological systems are characterized by intricate pat-

terns of connectivity, which are the result of long evolutionary

processes aimed at optimizing specific functionalities. In this

article we presented how the three-dimensional reconstruction

of the canals structure of a whole bone, followed by respective

representation in terms of a complex network, allowed the

identification and quantification of important structural pat-

terns of organization of the canals connectivity. In agreement

with our previous paper,15 the degree distribution was found

to follow a power law with cut-off. In addition, because the

connectivity is largely constrained by spatial adjacency

between the canals, no small-world effect was verified. At

the same time, the bone canals network was found to be

highly modular, including several communities with distinct

connectivity patterns. The application of principal component

analysis allowed the identification of two clear clusters of

communities, differing in density of connections and position

along the main axis of the bone. Interestingly, the communities

at and near the bone protrusions were found to be the most

dense in connections, which is possibly related to the special

mechanical function of those regions, requiring enhanced

vascularization and being subjected to higher mechanical

stress. The identification of communities in the bone canals

structure is also closely related to several molecular issues in

development, abnormalities and diseases of bones. It would be

particularly interesting to investigate to which extent the bone

modular structure is defined and controlled by molecular

mechanisms, while also reflecting environmental effects such

as mechanical stimuli. In addition, being immediately related

to cell-to-cell signalling within the bone, the topology of the

system of canals is continuously affected by molecular signal-

ling during ontogenesis and even along more mature stages.

Indeed, the identification of progressively more connected

communities along the anterior–posterior axis of the bone

seems to indicate the presence of transcription factor gradi-

ents. Therefore, the comprehensive quantification of the

topological properties of the bone canals reported in this work

paves the way for investigations of how eventual changes

(e.g. mutations) in the respective molecular programmes affect

the bone structure and maintenance, particularly with respect

to the BMP (bone morphogenic proteins)46–48 family of genes.

The comprehensive characterization of the bone canals

connectivity is also critical for better understanding how

molecular changes and malfunctions can lead to abnormal

development and diseases (e.g. osteoporosis).

In order to complement the characterization of the topo-

logical and modular analysis of the bone network, we also

performed simulations of different types of network failures,

more specifically random attacks and cascade of failures. The

original bone network was compared to its randomized

version as well as to an equivalent regular structure. The

modular structure of the bone network does not seem to have

any specific influence on the behaviour of the transportation

dynamics from the perspective of maximum flow. However,

the bone network was found to be more robust than its regular

version and less robust than its random version with respect to

random attacks, which simulate diseases such as osteoporosis.

Fig. 4 PCA of the communities features. Principal component

analysis was performed considering the following measurements:

hki average degree, hCCi-average clustering coefficient, hLi-average
shortest path and Lmax-diameter (maximum shortest path). Two main

clusters are clearly identified. All communities in the smallest cluster

are located at the posterior portion of the bone. The PCA axes

obtained for each cluster, as well as the respective variances, are also

shown in this figure.

Fig. 5 The robustness of bone network. Size of the giant connected

component under (A) RFP and (B) TFP. Maximum flow in network

under (C) RFP and D) TFP. Three networks are considered: bone

network, randomized bone network and regular bone network. The

curves, which represent the averages obtained for 500 realizations,

were normalized by the maximum value in each network.
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Such a systematic investigation of the resilience of the bone

canals system to different types of attacks is also related to

several molecular issues. For instance, networks of flow

sensors and molecular signalling are possibly required in order

to guarantee proper maintenance of the canal topology so as

to ensure adequate mechanical properties, flow of nutrients

and removal of unwanted materials.

Several are the possibilities for future related research,

which include the investigation of the bone structure along

several developmental stages, comparison between bone canal

systems from different animals, as well as the study of the

relationship between molecular issues (e.g. specific gene

families and pathological processes) and the respective

phenotypic properties of canals systems.
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